| /* |
| * Stream management functions. |
| * |
| * Copyright 2000-2012 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include <fcntl.h> |
| |
| #include <import/ebistree.h> |
| |
| #include <haproxy/acl.h> |
| #include <haproxy/action.h> |
| #include <haproxy/activity.h> |
| #include <haproxy/api.h> |
| #include <haproxy/applet.h> |
| #include <haproxy/arg.h> |
| #include <haproxy/backend.h> |
| #include <haproxy/capture.h> |
| #include <haproxy/cfgparse.h> |
| #include <haproxy/channel.h> |
| #include <haproxy/check.h> |
| #include <haproxy/cli.h> |
| #include <haproxy/connection.h> |
| #include <haproxy/dict.h> |
| #include <haproxy/dynbuf.h> |
| #include <haproxy/fd.h> |
| #include <haproxy/filters.h> |
| #include <haproxy/freq_ctr.h> |
| #include <haproxy/frontend.h> |
| #include <haproxy/global.h> |
| #include <haproxy/hlua.h> |
| #include <haproxy/http_ana.h> |
| #include <haproxy/http_rules.h> |
| #include <haproxy/htx.h> |
| #include <haproxy/istbuf.h> |
| #include <haproxy/log.h> |
| #include <haproxy/pipe.h> |
| #include <haproxy/pool.h> |
| #include <haproxy/proxy.h> |
| #include <haproxy/queue.h> |
| #include <haproxy/server.h> |
| #include <haproxy/resolvers.h> |
| #include <haproxy/sample.h> |
| #include <haproxy/session.h> |
| #include <haproxy/stats-t.h> |
| #include <haproxy/stick_table.h> |
| #include <haproxy/stream.h> |
| #include <haproxy/stream_interface.h> |
| #include <haproxy/task.h> |
| #include <haproxy/tcp_rules.h> |
| #include <haproxy/thread.h> |
| #include <haproxy/trace.h> |
| #include <haproxy/vars.h> |
| |
| |
| DECLARE_POOL(pool_head_stream, "stream", sizeof(struct stream)); |
| DECLARE_POOL(pool_head_uniqueid, "uniqueid", UNIQUEID_LEN); |
| |
| /* incremented by each "show sess" to fix a delimiter between streams */ |
| unsigned stream_epoch = 0; |
| |
| /* List of all use-service keywords. */ |
| static struct list service_keywords = LIST_HEAD_INIT(service_keywords); |
| |
| |
| /* trace source and events */ |
| static void strm_trace(enum trace_level level, uint64_t mask, |
| const struct trace_source *src, |
| const struct ist where, const struct ist func, |
| const void *a1, const void *a2, const void *a3, const void *a4); |
| |
| /* The event representation is split like this : |
| * strm - stream |
| * si - stream interface |
| * http - http analyzis |
| * tcp - tcp analyzis |
| * |
| * STRM_EV_* macros are defined in <proto/stream.h> |
| */ |
| static const struct trace_event strm_trace_events[] = { |
| { .mask = STRM_EV_STRM_NEW, .name = "strm_new", .desc = "new stream" }, |
| { .mask = STRM_EV_STRM_FREE, .name = "strm_free", .desc = "release stream" }, |
| { .mask = STRM_EV_STRM_ERR, .name = "strm_err", .desc = "error during stream processing" }, |
| { .mask = STRM_EV_STRM_ANA, .name = "strm_ana", .desc = "stream analyzers" }, |
| { .mask = STRM_EV_STRM_PROC, .name = "strm_proc", .desc = "stream processing" }, |
| |
| { .mask = STRM_EV_SI_ST, .name = "si_state", .desc = "processing stream-interface states" }, |
| |
| { .mask = STRM_EV_HTTP_ANA, .name = "http_ana", .desc = "HTTP analyzers" }, |
| { .mask = STRM_EV_HTTP_ERR, .name = "http_err", .desc = "error during HTTP analyzis" }, |
| |
| { .mask = STRM_EV_TCP_ANA, .name = "tcp_ana", .desc = "TCP analyzers" }, |
| { .mask = STRM_EV_TCP_ERR, .name = "tcp_err", .desc = "error during TCP analyzis" }, |
| {} |
| }; |
| |
| static const struct name_desc strm_trace_lockon_args[4] = { |
| /* arg1 */ { /* already used by the stream */ }, |
| /* arg2 */ { }, |
| /* arg3 */ { }, |
| /* arg4 */ { } |
| }; |
| |
| static const struct name_desc strm_trace_decoding[] = { |
| #define STRM_VERB_CLEAN 1 |
| { .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" }, |
| #define STRM_VERB_MINIMAL 2 |
| { .name="minimal", .desc="report info on stream and stream-interfaces" }, |
| #define STRM_VERB_SIMPLE 3 |
| { .name="simple", .desc="add info on request and response channels" }, |
| #define STRM_VERB_ADVANCED 4 |
| { .name="advanced", .desc="add info on channel's buffer for data and developer levels only" }, |
| #define STRM_VERB_COMPLETE 5 |
| { .name="complete", .desc="add info on channel's buffer" }, |
| { /* end */ } |
| }; |
| |
| struct trace_source trace_strm = { |
| .name = IST("stream"), |
| .desc = "Applicative stream", |
| .arg_def = TRC_ARG1_STRM, // TRACE()'s first argument is always a stream |
| .default_cb = strm_trace, |
| .known_events = strm_trace_events, |
| .lockon_args = strm_trace_lockon_args, |
| .decoding = strm_trace_decoding, |
| .report_events = ~0, // report everything by default |
| }; |
| |
| #define TRACE_SOURCE &trace_strm |
| INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE); |
| |
| /* the stream traces always expect that arg1, if non-null, is of a stream (from |
| * which we can derive everything), that arg2, if non-null, is an http |
| * transaction, that arg3, if non-null, is an http message. |
| */ |
| static void strm_trace(enum trace_level level, uint64_t mask, const struct trace_source *src, |
| const struct ist where, const struct ist func, |
| const void *a1, const void *a2, const void *a3, const void *a4) |
| { |
| const struct stream *s = a1; |
| const struct http_txn *txn = a2; |
| const struct http_msg *msg = a3; |
| struct task *task; |
| const struct stream_interface *si_f, *si_b; |
| const struct channel *req, *res; |
| struct htx *htx; |
| |
| if (!s || src->verbosity < STRM_VERB_CLEAN) |
| return; |
| |
| task = s->task; |
| si_f = &s->si[0]; |
| si_b = &s->si[1]; |
| req = &s->req; |
| res = &s->res; |
| htx = (msg ? htxbuf(&msg->chn->buf) : NULL); |
| |
| /* General info about the stream (htx/tcp, id...) */ |
| chunk_appendf(&trace_buf, " : [%u,%s]", |
| s->uniq_id, ((s->flags & SF_HTX) ? "HTX" : "TCP")); |
| if (isttest(s->unique_id)) { |
| chunk_appendf(&trace_buf, " id="); |
| b_putist(&trace_buf, s->unique_id); |
| } |
| |
| /* Front and back stream-int state */ |
| chunk_appendf(&trace_buf, " SI=(%s,%s)", |
| si_state_str(si_f->state), si_state_str(si_b->state)); |
| |
| /* If txn is defined, HTTP req/rep states */ |
| if (txn) |
| chunk_appendf(&trace_buf, " HTTP=(%s,%s)", |
| h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state)); |
| if (msg) |
| chunk_appendf(&trace_buf, " %s", ((msg->chn->flags & CF_ISRESP) ? "RESPONSE" : "REQUEST")); |
| |
| if (src->verbosity == STRM_VERB_CLEAN) |
| return; |
| |
| /* If msg defined, display status-line if possible (verbosity > MINIMAL) */ |
| if (src->verbosity > STRM_VERB_MINIMAL && htx && htx_nbblks(htx)) { |
| const struct htx_blk *blk = htx_get_head_blk(htx); |
| const struct htx_sl *sl = htx_get_blk_ptr(htx, blk); |
| enum htx_blk_type type = htx_get_blk_type(blk); |
| |
| if (type == HTX_BLK_REQ_SL || type == HTX_BLK_RES_SL) |
| chunk_appendf(&trace_buf, " - \"%.*s %.*s %.*s\"", |
| HTX_SL_P1_LEN(sl), HTX_SL_P1_PTR(sl), |
| HTX_SL_P2_LEN(sl), HTX_SL_P2_PTR(sl), |
| HTX_SL_P3_LEN(sl), HTX_SL_P3_PTR(sl)); |
| } |
| |
| |
| /* If txn defined info about HTTP msgs, otherwise info about SI. */ |
| if (txn) { |
| chunk_appendf(&trace_buf, " - t=%p s=(%p,0x%08x) txn.flags=0x%08x, http.flags=(0x%08x,0x%08x) status=%d", |
| task, s, s->flags, txn->flags, txn->req.flags, txn->rsp.flags, txn->status); |
| } |
| else { |
| chunk_appendf(&trace_buf, " - t=%p s=(%p,0x%08x) si_f=(%p,0x%08x,0x%x) si_b=(%p,0x%08x,0x%x) retries=%d", |
| task, s, s->flags, si_f, si_f->flags, si_f->err_type, |
| si_b, si_b->flags, si_b->err_type, si_b->conn_retries); |
| } |
| |
| if (src->verbosity == STRM_VERB_MINIMAL) |
| return; |
| |
| |
| /* If txn defined, don't display all channel info */ |
| if (src->verbosity == STRM_VERB_SIMPLE || txn) { |
| chunk_appendf(&trace_buf, " req=(%p .fl=0x%08x .exp(r,w,a)=(%u,%u,%u))", |
| req, req->flags, req->rex, req->wex, req->analyse_exp); |
| chunk_appendf(&trace_buf, " res=(%p .fl=0x%08x .exp(r,w,a)=(%u,%u,%u))", |
| res, res->flags, res->rex, res->wex, res->analyse_exp); |
| } |
| else { |
| chunk_appendf(&trace_buf, " req=(%p .fl=0x%08x .ana=0x%08x .exp(r,w,a)=(%u,%u,%u) .o=%lu .tot=%llu .to_fwd=%u)", |
| req, req->flags, req->analysers, req->rex, req->wex, req->analyse_exp, |
| (long)req->output, req->total, req->to_forward); |
| chunk_appendf(&trace_buf, " res=(%p .fl=0x%08x .ana=0x%08x .exp(r,w,a)=(%u,%u,%u) .o=%lu .tot=%llu .to_fwd=%u)", |
| res, res->flags, res->analysers, res->rex, res->wex, res->analyse_exp, |
| (long)res->output, res->total, res->to_forward); |
| } |
| |
| if (src->verbosity == STRM_VERB_SIMPLE || |
| (src->verbosity == STRM_VERB_ADVANCED && src->level < TRACE_LEVEL_DATA)) |
| return; |
| |
| /* channels' buffer info */ |
| if (s->flags & SF_HTX) { |
| struct htx *rqhtx = htxbuf(&req->buf); |
| struct htx *rphtx = htxbuf(&res->buf); |
| |
| chunk_appendf(&trace_buf, " htx=(%u/%u#%u, %u/%u#%u)", |
| rqhtx->data, rqhtx->size, htx_nbblks(rqhtx), |
| rphtx->data, rphtx->size, htx_nbblks(rphtx)); |
| } |
| else { |
| chunk_appendf(&trace_buf, " buf=(%u@%p+%u/%u, %u@%p+%u/%u)", |
| (unsigned int)b_data(&req->buf), b_orig(&req->buf), |
| (unsigned int)b_head_ofs(&req->buf), (unsigned int)b_size(&req->buf), |
| (unsigned int)b_data(&req->buf), b_orig(&req->buf), |
| (unsigned int)b_head_ofs(&req->buf), (unsigned int)b_size(&req->buf)); |
| } |
| |
| /* If msg defined, display htx info if defined (level > USER) */ |
| if (src->level > TRACE_LEVEL_USER && htx && htx_nbblks(htx)) { |
| int full = 0; |
| |
| /* Full htx info (level > STATE && verbosity > SIMPLE) */ |
| if (src->level > TRACE_LEVEL_STATE) { |
| if (src->verbosity == STRM_VERB_COMPLETE) |
| full = 1; |
| } |
| |
| chunk_memcat(&trace_buf, "\n\t", 2); |
| htx_dump(&trace_buf, htx, full); |
| } |
| } |
| |
| /* Create a new stream for connection <conn>. Return < 0 on error. This is only |
| * valid right after the handshake, before the connection's data layer is |
| * initialized, because it relies on the session to be in conn->owner. On |
| * success, <input> buffer is transferred to the stream and thus points to |
| * BUF_NULL. On error, it is unchanged and it is the caller responsibility to |
| * release it. |
| */ |
| int stream_create_from_cs(struct conn_stream *cs, struct buffer *input) |
| { |
| struct stream *strm; |
| |
| strm = stream_new(cs->conn->owner, &cs->obj_type, input); |
| if (strm == NULL) |
| return -1; |
| |
| task_wakeup(strm->task, TASK_WOKEN_INIT); |
| return 0; |
| } |
| |
| /* Upgrade an existing TCP stream for connection <conn>. Return < 0 on error. |
| * This is only valid right after a TCP to H1 upgrade. The stream should be |
| * "reativated" by removing SF_IGNORE flag. And the right mode must be set. |
| * On success, <input> buffer is transferred to the stream and thus points to |
| * BUF_NULL. On error, it is unchanged and it is the caller responsibility to |
| * release it (this never happens for now). |
| */ |
| int stream_upgrade_from_cs(struct conn_stream *cs, struct buffer *input) |
| { |
| struct stream_interface *si = cs->data; |
| struct stream *s = si_strm(si); |
| |
| if (cs->conn->mux->flags & MX_FL_HTX) |
| s->flags |= SF_HTX; |
| |
| if (!b_is_null(input)) { |
| /* Xfer the input buffer to the request channel. <input> will |
| * than point to BUF_NULL. From this point, it is the stream |
| * responsibility to release it. |
| */ |
| s->req.buf = *input; |
| *input = BUF_NULL; |
| s->req.total = (IS_HTX_STRM(s) ? htxbuf(&s->req.buf)->data : b_data(&s->req.buf)); |
| s->req.flags |= (s->req.total ? CF_READ_PARTIAL : 0); |
| } |
| |
| s->flags &= ~SF_IGNORE; |
| |
| task_wakeup(s->task, TASK_WOKEN_INIT); |
| return 0; |
| } |
| |
| /* Callback used to wake up a stream when an input buffer is available. The |
| * stream <s>'s stream interfaces are checked for a failed buffer allocation |
| * as indicated by the presence of the SI_FL_RXBLK_ROOM flag and the lack of a |
| * buffer, and and input buffer is assigned there (at most one). The function |
| * returns 1 and wakes the stream up if a buffer was taken, otherwise zero. |
| * It's designed to be called from __offer_buffer(). |
| */ |
| int stream_buf_available(void *arg) |
| { |
| struct stream *s = arg; |
| |
| if (!s->req.buf.size && !s->req.pipe && (s->si[0].flags & SI_FL_RXBLK_BUFF) && |
| b_alloc(&s->req.buf)) |
| si_rx_buff_rdy(&s->si[0]); |
| else if (!s->res.buf.size && !s->res.pipe && (s->si[1].flags & SI_FL_RXBLK_BUFF) && |
| b_alloc(&s->res.buf)) |
| si_rx_buff_rdy(&s->si[1]); |
| else |
| return 0; |
| |
| task_wakeup(s->task, TASK_WOKEN_RES); |
| return 1; |
| |
| } |
| |
| /* This function is called from the session handler which detects the end of |
| * handshake, in order to complete initialization of a valid stream. It must be |
| * called with a completely initialized session. It returns the pointer to |
| * the newly created stream, or NULL in case of fatal error. The client-facing |
| * end point is assigned to <origin>, which must be valid. The stream's task |
| * is configured with a nice value inherited from the listener's nice if any. |
| * The task's context is set to the new stream, and its function is set to |
| * process_stream(). Target and analysers are null. <input> is used as input |
| * buffer for the request channel and may contain data. On success, it is |
| * transfer to the stream and <input> is set to BUF_NULL. On error, <input> |
| * buffer is unchanged and it is the caller responsibility to release it. |
| */ |
| struct stream *stream_new(struct session *sess, enum obj_type *origin, struct buffer *input) |
| { |
| struct stream *s; |
| struct task *t; |
| struct conn_stream *cs = objt_cs(origin); |
| struct appctx *appctx = objt_appctx(origin); |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_NEW); |
| if (unlikely((s = pool_alloc(pool_head_stream)) == NULL)) |
| goto out_fail_alloc; |
| |
| /* minimum stream initialization required for an embryonic stream is |
| * fairly low. We need very little to execute L4 ACLs, then we need a |
| * task to make the client-side connection live on its own. |
| * - flags |
| * - stick-entry tracking |
| */ |
| s->flags = 0; |
| s->logs.logwait = sess->fe->to_log; |
| s->logs.level = 0; |
| tv_zero(&s->logs.tv_request); |
| s->logs.t_queue = -1; |
| s->logs.t_connect = -1; |
| s->logs.t_data = -1; |
| s->logs.t_close = 0; |
| s->logs.bytes_in = s->logs.bytes_out = 0; |
| s->logs.prx_queue_pos = 0; /* we get the number of pending conns before us */ |
| s->logs.srv_queue_pos = 0; /* we will get this number soon */ |
| s->obj_type = OBJ_TYPE_STREAM; |
| |
| s->logs.accept_date = sess->accept_date; |
| s->logs.tv_accept = sess->tv_accept; |
| s->logs.t_handshake = sess->t_handshake; |
| s->logs.t_idle = sess->t_idle; |
| |
| /* default logging function */ |
| s->do_log = strm_log; |
| |
| /* default error reporting function, may be changed by analysers */ |
| s->srv_error = default_srv_error; |
| |
| /* Initialise the current rule list pointer to NULL. We are sure that |
| * any rulelist match the NULL pointer. |
| */ |
| s->current_rule_list = NULL; |
| s->current_rule = NULL; |
| s->rules_exp = TICK_ETERNITY; |
| |
| /* Copy SC counters for the stream. We don't touch refcounts because |
| * any reference we have is inherited from the session. Since the stream |
| * doesn't exist without the session, the session's existence guarantees |
| * we don't lose the entry. During the store operation, the stream won't |
| * touch these ones. |
| */ |
| memcpy(s->stkctr, sess->stkctr, sizeof(s->stkctr)); |
| |
| s->sess = sess; |
| s->si[0].flags = SI_FL_NONE; |
| s->si[1].flags = SI_FL_ISBACK; |
| |
| s->stream_epoch = _HA_ATOMIC_LOAD(&stream_epoch); |
| s->uniq_id = _HA_ATOMIC_FETCH_ADD(&global.req_count, 1); |
| |
| /* OK, we're keeping the stream, so let's properly initialize the stream */ |
| LIST_INIT(&s->back_refs); |
| |
| LIST_INIT(&s->buffer_wait.list); |
| s->buffer_wait.target = s; |
| s->buffer_wait.wakeup_cb = stream_buf_available; |
| |
| s->call_rate.curr_tick = s->call_rate.curr_ctr = s->call_rate.prev_ctr = 0; |
| s->pcli_next_pid = 0; |
| s->pcli_flags = 0; |
| s->unique_id = IST_NULL; |
| |
| if ((t = task_new_here()) == NULL) |
| goto out_fail_alloc; |
| |
| s->task = t; |
| s->pending_events = 0; |
| t->process = process_stream; |
| t->context = s; |
| t->expire = TICK_ETERNITY; |
| if (sess->listener) |
| t->nice = sess->listener->nice; |
| |
| /* Note: initially, the stream's backend points to the frontend. |
| * This changes later when switching rules are executed or |
| * when the default backend is assigned. |
| */ |
| s->be = sess->fe; |
| s->req_cap = NULL; |
