blob: 0e021b08e51894f776718719e8fb7688f9f125de [file] [log] [blame]
/*
* activity measurement functions.
*
* Copyright 2000-2018 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <haproxy/activity-t.h>
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/cfgparse.h>
#include <haproxy/clock.h>
#include <haproxy/channel.h>
#include <haproxy/cli.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/listener.h>
#include <haproxy/sc_strm.h>
#include <haproxy/stconn.h>
#include <haproxy/tools.h>
/* CLI context for the "show profiling" command */
struct show_prof_ctx {
int dump_step; /* 0,1,2,4,5,6; see cli_iohandler_show_profiling() */
int linenum; /* next line to be dumped (starts at 0) */
int maxcnt; /* max line count per step (0=not set) */
int by_what; /* 0=sort by usage, 1=sort by address, 2=sort by time */
int aggr; /* 0=dump raw, 1=aggregate on callee */
};
/* CLI context for the "show activity" command */
struct show_activity_ctx {
int thr; /* thread ID to show or -1 for all */
};
#if defined(DEBUG_MEM_STATS)
/* these ones are macros in bug.h when DEBUG_MEM_STATS is set, and will
* prevent the new ones from being redefined.
*/
#undef calloc
#undef malloc
#undef realloc
#endif
/* bit field of profiling options. Beware, may be modified at runtime! */
unsigned int profiling __read_mostly = HA_PROF_TASKS_AOFF;
/* One struct per thread containing all collected measurements */
struct activity activity[MAX_THREADS] __attribute__((aligned(64))) = { };
/* One struct per function pointer hash entry (SCHED_ACT_HASH_BUCKETS values, 0=collision) */
struct sched_activity sched_activity[SCHED_ACT_HASH_BUCKETS] __attribute__((aligned(64))) = { };
#ifdef USE_MEMORY_PROFILING
static const char *const memprof_methods[MEMPROF_METH_METHODS] = {
"unknown", "malloc", "calloc", "realloc", "free", "p_alloc", "p_free",
};
/* last one is for hash collisions ("others") and has no caller address */
struct memprof_stats memprof_stats[MEMPROF_HASH_BUCKETS + 1] = { };
/* used to detect recursive calls */
static THREAD_LOCAL int in_memprof = 0;
/* These ones are used by glibc and will be called early. They are in charge of
* initializing the handlers with the original functions.
*/
static void *memprof_malloc_initial_handler(size_t size);
static void *memprof_calloc_initial_handler(size_t nmemb, size_t size);
static void *memprof_realloc_initial_handler(void *ptr, size_t size);
static void memprof_free_initial_handler(void *ptr);
/* Fallback handlers for the main alloc/free functions. They are preset to
* the initializer in order to save a test in the functions's critical path.
*/
static void *(*memprof_malloc_handler)(size_t size) = memprof_malloc_initial_handler;
static void *(*memprof_calloc_handler)(size_t nmemb, size_t size) = memprof_calloc_initial_handler;
static void *(*memprof_realloc_handler)(void *ptr, size_t size) = memprof_realloc_initial_handler;
static void (*memprof_free_handler)(void *ptr) = memprof_free_initial_handler;
/* Used to force to die if it's not possible to retrieve the allocation
* functions. We cannot even use stdio in this case.
*/
static __attribute__((noreturn)) void memprof_die(const char *msg)
{
DISGUISE(write(2, msg, strlen(msg)));
exit(1);
}
/* Resolve original allocation functions and initialize all handlers.
* This must be called very early at boot, before the very first malloc()
* call, and is not thread-safe! It's not even possible to use stdio there.
* Worse, we have to account for the risk of reentrance from dlsym() when
* it tries to prepare its error messages. Here its ahndled by in_memprof
* that makes allocators return NULL. dlsym() handles it gracefully. An
* alternate approach consists in calling aligned_alloc() from these places
* but that would mean not being able to intercept it later if considered
* useful to do so.
*/
static void memprof_init()
{
in_memprof++;
memprof_malloc_handler = get_sym_next_addr("malloc");
if (!memprof_malloc_handler)
memprof_die("FATAL: malloc() function not found.\n");
memprof_calloc_handler = get_sym_next_addr("calloc");
if (!memprof_calloc_handler)
memprof_die("FATAL: calloc() function not found.\n");
memprof_realloc_handler = get_sym_next_addr("realloc");
if (!memprof_realloc_handler)
memprof_die("FATAL: realloc() function not found.\n");
memprof_free_handler = get_sym_next_addr("free");
if (!memprof_free_handler)
memprof_die("FATAL: free() function not found.\n");
in_memprof--;
}
/* the initial handlers will initialize all regular handlers and will call the
* one they correspond to. A single one of these functions will typically be
* called, though it's unknown which one (as any might be called before main).
*/
static void *memprof_malloc_initial_handler(size_t size)
{
if (in_memprof) {
/* it's likely that dlsym() needs malloc(), let's fail */
return NULL;
}
memprof_init();
return memprof_malloc_handler(size);
}
static void *memprof_calloc_initial_handler(size_t nmemb, size_t size)
{
if (in_memprof) {
/* it's likely that dlsym() needs calloc(), let's fail */
return NULL;
}
memprof_init();
return memprof_calloc_handler(nmemb, size);
}
static void *memprof_realloc_initial_handler(void *ptr, size_t size)
{
if (in_memprof) {
/* it's likely that dlsym() needs realloc(), let's fail */
return NULL;
}
memprof_init();
return memprof_realloc_handler(ptr, size);
}
static void memprof_free_initial_handler(void *ptr)
{
memprof_init();
memprof_free_handler(ptr);
}
/* Assign a bin for the memprof_stats to the return address. May perform a few
* attempts before finding the right one, but always succeeds (in the worst
* case, returns a default bin). The caller address is atomically set except
* for the default one which is never set.