| s->res_cap = NULL; |
| |
| /* Initialise all the variables contexts even if not used. |
| * This permits to prune these contexts without errors. |
| */ |
| vars_init_head(&s->vars_txn, SCOPE_TXN); |
| vars_init_head(&s->vars_reqres, SCOPE_REQ); |
| |
| /* this part should be common with other protocols */ |
| if (si_reset(&s->si[0]) < 0) |
| goto out_fail_alloc; |
| si_set_state(&s->si[0], SI_ST_EST); |
| s->si[0].hcto = sess->fe->timeout.clientfin; |
| |
| if (cs && cs->conn->mux) { |
| if (cs->conn->mux->flags & MX_FL_CLEAN_ABRT) |
| s->si[0].flags |= SI_FL_CLEAN_ABRT; |
| if (cs->conn->mux->flags & MX_FL_HTX) |
| s->flags |= SF_HTX; |
| |
| if (cs->flags & CS_FL_WEBSOCKET) |
| s->flags |= SF_WEBSOCKET; |
| } |
| /* Set SF_HTX flag for HTTP frontends. */ |
| if (sess->fe->mode == PR_MODE_HTTP) |
| s->flags |= SF_HTX; |
| |
| /* attach the incoming connection to the stream interface now. */ |
| if (cs) |
| si_attach_cs(&s->si[0], cs); |
| else if (appctx) |
| si_attach_appctx(&s->si[0], appctx); |
| |
| if (likely(sess->fe->options2 & PR_O2_INDEPSTR)) |
| s->si[0].flags |= SI_FL_INDEP_STR; |
| |
| /* pre-initialize the other side's stream interface to an INIT state. The |
| * callbacks will be initialized before attempting to connect. |
| */ |
| if (si_reset(&s->si[1]) < 0) |
| goto out_fail_alloc_si1; |
| s->si[1].hcto = TICK_ETERNITY; |
| |
| if (likely(sess->fe->options2 & PR_O2_INDEPSTR)) |
| s->si[1].flags |= SI_FL_INDEP_STR; |
| |
| stream_init_srv_conn(s); |
| s->target = sess->listener ? sess->listener->default_target : NULL; |
| |
| s->pend_pos = NULL; |
| s->priority_class = 0; |
| s->priority_offset = 0; |
| |
| /* init store persistence */ |
| s->store_count = 0; |
| |
| channel_init(&s->req); |
| s->req.flags |= CF_READ_ATTACHED; /* the producer is already connected */ |
| s->req.analysers = sess->listener ? sess->listener->analysers : 0; |
| |
| if (IS_HTX_STRM(s)) { |
| /* Be sure to have HTTP analysers because in case of |
| * "destructive" stream upgrade, they may be missing (e.g |
| * TCP>H2) |
| */ |
| s->req.analysers |= AN_REQ_WAIT_HTTP|AN_REQ_HTTP_PROCESS_FE; |
| } |
| |
| if (!sess->fe->fe_req_ana) { |
| channel_auto_connect(&s->req); /* don't wait to establish connection */ |
| channel_auto_close(&s->req); /* let the producer forward close requests */ |
| } |
| |
| s->req.rto = sess->fe->timeout.client; |
| s->req.wto = TICK_ETERNITY; |
| s->req.rex = TICK_ETERNITY; |
| s->req.wex = TICK_ETERNITY; |
| s->req.analyse_exp = TICK_ETERNITY; |
| |
| channel_init(&s->res); |
| s->res.flags |= CF_ISRESP; |
| s->res.analysers = 0; |
| |
| if (sess->fe->options2 & PR_O2_NODELAY) { |
| s->req.flags |= CF_NEVER_WAIT; |
| s->res.flags |= CF_NEVER_WAIT; |
| } |
| |
| s->res.wto = sess->fe->timeout.client; |
| s->res.rto = TICK_ETERNITY; |
| s->res.rex = TICK_ETERNITY; |
| s->res.wex = TICK_ETERNITY; |
| s->res.analyse_exp = TICK_ETERNITY; |
| |
| s->txn = NULL; |
| s->hlua = NULL; |
| |
| s->resolv_ctx.requester = NULL; |
| s->resolv_ctx.hostname_dn = NULL; |
| s->resolv_ctx.hostname_dn_len = 0; |
| s->resolv_ctx.parent = NULL; |
| |
| s->tunnel_timeout = TICK_ETERNITY; |
| |
| LIST_APPEND(&th_ctx->streams, &s->list); |
| |
| if (flt_stream_init(s) < 0 || flt_stream_start(s) < 0) |
| goto out_fail_accept; |
| |
| s->si[1].l7_buffer = BUF_NULL; |
| /* finish initialization of the accepted file descriptor */ |
| if (appctx) |
| si_want_get(&s->si[0]); |
| |
| if (sess->fe->accept && sess->fe->accept(s) < 0) |
| goto out_fail_accept; |
| |
| if (!b_is_null(input)) { |
| /* Xfer the input buffer to the request channel. <input> will |
| * than point to BUF_NULL. From this point, it is the stream |
| * responsibility to release it. |
| */ |
| s->req.buf = *input; |
| *input = BUF_NULL; |
| s->req.total = (IS_HTX_STRM(s) ? htxbuf(&s->req.buf)->data : b_data(&s->req.buf)); |
| s->req.flags |= (s->req.total ? CF_READ_PARTIAL : 0); |
| } |
| |
| /* it is important not to call the wakeup function directly but to |
| * pass through task_wakeup(), because this one knows how to apply |
| * priorities to tasks. Using multi thread we must be sure that |
| * stream is fully initialized before calling task_wakeup. So |
| * the caller must handle the task_wakeup |
| */ |
| DBG_TRACE_LEAVE(STRM_EV_STRM_NEW, s); |
| return s; |
| |
| /* Error unrolling */ |
| out_fail_accept: |
| flt_stream_release(s, 0); |
| task_destroy(t); |
| tasklet_free(s->si[1].wait_event.tasklet); |
| LIST_DELETE(&s->list); |
| out_fail_alloc_si1: |
| tasklet_free(s->si[0].wait_event.tasklet); |
| out_fail_alloc: |
| pool_free(pool_head_stream, s); |
| DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_NEW|STRM_EV_STRM_ERR); |
| return NULL; |
| } |
| |
| /* |
| * frees the context associated to a stream. It must have been removed first. |
| */ |
| static void stream_free(struct stream *s) |
| { |
| struct session *sess = strm_sess(s); |
| struct proxy *fe = sess->fe; |
| struct bref *bref, *back; |
| struct conn_stream *cli_cs = objt_cs(s->si[0].end); |
| int must_free_sess; |
| int i; |
| |
| DBG_TRACE_POINT(STRM_EV_STRM_FREE, s); |
| |
| /* detach the stream from its own task before even releasing it so |
| * that walking over a task list never exhibits a dying stream. |
| */ |
| s->task->context = NULL; |
| __ha_barrier_store(); |
| |
| pendconn_free(s); |
| |
| if (objt_server(s->target)) { /* there may be requests left pending in queue */ |
| if (s->flags & SF_CURR_SESS) { |
| s->flags &= ~SF_CURR_SESS; |
| _HA_ATOMIC_DEC(&__objt_server(s->target)->cur_sess); |
| } |
| if (may_dequeue_tasks(__objt_server(s->target), s->be)) |
| process_srv_queue(__objt_server(s->target)); |
| } |
| |
| if (unlikely(s->srv_conn)) { |
| /* the stream still has a reserved slot on a server, but |
| * it should normally be only the same as the one above, |
| * so this should not happen in fact. |
| */ |
| sess_change_server(s, NULL); |
| } |
| |
| if (s->req.pipe) |
| put_pipe(s->req.pipe); |
| |
| if (s->res.pipe) |
| put_pipe(s->res.pipe); |
| |
| /* We may still be present in the buffer wait queue */ |
| if (LIST_INLIST(&s->buffer_wait.list)) |
| LIST_DEL_INIT(&s->buffer_wait.list); |
| |
| if (s->req.buf.size || s->res.buf.size) { |
| int count = !!s->req.buf.size + !!s->res.buf.size; |
| |
| b_free(&s->req.buf); |
| b_free(&s->res.buf); |
| offer_buffers(NULL, count); |
| } |
| |
| pool_free(pool_head_uniqueid, s->unique_id.ptr); |
| s->unique_id = IST_NULL; |
| |
| flt_stream_stop(s); |
| flt_stream_release(s, 0); |
| |
| hlua_ctx_destroy(s->hlua); |
| s->hlua = NULL; |
| if (s->txn) |
| http_destroy_txn(s); |
| |
| /* ensure the client-side transport layer is destroyed */ |
| if (cli_cs) |
| cs_close(cli_cs); |
| |
| for (i = 0; i < s->store_count; i++) { |
| if (!s->store[i].ts) |
| continue; |
| stksess_free(s->store[i].table, s->store[i].ts); |
| s->store[i].ts = NULL; |
| } |
| |
| if (s->resolv_ctx.requester) { |
| __decl_thread(struct resolvers *resolvers = s->resolv_ctx.parent->arg.resolv.resolvers); |
| |
| HA_SPIN_LOCK(DNS_LOCK, &resolvers->lock); |
| ha_free(&s->resolv_ctx.hostname_dn); |
| s->resolv_ctx.hostname_dn_len = 0; |
| resolv_unlink_resolution(s->resolv_ctx.requester); |
| HA_SPIN_UNLOCK(DNS_LOCK, &resolvers->lock); |
| |
| pool_free(resolv_requester_pool, s->resolv_ctx.requester); |
| s->resolv_ctx.requester = NULL; |
| } |
| |
| if (fe) { |
| if (s->req_cap) { |
| struct cap_hdr *h; |
| for (h = fe->req_cap; h; h = h->next) |
| pool_free(h->pool, s->req_cap[h->index]); |
| } |
| |
| if (s->res_cap) { |
| struct cap_hdr *h; |
| for (h = fe->rsp_cap; h; h = h->next) |
| pool_free(h->pool, s->res_cap[h->index]); |
| } |
| |
| pool_free(fe->rsp_cap_pool, s->res_cap); |
| pool_free(fe->req_cap_pool, s->req_cap); |
| } |
| |
| /* Cleanup all variable contexts. */ |
| if (!LIST_ISEMPTY(&s->vars_txn.head)) |
| vars_prune(&s->vars_txn, s->sess, s); |
| if (!LIST_ISEMPTY(&s->vars_reqres.head)) |
| vars_prune(&s->vars_reqres, s->sess, s); |
| |
| stream_store_counters(s); |
| |
| list_for_each_entry_safe(bref, back, &s->back_refs, users) { |
| /* we have to unlink all watchers. We must not relink them if |
| * this stream was the last one in the list. This is safe to do |
| * here because we're touching our thread's list so we know |
| * that other streams are not active, and the watchers will |
| * only touch their node under thread isolation. |
| */ |
| LIST_DEL_INIT(&bref->users); |
| if (s->list.n != &th_ctx->streams) |
| LIST_APPEND(&LIST_ELEM(s->list.n, struct stream *, list)->back_refs, &bref->users); |
| bref->ref = s->list.n; |
| __ha_barrier_store(); |
| } |
| LIST_DELETE(&s->list); |
| |
| /* applets do not release session yet */ |
| must_free_sess = objt_appctx(sess->origin) && sess->origin == s->si[0].end; |
| |
| |
| si_release_endpoint(&s->si[1]); |
| si_release_endpoint(&s->si[0]); |
| |
| tasklet_free(s->si[0].wait_event.tasklet); |
| tasklet_free(s->si[1].wait_event.tasklet); |
| |
| b_free(&s->si[1].l7_buffer); |
| if (must_free_sess) { |
| sess->origin = NULL; |
| session_free(sess); |
| } |
| |
| sockaddr_free(&s->si[0].src); |
| sockaddr_free(&s->si[0].dst); |
| sockaddr_free(&s->si[1].src); |
| sockaddr_free(&s->si[1].dst); |
| pool_free(pool_head_stream, s); |
| |
| /* We may want to free the maximum amount of pools if the proxy is stopping */ |
| if (fe && unlikely(fe->flags & (PR_FL_DISABLED|PR_FL_STOPPED))) { |
| pool_flush(pool_head_buffer); |
| pool_flush(pool_head_http_txn); |
| pool_flush(pool_head_requri); |
| pool_flush(pool_head_capture); |
| pool_flush(pool_head_stream); |
| pool_flush(pool_head_session); |
| pool_flush(pool_head_connection); |
| pool_flush(pool_head_pendconn); |
| pool_flush(fe->req_cap_pool); |
| pool_flush(fe->rsp_cap_pool); |
| } |
| } |
| |
| |
| /* Allocates a work buffer for stream <s>. It is meant to be called inside |
| * process_stream(). It will only allocate the side needed for the function |
| * to work fine, which is the response buffer so that an error message may be |
| * built and returned. Response buffers may be allocated from the reserve, this |
| * is critical to ensure that a response may always flow and will never block a |
| * server from releasing a connection. Returns 0 in case of failure, non-zero |
| * otherwise. |
| */ |
| static int stream_alloc_work_buffer(struct stream *s) |
| { |
| if (LIST_INLIST(&s->buffer_wait.list)) |
| LIST_DEL_INIT(&s->buffer_wait.list); |
| |
| if (b_alloc(&s->res.buf)) |
| return 1; |
| |
| LIST_APPEND(&th_ctx->buffer_wq, &s->buffer_wait.list); |
| return 0; |
| } |
| |
| /* releases unused buffers after processing. Typically used at the end of the |
| * update() functions. It will try to wake up as many tasks/applets as the |
| * number of buffers that it releases. In practice, most often streams are |
| * blocked on a single buffer, so it makes sense to try to wake two up when two |
| * buffers are released at once. |
| */ |
| void stream_release_buffers(struct stream *s) |
| { |
| int offer = 0; |
| |
| if (c_size(&s->req) && c_empty(&s->req)) { |
| offer++; |
| b_free(&s->req.buf); |
| } |
| if (c_size(&s->res) && c_empty(&s->res)) { |
| offer++; |
| b_free(&s->res.buf); |
| } |
| |
| /* if we're certain to have at least 1 buffer available, and there is |
| * someone waiting, we can wake up a waiter and offer them. |
| */ |
| if (offer) |
| offer_buffers(s, offer); |
| } |
| |
| void stream_process_counters(struct stream *s) |
| { |
| struct session *sess = s->sess; |
| unsigned long long bytes; |
| int i; |
| |
| bytes = s->req.total - s->logs.bytes_in; |
| s->logs.bytes_in = s->req.total; |
| if (bytes) { |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_in, bytes); |
| _HA_ATOMIC_ADD(&s->be->be_counters.bytes_in, bytes); |
| |
| if (objt_server(s->target)) |
| _HA_ATOMIC_ADD(&__objt_server(s->target)->counters.bytes_in, bytes); |
| |
| if (sess->listener && sess->listener->counters) |
| _HA_ATOMIC_ADD(&sess->listener->counters->bytes_in, bytes); |
| |
| for (i = 0; i < MAX_SESS_STKCTR; i++) { |
| if (!stkctr_inc_bytes_in_ctr(&s->stkctr[i], bytes)) |
| stkctr_inc_bytes_in_ctr(&sess->stkctr[i], bytes); |
| } |
| } |
| |
| bytes = s->res.total - s->logs.bytes_out; |
| s->logs.bytes_out = s->res.total; |
| if (bytes) { |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_out, bytes); |
| _HA_ATOMIC_ADD(&s->be->be_counters.bytes_out, bytes); |
| |
| if (objt_server(s->target)) |
| _HA_ATOMIC_ADD(&__objt_server(s->target)->counters.bytes_out, bytes); |
| |
| if (sess->listener && sess->listener->counters) |
| _HA_ATOMIC_ADD(&sess->listener->counters->bytes_out, bytes); |
| |
| for (i = 0; i < MAX_SESS_STKCTR; i++) { |
| if (!stkctr_inc_bytes_out_ctr(&s->stkctr[i], bytes)) |
| stkctr_inc_bytes_out_ctr(&sess->stkctr[i], bytes); |
| } |
| } |
| } |
| |
| int stream_set_timeout(struct stream *s, enum act_timeout_name name, int timeout) |
| { |
| switch (name) { |
| case ACT_TIMEOUT_SERVER: |
| s->req.wto = timeout; |
| s->res.rto = timeout; |
| return 1; |
| |
| case ACT_TIMEOUT_TUNNEL: |
| s->tunnel_timeout = timeout; |
| return 1; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| /* |
| * This function handles the transition between the SI_ST_CON state and the |
| * SI_ST_EST state. It must only be called after switching from SI_ST_CON (or |
| * SI_ST_INI or SI_ST_RDY) to SI_ST_EST, but only when a ->proto is defined. |
| * Note that it will switch the interface to SI_ST_DIS if we already have |
| * the CF_SHUTR flag, it means we were able to forward the request, and |
| * receive the response, before process_stream() had the opportunity to |
| * make the switch from SI_ST_CON to SI_ST_EST. When that happens, we want |
| * to go through back_establish() anyway, to make sure the analysers run. |
| * Timeouts are cleared. Error are reported on the channel so that analysers |
| * can handle them. |
| */ |
| static void back_establish(struct stream *s) |
| { |
| struct stream_interface *si = &s->si[1]; |
| struct conn_stream *srv_cs = objt_cs(si->end); |
| struct connection *conn = srv_cs ? srv_cs->conn : objt_conn(si->end); |
| struct channel *req = &s->req; |
| struct channel *rep = &s->res; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| /* First, centralize the timers information, and clear any irrelevant |
| * timeout. |
| */ |
| s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->exp = TICK_ETERNITY; |
| si->flags &= ~SI_FL_EXP; |
| |
| /* errors faced after sending data need to be reported */ |
| if (si->flags & SI_FL_ERR && req->flags & CF_WROTE_DATA) { |
| /* Don't add CF_WRITE_ERROR if we're here because |
| * early data were rejected by the server, or |
| * http_wait_for_response() will never be called |
| * to send a 425. |
| */ |
| if (conn && conn->err_code != CO_ER_SSL_EARLY_FAILED) |
| req->flags |= CF_WRITE_ERROR; |
| rep->flags |= CF_READ_ERROR; |
| si->err_type = SI_ET_DATA_ERR; |
| DBG_TRACE_STATE("read/write error", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| } |
| |
| if (objt_server(s->target)) |
| health_adjust(__objt_server(s->target), HANA_STATUS_L4_OK); |
| |
| if (!IS_HTX_STRM(s)) { /* let's allow immediate data connection in this case */ |
| /* if the user wants to log as soon as possible, without counting |
| * bytes from the server, then this is the right moment. */ |
| if (!LIST_ISEMPTY(&strm_fe(s)->logformat) && !(s->logs.logwait & LW_BYTES)) { |
| /* note: no pend_pos here, session is established */ |
| s->logs.t_close = s->logs.t_connect; /* to get a valid end date */ |
| s->do_log(s); |
| } |
| } |
| else { |
| rep->flags |= CF_READ_DONTWAIT; /* a single read is enough to get response headers */ |
| } |
| |
| rep->analysers |= strm_fe(s)->fe_rsp_ana | s->be->be_rsp_ana; |
| |
| si_rx_endp_more(si); |
| rep->flags |= CF_READ_ATTACHED; /* producer is now attached */ |
| if (objt_cs(si->end)) { |
| /* real connections have timeouts |
| * if already defined, it means that a set-timeout rule has |
| * been executed so do not overwrite them |
| */ |
| if (!tick_isset(req->wto)) |
| req->wto = s->be->timeout.server; |
| if (!tick_isset(rep->rto)) |
| rep->rto = s->be->timeout.server; |
| if (!tick_isset(s->tunnel_timeout)) |
| s->tunnel_timeout = s->be->timeout.tunnel; |
| |
| /* The connection is now established, try to read data from the |
| * underlying layer, and subscribe to recv events. We use a |
| * delayed recv here to give a chance to the data to flow back |
| * by the time we process other tasks. |
| */ |
| si_chk_rcv(si); |
| } |
| req->wex = TICK_ETERNITY; |
| /* If we managed to get the whole response, and we don't have anything |
| * left to send, or can't, switch to SI_ST_DIS now. */ |
| if (rep->flags & (CF_SHUTR | CF_SHUTW)) { |
| si->state = SI_ST_DIS; |
| DBG_TRACE_STATE("response channel shutdwn for read/write", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); |
| } |
| |
| DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); |
| } |
| |
| /* Set correct stream termination flags in case no analyser has done it. It |
| * also counts a failed request if the server state has not reached the request |
| * stage. |
| */ |
| static void sess_set_term_flags(struct stream *s) |
| { |
| if (!(s->flags & SF_FINST_MASK)) { |
| if (s->si[1].state == SI_ST_INI) { |
| /* anything before REQ in fact */ |
| _HA_ATOMIC_INC(&strm_fe(s)->fe_counters.failed_req); |
| if (strm_li(s) && strm_li(s)->counters) |
| _HA_ATOMIC_INC(&strm_li(s)->counters->failed_req); |
| |
| s->flags |= SF_FINST_R; |
| } |
| else if (s->si[1].state == SI_ST_QUE) |
| s->flags |= SF_FINST_Q; |
| else if (si_state_in(s->si[1].state, SI_SB_REQ|SI_SB_TAR|SI_SB_ASS|SI_SB_CON|SI_SB_CER|SI_SB_RDY)) |
| s->flags |= SF_FINST_C; |
| else if (s->si[1].state == SI_ST_EST || s->si[1].prev_state == SI_ST_EST) |
| s->flags |= SF_FINST_D; |
| else |
| s->flags |= SF_FINST_L; |
| } |
| } |
| |
| /* This function parses the use-service action ruleset. It executes |
| * the associated ACL and set an applet as a stream or txn final node. |
| * it returns ACT_RET_ERR if an error occurs, the proxy left in |
| * consistent state. It returns ACT_RET_STOP in success case because |
| * use-service must be a terminal action. Returns ACT_RET_YIELD |
| * if the initialisation function require more data. |
| */ |
| enum act_return process_use_service(struct act_rule *rule, struct proxy *px, |
| struct session *sess, struct stream *s, int flags) |
| |
| { |
| struct appctx *appctx; |
| |
| /* Initialises the applet if it is required. */ |
| if (flags & ACT_OPT_FIRST) { |
| /* Register applet. this function schedules the applet. */ |
| s->target = &rule->applet.obj_type; |
| if (unlikely(!si_register_handler(&s->si[1], objt_applet(s->target)))) |
| return ACT_RET_ERR; |
| |
| /* Initialise the context. */ |
| appctx = si_appctx(&s->si[1]); |
| memset(&appctx->ctx, 0, sizeof(appctx->ctx)); |
| appctx->rule = rule; |
| } |
| else |
| appctx = si_appctx(&s->si[1]); |
| |
| /* Stops the applet scheduling, in case of the init function miss |
| * some data. |
| */ |
| si_stop_get(&s->si[1]); |
| |
| /* Call initialisation. */ |
| if (rule->applet.init) |
| switch (rule->applet.init(appctx, px, s)) { |
| case 0: return ACT_RET_ERR; |
| case 1: break; |
| default: return ACT_RET_YIELD; |
| } |
| |
| if (rule->from != ACT_F_HTTP_REQ) { |
| if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */ |
| _HA_ATOMIC_INC(&sess->fe->fe_counters.intercepted_req); |
| |
| /* The flag SF_ASSIGNED prevent from server assignment. */ |
| s->flags |= SF_ASSIGNED; |
| } |
| |
| /* Now we can schedule the applet. */ |
| si_cant_get(&s->si[1]); |
| appctx_wakeup(appctx); |
| return ACT_RET_STOP; |
| } |
| |
| /* This stream analyser checks the switching rules and changes the backend |
| * if appropriate. The default_backend rule is also considered, then the |
| * target backend's forced persistence rules are also evaluated last if any. |
| * It returns 1 if the processing can continue on next analysers, or zero if it |
| * either needs more data or wants to immediately abort the request. |
| */ |
| static int process_switching_rules(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct persist_rule *prst_rule; |
| struct session *sess = s->sess; |
| struct proxy *fe = sess->fe; |
| |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s); |
| |
| /* now check whether we have some switching rules for this request */ |
| if (!(s->flags & SF_BE_ASSIGNED)) { |
| struct switching_rule *rule; |
| |
| list_for_each_entry(rule, &fe->switching_rules, list) { |
| int ret = 1; |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| /* If the backend name is dynamic, try to resolve the name. |
| * If we can't resolve the name, or if any error occurs, break |
| * the loop and fallback to the default backend. |
| */ |
| struct proxy *backend = NULL; |
| |
| if (rule->dynamic) { |
| struct buffer *tmp; |
| |
| tmp = alloc_trash_chunk(); |
| if (!tmp) |
| goto sw_failed; |
| |
| if (build_logline(s, tmp->area, tmp->size, &rule->be.expr)) |
| backend = proxy_be_by_name(tmp->area); |
| |
| free_trash_chunk(tmp); |
| tmp = NULL; |
| |
| if (!backend) |
| break; |
| } |
| else |
| backend = rule->be.backend; |
| |
| if (!stream_set_backend(s, backend)) |
| goto sw_failed; |
| break; |
| } |
| } |
| |
| /* To ensure correct connection accounting on the backend, we |
| * have to assign one if it was not set (eg: a listen). This |
| * measure also takes care of correctly setting the default |
| * backend if any. Don't do anything if an upgrade is already in |
| * progress. |
| */ |
| if (!(s->flags & (SF_BE_ASSIGNED|SF_IGNORE))) |
| if (!stream_set_backend(s, fe->defbe.be ? fe->defbe.be : s->be)) |
| goto sw_failed; |
| |
| /* No backend assigned but no error reported. It happens when a |
| * TCP stream is upgraded to HTTP/2. |
| */ |
| if ((s->flags & (SF_BE_ASSIGNED|SF_IGNORE)) == SF_IGNORE) { |
| DBG_TRACE_DEVEL("leaving with no backend because of a destructive upgrade", STRM_EV_STRM_ANA, s); |
| return 0; |
| } |
| |
| } |
| |
| /* we don't want to run the TCP or HTTP filters again if the backend has not changed */ |
| if (fe == s->be) { |
| s->req.analysers &= ~AN_REQ_INSPECT_BE; |
| s->req.analysers &= ~AN_REQ_HTTP_PROCESS_BE; |
| s->req.analysers &= ~AN_REQ_FLT_START_BE; |
| } |
| |
| /* as soon as we know the backend, we must check if we have a matching forced or ignored |
| * persistence rule, and report that in the stream. |
| */ |
| list_for_each_entry(prst_rule, &s->be->persist_rules, list) { |
| int ret = 1; |
| |
| if (prst_rule->cond) { |
| ret = acl_exec_cond(prst_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (prst_rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| /* no rule, or the rule matches */ |
| if (prst_rule->type == PERSIST_TYPE_FORCE) { |
| s->flags |= SF_FORCE_PRST; |
| } else { |
| s->flags |= SF_IGNORE_PRST; |
| } |
| break; |
| } |
| } |
| |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s); |
| return 1; |
| |
| sw_failed: |
| /* immediately abort this request in case of allocation failure */ |
| channel_abort(&s->req); |
| channel_abort(&s->res); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_RESOURCE; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_R; |
| |
| if (s->txn) |
| s->txn->status = 500; |
| s->req.analysers &= AN_REQ_FLT_END; |
| s->req.analyse_exp = TICK_ETERNITY; |
| DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_STRM_ERR, s); |
| return 0; |
| } |
| |
| /* This stream analyser works on a request. It applies all use-server rules on |
| * it then returns 1. The data must already be present in the buffer otherwise |
| * they won't match. It always returns 1. |
| */ |
| static int process_server_rules(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct proxy *px = s->be; |
| struct session *sess = s->sess; |
| struct server_rule *rule; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s); |
| |
| if (!(s->flags & SF_ASSIGNED)) { |
| list_for_each_entry(rule, &px->server_rules, list) { |
| int ret; |
| |
| ret = acl_exec_cond(rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| |
| if (ret) { |
| struct server *srv; |
| |
| if (rule->dynamic) { |
| struct buffer *tmp = get_trash_chunk(); |
| |
| if (!build_logline(s, tmp->area, tmp->size, &rule->expr)) |
| break; |
| |
| srv = findserver(s->be, tmp->area); |
| if (!srv) |
| break; |
| } |
| else |
| srv = rule->srv.ptr; |
| |
| if ((srv->cur_state != SRV_ST_STOPPED) || |
| (px->options & PR_O_PERSIST) || |
| (s->flags & SF_FORCE_PRST)) { |
| s->flags |= SF_DIRECT | SF_ASSIGNED; |
| s->target = &srv->obj_type; |
| break; |
| } |
| /* if the server is not UP, let's go on with next rules |
| * just in case another one is suited. |
| */ |
| } |
| } |
| } |
| |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s); |
| return 1; |
| } |
| |
| static inline void sticking_rule_find_target(struct stream *s, |
| struct stktable *t, struct stksess *ts) |
| { |
| struct proxy *px = s->be; |
| struct eb32_node *node; |
| struct dict_entry *de; |
| void *ptr; |
| struct server *srv; |
| |
| /* Look for the server name previously stored in <t> stick-table */ |
| HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock); |
| ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_KEY); |
| de = stktable_data_cast(ptr, std_t_dict); |
| HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| if (de) { |
| struct ebpt_node *node; |
| |
| if (t->server_key_type == STKTABLE_SRV_NAME) { |
| node = ebis_lookup(&px->conf.used_server_name, de->value.key); |
| if (node) { |
| srv = container_of(node, struct server, conf.name); |
| goto found; |
| } |
| } else if (t->server_key_type == STKTABLE_SRV_ADDR) { |
| HA_RWLOCK_RDLOCK(PROXY_LOCK, &px->lock); |
| node = ebis_lookup(&px->used_server_addr, de->value.key); |
| HA_RWLOCK_RDUNLOCK(PROXY_LOCK, &px->lock); |
| if (node) { |
| srv = container_of(node, struct server, addr_node); |
| goto found; |
| } |
| } |
| } |
| |
| /* Look for the server ID */ |
| HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock); |
| ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_ID); |
| node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, std_t_sint)); |
| HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| if (!node) |
| return; |
| |
| srv = container_of(node, struct server, conf.id); |
| found: |
| if ((srv->cur_state != SRV_ST_STOPPED) || |
| (px->options & PR_O_PERSIST) || (s->flags & SF_FORCE_PRST)) { |
| s->flags |= SF_DIRECT | SF_ASSIGNED; |
| s->target = &srv->obj_type; |
| } |
| } |
| |
| /* This stream analyser works on a request. It applies all sticking rules on |
| * it then returns 1. The data must already be present in the buffer otherwise |
| * they won't match. It always returns 1. |
| */ |
| static int process_sticking_rules(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct proxy *px = s->be; |
| struct session *sess = s->sess; |
| struct sticking_rule *rule; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s); |
| |
| list_for_each_entry(rule, &px->sticking_rules, list) { |
| int ret = 1 ; |
| int i; |
| |
| /* Only the first stick store-request of each table is applied |
| * and other ones are ignored. The purpose is to allow complex |
| * configurations which look for multiple entries by decreasing |
| * order of precision and to stop at the first which matches. |
| * An example could be a store of the IP address from an HTTP |
| * header first, then from the source if not found. |
| */ |
| if (rule->flags & STK_IS_STORE) { |
| for (i = 0; i < s->store_count; i++) { |
| if (rule->table.t == s->store[i].table) |
| break; |
| } |
| |
| if (i != s->store_count) |
| continue; |
| } |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| struct stktable_key *key; |
| |
| key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->expr, NULL); |
| if (!key) |
| continue; |
| |
| if (rule->flags & STK_IS_MATCH) { |
| struct stksess *ts; |
| |
| if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) { |
| if (!(s->flags & SF_ASSIGNED)) |
| sticking_rule_find_target(s, rule->table.t, ts); |
| stktable_touch_local(rule->table.t, ts, 1); |
| } |
| } |
| if (rule->flags & STK_IS_STORE) { |
| if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { |
| struct stksess *ts; |
| |
| ts = stksess_new(rule->table.t, key); |
| if (ts) { |
| s->store[s->store_count].table = rule->table.t; |
| s->store[s->store_count++].ts = ts; |
| } |
| } |
| } |
| } |
| } |
| |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s); |
| return 1; |
| } |
| |
| /* This stream analyser works on a response. It applies all store rules on it |
| * then returns 1. The data must already be present in the buffer otherwise |
| * they won't match. It always returns 1. |
| */ |
| static int process_store_rules(struct stream *s, struct channel *rep, int an_bit) |
| { |
| struct proxy *px = s->be; |
| struct session *sess = s->sess; |
| struct sticking_rule *rule; |
| int i; |
| int nbreq = s->store_count; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s); |
| |
| list_for_each_entry(rule, &px->storersp_rules, list) { |
| int ret = 1 ; |
| |
| /* Only the first stick store-response of each table is applied |
| * and other ones are ignored. The purpose is to allow complex |
| * configurations which look for multiple entries by decreasing |
| * order of precision and to stop at the first which matches. |
| * An example could be a store of a set-cookie value, with a |
| * fallback to a parameter found in a 302 redirect. |
| * |
| * The store-response rules are not allowed to override the |
| * store-request rules for the same table, but they may coexist. |
| * Thus we can have up to one store-request entry and one store- |
| * response entry for the same table at any time. |
| */ |
| for (i = nbreq; i < s->store_count; i++) { |
| if (rule->table.t == s->store[i].table) |
| break; |
| } |
| |
| /* skip existing entries for this table */ |
| if (i < s->store_count) |
| continue; |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| struct stktable_key *key; |
| |
| key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->expr, NULL); |
| if (!key) |
| continue; |
| |
| if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { |
| struct stksess *ts; |
| |
| ts = stksess_new(rule->table.t, key); |
| if (ts) { |
| s->store[s->store_count].table = rule->table.t; |
| s->store[s->store_count++].ts = ts; |
| } |
| } |
| } |
| } |
| |
| /* process store request and store response */ |
| for (i = 0; i < s->store_count; i++) { |
| struct stksess *ts; |
| void *ptr; |
| char *key; |
| struct dict_entry *de; |
| struct stktable *t = s->store[i].table; |
| |
| if (objt_server(s->target) && __objt_server(s->target)->flags & SRV_F_NON_STICK) { |
| stksess_free(s->store[i].table, s->store[i].ts); |
| s->store[i].ts = NULL; |
| continue; |
| } |
| |
| ts = stktable_set_entry(t, s->store[i].ts); |
| if (ts != s->store[i].ts) { |
| /* the entry already existed, we can free ours */ |
| stksess_free(t, s->store[i].ts); |
| } |
| s->store[i].ts = NULL; |
| |
| HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); |
| ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_ID); |
| stktable_data_cast(ptr, std_t_sint) = __objt_server(s->target)->puid; |
| HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| if (t->server_key_type == STKTABLE_SRV_NAME) |
| key = __objt_server(s->target)->id; |
| else if (t->server_key_type == STKTABLE_SRV_ADDR) |
| key = __objt_server(s->target)->addr_node.key; |
| else |
| continue; |
| |
| HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); |
| de = dict_insert(&server_key_dict, key); |
| if (de) { |
| ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_KEY); |
| stktable_data_cast(ptr, std_t_dict) = de; |
| } |
| HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| stktable_touch_local(t, ts, 1); |
| } |
| s->store_count = 0; /* everything is stored */ |
| |
| rep->analysers &= ~an_bit; |
| rep->analyse_exp = TICK_ETERNITY; |
| |
| DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s); |
| return 1; |
| } |
| |
| /* Set the stream to HTTP mode, if necessary. The minimal request HTTP analysers |
| * are set and the client mux is upgraded. It returns 1 if the stream processing |
| * may continue or 0 if it should be stopped. It happens on error or if the |
| * upgrade required a new stream. The mux protocol may be specified. |
| */ |
| int stream_set_http_mode(struct stream *s, const struct mux_proto_list *mux_proto) |
| { |
| struct connection *conn; |
| struct conn_stream *cs; |
| |
| /* Already an HTTP stream */ |
| if (IS_HTX_STRM(s)) |
| return 1; |
| |
| s->req.analysers |= AN_REQ_WAIT_HTTP|AN_REQ_HTTP_PROCESS_FE; |
| |
| if (unlikely(!s->txn && !http_create_txn(s))) |
| return 0; |
| |
| conn = objt_conn(strm_sess(s)->origin); |
| cs = objt_cs(s->si[0].end); |
| if (conn && cs) { |
| si_rx_endp_more(&s->si[0]); |
| /* Make sure we're unsubscribed, the the new |
| * mux will probably want to subscribe to |
| * the underlying XPRT |
| */ |
| if (s->si[0].wait_event.events) |
| conn->mux->unsubscribe(cs, s->si[0].wait_event.events, |
| &s->si[0].wait_event); |
| |