*/
struct memprof_stats *memprof_get_bin(const void *ra, enum memprof_method meth)
{
int retries = 16; // up to 16 consecutive entries may be tested.
const void *old;
unsigned int bin;
bin = ptr_hash(ra, MEMPROF_HASH_BITS);
for (; memprof_stats[bin].caller != ra; bin = (bin + 1) & (MEMPROF_HASH_BUCKETS - 1)) {
if (!--retries) {
bin = MEMPROF_HASH_BUCKETS;
break;
}
old = NULL;
if (!memprof_stats[bin].caller &&
HA_ATOMIC_CAS(&memprof_stats[bin].caller, &old, ra)) {
memprof_stats[bin].method = meth;
break;
}
}
return &memprof_stats[bin];
}
/* This is the new global malloc() function. It must optimize for the normal
* case (i.e. profiling disabled) hence the first test to permit a direct jump.
* It must remain simple to guarantee the lack of reentrance. stdio is not
* possible there even for debugging. The reported size is the really allocated
* one as returned by malloc_usable_size(), because this will allow it to be
* compared to the one before realloc() or free(). This is a GNU and jemalloc
* extension but other systems may also store this size in ptr[-1].
*/
void *malloc(size_t size)
{
struct memprof_stats *bin;
void *ret;
if (likely(!(profiling & HA_PROF_MEMORY)))
return memprof_malloc_handler(size);
ret = memprof_malloc_handler(size);
size = malloc_usable_size(ret) + sizeof(void *);
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_MALLOC);
_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
_HA_ATOMIC_ADD(&bin->alloc_tot, size);
return ret;
}
/* This is the new global calloc() function. It must optimize for the normal
* case (i.e. profiling disabled) hence the first test to permit a direct jump.
* It must remain simple to guarantee the lack of reentrance. stdio is not
* possible there even for debugging. The reported size is the really allocated
* one as returned by malloc_usable_size(), because this will allow it to be
* compared to the one before realloc() or free(). This is a GNU and jemalloc
* extension but other systems may also store this size in ptr[-1].
*/
void *calloc(size_t nmemb, size_t size)
{
struct memprof_stats *bin;
void *ret;
if (likely(!(profiling & HA_PROF_MEMORY)))
return memprof_calloc_handler(nmemb, size);
ret = memprof_calloc_handler(nmemb, size);
size = malloc_usable_size(ret) + sizeof(void *);
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_CALLOC);
_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
_HA_ATOMIC_ADD(&bin->alloc_tot, size);
return ret;
}
/* This is the new global realloc() function. It must optimize for the normal
* case (i.e. profiling disabled) hence the first test to permit a direct jump.
* It must remain simple to guarantee the lack of reentrance. stdio is not
* possible there even for debugging. The reported size is the really allocated
* one as returned by malloc_usable_size(), because this will allow it to be
* compared to the one before realloc() or free(). This is a GNU and jemalloc
* extension but other systems may also store this size in ptr[-1].
* Depending on the old vs new size, it's considered as an allocation or a free
* (or neither if the size remains the same).
*/
void *realloc(void *ptr, size_t size)
{
struct memprof_stats *bin;
size_t size_before;
void *ret;
if (likely(!(profiling & HA_PROF_MEMORY)))
return memprof_realloc_handler(ptr, size);
size_before = malloc_usable_size(ptr);
ret = memprof_realloc_handler(ptr, size);
size = malloc_usable_size(ret);
/* only count the extra link for new allocations */
if (!ptr)
size += sizeof(void *);
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_REALLOC);
if (size > size_before) {
_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
_HA_ATOMIC_ADD(&bin->alloc_tot, size - size_before);
} else if (size < size_before) {
_HA_ATOMIC_ADD(&bin->free_calls, 1);
_HA_ATOMIC_ADD(&bin->free_tot, size_before - size);
}
return ret;
}
/* This is the new global free() function. It must optimize for the normal
* case (i.e. profiling disabled) hence the first test to permit a direct jump.
* It must remain simple to guarantee the lack of reentrance. stdio is not
* possible there even for debugging. The reported size is the really allocated
* one as returned by malloc_usable_size(), because this will allow it to be
* compared to the one before realloc() or free(). This is a GNU and jemalloc
* extension but other systems may also store this size in ptr[-1]. Since
* free() is often called on NULL pointers to collect garbage at the end of
* many functions or during config parsing, as a special case free(NULL)
* doesn't update any stats.
*/
void free(void *ptr)
{
struct memprof_stats *bin;
size_t size_before;
if (likely(!(profiling & HA_PROF_MEMORY) || !ptr)) {
memprof_free_handler(ptr);
return;
}
size_before = malloc_usable_size(ptr) + sizeof(void *);
memprof_free_handler(ptr);
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_FREE);
_HA_ATOMIC_ADD(&bin->free_calls, 1);
_HA_ATOMIC_ADD(&bin->free_tot, size_before);
}
#endif // USE_MEMORY_PROFILING
/* Updates the current thread's statistics about stolen CPU time. The unit for
* <stolen> is half-milliseconds.
*/
void report_stolen_time(uint64_t stolen)
{
activity[tid].cpust_total += stolen;
update_freq_ctr(&activity[tid].cpust_1s, stolen);
update_freq_ctr_period(&activity[tid].cpust_15s, 15000, stolen);
}
/* Update avg_loop value for the current thread and possibly decide to enable
* task-level profiling on the current thread based on its average run time.