| if (conn->mux->flags & MX_FL_NO_UPG) |
| return 0; |
| if (conn_upgrade_mux_fe(conn, cs, &s->req.buf, |
| (mux_proto ? mux_proto->token : ist("")), |
| PROTO_MODE_HTTP) == -1) |
| return 0; |
| |
| s->req.flags &= ~(CF_READ_PARTIAL|CF_AUTO_CONNECT); |
| s->req.total = 0; |
| s->flags |= SF_IGNORE; |
| if (strcmp(conn->mux->name, "H2") == 0) { |
| /* For HTTP/2, destroy the conn_stream, disable logging, |
| * and abort the stream process. Thus it will be |
| * silently destroyed. The new mux will create new |
| * streams. |
| */ |
| cs_free(cs); |
| si_detach_endpoint(&s->si[0]); |
| s->logs.logwait = 0; |
| s->logs.level = 0; |
| channel_abort(&s->req); |
| channel_abort(&s->res); |
| s->req.analysers &= AN_REQ_FLT_END; |
| s->req.analyse_exp = TICK_ETERNITY; |
| } |
| } |
| |
| return 1; |
| } |
| |
| |
| |
| /* This macro is very specific to the function below. See the comments in |
| * process_stream() below to understand the logic and the tests. |
| */ |
| #define UPDATE_ANALYSERS(real, list, back, flag) { \ |
| list = (((list) & ~(flag)) | ~(back)) & (real); \ |
| back = real; \ |
| if (!(list)) \ |
| break; \ |
| if (((list) ^ ((list) & ((list) - 1))) < (flag)) \ |
| continue; \ |
| } |
| |
| /* These 2 following macros call an analayzer for the specified channel if the |
| * right flag is set. The first one is used for "filterable" analyzers. If a |
| * stream has some registered filters, pre and post analyaze callbacks are |
| * called. The second are used for other analyzers (AN_REQ/RES_FLT_* and |
| * AN_REQ/RES_HTTP_XFER_BODY) */ |
| #define FLT_ANALYZE(strm, chn, fun, list, back, flag, ...) \ |
| { \ |
| if ((list) & (flag)) { \ |
| if (HAS_FILTERS(strm)) { \ |
| if (!flt_pre_analyze((strm), (chn), (flag))) \ |
| break; \ |
| if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \ |
| break; \ |
| if (!flt_post_analyze((strm), (chn), (flag))) \ |
| break; \ |
| } \ |
| else { \ |
| if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \ |
| break; \ |
| } \ |
| UPDATE_ANALYSERS((chn)->analysers, (list), \ |
| (back), (flag)); \ |
| } \ |
| } |
| |
| #define ANALYZE(strm, chn, fun, list, back, flag, ...) \ |
| { \ |
| if ((list) & (flag)) { \ |
| if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \ |
| break; \ |
| UPDATE_ANALYSERS((chn)->analysers, (list), \ |
| (back), (flag)); \ |
| } \ |
| } |
| |
| /* Processes the client, server, request and response jobs of a stream task, |
| * then puts it back to the wait queue in a clean state, or cleans up its |
| * resources if it must be deleted. Returns in <next> the date the task wants |
| * to be woken up, or TICK_ETERNITY. In order not to call all functions for |
| * nothing too many times, the request and response buffers flags are monitored |
| * and each function is called only if at least another function has changed at |
| * least one flag it is interested in. |
| */ |
| struct task *process_stream(struct task *t, void *context, unsigned int state) |
| { |
| struct server *srv; |
| struct stream *s = context; |
| struct session *sess = s->sess; |
| unsigned int rqf_last, rpf_last; |
| unsigned int rq_prod_last, rq_cons_last; |
| unsigned int rp_cons_last, rp_prod_last; |
| unsigned int req_ana_back; |
| struct channel *req, *res; |
| struct stream_interface *si_f, *si_b; |
| unsigned int rate; |
| |
| DBG_TRACE_ENTER(STRM_EV_STRM_PROC, s); |
| |
| activity[tid].stream_calls++; |
| |
| req = &s->req; |
| res = &s->res; |
| |
| si_f = &s->si[0]; |
| si_b = &s->si[1]; |
| |
| /* First, attempt to receive pending data from I/O layers */ |
| si_sync_recv(si_f); |
| si_sync_recv(si_b); |
| |
| rate = update_freq_ctr(&s->call_rate, 1); |
| if (rate >= 100000 && s->call_rate.prev_ctr) { // make sure to wait at least a full second |
| stream_dump_and_crash(&s->obj_type, read_freq_ctr(&s->call_rate)); |
| } |
| |
| /* this data may be no longer valid, clear it */ |
| if (s->txn) |
| memset(&s->txn->auth, 0, sizeof(s->txn->auth)); |
| |
| /* This flag must explicitly be set every time */ |
| req->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE); |
| res->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE); |
| |
| /* Keep a copy of req/rep flags so that we can detect shutdowns */ |
| rqf_last = req->flags & ~CF_MASK_ANALYSER; |
| rpf_last = res->flags & ~CF_MASK_ANALYSER; |
| |
| /* we don't want the stream interface functions to recursively wake us up */ |
| si_f->flags |= SI_FL_DONT_WAKE; |
| si_b->flags |= SI_FL_DONT_WAKE; |
| |
| /* update pending events */ |
| s->pending_events |= (state & TASK_WOKEN_ANY); |
| |
| /* 1a: Check for low level timeouts if needed. We just set a flag on |
| * stream interfaces when their timeouts have expired. |
| */ |
| if (unlikely(s->pending_events & TASK_WOKEN_TIMER)) { |
| si_check_timeouts(si_f); |
| si_check_timeouts(si_b); |
| |
| /* check channel timeouts, and close the corresponding stream interfaces |
| * for future reads or writes. Note: this will also concern upper layers |
| * but we do not touch any other flag. We must be careful and correctly |
| * detect state changes when calling them. |
| */ |
| |
| channel_check_timeouts(req); |
| |
| if (unlikely((req->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) { |
| si_b->flags |= SI_FL_NOLINGER; |
| si_shutw(si_b); |
| } |
| |
| if (unlikely((req->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) { |
| if (si_f->flags & SI_FL_NOHALF) |
| si_f->flags |= SI_FL_NOLINGER; |
| si_shutr(si_f); |
| } |
| |
| channel_check_timeouts(res); |
| |
| if (unlikely((res->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) { |
| si_f->flags |= SI_FL_NOLINGER; |
| si_shutw(si_f); |
| } |
| |
| if (unlikely((res->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) { |
| if (si_b->flags & SI_FL_NOHALF) |
| si_b->flags |= SI_FL_NOLINGER; |
| si_shutr(si_b); |
| } |
| |
| if (HAS_FILTERS(s)) |
| flt_stream_check_timeouts(s); |
| |
| /* Once in a while we're woken up because the task expires. But |
| * this does not necessarily mean that a timeout has been reached. |
| * So let's not run a whole stream processing if only an expiration |
| * timeout needs to be refreshed. |
| */ |
| if (!((req->flags | res->flags) & |
| (CF_SHUTR|CF_READ_ACTIVITY|CF_READ_TIMEOUT|CF_SHUTW| |
| CF_WRITE_ACTIVITY|CF_WRITE_TIMEOUT|CF_ANA_TIMEOUT)) && |
| !((si_f->flags | si_b->flags) & (SI_FL_EXP|SI_FL_ERR)) && |
| ((s->pending_events & TASK_WOKEN_ANY) == TASK_WOKEN_TIMER)) { |
| si_f->flags &= ~SI_FL_DONT_WAKE; |
| si_b->flags &= ~SI_FL_DONT_WAKE; |
| goto update_exp_and_leave; |
| } |
| } |
| |
| resync_stream_interface: |
| /* below we may emit error messages so we have to ensure that we have |
| * our buffers properly allocated. |
| */ |
| if (!stream_alloc_work_buffer(s)) { |
| /* No buffer available, we've been subscribed to the list of |
| * buffer waiters, let's wait for our turn. |
| */ |
| si_f->flags &= ~SI_FL_DONT_WAKE; |
| si_b->flags &= ~SI_FL_DONT_WAKE; |
| goto update_exp_and_leave; |
| } |
| |
| /* 1b: check for low-level errors reported at the stream interface. |
| * First we check if it's a retryable error (in which case we don't |
| * want to tell the buffer). Otherwise we report the error one level |
| * upper by setting flags into the buffers. Note that the side towards |
| * the client cannot have connect (hence retryable) errors. Also, the |
| * connection setup code must be able to deal with any type of abort. |
| */ |
| srv = objt_server(s->target); |
| if (unlikely(si_f->flags & SI_FL_ERR)) { |
| if (si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS)) { |
| si_shutr(si_f); |
| si_shutw(si_f); |
| si_report_error(si_f); |
| if (!(req->analysers) && !(res->analysers)) { |
| _HA_ATOMIC_INC(&s->be->be_counters.cli_aborts); |
| _HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts); |
| if (sess->listener && sess->listener->counters) |
| _HA_ATOMIC_INC(&sess->listener->counters->cli_aborts); |
| if (srv) |
| _HA_ATOMIC_INC(&srv->counters.cli_aborts); |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_CLICL; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_D; |
| } |
| } |
| } |
| |
| if (unlikely(si_b->flags & SI_FL_ERR)) { |
| if (si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS)) { |
| si_shutr(si_b); |
| si_shutw(si_b); |
| si_report_error(si_b); |
| _HA_ATOMIC_INC(&s->be->be_counters.failed_resp); |
| if (srv) |
| _HA_ATOMIC_INC(&srv->counters.failed_resp); |
| if (!(req->analysers) && !(res->analysers)) { |
| _HA_ATOMIC_INC(&s->be->be_counters.srv_aborts); |
| _HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts); |
| if (sess->listener && sess->listener->counters) |
| _HA_ATOMIC_INC(&sess->listener->counters->srv_aborts); |
| if (srv) |
| _HA_ATOMIC_INC(&srv->counters.srv_aborts); |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_SRVCL; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_D; |
| } |
| } |
| /* note: maybe we should process connection errors here ? */ |
| } |
| |
| if (si_state_in(si_b->state, SI_SB_CON|SI_SB_RDY)) { |
| /* we were trying to establish a connection on the server side, |
| * maybe it succeeded, maybe it failed, maybe we timed out, ... |
| */ |
| if (si_b->state == SI_ST_RDY) |
| back_handle_st_rdy(s); |
| else if (si_b->state == SI_ST_CON) |
| back_handle_st_con(s); |
| |
| if (si_b->state == SI_ST_CER) |
| back_handle_st_cer(s); |
| else if (si_b->state == SI_ST_EST) |
| back_establish(s); |
| |
| /* state is now one of SI_ST_CON (still in progress), SI_ST_EST |
| * (established), SI_ST_DIS (abort), SI_ST_CLO (last error), |
| * SI_ST_ASS/SI_ST_TAR/SI_ST_REQ for retryable errors. |
| */ |
| } |
| |
| rq_prod_last = si_f->state; |
| rq_cons_last = si_b->state; |
| rp_cons_last = si_f->state; |
| rp_prod_last = si_b->state; |
| |
| /* Check for connection closure */ |
| DBG_TRACE_POINT(STRM_EV_STRM_PROC, s); |
| |
| /* nothing special to be done on client side */ |
| if (unlikely(si_f->state == SI_ST_DIS)) |
| si_f->state = SI_ST_CLO; |
| |
| /* When a server-side connection is released, we have to count it and |
| * check for pending connections on this server. |
| */ |
| if (unlikely(si_b->state == SI_ST_DIS)) { |
| si_b->state = SI_ST_CLO; |
| srv = objt_server(s->target); |
| if (srv) { |
| if (s->flags & SF_CURR_SESS) { |
| s->flags &= ~SF_CURR_SESS; |
| _HA_ATOMIC_DEC(&srv->cur_sess); |
| } |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(srv, s->be)) |
| process_srv_queue(srv); |
| } |
| } |
| |
| /* |
| * Note: of the transient states (REQ, CER, DIS), only REQ may remain |
| * at this point. |
| */ |
| |
| resync_request: |
| /* Analyse request */ |
| if (((req->flags & ~rqf_last) & CF_MASK_ANALYSER) || |
| ((req->flags ^ rqf_last) & CF_MASK_STATIC) || |
| (req->analysers && (req->flags & CF_SHUTW)) || |
| si_f->state != rq_prod_last || |
| si_b->state != rq_cons_last || |
| s->pending_events & TASK_WOKEN_MSG) { |
| unsigned int flags = req->flags; |
| |
| if (si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) { |
| int max_loops = global.tune.maxpollevents; |
| unsigned int ana_list; |
| unsigned int ana_back; |
| |
| /* it's up to the analysers to stop new connections, |
| * disable reading or closing. Note: if an analyser |
| * disables any of these bits, it is responsible for |
| * enabling them again when it disables itself, so |
| * that other analysers are called in similar conditions. |
| */ |
| channel_auto_read(req); |
| channel_auto_connect(req); |
| channel_auto_close(req); |
| |
| /* We will call all analysers for which a bit is set in |
| * req->analysers, following the bit order from LSB |
| * to MSB. The analysers must remove themselves from |
| * the list when not needed. Any analyser may return 0 |
| * to break out of the loop, either because of missing |
| * data to take a decision, or because it decides to |
| * kill the stream. We loop at least once through each |
| * analyser, and we may loop again if other analysers |
| * are added in the middle. |
| * |
| * We build a list of analysers to run. We evaluate all |
| * of these analysers in the order of the lower bit to |
| * the higher bit. This ordering is very important. |
| * An analyser will often add/remove other analysers, |
| * including itself. Any changes to itself have no effect |
| * on the loop. If it removes any other analysers, we |
| * want those analysers not to be called anymore during |
| * this loop. If it adds an analyser that is located |
| * after itself, we want it to be scheduled for being |
| * processed during the loop. If it adds an analyser |
| * which is located before it, we want it to switch to |
| * it immediately, even if it has already been called |
| * once but removed since. |
| * |
| * In order to achieve this, we compare the analyser |
| * list after the call with a copy of it before the |
| * call. The work list is fed with analyser bits that |
| * appeared during the call. Then we compare previous |
| * work list with the new one, and check the bits that |
| * appeared. If the lowest of these bits is lower than |
| * the current bit, it means we have enabled a previous |
| * analyser and must immediately loop again. |
| */ |
| |
| ana_list = ana_back = req->analysers; |
| while (ana_list && max_loops--) { |
| /* Warning! ensure that analysers are always placed in ascending order! */ |
| ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_FE); |
| FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_FE); |
| FLT_ANALYZE(s, req, http_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_HTTP); |
| FLT_ANALYZE(s, req, http_wait_for_request_body, ana_list, ana_back, AN_REQ_HTTP_BODY); |
| FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE, sess->fe); |
| FLT_ANALYZE(s, req, process_switching_rules, ana_list, ana_back, AN_REQ_SWITCHING_RULES); |
| ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_BE); |
| FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_BE); |
| FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE, s->be); |
| FLT_ANALYZE(s, req, http_process_tarpit, ana_list, ana_back, AN_REQ_HTTP_TARPIT); |
| FLT_ANALYZE(s, req, process_server_rules, ana_list, ana_back, AN_REQ_SRV_RULES); |
| FLT_ANALYZE(s, req, http_process_request, ana_list, ana_back, AN_REQ_HTTP_INNER); |
| FLT_ANALYZE(s, req, tcp_persist_rdp_cookie, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE); |
| FLT_ANALYZE(s, req, process_sticking_rules, ana_list, ana_back, AN_REQ_STICKING_RULES); |
| ANALYZE (s, req, flt_analyze_http_headers, ana_list, ana_back, AN_REQ_FLT_HTTP_HDRS); |
| ANALYZE (s, req, http_request_forward_body, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY); |
| ANALYZE (s, req, pcli_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_CLI); |
| ANALYZE (s, req, flt_xfer_data, ana_list, ana_back, AN_REQ_FLT_XFER_DATA); |
| ANALYZE (s, req, flt_end_analyze, ana_list, ana_back, AN_REQ_FLT_END); |
| break; |
| } |
| } |
| |
| rq_prod_last = si_f->state; |
| rq_cons_last = si_b->state; |
| req->flags &= ~CF_WAKE_ONCE; |
| rqf_last = req->flags; |
| |
| if ((req->flags ^ flags) & (CF_SHUTR|CF_SHUTW)) |
| goto resync_request; |
| } |
| |
| /* we'll monitor the request analysers while parsing the response, |
| * because some response analysers may indirectly enable new request |
| * analysers (eg: HTTP keep-alive). |
| */ |
| req_ana_back = req->analysers; |
| |
| resync_response: |
| /* Analyse response */ |
| |
| if (((res->flags & ~rpf_last) & CF_MASK_ANALYSER) || |
| (res->flags ^ rpf_last) & CF_MASK_STATIC || |
| (res->analysers && (res->flags & CF_SHUTW)) || |
| si_f->state != rp_cons_last || |
| si_b->state != rp_prod_last || |
| s->pending_events & TASK_WOKEN_MSG) { |
| unsigned int flags = res->flags; |
| |
| if (si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) { |
| int max_loops = global.tune.maxpollevents; |
| unsigned int ana_list; |
| unsigned int ana_back; |
| |
| /* it's up to the analysers to stop disable reading or |
| * closing. Note: if an analyser disables any of these |
| * bits, it is responsible for enabling them again when |
| * it disables itself, so that other analysers are called |
| * in similar conditions. |
| */ |
| channel_auto_read(res); |
| channel_auto_close(res); |
| |
| /* We will call all analysers for which a bit is set in |
| * res->analysers, following the bit order from LSB |
| * to MSB. The analysers must remove themselves from |
| * the list when not needed. Any analyser may return 0 |
| * to break out of the loop, either because of missing |
| * data to take a decision, or because it decides to |