* The <run_time> argument is the number of microseconds elapsed since the
* last time poll() returned.
*/
void activity_count_runtime(uint32_t run_time)
{
uint32_t up, down;
/* 1 millisecond per loop on average over last 1024 iterations is
* enough to turn on profiling.
*/
up = 1000;
down = up * 99 / 100;
run_time = swrate_add(&activity[tid].avg_loop_us, TIME_STATS_SAMPLES, run_time);
/* In automatic mode, reaching the "up" threshold on average switches
* profiling to "on" when automatic, and going back below the "down"
* threshold switches to off. The forced modes don't check the load.
*/
if (!(_HA_ATOMIC_LOAD(&th_ctx->flags) & TH_FL_TASK_PROFILING)) {
if (unlikely((profiling & HA_PROF_TASKS_MASK) == HA_PROF_TASKS_ON ||
((profiling & HA_PROF_TASKS_MASK) == HA_PROF_TASKS_AON &&
swrate_avg(run_time, TIME_STATS_SAMPLES) >= up)))
_HA_ATOMIC_OR(&th_ctx->flags, TH_FL_TASK_PROFILING);
} else {
if (unlikely((profiling & HA_PROF_TASKS_MASK) == HA_PROF_TASKS_OFF ||
((profiling & HA_PROF_TASKS_MASK) == HA_PROF_TASKS_AOFF &&
swrate_avg(run_time, TIME_STATS_SAMPLES) <= down)))
_HA_ATOMIC_AND(&th_ctx->flags, ~TH_FL_TASK_PROFILING);
}
}
#ifdef USE_MEMORY_PROFILING
/* config parser for global "profiling.memory", accepts "on" or "off" */
static int cfg_parse_prof_memory(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
if (strcmp(args[1], "on") == 0)
profiling |= HA_PROF_MEMORY;
else if (strcmp(args[1], "off") == 0)
profiling &= ~HA_PROF_MEMORY;
else {
memprintf(err, "'%s' expects either 'on' or 'off' but got '%s'.", args[0], args[1]);
return -1;
}
return 0;
}
#endif // USE_MEMORY_PROFILING
/* config parser for global "profiling.tasks", accepts "on" or "off" */
static int cfg_parse_prof_tasks(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
if (strcmp(args[1], "on") == 0)
profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_ON;
else if (strcmp(args[1], "auto") == 0)
profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AOFF;
else if (strcmp(args[1], "off") == 0)
profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_OFF;
else {
memprintf(err, "'%s' expects either 'on', 'auto', or 'off' but got '%s'.", args[0], args[1]);
return -1;
}
return 0;
}
/* parse a "set profiling" command. It always returns 1. */
static int cli_parse_set_profiling(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (strcmp(args[2], "memory") == 0) {
#ifdef USE_MEMORY_PROFILING
if (strcmp(args[3], "on") == 0) {
unsigned int old = profiling;
int i;
while (!_HA_ATOMIC_CAS(&profiling, &old, old | HA_PROF_MEMORY))
;
/* also flush current profiling stats */
for (i = 0; i < sizeof(memprof_stats) / sizeof(memprof_stats[0]); i++) {
HA_ATOMIC_STORE(&memprof_stats[i].alloc_calls, 0);
HA_ATOMIC_STORE(&memprof_stats[i].free_calls, 0);
HA_ATOMIC_STORE(&memprof_stats[i].alloc_tot, 0);
HA_ATOMIC_STORE(&memprof_stats[i].free_tot, 0);
HA_ATOMIC_STORE(&memprof_stats[i].caller, NULL);
}
}
else if (strcmp(args[3], "off") == 0) {
unsigned int old = profiling;
while (!_HA_ATOMIC_CAS(&profiling, &old, old & ~HA_PROF_MEMORY))
;
}
else
return cli_err(appctx, "Expects either 'on' or 'off'.\n");
return 1;
#else
return cli_err(appctx, "Memory profiling not compiled in.\n");
#endif
}
if (strcmp(args[2], "tasks") != 0)
return cli_err(appctx, "Expects either 'tasks' or 'memory'.\n");
if (strcmp(args[3], "on") == 0) {
unsigned int old = profiling;
int i;
while (!_HA_ATOMIC_CAS(&profiling, &old, (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_ON))
;
/* also flush current profiling stats */
for (i = 0; i < SCHED_ACT_HASH_BUCKETS; i++) {
HA_ATOMIC_STORE(&sched_activity[i].calls, 0);
HA_ATOMIC_STORE(&sched_activity[i].cpu_time, 0);
HA_ATOMIC_STORE(&sched_activity[i].lat_time, 0);
HA_ATOMIC_STORE(&sched_activity[i].func, NULL);
HA_ATOMIC_STORE(&sched_activity[i].caller, NULL);
}
}
else if (strcmp(args[3], "auto") == 0) {
unsigned int old = profiling;
unsigned int new;
do {
if ((old & HA_PROF_TASKS_MASK) >= HA_PROF_TASKS_AON)
new = (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AON;
else
new = (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AOFF;
} while (!_HA_ATOMIC_CAS(&profiling, &old, new));
}
else if (strcmp(args[3], "off") == 0) {
unsigned int old = profiling;
while (!_HA_ATOMIC_CAS(&profiling, &old, (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_OFF))
;
}
else
return cli_err(appctx, "Expects 'on', 'auto', or 'off'.\n");
return 1;
}
static int cmp_sched_activity_calls(const void *a, const void *b)
{
const struct sched_activity *l = (const struct sched_activity *)a;
const struct sched_activity *r = (const struct sched_activity *)b;
if (l->calls > r->calls)
return -1;
else if (l->calls < r->calls)
return 1;
else
return 0;
}
/* sort by address first, then by call count */
static int cmp_sched_activity_addr(const void *a, const void *b)