| * kill the stream. We loop at least once through each |
| * analyser, and we may loop again if other analysers |
| * are added in the middle. |
| */ |
| |
| ana_list = ana_back = res->analysers; |
| while (ana_list && max_loops--) { |
| /* Warning! ensure that analysers are always placed in ascending order! */ |
| ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_FE); |
| ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_BE); |
| FLT_ANALYZE(s, res, tcp_inspect_response, ana_list, ana_back, AN_RES_INSPECT); |
| FLT_ANALYZE(s, res, http_wait_for_response, ana_list, ana_back, AN_RES_WAIT_HTTP); |
| FLT_ANALYZE(s, res, process_store_rules, ana_list, ana_back, AN_RES_STORE_RULES); |
| FLT_ANALYZE(s, res, http_process_res_common, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE, s->be); |
| ANALYZE (s, res, flt_analyze_http_headers, ana_list, ana_back, AN_RES_FLT_HTTP_HDRS); |
| ANALYZE (s, res, http_response_forward_body, ana_list, ana_back, AN_RES_HTTP_XFER_BODY); |
| ANALYZE (s, res, pcli_wait_for_response, ana_list, ana_back, AN_RES_WAIT_CLI); |
| ANALYZE (s, res, flt_xfer_data, ana_list, ana_back, AN_RES_FLT_XFER_DATA); |
| ANALYZE (s, res, flt_end_analyze, ana_list, ana_back, AN_RES_FLT_END); |
| break; |
| } |
| } |
| |
| rp_cons_last = si_f->state; |
| rp_prod_last = si_b->state; |
| res->flags &= ~CF_WAKE_ONCE; |
| rpf_last = res->flags; |
| |
| if ((res->flags ^ flags) & (CF_SHUTR|CF_SHUTW)) |
| goto resync_response; |
| } |
| |
| /* maybe someone has added some request analysers, so we must check and loop */ |
| if (req->analysers & ~req_ana_back) |
| goto resync_request; |
| |
| if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER) |
| goto resync_request; |
| |
| /* FIXME: here we should call protocol handlers which rely on |
| * both buffers. |
| */ |
| |
| |
| /* |
| * Now we propagate unhandled errors to the stream. Normally |
| * we're just in a data phase here since it means we have not |
| * seen any analyser who could set an error status. |
| */ |
| srv = objt_server(s->target); |
| if (unlikely(!(s->flags & SF_ERR_MASK))) { |
| if (req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) { |
| /* Report it if the client got an error or a read timeout expired */ |
| req->analysers &= AN_REQ_FLT_END; |
| if (req->flags & CF_READ_ERROR) { |
| _HA_ATOMIC_INC(&s->be->be_counters.cli_aborts); |
| _HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts); |
| if (sess->listener && sess->listener->counters) |
| _HA_ATOMIC_INC(&sess->listener->counters->cli_aborts); |
| if (srv) |
| _HA_ATOMIC_INC(&srv->counters.cli_aborts); |
| s->flags |= SF_ERR_CLICL; |
| } |
| else if (req->flags & CF_READ_TIMEOUT) { |
| _HA_ATOMIC_INC(&s->be->be_counters.cli_aborts); |
| _HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts); |
| if (sess->listener && sess->listener->counters) |
| _HA_ATOMIC_INC(&sess->listener->counters->cli_aborts); |
| if (srv) |
| _HA_ATOMIC_INC(&srv->counters.cli_aborts); |
| s->flags |= SF_ERR_CLITO; |
| } |
| else if (req->flags & CF_WRITE_ERROR) { |
| _HA_ATOMIC_INC(&s->be->be_counters.srv_aborts); |
| _HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts); |
| if (sess->listener && sess->listener->counters) |
| _HA_ATOMIC_INC(&sess->listener->counters->srv_aborts); |
| if (srv) |
| _HA_ATOMIC_INC(&srv->counters.srv_aborts); |
| s->flags |= SF_ERR_SRVCL; |
| } |
| else { |
| _HA_ATOMIC_INC(&s->be->be_counters.srv_aborts); |
| _HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts); |
| if (sess->listener && sess->listener->counters) |
| _HA_ATOMIC_INC(&sess->listener->counters->srv_aborts); |
| if (srv) |
| _HA_ATOMIC_INC(&srv->counters.srv_aborts); |
| s->flags |= SF_ERR_SRVTO; |
| } |
| sess_set_term_flags(s); |
| |
| /* Abort the request if a client error occurred while |
| * the backend stream-interface is in the SI_ST_INI |
| * state. It is switched into the SI_ST_CLO state and |
| * the request channel is erased. */ |
| if (si_b->state == SI_ST_INI) { |
| si_b->state = SI_ST_CLO; |
| channel_abort(req); |
| if (IS_HTX_STRM(s)) |
| channel_htx_erase(req, htxbuf(&req->buf)); |
| else |
| channel_erase(req); |
| } |
| } |
| else if (res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) { |
| /* Report it if the server got an error or a read timeout expired */ |
| res->analysers &= AN_RES_FLT_END; |
| if (res->flags & CF_READ_ERROR) { |
| _HA_ATOMIC_INC(&s->be->be_counters.srv_aborts); |
| _HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts); |
| if (sess->listener && sess->listener->counters) |
| _HA_ATOMIC_INC(&sess->listener->counters->srv_aborts); |
| if (srv) |
| _HA_ATOMIC_INC(&srv->counters.srv_aborts); |
| s->flags |= SF_ERR_SRVCL; |
| } |
| else if (res->flags & CF_READ_TIMEOUT) { |
| _HA_ATOMIC_INC(&s->be->be_counters.srv_aborts); |
| _HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts); |
| if (sess->listener && sess->listener->counters) |
| _HA_ATOMIC_INC(&sess->listener->counters->srv_aborts); |
| if (srv) |
| _HA_ATOMIC_INC(&srv->counters.srv_aborts); |
| s->flags |= SF_ERR_SRVTO; |
| } |
| else if (res->flags & CF_WRITE_ERROR) { |
| _HA_ATOMIC_INC(&s->be->be_counters.cli_aborts); |
| _HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts); |
| if (sess->listener && sess->listener->counters) |
| _HA_ATOMIC_INC(&sess->listener->counters->cli_aborts); |
| if (srv) |
| _HA_ATOMIC_INC(&srv->counters.cli_aborts); |
| s->flags |= SF_ERR_CLICL; |
| } |
| else { |
| _HA_ATOMIC_INC(&s->be->be_counters.cli_aborts); |
| _HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts); |
| if (sess->listener && sess->listener->counters) |
| _HA_ATOMIC_INC(&sess->listener->counters->cli_aborts); |
| if (srv) |
| _HA_ATOMIC_INC(&srv->counters.cli_aborts); |
| s->flags |= SF_ERR_CLITO; |
| } |
| sess_set_term_flags(s); |
| } |
| } |
| |
| /* |
| * Here we take care of forwarding unhandled data. This also includes |
| * connection establishments and shutdown requests. |
| */ |
| |
| |
| /* If no one is interested in analysing data, it's time to forward |
| * everything. We configure the buffer to forward indefinitely. |
| * Note that we're checking CF_SHUTR_NOW as an indication of a possible |
| * recent call to channel_abort(). |
| */ |
| if (unlikely((!req->analysers || (req->analysers == AN_REQ_FLT_END && !(req->flags & CF_FLT_ANALYZE))) && |
| !(req->flags & (CF_SHUTW|CF_SHUTR_NOW)) && |
| (si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) && |
| (req->to_forward != CHN_INFINITE_FORWARD))) { |
| /* This buffer is freewheeling, there's no analyser |
| * attached to it. If any data are left in, we'll permit them to |
| * move. |
| */ |
| channel_auto_read(req); |
| channel_auto_connect(req); |
| channel_auto_close(req); |
| |
| if (IS_HTX_STRM(s)) { |
| struct htx *htx = htxbuf(&req->buf); |
| |
| /* We'll let data flow between the producer (if still connected) |
| * to the consumer. |
| */ |
| co_set_data(req, htx->data); |
| if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW))) |
| channel_htx_forward_forever(req, htx); |
| } |
| else { |
| /* We'll let data flow between the producer (if still connected) |
| * to the consumer (which might possibly not be connected yet). |
| */ |
| c_adv(req, ci_data(req)); |
| if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW))) |
| channel_forward_forever(req); |
| } |
| } |
| |
| /* check if it is wise to enable kernel splicing to forward request data */ |
| if (!(req->flags & (CF_KERN_SPLICING|CF_SHUTR)) && |
| req->to_forward && |
| (global.tune.options & GTUNE_USE_SPLICE) && |
| (objt_cs(si_f->end) && __objt_cs(si_f->end)->conn->xprt && __objt_cs(si_f->end)->conn->xprt->rcv_pipe && |
| __objt_cs(si_f->end)->conn->mux && __objt_cs(si_f->end)->conn->mux->rcv_pipe) && |
| (objt_cs(si_b->end) && __objt_cs(si_b->end)->conn->xprt && __objt_cs(si_b->end)->conn->xprt->snd_pipe && |
| __objt_cs(si_b->end)->conn->mux && __objt_cs(si_b->end)->conn->mux->snd_pipe) && |
| (pipes_used < global.maxpipes) && |
| (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) || |
| (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && |
| (req->flags & CF_STREAMER_FAST)))) { |
| req->flags |= CF_KERN_SPLICING; |
| } |
| |
| /* reflect what the L7 analysers have seen last */ |
| rqf_last = req->flags; |
| |
| /* it's possible that an upper layer has requested a connection setup or abort. |
| * There are 2 situations where we decide to establish a new connection : |
| * - there are data scheduled for emission in the buffer |
| * - the CF_AUTO_CONNECT flag is set (active connection) |
| */ |
| if (si_b->state == SI_ST_INI) { |
| if (!(req->flags & CF_SHUTW)) { |
| if ((req->flags & CF_AUTO_CONNECT) || !channel_is_empty(req)) { |
| /* If we have an appctx, there is no connect method, so we |
| * immediately switch to the connected state, otherwise we |
| * perform a connection request. |
| */ |
| si_b->state = SI_ST_REQ; /* new connection requested */ |
| si_b->conn_retries = s->be->conn_retries; |
| if ((s->be->retry_type &~ PR_RE_CONN_FAILED) && |
| (s->be->mode == PR_MODE_HTTP) && |
| !(si_b->flags & SI_FL_D_L7_RETRY)) |
| si_b->flags |= SI_FL_L7_RETRY; |
| } |
| } |
| else { |
| si_release_endpoint(si_b); |
| si_b->state = SI_ST_CLO; /* shutw+ini = abort */ |
| channel_shutw_now(req); /* fix buffer flags upon abort */ |
| channel_shutr_now(res); |
| } |
| } |
| |
| |
| /* we may have a pending connection request, or a connection waiting |
| * for completion. |
| */ |
| if (si_state_in(si_b->state, SI_SB_REQ|SI_SB_QUE|SI_SB_TAR|SI_SB_ASS)) { |
| /* prune the request variables and swap to the response variables. */ |
| if (s->vars_reqres.scope != SCOPE_RES) { |
| if (!LIST_ISEMPTY(&s->vars_reqres.head)) |
| vars_prune(&s->vars_reqres, s->sess, s); |
| vars_init_head(&s->vars_reqres, SCOPE_RES); |
| } |
| |
| do { |
| /* nb: step 1 might switch from QUE to ASS, but we first want |
| * to give a chance to step 2 to perform a redirect if needed. |
| */ |
| if (si_b->state != SI_ST_REQ) |
| back_try_conn_req(s); |
| if (si_b->state == SI_ST_REQ) |
| back_handle_st_req(s); |
| |
| /* get a chance to complete an immediate connection setup */ |
| if (si_b->state == SI_ST_RDY) |
| goto resync_stream_interface; |
| |
| /* applets directly go to the ESTABLISHED state. Similarly, |
| * servers experience the same fate when their connection |
| * is reused. |
| */ |
| if (unlikely(si_b->state == SI_ST_EST)) |
| back_establish(s); |
| |
| srv = objt_server(s->target); |
| if (si_b->state == SI_ST_ASS && srv && srv->rdr_len && (s->flags & SF_REDIRECTABLE)) |
| http_perform_server_redirect(s, si_b); |
| } while (si_b->state == SI_ST_ASS); |
| } |
| |
| /* Let's see if we can send the pending request now */ |
| si_sync_send(si_b); |
| |
| /* |
| * Now forward all shutdown requests between both sides of the request buffer |
| */ |
| |
| /* first, let's check if the request buffer needs to shutdown(write), which may |
| * happen either because the input is closed or because we want to force a close |
| * once the server has begun to respond. If a half-closed timeout is set, we adjust |
| * the other side's timeout as well. |
| */ |
| if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) == |
| (CF_AUTO_CLOSE|CF_SHUTR))) { |
| channel_shutw_now(req); |
| } |
| |
| /* shutdown(write) pending */ |
| if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW && |
| channel_is_empty(req))) { |
| if (req->flags & CF_READ_ERROR) |
| si_b->flags |= SI_FL_NOLINGER; |
| si_shutw(si_b); |
| } |
| |
| /* shutdown(write) done on server side, we must stop the client too */ |
| if (unlikely((req->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW && |
| !req->analysers)) |
| channel_shutr_now(req); |
| |
| /* shutdown(read) pending */ |
| if (unlikely((req->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) { |
| if (si_f->flags & SI_FL_NOHALF) |
| si_f->flags |= SI_FL_NOLINGER; |
| si_shutr(si_f); |
| } |
| |
| /* Benchmarks have shown that it's optimal to do a full resync now */ |
| if (si_f->state == SI_ST_DIS || |
| si_state_in(si_b->state, SI_SB_RDY|SI_SB_DIS) || |
| (si_f->flags & SI_FL_ERR && si_f->state != SI_ST_CLO) || |
| (si_b->flags & SI_FL_ERR && si_b->state != SI_ST_CLO)) |
| goto resync_stream_interface; |
| |
| /* otherwise we want to check if we need to resync the req buffer or not */ |
| if ((req->flags ^ rqf_last) & (CF_SHUTR|CF_SHUTW)) |
| goto resync_request; |
| |
| /* perform output updates to the response buffer */ |
| |
| /* If no one is interested in analysing data, it's time to forward |
| * everything. We configure the buffer to forward indefinitely. |
| * Note that we're checking CF_SHUTR_NOW as an indication of a possible |
| * recent call to channel_abort(). |
| */ |
| if (unlikely((!res->analysers || (res->analysers == AN_RES_FLT_END && !(res->flags & CF_FLT_ANALYZE))) && |
| !(res->flags & (CF_SHUTW|CF_SHUTR_NOW)) && |
| si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO) && |
| (res->to_forward != CHN_INFINITE_FORWARD))) { |
| /* This buffer is freewheeling, there's no analyser |
| * attached to it. If any data are left in, we'll permit them to |
| * move. |
| */ |
| channel_auto_read(res); |
| channel_auto_close(res); |
| |
| if (IS_HTX_STRM(s)) { |
| struct htx *htx = htxbuf(&res->buf); |
| |
| /* We'll let data flow between the producer (if still connected) |
| * to the consumer. |
| */ |
| co_set_data(res, htx->data); |
| if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW))) |
| channel_htx_forward_forever(res, htx); |
| } |
| else { |
| /* We'll let data flow between the producer (if still connected) |
| * to the consumer. |
| */ |
| c_adv(res, ci_data(res)); |
| if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW))) |
| channel_forward_forever(res); |
| } |
| |
| /* if we have no analyser anymore in any direction and have a |
| * tunnel timeout set, use it now. Note that we must respect |
| * the half-closed timeouts as well. |
| */ |
| if (!req->analysers && s->tunnel_timeout) { |
| req->rto = req->wto = res->rto = res->wto = |
| s->tunnel_timeout; |
| |
| if ((req->flags & CF_SHUTR) && tick_isset(sess->fe->timeout.clientfin)) |
| res->wto = sess->fe->timeout.clientfin; |
| if ((req->flags & CF_SHUTW) && tick_isset(s->be->timeout.serverfin)) |
| res->rto = s->be->timeout.serverfin; |
| if ((res->flags & CF_SHUTR) && tick_isset(s->be->timeout.serverfin)) |
| req->wto = s->be->timeout.serverfin; |
| if ((res->flags & CF_SHUTW) && tick_isset(sess->fe->timeout.clientfin)) |
| req->rto = sess->fe->timeout.clientfin; |
| |
| req->rex = tick_add(now_ms, req->rto); |
| req->wex = tick_add(now_ms, req->wto); |
| res->rex = tick_add(now_ms, res->rto); |
| res->wex = tick_add(now_ms, res->wto); |
| } |
| } |
| |
| /* check if it is wise to enable kernel splicing to forward response data */ |
| if (!(res->flags & (CF_KERN_SPLICING|CF_SHUTR)) && |
| res->to_forward && |
| (global.tune.options & GTUNE_USE_SPLICE) && |
| (objt_cs(si_f->end) && __objt_cs(si_f->end)->conn->xprt && __objt_cs(si_f->end)->conn->xprt->snd_pipe && |
| __objt_cs(si_f->end)->conn->mux && __objt_cs(si_f->end)->conn->mux->snd_pipe) && |
| (objt_cs(si_b->end) && __objt_cs(si_b->end)->conn->xprt && __objt_cs(si_b->end)->conn->xprt->rcv_pipe && |
| __objt_cs(si_b->end)->conn->mux && __objt_cs(si_b->end)->conn->mux->rcv_pipe) && |
| (pipes_used < global.maxpipes) && |
| (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) || |
| (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && |
| (res->flags & CF_STREAMER_FAST)))) { |
| res->flags |= CF_KERN_SPLICING; |
| } |
| |
| /* reflect what the L7 analysers have seen last */ |
| rpf_last = res->flags; |
| |
| /* Let's see if we can send the pending response now */ |
| si_sync_send(si_f); |
| |
| /* |
| * Now forward all shutdown requests between both sides of the buffer |
| */ |
| |
| /* |
| * FIXME: this is probably where we should produce error responses. |
| */ |
| |
| /* first, let's check if the response buffer needs to shutdown(write) */ |
| if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) == |
| (CF_AUTO_CLOSE|CF_SHUTR))) { |
| channel_shutw_now(res); |
| } |
| |
| /* shutdown(write) pending */ |
| if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW && |
| channel_is_empty(res))) { |
| si_shutw(si_f); |
| } |
| |
| /* shutdown(write) done on the client side, we must stop the server too */ |
| if (unlikely((res->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW) && |
| !res->analysers) |
| channel_shutr_now(res); |
| |
| /* shutdown(read) pending */ |
| if (unlikely((res->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) { |