{
const struct sched_activity *l = (const struct sched_activity *)a;
const struct sched_activity *r = (const struct sched_activity *)b;
if (l->func > r->func)
return -1;
else if (l->func < r->func)
return 1;
else if (l->calls > r->calls)
return -1;
else if (l->calls < r->calls)
return 1;
else
return 0;
}
/* sort by cpu time first, then by inverse call count (to spot highest offenders) */
static int cmp_sched_activity_cpu(const void *a, const void *b)
{
const struct sched_activity *l = (const struct sched_activity *)a;
const struct sched_activity *r = (const struct sched_activity *)b;
if (l->cpu_time > r->cpu_time)
return -1;
else if (l->cpu_time < r->cpu_time)
return 1;
else if (l->calls < r->calls)
return -1;
else if (l->calls > r->calls)
return 1;
else
return 0;
}
#ifdef USE_MEMORY_PROFILING
/* used by qsort below */
static int cmp_memprof_stats(const void *a, const void *b)
{
const struct memprof_stats *l = (const struct memprof_stats *)a;
const struct memprof_stats *r = (const struct memprof_stats *)b;
if (l->alloc_tot + l->free_tot > r->alloc_tot + r->free_tot)
return -1;
else if (l->alloc_tot + l->free_tot < r->alloc_tot + r->free_tot)
return 1;
else
return 0;
}
static int cmp_memprof_addr(const void *a, const void *b)
{
const struct memprof_stats *l = (const struct memprof_stats *)a;
const struct memprof_stats *r = (const struct memprof_stats *)b;
if (l->caller > r->caller)
return -1;
else if (l->caller < r->caller)
return 1;
else
return 0;
}
#endif // USE_MEMORY_PROFILING
/* Computes the index of function pointer <func> and caller <caller> for use
* with sched_activity[] or any other similar array passed in <array>, and
* returns a pointer to the entry after having atomically assigned it to this
* function pointer and caller combination. Note that in case of collision,
* the first entry is returned instead ("other").
*/
struct sched_activity *sched_activity_entry(struct sched_activity *array, const void *func, const void *caller)
{
uint32_t hash = ptr2_hash(func, caller, SCHED_ACT_HASH_BITS);
struct sched_activity *ret;
const void *old;
int tries = 16;
for (tries = 16; tries > 0; tries--, hash++) {
ret = &array[hash];
while (1) {
if (likely(ret->func)) {
if (likely(ret->func == func && ret->caller == caller))
return ret;
break;
}
/* try to create the new entry. Func is sufficient to
* reserve the node.
*/
old = NULL;
if (HA_ATOMIC_CAS(&ret->func, &old, func)) {
ret->caller = caller;
return ret;
}
/* changed in parallel, check again */
}
}
return array;
}
/* This function dumps all profiling settings. It returns 0 if the output
* buffer is full and it needs to be called again, otherwise non-zero.
* It dumps some parts depending on the following states from show_prof_ctx:
* dump_step:
* 0, 4: dump status, then jump to 1 if 0
* 1, 5: dump tasks, then jump to 2 if 1
* 2, 6: dump memory, then stop
* linenum:
* restart line for each step (starts at zero)
* maxcnt:
* may contain a configured max line count for each step (0=not set)
* byaddr:
* 0: sort by usage
* 1: sort by address
*/
static int cli_io_handler_show_profiling(struct appctx *appctx)
{
struct show_prof_ctx *ctx = appctx->svcctx;
struct sched_activity tmp_activity[SCHED_ACT_HASH_BUCKETS] __attribute__((aligned(64)));
#ifdef USE_MEMORY_PROFILING
struct memprof_stats tmp_memstats[MEMPROF_HASH_BUCKETS + 1];
unsigned long long tot_alloc_calls, tot_free_calls;
unsigned long long tot_alloc_bytes, tot_free_bytes;
#endif
struct stconn *sc = appctx_sc(appctx);
struct buffer *name_buffer = get_trash_chunk();
const struct ha_caller *caller;
const char *str;
int max_lines;
int i, j, max;
/* FIXME: Don't watch the other side ! */
if (unlikely(sc_opposite(sc)->flags & SC_FL_SHUTW))
return 1;
chunk_reset(&trash);
switch (profiling & HA_PROF_TASKS_MASK) {
case HA_PROF_TASKS_AOFF: str="auto-off"; break;
case HA_PROF_TASKS_AON: str="auto-on"; break;
case HA_PROF_TASKS_ON: str="on"; break;
default: str="off"; break;
}
if ((ctx->dump_step & 3) != 0)
goto skip_status;
chunk_printf(&trash,
"Per-task CPU profiling : %-8s # set profiling tasks {on|auto|off}\n"
"Memory usage profiling : %-8s # set profiling memory {on|off}\n",
str, (profiling & HA_PROF_MEMORY) ? "on" : "off");
if (applet_putchk(appctx, &trash) == -1) {
/* failed, try again */
return 0;
}
ctx->linenum = 0; // reset first line to dump
if ((ctx->dump_step & 4) == 0)
ctx->dump_step++; // next step
skip_status:
if ((ctx->dump_step & 3) != 1)
goto skip_tasks;
memcpy(tmp_activity, sched_activity, sizeof(tmp_activity));
/* for addr sort and for callee aggregation we have to first sort by address */
if (ctx->aggr || ctx->by_what == 1) // sort by addr
qsort(tmp_activity, SCHED_ACT_HASH_BUCKETS, sizeof(tmp_activity[0]), cmp_sched_activity_addr);
if (ctx->aggr) {
/* merge entries for the same callee and reset their count */
for (i = j = 0; i < SCHED_ACT_HASH_BUCKETS; i = j) {
for (j = i + 1; j < SCHED_ACT_HASH_BUCKETS && tmp_activity[j].func == tmp_activity[i].func; j++) {
tmp_activity[i].calls += tmp_activity[j].calls;
tmp_activity[i].cpu_time += tmp_activity[j].cpu_time;
tmp_activity[i].lat_time += tmp_activity[j].lat_time;
tmp_activity[j].calls = 0;
}
}
}
if (!ctx->by_what) // sort by usage
qsort(tmp_activity, SCHED_ACT_HASH_BUCKETS, sizeof(tmp_activity[0]), cmp_sched_activity_calls);
else if (ctx->by_what == 2) // by cpu_tot
qsort(tmp_activity, SCHED_ACT_HASH_BUCKETS, sizeof(tmp_activity[0]), cmp_sched_activity_cpu);
if (!ctx->linenum)
chunk_appendf(&trash, "Tasks activity:\n"
" function calls cpu_tot cpu_avg lat_tot lat_avg\n");
max_lines = ctx->maxcnt;
if (!max_lines)
max_lines = SCHED_ACT_HASH_BUCKETS;
for (i = ctx->linenum; i < max_lines; i++) {
if (!tmp_activity[i].calls)
continue; // skip aggregated or empty entries
ctx->linenum = i;
chunk_reset(name_buffer);
caller = HA_ATOMIC_LOAD(&tmp_activity[i].caller);
if (!tmp_activity[i].func)
chunk_printf(name_buffer, "other");
else
resolve_sym_name(name_buffer, "", tmp_activity[i].func);
/* reserve 35 chars for name+' '+#calls, knowing that longer names
* are often used for less often called functions.
*/
max = 35 - name_buffer->data;
if (max < 1)
max = 1;
chunk_appendf(&trash, " %s%*llu", name_buffer->area, max, (unsigned long long)tmp_activity[i].calls);
print_time_short(&trash, " ", tmp_activity[i].cpu_time, "");
print_time_short(&trash, " ", tmp_activity[i].cpu_time / tmp_activity[i].calls, "");
print_time_short(&trash, " ", tmp_activity[i].lat_time, "");
print_time_short(&trash, " ", tmp_activity[i].lat_time / tmp_activity[i].calls, "");
if (caller && !ctx->aggr && caller->what <= WAKEUP_TYPE_APPCTX_WAKEUP)
chunk_appendf(&trash, " <- %s@%s:%d %s",
caller->func, caller->file, caller->line,
task_wakeup_type_str(caller->what));
b_putchr(&trash, '\n');
if (applet_putchk(appctx, &trash) == -1) {
/* failed, try again */
return 0;
}
}
if (applet_putchk(appctx, &trash) == -1) {
/* failed, try again */
return 0;
}
ctx->linenum = 0; // reset first line to dump
if ((ctx->dump_step & 4) == 0)
ctx->dump_step++; // next step
skip_tasks:
#ifdef USE_MEMORY_PROFILING
if ((ctx->dump_step & 3) != 2)
goto skip_mem;
memcpy(tmp_memstats, memprof_stats, sizeof(tmp_memstats));
if (ctx->by_what)
qsort(tmp_memstats, MEMPROF_HASH_BUCKETS+1, sizeof(tmp_memstats[0]), cmp_memprof_addr);
else
qsort(tmp_memstats, MEMPROF_HASH_BUCKETS+1, sizeof(tmp_memstats[0]), cmp_memprof_stats);
if (!ctx->linenum)
chunk_appendf(&trash,
"Alloc/Free statistics by call place:\n"
" Calls | Tot Bytes | Caller and method\n"
"<- alloc -> <- free ->|<-- alloc ---> <-- free ---->|\n");
max_lines = ctx->maxcnt;
if (!max_lines)
max_lines = MEMPROF_HASH_BUCKETS + 1;
for (i = ctx->linenum; i < max_lines; i++) {
struct memprof_stats *entry = &tmp_memstats[i];
ctx->linenum = i;
if (!entry->alloc_calls && !entry->free_calls)
continue;
chunk_appendf(&trash, "%11llu %11llu %14llu %14llu| %16p ",
entry->alloc_calls, entry->free_calls,
entry->alloc_tot, entry->free_tot,
entry->caller);
if (entry->caller)
resolve_sym_name(&trash, NULL, entry->caller);
else
chunk_appendf(&trash, "[other]");
chunk_appendf(&trash," %s(%lld)", memprof_methods[entry->method],
(long long)(entry->alloc_tot - entry->free_tot) / (long long)(entry->alloc_calls + entry->free_calls));
if (entry->alloc_tot && entry->free_tot) {
/* that's a realloc, show the total diff to help spot leaks */
chunk_appendf(&trash," [delta=%lld]", (long long)(entry->alloc_tot - entry->free_tot));
}
if (entry->info) {
/* that's a pool name */
const struct pool_head *pool = entry->info;
chunk_appendf(&trash," [pool=%s]", pool->name);
}
chunk_appendf(&trash, "\n");
if (applet_putchk(appctx, &trash) == -1)
return 0;
}
if (applet_putchk(appctx, &trash) == -1)
return 0;
tot_alloc_calls = tot_free_calls = tot_alloc_bytes = tot_free_bytes = 0;
for (i = 0; i < max_lines; i++) {
tot_alloc_calls += tmp_memstats[i].alloc_calls;
tot_free_calls += tmp_memstats[i].free_calls;
tot_alloc_bytes += tmp_memstats[i].alloc_tot;
tot_free_bytes += tmp_memstats[i].free_tot;
}
chunk_appendf(&trash,
"-----------------------|-----------------------------|\n"
"%11llu %11llu %14llu %14llu| <- Total; Delta_calls=%lld; Delta_bytes=%lld\n",
tot_alloc_calls, tot_free_calls,
tot_alloc_bytes, tot_free_bytes,
tot_alloc_calls - tot_free_calls,
tot_alloc_bytes - tot_free_bytes);
if (applet_putchk(appctx, &trash) == -1)
return 0;
ctx->linenum = 0; // reset first line to dump
if ((ctx->dump_step & 4) == 0)
ctx->dump_step++; // next step
skip_mem:
#endif // USE_MEMORY_PROFILING
return 1;
}
/* parse a "show profiling" command. It returns 1 on failure, 0 if it starts to dump.