| if (si_b->flags & SI_FL_NOHALF) |
| si_b->flags |= SI_FL_NOLINGER; |
| si_shutr(si_b); |
| } |
| |
| if (si_f->state == SI_ST_DIS || |
| si_state_in(si_b->state, SI_SB_RDY|SI_SB_DIS) || |
| (si_f->flags & SI_FL_ERR && si_f->state != SI_ST_CLO) || |
| (si_b->flags & SI_FL_ERR && si_b->state != SI_ST_CLO)) |
| goto resync_stream_interface; |
| |
| if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER) |
| goto resync_request; |
| |
| if ((res->flags ^ rpf_last) & CF_MASK_STATIC) |
| goto resync_response; |
| |
| if (((req->flags ^ rqf_last) | (res->flags ^ rpf_last)) & CF_MASK_ANALYSER) |
| goto resync_request; |
| |
| /* we're interested in getting wakeups again */ |
| si_f->flags &= ~SI_FL_DONT_WAKE; |
| si_b->flags &= ~SI_FL_DONT_WAKE; |
| |
| /* This is needed only when debugging is enabled, to indicate |
| * client-side or server-side close. Please note that in the unlikely |
| * event where both sides would close at once, the sequence is reported |
| * on the server side first. |
| */ |
| if (unlikely((global.mode & MODE_DEBUG) && |
| (!(global.mode & MODE_QUIET) || |
| (global.mode & MODE_VERBOSE)))) { |
| if (si_b->state == SI_ST_CLO && |
| si_b->prev_state == SI_ST_EST) { |
| chunk_printf(&trash, "%08x:%s.srvcls[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| objt_cs(si_f->end) ? (unsigned short)__objt_cs(si_f->end)->conn->handle.fd : -1, |
| objt_cs(si_b->end) ? (unsigned short)__objt_cs(si_b->end)->conn->handle.fd : -1); |
| DISGUISE(write(1, trash.area, trash.data)); |
| } |
| |
| if (si_f->state == SI_ST_CLO && |
| si_f->prev_state == SI_ST_EST) { |
| chunk_printf(&trash, "%08x:%s.clicls[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| objt_cs(si_f->end) ? (unsigned short)__objt_cs(si_f->end)->conn->handle.fd : -1, |
| objt_cs(si_b->end) ? (unsigned short)__objt_cs(si_b->end)->conn->handle.fd : -1); |
| DISGUISE(write(1, trash.area, trash.data)); |
| } |
| } |
| |
| if (likely((si_f->state != SI_ST_CLO) || !si_state_in(si_b->state, SI_SB_INI|SI_SB_CLO) || |
| (req->analysers & AN_REQ_FLT_END) || (res->analysers & AN_RES_FLT_END))) { |
| if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) && !(s->flags & SF_IGNORE)) |
| stream_process_counters(s); |
| |
| si_update_both(si_f, si_b); |
| |
| /* Trick: if a request is being waiting for the server to respond, |
| * and if we know the server can timeout, we don't want the timeout |
| * to expire on the client side first, but we're still interested |
| * in passing data from the client to the server (eg: POST). Thus, |
| * we can cancel the client's request timeout if the server's |
| * request timeout is set and the server has not yet sent a response. |
| */ |
| |
| if ((res->flags & (CF_AUTO_CLOSE|CF_SHUTR)) == 0 && |
| (tick_isset(req->wex) || tick_isset(res->rex))) { |
| req->flags |= CF_READ_NOEXP; |
| req->rex = TICK_ETERNITY; |
| } |
| |
| /* Reset pending events now */ |
| s->pending_events = 0; |
| |
| update_exp_and_leave: |
| /* Note: please ensure that if you branch here you disable SI_FL_DONT_WAKE */ |
| t->expire = tick_first((tick_is_expired(t->expire, now_ms) ? 0 : t->expire), |
| tick_first(tick_first(req->rex, req->wex), |
| tick_first(res->rex, res->wex))); |
| if (!req->analysers) |
| req->analyse_exp = TICK_ETERNITY; |
| |
| if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) && |
| (!tick_isset(req->analyse_exp) || tick_is_expired(req->analyse_exp, now_ms))) |
| req->analyse_exp = tick_add(now_ms, 5000); |
| |
| t->expire = tick_first(t->expire, req->analyse_exp); |
| |
| t->expire = tick_first(t->expire, res->analyse_exp); |
| |
| if (si_f->exp) |
| t->expire = tick_first(t->expire, si_f->exp); |
| |
| if (si_b->exp) |
| t->expire = tick_first(t->expire, si_b->exp); |
| |
| s->pending_events &= ~(TASK_WOKEN_TIMER | TASK_WOKEN_RES); |
| stream_release_buffers(s); |
| |
| DBG_TRACE_DEVEL("queuing", STRM_EV_STRM_PROC, s); |
| return t; /* nothing more to do */ |
| } |
| |
| DBG_TRACE_DEVEL("releasing", STRM_EV_STRM_PROC, s); |
| |
| if (s->flags & SF_BE_ASSIGNED) |
| _HA_ATOMIC_DEC(&s->be->beconn); |
| |
| if (unlikely((global.mode & MODE_DEBUG) && |
| (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { |
| chunk_printf(&trash, "%08x:%s.closed[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| objt_cs(si_f->end) ? (unsigned short)__objt_cs(si_f->end)->conn->handle.fd : -1, |
| objt_cs(si_b->end) ? (unsigned short)__objt_cs(si_b->end)->conn->handle.fd : -1); |
| DISGUISE(write(1, trash.area, trash.data)); |
| } |
| |
| if (!(s->flags & SF_IGNORE)) { |
| s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| |
| stream_process_counters(s); |
| |
| if (s->txn && s->txn->status) { |
| int n; |
| |
| n = s->txn->status / 100; |
| if (n < 1 || n > 5) |
| n = 0; |
| |
| if (sess->fe->mode == PR_MODE_HTTP) { |
| _HA_ATOMIC_INC(&sess->fe->fe_counters.p.http.rsp[n]); |
| } |
| if ((s->flags & SF_BE_ASSIGNED) && |
| (s->be->mode == PR_MODE_HTTP)) { |
| _HA_ATOMIC_INC(&s->be->be_counters.p.http.rsp[n]); |
| _HA_ATOMIC_INC(&s->be->be_counters.p.http.cum_req); |
| } |
| } |
| |
| /* let's do a final log if we need it */ |
| if (!LIST_ISEMPTY(&sess->fe->logformat) && s->logs.logwait && |
| !(s->flags & SF_MONITOR) && |
| (!(sess->fe->options & PR_O_NULLNOLOG) || req->total)) { |
| /* we may need to know the position in the queue */ |
| pendconn_free(s); |
| s->do_log(s); |
| } |
| |
| /* update time stats for this stream */ |
| stream_update_time_stats(s); |
| } |
| |
| /* the task MUST not be in the run queue anymore */ |
| stream_free(s); |
| task_destroy(t); |
| return NULL; |
| } |
| |
| /* Update the stream's backend and server time stats */ |
| void stream_update_time_stats(struct stream *s) |
| { |
| int t_request; |
| int t_queue; |
| int t_connect; |
| int t_data; |
| int t_close; |
| struct server *srv; |
| unsigned int samples_window; |
| |
| t_request = 0; |
| t_queue = s->logs.t_queue; |
| t_connect = s->logs.t_connect; |
| t_close = s->logs.t_close; |
| t_data = s->logs.t_data; |
| |
| if (s->be->mode != PR_MODE_HTTP) |
| t_data = t_connect; |
| |
| if (t_connect < 0 || t_data < 0) |
| return; |
| |
| if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept)) |
| t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request); |
| |
| t_data -= t_connect; |
| t_connect -= t_queue; |
| t_queue -= t_request; |
| |
| srv = objt_server(s->target); |
| if (srv) { |
| samples_window = (((s->be->mode == PR_MODE_HTTP) ? |
| srv->counters.p.http.cum_req : srv->counters.cum_lbconn) > TIME_STATS_SAMPLES) ? TIME_STATS_SAMPLES : 0; |
| swrate_add_dynamic(&srv->counters.q_time, samples_window, t_queue); |
| swrate_add_dynamic(&srv->counters.c_time, samples_window, t_connect); |
| swrate_add_dynamic(&srv->counters.d_time, samples_window, t_data); |
| swrate_add_dynamic(&srv->counters.t_time, samples_window, t_close); |
| HA_ATOMIC_UPDATE_MAX(&srv->counters.qtime_max, t_queue); |
| HA_ATOMIC_UPDATE_MAX(&srv->counters.ctime_max, t_connect); |
| HA_ATOMIC_UPDATE_MAX(&srv->counters.dtime_max, t_data); |
| HA_ATOMIC_UPDATE_MAX(&srv->counters.ttime_max, t_close); |
| } |
| samples_window = (((s->be->mode == PR_MODE_HTTP) ? |
| s->be->be_counters.p.http.cum_req : s->be->be_counters.cum_lbconn) > TIME_STATS_SAMPLES) ? TIME_STATS_SAMPLES : 0; |
| swrate_add_dynamic(&s->be->be_counters.q_time, samples_window, t_queue); |
| swrate_add_dynamic(&s->be->be_counters.c_time, samples_window, t_connect); |
| swrate_add_dynamic(&s->be->be_counters.d_time, samples_window, t_data); |
| swrate_add_dynamic(&s->be->be_counters.t_time, samples_window, t_close); |
| HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.qtime_max, t_queue); |
| HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ctime_max, t_connect); |
| HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.dtime_max, t_data); |
| HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ttime_max, t_close); |
| } |
| |
| /* |
| * This function adjusts sess->srv_conn and maintains the previous and new |
| * server's served stream counts. Setting newsrv to NULL is enough to release |
| * current connection slot. This function also notifies any LB algo which might |
| * expect to be informed about any change in the number of active streams on a |
| * server. |
| */ |
| void sess_change_server(struct stream *strm, struct server *newsrv) |
| { |
| struct server *oldsrv = strm->srv_conn; |
| |
| if (oldsrv == newsrv) |
| return; |
| |
| if (oldsrv) { |
| _HA_ATOMIC_DEC(&oldsrv->served); |
| _HA_ATOMIC_DEC(&oldsrv->proxy->served); |
| __ha_barrier_atomic_store(); |
| if (oldsrv->proxy->lbprm.server_drop_conn) |
| oldsrv->proxy->lbprm.server_drop_conn(oldsrv); |
| stream_del_srv_conn(strm); |
| } |
| |
| if (newsrv) { |
| _HA_ATOMIC_INC(&newsrv->served); |
| _HA_ATOMIC_INC(&newsrv->proxy->served); |
| __ha_barrier_atomic_store(); |
| if (newsrv->proxy->lbprm.server_take_conn) |
| newsrv->proxy->lbprm.server_take_conn(newsrv); |
| stream_add_srv_conn(strm, newsrv); |
| } |
| } |
| |
| /* Handle server-side errors for default protocols. It is called whenever a a |
| * connection setup is aborted or a request is aborted in queue. It sets the |
| * stream termination flags so that the caller does not have to worry about |
| * them. It's installed as ->srv_error for the server-side stream_interface. |
| */ |
| void default_srv_error(struct stream *s, struct stream_interface *si) |
| { |
| int err_type = si->err_type; |
| int err = 0, fin = 0; |
| |
| if (err_type & SI_ET_QUEUE_ABRT) { |
| err = SF_ERR_CLICL; |
| fin = SF_FINST_Q; |
| } |
| else if (err_type & SI_ET_CONN_ABRT) { |
| err = SF_ERR_CLICL; |
| fin = SF_FINST_C; |
| } |
| else if (err_type & SI_ET_QUEUE_TO) { |
| err = SF_ERR_SRVTO; |
| fin = SF_FINST_Q; |
| } |
| else if (err_type & SI_ET_QUEUE_ERR) { |
| err = SF_ERR_SRVCL; |
| fin = SF_FINST_Q; |
| } |
| else if (err_type & SI_ET_CONN_TO) { |
| err = SF_ERR_SRVTO; |
| fin = SF_FINST_C; |
| } |
| else if (err_type & SI_ET_CONN_ERR) { |
| err = SF_ERR_SRVCL; |
| fin = SF_FINST_C; |
| } |
| else if (err_type & SI_ET_CONN_RES) { |
| err = SF_ERR_RESOURCE; |
| fin = SF_FINST_C; |
| } |
| else /* SI_ET_CONN_OTHER and others */ { |
| err = SF_ERR_INTERNAL; |
| fin = SF_FINST_C; |
| } |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= err; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= fin; |
| } |
| |
| /* kill a stream and set the termination flags to <why> (one of SF_ERR_*) */ |
| void stream_shutdown(struct stream *stream, int why) |
| { |
| if (stream->req.flags & (CF_SHUTW|CF_SHUTW_NOW)) |
| return; |
| |
| channel_shutw_now(&stream->req); |
| channel_shutr_now(&stream->res); |
| stream->task->nice = 1024; |
| if (!(stream->flags & SF_ERR_MASK)) |
| stream->flags |= why; |
| task_wakeup(stream->task, TASK_WOKEN_OTHER); |
| } |
| |
| /* Appends a dump of the state of stream <s> into buffer <buf> which must have |
| * preliminary be prepared by its caller, with each line prepended by prefix |
| * <pfx>, and each line terminated by character <eol>. |
| */ |
| void stream_dump(struct buffer *buf, const struct stream *s, const char *pfx, char eol) |
| { |
| const struct conn_stream *csf, *csb; |
| const struct connection *cof, *cob; |
| const struct appctx *acf, *acb; |
| const struct server *srv; |
| const char *src = "unknown"; |
| const char *dst = "unknown"; |
| char pn[INET6_ADDRSTRLEN]; |
| const struct channel *req, *res; |
| const struct stream_interface *si_f, *si_b; |
| |
| if (!s) { |
| chunk_appendf(buf, "%sstrm=%p%c", pfx, s, eol); |
| return; |
| } |
| |
| if (s->obj_type != OBJ_TYPE_STREAM) { |
| chunk_appendf(buf, "%sstrm=%p [invalid type=%d(%s)]%c", |
| pfx, s, s->obj_type, obj_type_name(&s->obj_type), eol); |
| return; |
| } |
| |
| si_f = &s->si[0]; |
| si_b = &s->si[1]; |
| req = &s->req; |
| res = &s->res; |
| |
| csf = objt_cs(si_f->end); |
| cof = cs_conn(csf); |
| acf = objt_appctx(si_f->end); |
| if (cof && cof->src && addr_to_str(cof->src, pn, sizeof(pn)) >= 0) |
| src = pn; |
| else if (acf) |
| src = acf->applet->name; |
| |
| csb = objt_cs(si_b->end); |
| cob = cs_conn(csb); |
| acb = objt_appctx(si_b->end); |
| srv = objt_server(s->target); |
| if (srv) |
| dst = srv->id; |
| else if (acb) |
| dst = acb->applet->name; |
| |
| chunk_appendf(buf, |
| "%sstrm=%p,%x src=%s fe=%s be=%s dst=%s%c" |
| "%stxn=%p,%x txn.req=%s,%x txn.rsp=%s,%x%c" |
| "%srqf=%x rqa=%x rpf=%x rpa=%x sif=%s,%x sib=%s,%x%c" |
| "%saf=%p,%u csf=%p,%x%c" |
| "%sab=%p,%u csb=%p,%x%c" |
| "%scof=%p,%x:%s(%p)/%s(%p)/%s(%d)%c" |
| "%scob=%p,%x:%s(%p)/%s(%p)/%s(%d)%c" |
| "", |
| pfx, s, s->flags, src, s->sess->fe->id, s->be->id, dst, eol, |
| pfx, s->txn, (s->txn ? s->txn->flags : 0), |
| (s->txn ? h1_msg_state_str(s->txn->req.msg_state): "-"), (s->txn ? s->txn->req.flags : 0), |
| (s->txn ? h1_msg_state_str(s->txn->rsp.msg_state): "-"), (s->txn ? s->txn->rsp.flags : 0), eol, |
| pfx, req->flags, req->analysers, res->flags, res->analysers, |
| si_state_str(si_f->state), si_f->flags, |
| si_state_str(si_b->state), si_b->flags, eol, |
| pfx, acf, acf ? acf->st0 : 0, csf, csf ? csf->flags : 0, eol, |
| pfx, acb, acb ? acb->st0 : 0, csb, csb ? csb->flags : 0, eol, |
| pfx, cof, cof ? cof->flags : 0, conn_get_mux_name(cof), cof?cof->ctx:0, conn_get_xprt_name(cof), |
| cof ? cof->xprt_ctx : 0, conn_get_ctrl_name(cof), cof ? cof->handle.fd : 0, eol, |
| pfx, cob, cob ? cob->flags : 0, conn_get_mux_name(cob), cob?cob->ctx:0, conn_get_xprt_name(cob), |
| cob ? cob->xprt_ctx : 0, conn_get_ctrl_name(cob), cob ? cob->handle.fd : 0, eol); |
| } |
| |
| /* dumps an error message for type <type> at ptr <ptr> related to stream <s>, |
| * having reached loop rate <rate>, then aborts hoping to retrieve a core. |
| */ |
| void stream_dump_and_crash(enum obj_type *obj, int rate) |
| { |
| const struct stream *s; |
| char *msg = NULL; |
| const void *ptr; |
| |
| ptr = s = objt_stream(obj); |
| if (!s) { |
| const struct appctx *appctx = objt_appctx(obj); |
| if (!appctx) |
| return; |
| ptr = appctx; |
| s = si_strm(appctx->owner); |
| if (!s) |
| return; |
| } |
| |
| chunk_reset(&trash); |
| stream_dump(&trash, s, "", ' '); |
| |
| chunk_appendf(&trash, "filters={"); |
| if (HAS_FILTERS(s)) { |
| struct filter *filter; |
| |
| list_for_each_entry(filter, &s->strm_flt.filters, list) { |
| if (filter->list.p != &s->strm_flt.filters) |
| chunk_appendf(&trash, ", "); |
| chunk_appendf(&trash, "%p=\"%s\"", filter, FLT_ID(filter)); |
| } |
| } |
| chunk_appendf(&trash, "}"); |
| |
| memprintf(&msg, |
| "A bogus %s [%p] is spinning at %d calls per second and refuses to die, " |
| "aborting now! Please report this error to developers " |
| "[%s]\n", |
| obj_type_name(obj), ptr, rate, trash.area); |
| |
| ha_alert("%s", msg); |
| send_log(NULL, LOG_EMERG, "%s", msg); |
| ABORT_NOW(); |
| } |
| |
| /* initialize the require structures */ |
| static void init_stream() |
| { |
| int thr; |
| |
| for (thr = 0; thr < MAX_THREADS; thr++) |
| LIST_INIT(&ha_thread_ctx[thr].streams); |
| } |
| INITCALL0(STG_INIT, init_stream); |
| |
| /* Generates a unique ID based on the given <format>, stores it in the given <strm> and |
| * returns the unique ID. |
| |
| * If this function fails to allocate memory IST_NULL is returned. |
| * |
| * If an ID is already stored within the stream nothing happens existing unique ID is |
| * returned. |
| */ |
| struct ist stream_generate_unique_id(struct stream *strm, struct list *format) |
| { |
| if (isttest(strm->unique_id)) { |
| return strm->unique_id; |
| } |
| else { |
| char *unique_id; |
| int length; |
| if ((unique_id = pool_alloc(pool_head_uniqueid)) == NULL) |
| return IST_NULL; |
| |
| length = build_logline(strm, unique_id, UNIQUEID_LEN, format); |
| strm->unique_id = ist2(unique_id, length); |
| |
| return strm->unique_id; |
| } |
| } |
| |
| /************************************************************************/ |
| /* All supported ACL keywords must be declared here. */ |
| /************************************************************************/ |
| static enum act_return stream_action_set_log_level(struct act_rule *rule, struct proxy *px, |
| struct session *sess, struct stream *s, int flags) |
| { |
| s->logs.level = (uintptr_t)rule->arg.act.p[0]; |
| return ACT_RET_CONT; |
| } |
| |
| |
| /* Parse a "set-log-level" action. It takes the level value as argument. It |
| * returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error. |
| */ |
| static enum act_parse_ret stream_parse_set_log_level(const char **args, int *cur_arg, struct proxy *px, |