* - cli.i0 is set to the first state (0=all, 4=status, 5=tasks, 6=memory)
* - cli.o1 is set to 1 if the output must be sorted by addr instead of usage
* - cli.o0 is set to the number of lines of output
*/
static int cli_parse_show_profiling(char **args, char *payload, struct appctx *appctx, void *private)
{
struct show_prof_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
int arg;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
for (arg = 2; *args[arg]; arg++) {
if (strcmp(args[arg], "all") == 0) {
ctx->dump_step = 0; // will cycle through 0,1,2; default
}
else if (strcmp(args[arg], "status") == 0) {
ctx->dump_step = 4; // will visit status only
}
else if (strcmp(args[arg], "tasks") == 0) {
ctx->dump_step = 5; // will visit tasks only
}
else if (strcmp(args[arg], "memory") == 0) {
ctx->dump_step = 6; // will visit memory only
}
else if (strcmp(args[arg], "byaddr") == 0) {
ctx->by_what = 1; // sort output by address instead of usage
}
else if (strcmp(args[arg], "bytime") == 0) {
ctx->by_what = 2; // sort output by total time instead of usage
}
else if (strcmp(args[arg], "aggr") == 0) {
ctx->aggr = 1; // aggregate output by callee
}
else if (isdigit((unsigned char)*args[arg])) {
ctx->maxcnt = atoi(args[arg]); // number of entries to dump
}
else
return cli_err(appctx, "Expects either 'all', 'status', 'tasks', 'memory', 'byaddr', 'bytime', 'aggr' or a max number of output lines.\n");
}
return 0;
}
/* This function scans all threads' run queues and collects statistics about
* running tasks. It returns 0 if the output buffer is full and it needs to be
* called again, otherwise non-zero.
*/
static int cli_io_handler_show_tasks(struct appctx *appctx)
{
struct sched_activity tmp_activity[SCHED_ACT_HASH_BUCKETS] __attribute__((aligned(64)));
struct stconn *sc = appctx_sc(appctx);
struct buffer *name_buffer = get_trash_chunk();
struct sched_activity *entry;
const struct tasklet *tl;
const struct task *t;
uint64_t now_ns, lat;
struct eb32_node *rqnode;
uint64_t tot_calls;
int thr, queue;
int i, max;
/* FIXME: Don't watch the other side ! */
if (unlikely(sc_opposite(sc)->flags & SC_FL_SHUTW))
return 1;
/* It's not possible to scan queues in small chunks and yield in the
* middle of the dump and come back again. So what we're doing instead
* is to freeze all threads and inspect their queues at once as fast as
* possible, using a sched_activity array to collect metrics with
* limited collision, then we'll report statistics only. The tasks'
* #calls will reflect the number of occurrences, and the lat_time will
* reflect the latency when set. We prefer to take the time before
* calling thread_isolate() so that the wait time doesn't impact the
* measurement accuracy. However this requires to take care of negative
* times since tasks might be queued after we retrieve it.
*/
now_ns = now_mono_time();
memset(tmp_activity, 0, sizeof(tmp_activity));
thread_isolate();
/* 1. global run queue */
#ifdef USE_THREAD
for (thr = 0; thr < global.nbthread; thr++) {
/* task run queue */
rqnode = eb32_first(&ha_thread_ctx[thr].rqueue_shared);
while (rqnode) {
t = eb32_entry(rqnode, struct task, rq);
entry = sched_activity_entry(tmp_activity, t->process, NULL);
if (t->wake_date) {
lat = now_ns - t->wake_date;
if ((int64_t)lat > 0)
entry->lat_time += lat;
}
entry->calls++;
rqnode = eb32_next(rqnode);
}
}
#endif
/* 2. all threads's local run queues */
for (thr = 0; thr < global.nbthread; thr++) {
/* task run queue */
rqnode = eb32_first(&ha_thread_ctx[thr].rqueue);
while (rqnode) {
t = eb32_entry(rqnode, struct task, rq);
entry = sched_activity_entry(tmp_activity, t->process, NULL);
if (t->wake_date) {
lat = now_ns - t->wake_date;
if ((int64_t)lat > 0)
entry->lat_time += lat;
}
entry->calls++;
rqnode = eb32_next(rqnode);
}
/* shared tasklet list */
list_for_each_entry(tl, mt_list_to_list(&ha_thread_ctx[thr].shared_tasklet_list), list) {
t = (const struct task *)tl;
entry = sched_activity_entry(tmp_activity, t->process, NULL);
if (!TASK_IS_TASKLET(t) && t->wake_date) {
lat = now_ns - t->wake_date;
if ((int64_t)lat > 0)
entry->lat_time += lat;
}
entry->calls++;
}
/* classful tasklets */
for (queue = 0; queue < TL_CLASSES; queue++) {
list_for_each_entry(tl, &ha_thread_ctx[thr].tasklets[queue], list) {
t = (const struct task *)tl;
entry = sched_activity_entry(tmp_activity, t->process, NULL);
if (!TASK_IS_TASKLET(t) && t->wake_date) {
lat = now_ns - t->wake_date;
if ((int64_t)lat > 0)
entry->lat_time += lat;
}
entry->calls++;
}
}
}
/* hopefully we're done */
thread_release();
chunk_reset(&trash);
tot_calls = 0;
for (i = 0; i < SCHED_ACT_HASH_BUCKETS; i++)
tot_calls += tmp_activity[i].calls;
qsort(tmp_activity, SCHED_ACT_HASH_BUCKETS, sizeof(tmp_activity[0]), cmp_sched_activity_calls);
chunk_appendf(&trash, "Running tasks: %d (%d threads)\n"
" function places %% lat_tot lat_avg\n",
(int)tot_calls, global.nbthread);
for (i = 0; i < SCHED_ACT_HASH_BUCKETS && tmp_activity[i].calls; i++) {
chunk_reset(name_buffer);
if (!tmp_activity[i].func)
chunk_printf(name_buffer, "other");
else
resolve_sym_name(name_buffer, "", tmp_activity[i].func);
/* reserve 35 chars for name+' '+#calls, knowing that longer names
* are often used for less often called functions.
*/
max = 35 - name_buffer->data;
if (max < 1)
max = 1;
chunk_appendf(&trash, " %s%*llu %3d.%1d",
name_buffer->area, max, (unsigned long long)tmp_activity[i].calls,
(int)(100ULL * tmp_activity[i].calls / tot_calls),
(int)((1000ULL * tmp_activity[i].calls / tot_calls)%10));
print_time_short(&trash, " ", tmp_activity[i].lat_time, "");
print_time_short(&trash, " ", tmp_activity[i].lat_time / tmp_activity[i].calls, "\n");
}
if (applet_putchk(appctx, &trash) == -1) {
/* failed, try again */
return 0;
}
return 1;
}
/* This function dumps some activity counters used by developers and support to
* rule out some hypothesis during bug reports. It returns 0 if the output
* buffer is full and it needs to be called again, otherwise non-zero. It dumps
* everything at once in the buffer and is not designed to do it in multiple
* passes.
*/
static int cli_io_handler_show_activity(struct appctx *appctx)
{
struct stconn *sc = appctx_sc(appctx);
struct show_activity_ctx *actctx = appctx->svcctx;
int tgt = actctx->thr; // target thread, -1 for all, 0 for total only
struct timeval up;
int thr;
/* FIXME: Don't watch the other side ! */
if (unlikely(sc_opposite(sc)->flags & SC_FL_SHUTW))
return 1;
chunk_reset(&trash);
#undef SHOW_TOT
#define SHOW_TOT(t, x) \
do { \
unsigned int _v[MAX_THREADS]; \
unsigned int _tot; \
const unsigned int _nbt = global.nbthread; \
_tot = t = 0; \
do { \
_tot += _v[t] = (x); \
} while (++t < _nbt); \
if (_nbt == 1) { \
chunk_appendf(&trash, " %u\n", _tot); \
break; \
} \
if (tgt == -1) { \
chunk_appendf(&trash, " %u [", _tot); \
for (t = 0; t < _nbt; t++) \
chunk_appendf(&trash, " %u", _v[t]); \
chunk_appendf(&trash, " ]\n"); \
} else if (tgt == 0) \
chunk_appendf(&trash, " %u\n", _tot); \
else \
chunk_appendf(&trash, " %u\n", _v[tgt-1]);\
} while (0)
#undef SHOW_AVG
#define SHOW_AVG(t, x) \
do { \
unsigned int _v[MAX_THREADS]; \
unsigned int _tot; \
const unsigned int _nbt = global.nbthread; \
_tot = t = 0; \
do { \
_tot += _v[t] = (x); \
} while (++t < _nbt); \
if (_nbt == 1) { \
chunk_appendf(&trash, " %u\n", _tot); \
break; \
} \
if (tgt == -1) { \
chunk_appendf(&trash, " %u [", (_tot + _nbt/2) / _nbt); \
for (t = 0; t < _nbt; t++) \
chunk_appendf(&trash, " %u", _v[t]); \
chunk_appendf(&trash, " ]\n"); \
} else if (tgt == 0) \