| struct act_rule *rule, char **err) |
| { |
| int level; |
| |
| if (!*args[*cur_arg]) { |
| bad_log_level: |
| memprintf(err, "expects exactly 1 argument (log level name or 'silent')"); |
| return ACT_RET_PRS_ERR; |
| } |
| if (strcmp(args[*cur_arg], "silent") == 0) |
| level = -1; |
| else if ((level = get_log_level(args[*cur_arg]) + 1) == 0) |
| goto bad_log_level; |
| |
| (*cur_arg)++; |
| |
| /* Register processing function. */ |
| rule->action_ptr = stream_action_set_log_level; |
| rule->action = ACT_CUSTOM; |
| rule->arg.act.p[0] = (void *)(uintptr_t)level; |
| return ACT_RET_PRS_OK; |
| } |
| |
| static enum act_return stream_action_set_nice(struct act_rule *rule, struct proxy *px, |
| struct session *sess, struct stream *s, int flags) |
| { |
| s->task->nice = (uintptr_t)rule->arg.act.p[0]; |
| return ACT_RET_CONT; |
| } |
| |
| |
| /* Parse a "set-nice" action. It takes the nice value as argument. It returns |
| * ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error. |
| */ |
| static enum act_parse_ret stream_parse_set_nice(const char **args, int *cur_arg, struct proxy *px, |
| struct act_rule *rule, char **err) |
| { |
| int nice; |
| |
| if (!*args[*cur_arg]) { |
| bad_log_level: |
| memprintf(err, "expects exactly 1 argument (integer value)"); |
| return ACT_RET_PRS_ERR; |
| } |
| |
| nice = atoi(args[*cur_arg]); |
| if (nice < -1024) |
| nice = -1024; |
| else if (nice > 1024) |
| nice = 1024; |
| |
| (*cur_arg)++; |
| |
| /* Register processing function. */ |
| rule->action_ptr = stream_action_set_nice; |
| rule->action = ACT_CUSTOM; |
| rule->arg.act.p[0] = (void *)(uintptr_t)nice; |
| return ACT_RET_PRS_OK; |
| } |
| |
| |
| static enum act_return tcp_action_switch_stream_mode(struct act_rule *rule, struct proxy *px, |
| struct session *sess, struct stream *s, int flags) |
| { |
| enum pr_mode mode = (uintptr_t)rule->arg.act.p[0]; |
| const struct mux_proto_list *mux_proto = rule->arg.act.p[1]; |
| |
| if (!IS_HTX_STRM(s) && mode == PR_MODE_HTTP) { |
| if (!stream_set_http_mode(s, mux_proto)) { |
| channel_abort(&s->req); |
| channel_abort(&s->res); |
| return ACT_RET_ABRT; |
| } |
| } |
| return ACT_RET_STOP; |
| } |
| |
| |
| static int check_tcp_switch_stream_mode(struct act_rule *rule, struct proxy *px, char **err) |
| { |
| const struct mux_proto_list *mux_ent; |
| const struct mux_proto_list *mux_proto = rule->arg.act.p[1]; |
| enum pr_mode pr_mode = (uintptr_t)rule->arg.act.p[0]; |
| enum proto_proxy_mode mode = (1 << (pr_mode == PR_MODE_HTTP)); |
| |
| if (pr_mode == PR_MODE_HTTP) |
| px->options |= PR_O_HTTP_UPG; |
| |
| if (mux_proto) { |
| mux_ent = conn_get_best_mux_entry(mux_proto->token, PROTO_SIDE_FE, mode); |
| if (!mux_ent || !isteq(mux_ent->token, mux_proto->token)) { |
| memprintf(err, "MUX protocol '%.*s' is not compatible with the selected mode", |
| (int)mux_proto->token.len, mux_proto->token.ptr); |
| return 0; |
| } |
| } |
| else { |
| mux_ent = conn_get_best_mux_entry(IST_NULL, PROTO_SIDE_FE, mode); |
| if (!mux_ent) { |
| memprintf(err, "Unable to find compatible MUX protocol with the selected mode"); |
| return 0; |
| } |
| } |
| |
| /* Update the mux */ |
| rule->arg.act.p[1] = (void *)mux_ent; |
| return 1; |
| |
| } |
| |
| static enum act_parse_ret stream_parse_switch_mode(const char **args, int *cur_arg, |
| struct proxy *px, struct act_rule *rule, |
| char **err) |
| { |
| const struct mux_proto_list *mux_proto = NULL; |
| struct ist proto; |
| enum pr_mode mode; |
| |
| /* must have at least the mode */ |
| if (*(args[*cur_arg]) == 0) { |
| memprintf(err, "'%s %s' expects a mode as argument.", args[0], args[*cur_arg-1]); |
| return ACT_RET_PRS_ERR; |
| } |
| |
| if (!(px->cap & PR_CAP_FE)) { |
| memprintf(err, "'%s %s' not allowed because %s '%s' has no frontend capability", |
| args[0], args[*cur_arg-1], proxy_type_str(px), px->id); |
| return ACT_RET_PRS_ERR; |
| } |
| /* Check if the mode. For now "tcp" is disabled because downgrade is not |
| * supported and PT is the only TCP mux. |
| */ |
| if (strcmp(args[*cur_arg], "http") == 0) |
| mode = PR_MODE_HTTP; |
| else { |
| memprintf(err, "'%s %s' expects a valid mode (got '%s').", args[0], args[*cur_arg-1], args[*cur_arg]); |
| return ACT_RET_PRS_ERR; |
| } |
| |
| /* check the proto, if specified */ |
| if (*(args[*cur_arg+1]) && strcmp(args[*cur_arg+1], "proto") == 0) { |
| if (*(args[*cur_arg+2]) == 0) { |
| memprintf(err, "'%s %s': '%s' expects a protocol as argument.", |
| args[0], args[*cur_arg-1], args[*cur_arg+1]); |
| return ACT_RET_PRS_ERR; |
| } |
| |
| proto = ist(args[*cur_arg + 2]); |
| mux_proto = get_mux_proto(proto); |
| if (!mux_proto) { |
| memprintf(err, "'%s %s': '%s' expects a valid MUX protocol, if specified (got '%s')", |
| args[0], args[*cur_arg-1], args[*cur_arg+1], args[*cur_arg+2]); |
| return ACT_RET_PRS_ERR; |
| } |
| *cur_arg += 2; |
| } |
| |
| (*cur_arg)++; |
| |
| /* Register processing function. */ |
| rule->action_ptr = tcp_action_switch_stream_mode; |
| rule->check_ptr = check_tcp_switch_stream_mode; |
| rule->action = ACT_CUSTOM; |
| rule->arg.act.p[0] = (void *)(uintptr_t)mode; |
| rule->arg.act.p[1] = (void *)mux_proto; |
| return ACT_RET_PRS_OK; |
| } |
| |
| /* 0=OK, <0=Alert, >0=Warning */ |
| static enum act_parse_ret stream_parse_use_service(const char **args, int *cur_arg, |
| struct proxy *px, struct act_rule *rule, |
| char **err) |
| { |
| struct action_kw *kw; |
| |
| /* Check if the service name exists. */ |
| if (*(args[*cur_arg]) == 0) { |
| memprintf(err, "'%s' expects a service name.", args[0]); |
| return ACT_RET_PRS_ERR; |
| } |
| |
| /* lookup for keyword corresponding to a service. */ |
| kw = action_lookup(&service_keywords, args[*cur_arg]); |
| if (!kw) { |
| memprintf(err, "'%s' unknown service name.", args[1]); |
| return ACT_RET_PRS_ERR; |
| } |
| (*cur_arg)++; |
| |
| /* executes specific rule parser. */ |
| rule->kw = kw; |
| if (kw->parse((const char **)args, cur_arg, px, rule, err) == ACT_RET_PRS_ERR) |
| return ACT_RET_PRS_ERR; |
| |
| /* Register processing function. */ |
| rule->action_ptr = process_use_service; |
| rule->action = ACT_CUSTOM; |
| |
| return ACT_RET_PRS_OK; |
| } |
| |
| void service_keywords_register(struct action_kw_list *kw_list) |
| { |
| LIST_APPEND(&service_keywords, &kw_list->list); |
| } |
| |
| struct action_kw *service_find(const char *kw) |
| { |
| return action_lookup(&service_keywords, kw); |
| } |
| |
| /* Lists the known services on <out> */ |
| void list_services(FILE *out) |
| { |
| struct action_kw_list *kw_list; |
| int found = 0; |
| int i; |
| |
| fprintf(out, "Available services :"); |
| list_for_each_entry(kw_list, &service_keywords, list) { |
| for (i = 0; kw_list->kw[i].kw != NULL; i++) { |
| found = 1; |
| fprintf(out, " %s", kw_list->kw[i].kw); |
| } |
| } |
| if (!found) |
| fprintf(out, " none\n"); |
| } |
| |
| /* This function dumps a complete stream state onto the stream interface's |
| * read buffer. The stream has to be set in strm. It returns 0 if the output |
| * buffer is full and it needs to be called again, otherwise non-zero. It is |
| * designed to be called from stats_dump_strm_to_buffer() below. |
| */ |
| static int stats_dump_full_strm_to_buffer(struct stream_interface *si, struct stream *strm) |
| { |
| struct appctx *appctx = __objt_appctx(si->end); |
| struct tm tm; |
| extern const char *monthname[12]; |
| char pn[INET6_ADDRSTRLEN]; |
| struct conn_stream *cs; |
| struct connection *conn; |
| struct appctx *tmpctx; |
| |
| chunk_reset(&trash); |
| |
| if (appctx->ctx.sess.section > 0 && appctx->ctx.sess.uid != strm->uniq_id) { |
| /* stream changed, no need to go any further */ |
| chunk_appendf(&trash, " *** session terminated while we were watching it ***\n"); |
| if (ci_putchk(si_ic(si), &trash) == -1) |
| goto full; |
| goto done; |
| } |
| |
| switch (appctx->ctx.sess.section) { |
| case 0: /* main status of the stream */ |
| appctx->ctx.sess.uid = strm->uniq_id; |
| appctx->ctx.sess.section = 1; |
| /* fall through */ |
| |
| case 1: |
| get_localtime(strm->logs.accept_date.tv_sec, &tm); |
| chunk_appendf(&trash, |
| "%p: [%02d/%s/%04d:%02d:%02d:%02d.%06d] id=%u proto=%s", |
| strm, |
| tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900, |
| tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(strm->logs.accept_date.tv_usec), |
| strm->uniq_id, |
| strm_li(strm) ? strm_li(strm)->rx.proto->name : "?"); |
| |
| conn = objt_conn(strm_orig(strm)); |
| switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) { |
| case AF_INET: |
| case AF_INET6: |
| chunk_appendf(&trash, " source=%s:%d\n", |
| pn, get_host_port(conn->src)); |
| break; |
| case AF_UNIX: |
| chunk_appendf(&trash, " source=unix:%d\n", strm_li(strm)->luid); |
| break; |
| default: |
| /* no more information to print right now */ |
| chunk_appendf(&trash, "\n"); |
| break; |
| } |
| |
| chunk_appendf(&trash, |
| " flags=0x%x, conn_retries=%d, srv_conn=%p, pend_pos=%p waiting=%d epoch=%#x\n", |
| strm->flags, strm->si[1].conn_retries, strm->srv_conn, strm->pend_pos, |
| LIST_INLIST(&strm->buffer_wait.list), strm->stream_epoch); |
| |
| chunk_appendf(&trash, |
| " frontend=%s (id=%u mode=%s), listener=%s (id=%u)", |
| strm_fe(strm)->id, strm_fe(strm)->uuid, strm_fe(strm)->mode ? "http" : "tcp", |
| strm_li(strm) ? strm_li(strm)->name ? strm_li(strm)->name : "?" : "?", |
| strm_li(strm) ? strm_li(strm)->luid : 0); |
| |
| switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) { |
| case AF_INET: |
| case AF_INET6: |
| chunk_appendf(&trash, " addr=%s:%d\n", |
| pn, get_host_port(conn->dst)); |
| break; |
| case AF_UNIX: |
| chunk_appendf(&trash, " addr=unix:%d\n", strm_li(strm)->luid); |
| break; |
| default: |
| /* no more information to print right now */ |
| chunk_appendf(&trash, "\n"); |
| break; |
| } |
| |
| if (strm->be->cap & PR_CAP_BE) |
| chunk_appendf(&trash, |
| " backend=%s (id=%u mode=%s)", |
| strm->be->id, |
| strm->be->uuid, strm->be->mode ? "http" : "tcp"); |
| else |
| chunk_appendf(&trash, " backend=<NONE> (id=-1 mode=-)"); |
| |
| cs = objt_cs(strm->si[1].end); |
| conn = cs_conn(cs); |
| |
| switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) { |
| case AF_INET: |
| case AF_INET6: |
| chunk_appendf(&trash, " addr=%s:%d\n", |
| pn, get_host_port(conn->src)); |
| break; |
| case AF_UNIX: |
| chunk_appendf(&trash, " addr=unix\n"); |
| break; |
| default: |
| /* no more information to print right now */ |
| chunk_appendf(&trash, "\n"); |
| break; |
| } |
| |
| if (strm->be->cap & PR_CAP_BE) |
| chunk_appendf(&trash, |
| " server=%s (id=%u)", |
| objt_server(strm->target) ? __objt_server(strm->target)->id : "<none>", |
| objt_server(strm->target) ? __objt_server(strm->target)->puid : 0); |
| else |
| chunk_appendf(&trash, " server=<NONE> (id=-1)"); |
| |
| switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) { |
| case AF_INET: |
| case AF_INET6: |
| chunk_appendf(&trash, " addr=%s:%d\n", |
| pn, get_host_port(conn->dst)); |
| break; |
| case AF_UNIX: |
| chunk_appendf(&trash, " addr=unix\n"); |
| break; |
| default: |
| /* no more information to print right now */ |
| chunk_appendf(&trash, "\n"); |
| break; |
| } |
| |
| chunk_appendf(&trash, |
| " task=%p (state=0x%02x nice=%d calls=%u rate=%u exp=%s tmask=0x%lx%s", |
| strm->task, |
| strm->task->state, |
| strm->task->nice, strm->task->calls, read_freq_ctr(&strm->call_rate), |
| strm->task->expire ? |
| tick_is_expired(strm->task->expire, now_ms) ? "<PAST>" : |
| human_time(TICKS_TO_MS(strm->task->expire - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>", |
| strm->task->thread_mask, |
| task_in_rq(strm->task) ? ", running" : ""); |
| |
| chunk_appendf(&trash, |
| " age=%s)\n", |
| human_time(now.tv_sec - strm->logs.accept_date.tv_sec, 1)); |
| |
| if (strm->txn) |
| chunk_appendf(&trash, |
| " txn=%p flags=0x%x meth=%d status=%d req.st=%s rsp.st=%s req.f=0x%02x rsp.f=0x%02x\n", |
| strm->txn, strm->txn->flags, strm->txn->meth, strm->txn->status, |
| h1_msg_state_str(strm->txn->req.msg_state), h1_msg_state_str(strm->txn->rsp.msg_state), |
| strm->txn->req.flags, strm->txn->rsp.flags); |
| |
| chunk_appendf(&trash, |
| " si[0]=%p (state=%s flags=0x%02x endp0=%s:%p exp=%s et=0x%03x sub=%d)\n", |
| &strm->si[0], |
| si_state_str(strm->si[0].state), |
| strm->si[0].flags, |
| obj_type_name(strm->si[0].end), |
| obj_base_ptr(strm->si[0].end), |
| strm->si[0].exp ? |
| tick_is_expired(strm->si[0].exp, now_ms) ? "<PAST>" : |
| human_time(TICKS_TO_MS(strm->si[0].exp - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>", |
| strm->si[0].err_type, strm->si[0].wait_event.events); |
| |
| chunk_appendf(&trash, |
| " si[1]=%p (state=%s flags=0x%02x endp1=%s:%p exp=%s et=0x%03x sub=%d)\n", |
| &strm->si[1], |
| si_state_str(strm->si[1].state), |
| strm->si[1].flags, |
| obj_type_name(strm->si[1].end), |
| obj_base_ptr(strm->si[1].end), |
| strm->si[1].exp ? |
| tick_is_expired(strm->si[1].exp, now_ms) ? "<PAST>" : |
| human_time(TICKS_TO_MS(strm->si[1].exp - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>", |
| strm->si[1].err_type, strm->si[1].wait_event.events); |
| |
| if ((cs = objt_cs(strm->si[0].end)) != NULL) { |
| conn = cs->conn; |
| |
| chunk_appendf(&trash, |
| " co0=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n", |
| conn, |
| conn_get_ctrl_name(conn), |
| conn_get_xprt_name(conn), |
| conn_get_mux_name(conn), |
| cs_get_data_name(cs), |
| obj_type_name(conn->target), |
| obj_base_ptr(conn->target)); |
| |
| chunk_appendf(&trash, |
| " flags=0x%08x fd=%d fd.state=%02x updt=%d fd.tmask=0x%lx\n", |
| conn->flags, |
| conn->handle.fd, |
| conn->handle.fd >= 0 ? fdtab[conn->handle.fd].state : 0, |
| conn->handle.fd >= 0 ? !!(fdtab[conn->handle.fd].update_mask & tid_bit) : 0, |
| conn->handle.fd >= 0 ? fdtab[conn->handle.fd].thread_mask: 0); |
| |
| chunk_appendf(&trash, " cs=%p csf=0x%08x ctx=%p\n", cs, cs->flags, cs->ctx); |
| } |
| else if ((tmpctx = objt_appctx(strm->si[0].end)) != NULL) { |
| chunk_appendf(&trash, |
| " app0=%p st0=%d st1=%d st2=%d applet=%s tmask=0x%lx nice=%d calls=%u rate=%u cpu=%llu lat=%llu\n", |
| tmpctx, |
| tmpctx->st0, |
| tmpctx->st1, |
| tmpctx->st2, |
| tmpctx->applet->name, |
| tmpctx->t->thread_mask, |
| tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate), |
| (unsigned long long)tmpctx->t->cpu_time, (unsigned long long)tmpctx->t->lat_time); |
| } |
| |
| if ((cs = objt_cs(strm->si[1].end)) != NULL) { |
| conn = cs->conn; |
| |
| chunk_appendf(&trash, |
| " co1=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n", |
| conn, |
| conn_get_ctrl_name(conn), |
| conn_get_xprt_name(conn), |
| conn_get_mux_name(conn), |
| cs_get_data_name(cs), |
| obj_type_name(conn->target), |
| obj_base_ptr(conn->target)); |
| |
| chunk_appendf(&trash, |
| " flags=0x%08x fd=%d fd.state=%02x updt=%d fd.tmask=0x%lx\n", |
| conn->flags, |
| conn->handle.fd, |
| conn->handle.fd >= 0 ? fdtab[conn->handle.fd].state : 0, |
| conn->handle.fd >= 0 ? !!(fdtab[conn->handle.fd].update_mask & tid_bit) : 0, |
| conn->handle.fd >= 0 ? fdtab[conn->handle.fd].thread_mask: 0); |
| |
| chunk_appendf(&trash, " cs=%p csf=0x%08x ctx=%p\n", cs, cs->flags, cs->ctx); |
| } |
| else if ((tmpctx = objt_appctx(strm->si[1].end)) != NULL) { |
| chunk_appendf(&trash, |
| " app1=%p st0=%d st1=%d st2=%d applet=%s tmask=0x%lx nice=%d calls=%u rate=%u cpu=%llu lat=%llu\n", |
| tmpctx, |
| tmpctx->st0, |
| tmpctx->st1, |
| tmpctx->st2, |
| tmpctx->applet->name, |
| tmpctx->t->thread_mask, |
| tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate), |
| (unsigned long long)tmpctx->t->cpu_time, (unsigned long long)tmpctx->t->lat_time); |
| } |
| |
| chunk_appendf(&trash, |
| " req=%p (f=0x%06x an=0x%x pipe=%d tofwd=%d total=%lld)\n" |
| " an_exp=%s", |
| &strm->req, |
| strm->req.flags, strm->req.analysers, |
| strm->req.pipe ? strm->req.pipe->data : 0, |
| strm->req.to_forward, strm->req.total, |
| strm->req.analyse_exp ? |
| human_time(TICKS_TO_MS(strm->req.analyse_exp - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>"); |
| |
| chunk_appendf(&trash, |
| " rex=%s", |
| strm->req.rex ? |
| human_time(TICKS_TO_MS(strm->req.rex - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>"); |
| |
| chunk_appendf(&trash, |
| " wex=%s\n" |
| " buf=%p data=%p o=%u p=%u i=%u size=%u\n", |
| strm->req.wex ? |
| human_time(TICKS_TO_MS(strm->req.wex - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>", |
| &strm->req.buf, |
| b_orig(&strm->req.buf), (unsigned int)co_data(&strm->req), |
| (unsigned int)ci_head_ofs(&strm->req), (unsigned int)ci_data(&strm->req), |