chunk_appendf(&trash, " %u\n", (_tot + _nbt/2) / _nbt); \
else \
chunk_appendf(&trash, " %u\n", _v[tgt-1]);\
} while (0)
/* retrieve uptime */
tv_remain(&start_time, &now, &up);
chunk_appendf(&trash, "thread_id: %u (%u..%u)\n", tid + 1, 1, global.nbthread);
chunk_appendf(&trash, "date_now: %lu.%06lu\n", (ulong)now.tv_sec, (ulong)now.tv_usec);
chunk_appendf(&trash, "uptime_now: %lu.%06lu\n", (ulong)up.tv_sec, (ulong)up.tv_usec);
chunk_appendf(&trash, "ctxsw:"); SHOW_TOT(thr, activity[thr].ctxsw);
chunk_appendf(&trash, "tasksw:"); SHOW_TOT(thr, activity[thr].tasksw);
chunk_appendf(&trash, "empty_rq:"); SHOW_TOT(thr, activity[thr].empty_rq);
chunk_appendf(&trash, "long_rq:"); SHOW_TOT(thr, activity[thr].long_rq);
chunk_appendf(&trash, "loops:"); SHOW_TOT(thr, activity[thr].loops);
chunk_appendf(&trash, "wake_tasks:"); SHOW_TOT(thr, activity[thr].wake_tasks);
chunk_appendf(&trash, "wake_signal:"); SHOW_TOT(thr, activity[thr].wake_signal);
chunk_appendf(&trash, "poll_io:"); SHOW_TOT(thr, activity[thr].poll_io);
chunk_appendf(&trash, "poll_exp:"); SHOW_TOT(thr, activity[thr].poll_exp);
chunk_appendf(&trash, "poll_drop_fd:"); SHOW_TOT(thr, activity[thr].poll_drop_fd);
chunk_appendf(&trash, "poll_skip_fd:"); SHOW_TOT(thr, activity[thr].poll_skip_fd);
chunk_appendf(&trash, "conn_dead:"); SHOW_TOT(thr, activity[thr].conn_dead);
chunk_appendf(&trash, "stream_calls:"); SHOW_TOT(thr, activity[thr].stream_calls);
chunk_appendf(&trash, "pool_fail:"); SHOW_TOT(thr, activity[thr].pool_fail);
chunk_appendf(&trash, "buf_wait:"); SHOW_TOT(thr, activity[thr].buf_wait);
chunk_appendf(&trash, "cpust_ms_tot:"); SHOW_TOT(thr, activity[thr].cpust_total / 2);
chunk_appendf(&trash, "cpust_ms_1s:"); SHOW_TOT(thr, read_freq_ctr(&activity[thr].cpust_1s) / 2);
chunk_appendf(&trash, "cpust_ms_15s:"); SHOW_TOT(thr, read_freq_ctr_period(&activity[thr].cpust_15s, 15000) / 2);
chunk_appendf(&trash, "avg_cpu_pct:"); SHOW_AVG(thr, (100 - ha_thread_ctx[thr].idle_pct));
chunk_appendf(&trash, "avg_loop_us:"); SHOW_AVG(thr, swrate_avg(activity[thr].avg_loop_us, TIME_STATS_SAMPLES));
chunk_appendf(&trash, "accepted:"); SHOW_TOT(thr, activity[thr].accepted);
chunk_appendf(&trash, "accq_pushed:"); SHOW_TOT(thr, activity[thr].accq_pushed);
chunk_appendf(&trash, "accq_full:"); SHOW_TOT(thr, activity[thr].accq_full);
#ifdef USE_THREAD
chunk_appendf(&trash, "accq_ring:"); SHOW_TOT(thr, (accept_queue_rings[thr].tail - accept_queue_rings[thr].head + ACCEPT_QUEUE_SIZE) % ACCEPT_QUEUE_SIZE);
chunk_appendf(&trash, "fd_takeover:"); SHOW_TOT(thr, activity[thr].fd_takeover);
#endif
#if defined(DEBUG_DEV)
/* keep these ones at the end */
chunk_appendf(&trash, "ctr0:"); SHOW_TOT(thr, activity[thr].ctr0);
chunk_appendf(&trash, "ctr1:"); SHOW_TOT(thr, activity[thr].ctr1);
chunk_appendf(&trash, "ctr2:"); SHOW_TOT(thr, activity[thr].ctr2);
#endif
if (applet_putchk(appctx, &trash) == -1) {
chunk_reset(&trash);
chunk_printf(&trash, "[output too large, cannot dump]\n");
}
#undef SHOW_AVG
#undef SHOW_TOT
/* dump complete */
return 1;
}
/* parse a "show activity" CLI request. Returns 0 if it needs to continue, 1 if it
* wants to stop here. It sets a show_activity_ctx context where, if a specific
* thread is requested, it puts the thread number into ->thr otherwise sets it to
* -1.
*/
static int cli_parse_show_activity(char **args, char *payload, struct appctx *appctx, void *private)
{
struct show_activity_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
return 1;
ctx->thr = -1; // show all by default
if (*args[2])
ctx->thr = atoi(args[2]);
if (ctx->thr < -1 || ctx->thr > global.nbthread)
return cli_err(appctx, "Thread ID number must be between -1 and nbthread\n");
return 0;
}
/* config keyword parsers */
static struct cfg_kw_list cfg_kws = {ILH, {
#ifdef USE_MEMORY_PROFILING
{ CFG_GLOBAL, "profiling.memory", cfg_parse_prof_memory },
#endif
{ CFG_GLOBAL, "profiling.tasks", cfg_parse_prof_tasks },
{ 0, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{ { "set", "profiling", NULL }, "set profiling <what> {auto|on|off} : enable/disable resource profiling (tasks,memory)", cli_parse_set_profiling, NULL },
{ { "show", "activity", NULL }, "show activity [-1|0|thread_num] : show per-thread activity stats (for support/developers)", cli_parse_show_activity, cli_io_handler_show_activity, NULL },
{ { "show", "profiling", NULL }, "show profiling [<what>|<#lines>|<opts>]*: show profiling state (all,status,tasks,memory)", cli_parse_show_profiling, cli_io_handler_show_profiling, NULL },
{ { "show", "tasks", NULL }, "show tasks : show running tasks", NULL, cli_io_handler_show_tasks, NULL },
{{},}
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);