| (unsigned int)strm->req.buf.size); |
| |
| if (IS_HTX_STRM(strm)) { |
| struct htx *htx = htxbuf(&strm->req.buf); |
| |
| chunk_appendf(&trash, |
| " htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n", |
| htx, htx->flags, htx->size, htx->data, htx_nbblks(htx), |
| (htx->tail >= htx->head) ? "NO" : "YES", |
| (unsigned long long)htx->extra); |
| } |
| if (HAS_FILTERS(strm) && strm_flt(strm)->current[0]) { |
| struct filter *flt = strm_flt(strm)->current[0]; |
| |
| chunk_appendf(&trash, " current_filter=%p (id=\"%s\" flags=0x%x pre=0x%x post=0x%x) \n", |
| flt, flt->config->id, flt->flags, flt->pre_analyzers, flt->post_analyzers); |
| } |
| |
| chunk_appendf(&trash, |
| " res=%p (f=0x%06x an=0x%x pipe=%d tofwd=%d total=%lld)\n" |
| " an_exp=%s", |
| &strm->res, |
| strm->res.flags, strm->res.analysers, |
| strm->res.pipe ? strm->res.pipe->data : 0, |
| strm->res.to_forward, strm->res.total, |
| strm->res.analyse_exp ? |
| human_time(TICKS_TO_MS(strm->res.analyse_exp - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>"); |
| |
| chunk_appendf(&trash, |
| " rex=%s", |
| strm->res.rex ? |
| human_time(TICKS_TO_MS(strm->res.rex - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>"); |
| |
| chunk_appendf(&trash, |
| " wex=%s\n" |
| " buf=%p data=%p o=%u p=%u i=%u size=%u\n", |
| strm->res.wex ? |
| human_time(TICKS_TO_MS(strm->res.wex - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>", |
| &strm->res.buf, |
| b_orig(&strm->res.buf), (unsigned int)co_data(&strm->res), |
| (unsigned int)ci_head_ofs(&strm->res), (unsigned int)ci_data(&strm->res), |
| (unsigned int)strm->res.buf.size); |
| |
| if (IS_HTX_STRM(strm)) { |
| struct htx *htx = htxbuf(&strm->res.buf); |
| |
| chunk_appendf(&trash, |
| " htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n", |
| htx, htx->flags, htx->size, htx->data, htx_nbblks(htx), |
| (htx->tail >= htx->head) ? "NO" : "YES", |
| (unsigned long long)htx->extra); |
| } |
| if (HAS_FILTERS(strm) && strm_flt(strm)->current[1]) { |
| struct filter *flt = strm_flt(strm)->current[1]; |
| |
| chunk_appendf(&trash, " current_filter=%p (id=\"%s\" flags=0x%x pre=0x%x post=0x%x) \n", |
| flt, flt->config->id, flt->flags, flt->pre_analyzers, flt->post_analyzers); |
| } |
| |
| if (strm->current_rule_list && strm->current_rule) { |
| const struct act_rule *rule = strm->current_rule; |
| chunk_appendf(&trash, " current_rule=\"%s\" [%s:%d]\n", rule->kw->kw, rule->conf.file, rule->conf.line); |
| } |
| |
| if (ci_putchk(si_ic(si), &trash) == -1) |
| goto full; |
| |
| /* use other states to dump the contents */ |
| } |
| /* end of dump */ |
| done: |
| appctx->ctx.sess.uid = 0; |
| appctx->ctx.sess.section = 0; |
| return 1; |
| full: |
| return 0; |
| } |
| |
| |
| static int cli_parse_show_sess(char **args, char *payload, struct appctx *appctx, void *private) |
| { |
| if (!cli_has_level(appctx, ACCESS_LVL_OPER)) |
| return 1; |
| |
| if (*args[2] && strcmp(args[2], "all") == 0) |
| appctx->ctx.sess.target = (void *)-1; |
| else if (*args[2]) |
| appctx->ctx.sess.target = (void *)strtoul(args[2], NULL, 0); |
| else |
| appctx->ctx.sess.target = NULL; |
| appctx->ctx.sess.section = 0; /* start with stream status */ |
| appctx->ctx.sess.pos = 0; |
| appctx->ctx.sess.thr = 0; |
| |
| /* let's set our own stream's epoch to the current one and increment |
| * it so that we know which streams were already there before us. |
| */ |
| si_strm(appctx->owner)->stream_epoch = _HA_ATOMIC_FETCH_ADD(&stream_epoch, 1); |
| return 0; |
| } |
| |
| /* This function dumps all streams' states onto the stream interface's |
| * read buffer. It returns 0 if the output buffer is full and it needs |
| * to be called again, otherwise non-zero. It proceeds in an isolated |
| * thread so there is no thread safety issue here. |
| */ |
| static int cli_io_handler_dump_sess(struct appctx *appctx) |
| { |
| struct stream_interface *si = appctx->owner; |
| struct connection *conn; |
| |
| thread_isolate(); |
| |
| if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW))) { |
| /* If we're forced to shut down, we might have to remove our |
| * reference to the last stream being dumped. |
| */ |
| if (appctx->st2 == STAT_ST_LIST) { |
| if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users)) { |
| LIST_DELETE(&appctx->ctx.sess.bref.users); |
| LIST_INIT(&appctx->ctx.sess.bref.users); |
| } |
| } |
| goto done; |
| } |
| |
| chunk_reset(&trash); |
| |
| switch (appctx->st2) { |
| case STAT_ST_INIT: |
| /* the function had not been called yet, let's prepare the |
| * buffer for a response. We initialize the current stream |
| * pointer to the first in the global list. When a target |
| * stream is being destroyed, it is responsible for updating |
| * this pointer. We know we have reached the end when this |
| * pointer points back to the head of the streams list. |
| */ |
| LIST_INIT(&appctx->ctx.sess.bref.users); |
| appctx->ctx.sess.bref.ref = ha_thread_ctx[appctx->ctx.sess.thr].streams.n; |
| appctx->st2 = STAT_ST_LIST; |
| /* fall through */ |
| |
| case STAT_ST_LIST: |
| /* first, let's detach the back-ref from a possible previous stream */ |
| if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users)) { |
| LIST_DELETE(&appctx->ctx.sess.bref.users); |
| LIST_INIT(&appctx->ctx.sess.bref.users); |
| } |
| |
| /* and start from where we stopped */ |
| while (1) { |
| char pn[INET6_ADDRSTRLEN]; |
| struct stream *curr_strm; |
| int done= 0; |
| |
| if (appctx->ctx.sess.bref.ref == &ha_thread_ctx[appctx->ctx.sess.thr].streams) |
| done = 1; |
| else { |
| /* check if we've found a stream created after issuing the "show sess" */ |
| curr_strm = LIST_ELEM(appctx->ctx.sess.bref.ref, struct stream *, list); |
| if ((int)(curr_strm->stream_epoch - si_strm(appctx->owner)->stream_epoch) > 0) |
| done = 1; |
| } |
| |
| if (done) { |
| appctx->ctx.sess.thr++; |
| if (appctx->ctx.sess.thr >= global.nbthread) |
| break; |
| appctx->ctx.sess.bref.ref = ha_thread_ctx[appctx->ctx.sess.thr].streams.n; |
| continue; |
| } |
| |
| if (appctx->ctx.sess.target) { |
| if (appctx->ctx.sess.target != (void *)-1 && appctx->ctx.sess.target != curr_strm) |
| goto next_sess; |
| |
| LIST_APPEND(&curr_strm->back_refs, &appctx->ctx.sess.bref.users); |
| /* call the proper dump() function and return if we're missing space */ |
| if (!stats_dump_full_strm_to_buffer(si, curr_strm)) |
| goto full; |
| |
| /* stream dump complete */ |
| LIST_DELETE(&appctx->ctx.sess.bref.users); |
| LIST_INIT(&appctx->ctx.sess.bref.users); |
| if (appctx->ctx.sess.target != (void *)-1) { |
| appctx->ctx.sess.target = NULL; |
| break; |
| } |
| else |
| goto next_sess; |
| } |
| |
| chunk_appendf(&trash, |
| "%p: proto=%s", |
| curr_strm, |
| strm_li(curr_strm) ? strm_li(curr_strm)->rx.proto->name : "?"); |
| |
| conn = objt_conn(strm_orig(curr_strm)); |
| switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) { |
| case AF_INET: |
| case AF_INET6: |
| chunk_appendf(&trash, |
| " src=%s:%d fe=%s be=%s srv=%s", |
| pn, |
| get_host_port(conn->src), |
| strm_fe(curr_strm)->id, |
| (curr_strm->be->cap & PR_CAP_BE) ? curr_strm->be->id : "<NONE>", |
| objt_server(curr_strm->target) ? __objt_server(curr_strm->target)->id : "<none>" |
| ); |
| break; |
| case AF_UNIX: |
| chunk_appendf(&trash, |
| " src=unix:%d fe=%s be=%s srv=%s", |
| strm_li(curr_strm)->luid, |
| strm_fe(curr_strm)->id, |
| (curr_strm->be->cap & PR_CAP_BE) ? curr_strm->be->id : "<NONE>", |
| objt_server(curr_strm->target) ? __objt_server(curr_strm->target)->id : "<none>" |
| ); |
| break; |
| } |
| |
| chunk_appendf(&trash, |
| " ts=%02x epoch=%#x age=%s calls=%u rate=%u cpu=%llu lat=%llu", |
| curr_strm->task->state, curr_strm->stream_epoch, |
| human_time(now.tv_sec - curr_strm->logs.tv_accept.tv_sec, 1), |
| curr_strm->task->calls, read_freq_ctr(&curr_strm->call_rate), |
| (unsigned long long)curr_strm->task->cpu_time, (unsigned long long)curr_strm->task->lat_time); |
| |
| chunk_appendf(&trash, |
| " rq[f=%06xh,i=%u,an=%02xh,rx=%s", |
| curr_strm->req.flags, |
| (unsigned int)ci_data(&curr_strm->req), |
| curr_strm->req.analysers, |
| curr_strm->req.rex ? |
| human_time(TICKS_TO_MS(curr_strm->req.rex - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| chunk_appendf(&trash, |
| ",wx=%s", |
| curr_strm->req.wex ? |
| human_time(TICKS_TO_MS(curr_strm->req.wex - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| chunk_appendf(&trash, |
| ",ax=%s]", |
| curr_strm->req.analyse_exp ? |
| human_time(TICKS_TO_MS(curr_strm->req.analyse_exp - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| chunk_appendf(&trash, |
| " rp[f=%06xh,i=%u,an=%02xh,rx=%s", |
| curr_strm->res.flags, |
| (unsigned int)ci_data(&curr_strm->res), |
| curr_strm->res.analysers, |
| curr_strm->res.rex ? |
| human_time(TICKS_TO_MS(curr_strm->res.rex - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| chunk_appendf(&trash, |
| ",wx=%s", |
| curr_strm->res.wex ? |
| human_time(TICKS_TO_MS(curr_strm->res.wex - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| chunk_appendf(&trash, |
| ",ax=%s]", |
| curr_strm->res.analyse_exp ? |
| human_time(TICKS_TO_MS(curr_strm->res.analyse_exp - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| conn = cs_conn(objt_cs(curr_strm->si[0].end)); |
| chunk_appendf(&trash, |
| " s0=[%d,%1xh,fd=%d,ex=%s]", |
| curr_strm->si[0].state, |
| curr_strm->si[0].flags, |
| conn ? conn->handle.fd : -1, |
| curr_strm->si[0].exp ? |
| human_time(TICKS_TO_MS(curr_strm->si[0].exp - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| conn = cs_conn(objt_cs(curr_strm->si[1].end)); |
| chunk_appendf(&trash, |
| " s1=[%d,%1xh,fd=%d,ex=%s]", |
| curr_strm->si[1].state, |
| curr_strm->si[1].flags, |
| conn ? conn->handle.fd : -1, |
| curr_strm->si[1].exp ? |
| human_time(TICKS_TO_MS(curr_strm->si[1].exp - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| chunk_appendf(&trash, |
| " exp=%s", |
| curr_strm->task->expire ? |
| human_time(TICKS_TO_MS(curr_strm->task->expire - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| if (task_in_rq(curr_strm->task)) |
| chunk_appendf(&trash, " run(nice=%d)", curr_strm->task->nice); |
| |
| chunk_appendf(&trash, "\n"); |
| |
| if (ci_putchk(si_ic(si), &trash) == -1) { |
| /* let's try again later from this stream. We add ourselves into |
| * this stream's users so that it can remove us upon termination. |
| */ |
| LIST_APPEND(&curr_strm->back_refs, &appctx->ctx.sess.bref.users); |
| goto full; |
| } |
| |
| next_sess: |
| appctx->ctx.sess.bref.ref = curr_strm->list.n; |
| } |
| |
| if (appctx->ctx.sess.target && appctx->ctx.sess.target != (void *)-1) { |
| /* specified stream not found */ |
| if (appctx->ctx.sess.section > 0) |
| chunk_appendf(&trash, " *** session terminated while we were watching it ***\n"); |
| else |
| chunk_appendf(&trash, "Session not found.\n"); |
| |
| if (ci_putchk(si_ic(si), &trash) == -1) |
| goto full; |
| |
| appctx->ctx.sess.target = NULL; |
| appctx->ctx.sess.uid = 0; |
| goto done; |
| } |
| /* fall through */ |
| |
| default: |
| appctx->st2 = STAT_ST_FIN; |
| goto done; |
| } |
| done: |
| thread_release(); |
| return 1; |
| full: |
| thread_release(); |
| si_rx_room_blk(si); |
| return 0; |
| } |
| |
| static void cli_release_show_sess(struct appctx *appctx) |
| { |
| if (appctx->st2 == STAT_ST_LIST && appctx->ctx.sess.thr < global.nbthread) { |
| /* a dump was aborted, either in error or timeout. We need to |
| * safely detach from the target stream's list. It's mandatory |
| * to lock because a stream on the target thread could be moving |
| * our node. |
| */ |
| thread_isolate(); |
| if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users)) |
| LIST_DELETE(&appctx->ctx.sess.bref.users); |
| thread_release(); |
| } |
| } |
| |
| /* Parses the "shutdown session" directive, it always returns 1 */ |
| static int cli_parse_shutdown_session(char **args, char *payload, struct appctx *appctx, void *private) |
| { |
| struct stream *strm, *ptr; |
| int thr; |
| |
| if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) |
| return 1; |
| |
| if (!*args[2]) |
| return cli_err(appctx, "Session pointer expected (use 'show sess').\n"); |
| |
| ptr = (void *)strtoul(args[2], NULL, 0); |
| strm = NULL; |
| |
| thread_isolate(); |
| |
| /* first, look for the requested stream in the stream table */ |
| for (thr = 0; !strm && thr < global.nbthread; thr++) { |
| list_for_each_entry(strm, &ha_thread_ctx[thr].streams, list) { |
| if (strm == ptr) { |
| stream_shutdown(strm, SF_ERR_KILLED); |
| break; |
| } |
| } |
| } |
| |
| thread_release(); |
| |
| /* do we have the stream ? */ |
| if (!strm) |
| return cli_err(appctx, "No such session (use 'show sess').\n"); |
| |
| return 1; |
| } |
| |
| /* Parses the "shutdown session server" directive, it always returns 1 */ |
| static int cli_parse_shutdown_sessions_server(char **args, char *payload, struct appctx *appctx, void *private) |
| { |
| struct server *sv; |
| |
| if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) |
| return 1; |
| |
| sv = cli_find_server(appctx, args[3]); |
| if (!sv) |
| return 1; |
| |
| /* kill all the stream that are on this server */ |
| HA_SPIN_LOCK(SERVER_LOCK, &sv->lock); |
| srv_shutdown_streams(sv, SF_ERR_KILLED); |
| HA_SPIN_UNLOCK(SERVER_LOCK, &sv->lock); |
| return 1; |
| } |
| |
| /* register cli keywords */ |
| static struct cli_kw_list cli_kws = {{ },{ |
| { { "show", "sess", NULL }, "show sess [id] : report the list of current sessions or dump this exact session", cli_parse_show_sess, cli_io_handler_dump_sess, cli_release_show_sess }, |
| { { "shutdown", "session", NULL }, "shutdown session [id] : kill a specific session", cli_parse_shutdown_session, NULL, NULL }, |
| { { "shutdown", "sessions", "server" }, "shutdown sessions server <bk>/<srv> : kill sessions on a server", cli_parse_shutdown_sessions_server, NULL, NULL }, |
| {{},} |
| }}; |
| |
| INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws); |
| |
| /* main configuration keyword registration. */ |
| static struct action_kw_list stream_tcp_req_keywords = { ILH, { |
| { "set-log-level", stream_parse_set_log_level }, |
| { "set-nice", stream_parse_set_nice }, |
| { "switch-mode", stream_parse_switch_mode }, |
| { "use-service", stream_parse_use_service }, |
| { /* END */ } |
| }}; |
| |
| INITCALL1(STG_REGISTER, tcp_req_cont_keywords_register, &stream_tcp_req_keywords); |
| |
| /* main configuration keyword registration. */ |
| static struct action_kw_list stream_tcp_res_keywords = { ILH, { |
| { "set-log-level", stream_parse_set_log_level }, |
| { "set-nice", stream_parse_set_nice }, |
| { /* END */ } |
| }}; |
| |
| INITCALL1(STG_REGISTER, tcp_res_cont_keywords_register, &stream_tcp_res_keywords); |
| |
| static struct action_kw_list stream_http_req_keywords = { ILH, { |
| { "set-log-level", stream_parse_set_log_level }, |
| { "set-nice", stream_parse_set_nice }, |
| { "use-service", stream_parse_use_service }, |
| { /* END */ } |
| }}; |
| |
| INITCALL1(STG_REGISTER, http_req_keywords_register, &stream_http_req_keywords); |
| |
| static struct action_kw_list stream_http_res_keywords = { ILH, { |
| { "set-log-level", stream_parse_set_log_level }, |
| { "set-nice", stream_parse_set_nice }, |
| { /* END */ } |
| }}; |
| |
| INITCALL1(STG_REGISTER, http_res_keywords_register, &stream_http_res_keywords); |
| |
| static int smp_fetch_cur_server_timeout(const struct arg *args, struct sample *smp, const char *km, void *private) |
| { |
| smp->flags = SMP_F_VOL_TXN; |
| smp->data.type = SMP_T_SINT; |
| if (!smp->strm) |
| return 0; |
| |
| smp->data.u.sint = TICKS_TO_MS(smp->strm->res.rto); |
| return 1; |
| } |
| |
| static int smp_fetch_cur_tunnel_timeout(const struct arg *args, struct sample *smp, const char *km, void *private) |
| { |
| smp->flags = SMP_F_VOL_TXN; |
| smp->data.type = SMP_T_SINT; |
| if (!smp->strm) |
| return 0; |
| |
| smp->data.u.sint = TICKS_TO_MS(smp->strm->tunnel_timeout); |
| return 1; |
| } |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Please take care of keeping this list alphabetically sorted. |
| */ |
| static struct sample_fetch_kw_list smp_kws = {ILH, { |
| { "cur_server_timeout", smp_fetch_cur_server_timeout, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, }, |
| { "cur_tunnel_timeout", smp_fetch_cur_tunnel_timeout, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, }, |
| { NULL, NULL, 0, 0, 0 }, |
| }}; |
| |
| INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws); |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |