blob: fb49676739a29823f0c33db138733128cc9e114c [file] [log] [blame]
/*
* Queue management functions.
*
* Copyright 2000-2009 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
/* Short explanation on the locking, which is far from being trivial : a
* pendconn is a list element which necessarily is associated with an existing
* stream. It has pendconn->strm always valid. A pendconn may only be in one of
* these three states :
* - unlinked : in this case it is an empty list head ;
* - linked into the server's queue ;
* - linked into the proxy's queue.
*
* A stream does not necessarily have such a pendconn. Thus the pendconn is
* designated by the stream->pend_pos pointer. This results in some properties :
* - pendconn->strm->pend_pos is never NULL for any valid pendconn
* - if p->node.node.leaf_p is NULL, the element is unlinked,
* otherwise it necessarily belongs to one of the other lists ; this may
* not be atomically checked under threads though ;
* - pendconn->px is never NULL if pendconn->list is not empty
* - pendconn->srv is never NULL if pendconn->list is in the server's queue,
* and is always NULL if pendconn->list is in the backend's queue or empty.
* - pendconn->target is NULL while the element is queued, and points to the
* assigned server when the pendconn is picked.
*
* Threads complicate the design a little bit but rules remain simple :
* - the server's queue lock must be held at least when manipulating the
* server's queue, which is when adding a pendconn to the queue and when
* removing a pendconn from the queue. It protects the queue's integrity.
*
* - the proxy's queue lock must be held at least when manipulating the
* proxy's queue, which is when adding a pendconn to the queue and when
* removing a pendconn from the queue. It protects the queue's integrity.
*
* - both locks are compatible and may be held at the same time.
*
* - a pendconn_add() is only performed by the stream which will own the
* pendconn ; the pendconn is allocated at this moment and returned ; it is
* added to either the server or the proxy's queue while holding this
s * queue's lock.
*
* - the pendconn is then met by a thread walking over the proxy or server's
* queue with the respective lock held. This lock is exclusive and the
* pendconn can only appear in one queue so by definition a single thread
* may find this pendconn at a time.
*
* - the pendconn is unlinked either by its own stream upon success/abort/
* free, or by another one offering it its server slot. This is achieved by
* pendconn_process_next_strm() under either the server or proxy's lock,
* pendconn_redistribute() under the server's lock, pendconn_grab_from_px()
* under the proxy's lock, or pendconn_unlink() under either the proxy's or
* the server's lock depending on the queue the pendconn is attached to.
*
* - no single operation except the pendconn initialisation prior to the
* insertion are performed without eithre a queue lock held or the element
* being unlinked and visible exclusively to its stream.
*
* - pendconn_grab_from_px() and pendconn_process_next_strm() assign ->target
* so that the stream knows what server to work with (via
* pendconn_dequeue() which sets it on strm->target).
*
* - a pendconn doesn't switch between queues, it stays where it is.
*/
#include <import/eb32tree.h>
#include <haproxy/api.h>
#include <haproxy/backend.h>
#include <haproxy/http_rules.h>
#include <haproxy/pool.h>
#include <haproxy/queue.h>
#include <haproxy/sample.h>
#include <haproxy/server-t.h>
#include <haproxy/stream.h>
#include <haproxy/stream_interface.h>
#include <haproxy/task.h>
#include <haproxy/tcp_rules.h>
#include <haproxy/thread.h>
#include <haproxy/time.h>
#define NOW_OFFSET_BOUNDARY() ((now_ms - (TIMER_LOOK_BACK >> 12)) & 0xfffff)
#define KEY_CLASS(key) ((u32)key & 0xfff00000)
#define KEY_OFFSET(key) ((u32)key & 0x000fffff)
#define KEY_CLASS_OFFSET_BOUNDARY(key) (KEY_CLASS(key) | NOW_OFFSET_BOUNDARY())
#define MAKE_KEY(class, offset) (((u32)(class + 0x7ff) << 20) | ((u32)(now_ms + offset) & 0xfffff))
DECLARE_POOL(pool_head_pendconn, "pendconn", sizeof(struct pendconn));
/* returns the effective dynamic maxconn for a server, considering the minconn
* and the proxy's usage relative to its dynamic connections limit. It is
* expected that 0 < s->minconn <= s->maxconn when this is called. If the
* server is currently warming up, the slowstart is also applied to the
* resulting value, which can be lower than minconn in this case, but never
* less than 1.
*/
unsigned int srv_dynamic_maxconn(const struct server *s)
{
unsigned int max;
if (s->proxy->beconn >= s->proxy->fullconn)
/* no fullconn or proxy is full */
max = s->maxconn;
else if (s->minconn == s->maxconn)
/* static limit */
max = s->maxconn;
else max = MAX(s->minconn,
s->proxy->beconn * s->maxconn / s->proxy->fullconn);
if ((s->cur_state == SRV_ST_STARTING) &&
now.tv_sec < s->last_change + s->slowstart &&
now.tv_sec >= s->last_change) {
unsigned int ratio;
ratio = 100 * (now.tv_sec - s->last_change) / s->slowstart;
max = MAX(1, max * ratio / 100);
}
return max;
}
/* Remove the pendconn from the server's queue. At this stage, the connection
* is not really dequeued. It will be done during the process_stream. It is
* up to the caller to atomically decrement the pending counts.
*
* The caller must own the lock on the server queue. The pendconn must still be
* queued (p->node.leaf_p != NULL) and must be in a server (p->srv != NULL).
*/
static void __pendconn_unlink_srv(struct pendconn *p)
{
p->strm->logs.srv_queue_pos += p->srv->queue_idx - p->queue_idx;
eb32_delete(&p->node);
}
/* Remove the pendconn from the proxy's queue. At this stage, the connection
* is not really dequeued. It will be done during the process_stream. It is
* up to the caller to atomically decrement the pending counts.
*
* The caller must own the lock on the proxy queue. The pendconn must still be
* queued (p->node.leaf_p != NULL) and must be in the proxy (p->srv == NULL).
*/
static void __pendconn_unlink_prx(struct pendconn *p)
{
p->strm->logs.prx_queue_pos += p->px->queue_idx - p->queue_idx;
eb32_delete(&p->node);
}
/* Locks the queue the pendconn element belongs to. This relies on both p->px
* and p->srv to be properly initialized (which is always the case once the
* element has been added).
*/
static inline void pendconn_queue_lock(struct pendconn *p)
{
if (p->srv)
HA_SPIN_LOCK(SERVER_LOCK, &p->srv->lock);
else
HA_RWLOCK_WRLOCK(PROXY_LOCK, &p->px->lock);
}
/* Unlocks the queue the pendconn element belongs to. This relies on both p->px
* and p->srv to be properly initialized (which is always the case once the
* element has been added).
*/
static inline void pendconn_queue_unlock(struct pendconn *p)
{
if (p->srv)
HA_SPIN_UNLOCK(SERVER_LOCK, &p->srv->lock);
else
HA_RWLOCK_WRUNLOCK(PROXY_LOCK, &p->px->lock);
}
/* Removes the pendconn from the server/proxy queue. At this stage, the
* connection is not really dequeued. It will be done during process_stream().
* This function takes all the required locks for the operation. The pendconn
* must be valid, though it doesn't matter if it was already unlinked. Prefer
* pendconn_cond_unlink() to first check <p>. When the locks are already held,
* please use __pendconn_unlink_{srv,prx}() instead.
*/
void pendconn_unlink(struct pendconn *p)
{
int done = 0;
if (p->srv) {
/* queued in the server */
HA_SPIN_LOCK(SERVER_LOCK, &p->srv->lock);
if (p->node.node.leaf_p) {
__pendconn_unlink_srv(p);
done = 1;
}
HA_SPIN_UNLOCK(SERVER_LOCK, &p->srv->lock);
if (done) {
_HA_ATOMIC_SUB(&p->srv->nbpend, 1);
_HA_ATOMIC_SUB(&p->px->totpend, 1);
}
}
else {
/* queued in the proxy */
HA_RWLOCK_WRLOCK(PROXY_LOCK, &p->px->lock);
if (p->node.node.leaf_p) {
__pendconn_unlink_prx(p);
done = 1;
}
HA_RWLOCK_WRUNLOCK(PROXY_LOCK, &p->px->lock);
if (done) {
_HA_ATOMIC_SUB(&p->px->nbpend, 1);
_HA_ATOMIC_SUB(&p->px->totpend, 1);
}
}
}
/* Retrieve the first pendconn from tree <pendconns>. Classes are always
* considered first, then the time offset. The time does wrap, so the
* lookup is performed twice, one to retrieve the first class and a second
* time to retrieve the earliest time in this class.
*/
static struct pendconn *pendconn_first(struct eb_root *pendconns)
{
struct eb32_node *node, *node2 = NULL;
u32 key;
node = eb32_first(pendconns);
if (!node)
return NULL;
key = KEY_CLASS_OFFSET_BOUNDARY(node->key);
node2 = eb32_lookup_ge(pendconns, key);
if (!node2 ||
KEY_CLASS(node2->key) != KEY_CLASS(node->key)) {
/* no other key in the tree, or in this class */
return eb32_entry(node, struct pendconn, node);
}
/* found a better key */
return eb32_entry(node2, struct pendconn, node);
}
/* Process the next pending connection from either a server or a proxy, and
* returns a strictly positive value on success (see below). If no pending
* connection is found, 0 is returned. Note that neither <srv> nor <px> may be
* NULL. Priority is given to the oldest request in the queue if both <srv> and
* <px> have pending requests. This ensures that no request will be left
* unserved. The <px> queue is not considered if the server (or a tracked
* server) is not RUNNING, is disabled, or has a null weight (server going
* down). The <srv> queue is still considered in this case, because if some
* connections remain there, it means that some requests have been forced there
* after it was seen down (eg: due to option persist). The stream is
* immediately marked as "assigned", and both its <srv> and <srv_conn> are set
* to <srv>.
*
* This function must only be called if the server queue _AND_ the proxy queue
* are locked. Today it is only called by process_srv_queue. When a pending
* connection is dequeued, this function returns 1 if the pending connection can
* be handled by the current thread, else it returns 2.
*/
static int pendconn_process_next_strm(struct server *srv, struct proxy *px)
{
struct pendconn *p = NULL;
struct pendconn *pp = NULL;
struct server *rsrv;
u32 pkey, ppkey;
rsrv = srv->track;
if (!rsrv)
rsrv = srv;
p = NULL;
if (srv->nbpend)
p = pendconn_first(&srv->pendconns);
pp = NULL;
if (srv_currently_usable(rsrv) && px->nbpend &&
(!(srv->flags & SRV_F_BACKUP) ||
(!px->srv_act &&
(srv == px->lbprm.fbck || (px->options & PR_O_USE_ALL_BK)))))
pp = pendconn_first(&px->pendconns);
if (!p && !pp)
return 0;
if (p && !pp)
goto use_p;
if (pp && !p)
goto use_pp;
if (KEY_CLASS(p->node.key) < KEY_CLASS(pp->node.key))
goto use_p;
if (KEY_CLASS(pp->node.key) < KEY_CLASS(p->node.key))
goto use_pp;
pkey = KEY_OFFSET(p->node.key);
ppkey = KEY_OFFSET(pp->node.key);
if (pkey < NOW_OFFSET_BOUNDARY())
pkey += 0x100000; // key in the future
if (ppkey < NOW_OFFSET_BOUNDARY())
ppkey += 0x100000; // key in the future
if (pkey <= ppkey)
goto use_p;
use_pp:
/* Let's switch from the server pendconn to the proxy pendconn */
__pendconn_unlink_prx(pp);
_HA_ATOMIC_SUB(&px->nbpend, 1);
_HA_ATOMIC_SUB(&px->totpend, 1);
px->queue_idx++;
p = pp;
goto unlinked;
use_p:
__pendconn_unlink_srv(p);
_HA_ATOMIC_SUB(&srv->nbpend, 1);
_HA_ATOMIC_SUB(&px->totpend, 1);
srv->queue_idx++;
unlinked:
p->strm_flags |= SF_ASSIGNED;
p->target = srv;
_HA_ATOMIC_ADD(&srv->served, 1);
_HA_ATOMIC_ADD(&srv->proxy->served, 1);
__ha_barrier_atomic_store();
if (px->lbprm.server_take_conn)
px->lbprm.server_take_conn(srv, 1);
stream_add_srv_conn(p->strm, srv);
task_wakeup(p->strm->task, TASK_WOKEN_RES);
return 1;
}
/* Manages a server's connection queue. This function will try to dequeue as
* many pending streams as possible, and wake them up.
*/
void process_srv_queue(struct server *s)
{
struct proxy *p = s->proxy;
int maxconn;
HA_SPIN_LOCK(SERVER_LOCK, &s->lock);
HA_RWLOCK_WRLOCK(PROXY_LOCK, &p->lock);
maxconn = srv_dynamic_maxconn(s);
while (s->served < maxconn) {
int ret = pendconn_process_next_strm(s, p);
if (!ret)
break;
}
HA_RWLOCK_WRUNLOCK(PROXY_LOCK, &p->lock);
HA_SPIN_UNLOCK(SERVER_LOCK, &s->lock);
}
/* Adds the stream <strm> to the pending connection queue of server <strm>->srv
* or to the one of <strm>->proxy if srv is NULL. All counters and back pointers
* are updated accordingly. Returns NULL if no memory is available, otherwise the
* pendconn itself. If the stream was already marked as served, its flag is
* cleared. It is illegal to call this function with a non-NULL strm->srv_conn.
* The stream's queue position is counted with an offset of -1 because we want
* to make sure that being at the first position in the queue reports 1.
*
* The queue is sorted by the composition of the priority_class, and the current
* timestamp offset by strm->priority_offset. The timestamp is in milliseconds
* and truncated to 20 bits, so will wrap every 17m28s575ms.
* The offset can be positive or negative, and an offset of 0 puts it in the
* middle of this range (~ 8 min). Note that this also means if the adjusted
* timestamp wraps around, the request will be misinterpreted as being of
* the highest priority for that priority class.
*
* This function must be called by the stream itself, so in the context of
* process_stream.
*/
struct pendconn *pendconn_add(struct stream *strm)
{
struct pendconn *p;
struct proxy *px;
struct server *srv;
p = pool_alloc(pool_head_pendconn);
if (!p)
return NULL;
if (strm->flags & SF_ASSIGNED)
srv = objt_server(strm->target);
else
srv = NULL;
px = strm->be;
p->target = NULL;
p->srv = srv;
p->node.key = MAKE_KEY(strm->priority_class, strm->priority_offset);
p->px = px;
p->strm = strm;
p->strm_flags = strm->flags;
if (srv) {
unsigned int old_max, new_max;
new_max = _HA_ATOMIC_ADD(&srv->nbpend, 1);
old_max = srv->counters.nbpend_max;
while (new_max > old_max) {
if (likely(_HA_ATOMIC_CAS(&srv->counters.nbpend_max, &old_max, new_max)))
break;
}
__ha_barrier_atomic_store();
HA_SPIN_LOCK(SERVER_LOCK, &p->srv->lock);
p->queue_idx = srv->queue_idx - 1; // for increment
eb32_insert(&srv->pendconns, &p->node);
HA_SPIN_UNLOCK(SERVER_LOCK, &p->srv->lock);
}
else {
unsigned int old_max, new_max;
new_max = _HA_ATOMIC_ADD(&px->nbpend, 1);
old_max = px->be_counters.nbpend_max;
while (new_max > old_max) {
if (likely(_HA_ATOMIC_CAS(&px->be_counters.nbpend_max, &old_max, new_max)))
break;
}
__ha_barrier_atomic_store();
HA_RWLOCK_WRLOCK(PROXY_LOCK, &p->px->lock);
p->queue_idx = px->queue_idx - 1; // for increment
eb32_insert(&px->pendconns, &p->node);
HA_RWLOCK_WRUNLOCK(PROXY_LOCK, &p->px->lock);
}
strm->pend_pos = p;
_HA_ATOMIC_ADD(&px->totpend, 1);
return p;
}
/* Redistribute pending connections when a server goes down. The number of
* connections redistributed is returned. It must be called with the server
* lock held.
*/
int pendconn_redistribute(struct server *s)
{
struct pendconn *p;
struct eb32_node *node, *nodeb;
int xferred = 0;
/* The REDISP option was specified. We will ignore cookie and force to
* balance or use the dispatcher. */
if ((s->proxy->options & (PR_O_REDISP|PR_O_PERSIST)) != PR_O_REDISP)
return 0;
for (node = eb32_first(&s->pendconns); node; node = nodeb) {
nodeb = eb32_next(node);
p = eb32_entry(node, struct pendconn, node);
if (p->strm_flags & SF_FORCE_PRST)
continue;
/* it's left to the dispatcher to choose a server */
__pendconn_unlink_srv(p);
p->strm_flags &= ~(SF_DIRECT | SF_ASSIGNED | SF_ADDR_SET);
task_wakeup(p->strm->task, TASK_WOKEN_RES);
xferred++;
}
if (xferred) {
_HA_ATOMIC_SUB(&s->nbpend, xferred);
_HA_ATOMIC_SUB(&s->proxy->totpend, xferred);
}
return xferred;
}
/* Check for pending connections at the backend, and assign some of them to
* the server coming up. The server's weight is checked before being assigned
* connections it may not be able to handle. The total number of transferred
* connections is returned. It must be called with the server lock held, and
* will take the proxy's lock.
*/
int pendconn_grab_from_px(struct server *s)
{
struct pendconn *p;
int maxconn, xferred = 0;
if (!srv_currently_usable(s))
return 0;
/* if this is a backup server and there are active servers or at
* least another backup server was elected, then this one must
* not dequeue requests from the proxy.
*/
if ((s->flags & SRV_F_BACKUP) &&
(s->proxy->srv_act ||
((s != s->proxy->lbprm.fbck) && !(s->proxy->options & PR_O_USE_ALL_BK))))
return 0;
HA_RWLOCK_WRLOCK(PROXY_LOCK, &s->proxy->lock);
maxconn = srv_dynamic_maxconn(s);
while ((p = pendconn_first(&s->proxy->pendconns))) {
if (s->maxconn && s->served + xferred >= maxconn)
break;
__pendconn_unlink_prx(p);
p->target = s;
task_wakeup(p->strm->task, TASK_WOKEN_RES);
xferred++;
}
HA_RWLOCK_WRUNLOCK(PROXY_LOCK, &s->proxy->lock);
if (xferred) {
_HA_ATOMIC_SUB(&s->proxy->nbpend, xferred);
_HA_ATOMIC_SUB(&s->proxy->totpend, xferred);
}
return xferred;
}
/* Try to dequeue pending connection attached to the stream <strm>. It must
* always exists here. If the pendconn is still linked to the server or the
* proxy queue, nothing is done and the function returns 1. Otherwise,
* <strm>->flags and <strm>->target are updated, the pendconn is released and 0
* is returned.
*
* This function must be called by the stream itself, so in the context of
* process_stream.
*/
int pendconn_dequeue(struct stream *strm)
{
struct pendconn *p;
int is_unlinked;
if (unlikely(!strm->pend_pos)) {
/* unexpected case because it is called by the stream itself and
* only the stream can release a pendconn. So it is only
* possible if a pendconn is released by someone else or if the
* stream is supposed to be queued but without its associated
* pendconn. In both cases it is a bug! */
abort();
}
p = strm->pend_pos;
/* note below : we need to grab the queue's lock to check for emptiness
* because we don't want a partial _grab_from_px() or _redistribute()
* to be called in parallel and show an empty list without having the
* time to finish. With this we know that if we see the element
* unlinked, these functions were completely done.
*/
pendconn_queue_lock(p);
is_unlinked = !p->node.node.leaf_p;
pendconn_queue_unlock(p);
if (!is_unlinked)
return 1;
/* the pendconn is not queued anymore and will not be so we're safe
* to proceed.
*/
strm->flags &= ~(SF_DIRECT | SF_ASSIGNED | SF_ADDR_SET);
strm->flags |= p->strm_flags & (SF_DIRECT | SF_ASSIGNED | SF_ADDR_SET);
if (p->target) {
/* a server picked this pendconn, it must skip LB */
strm->target = &p->target->obj_type;
strm->flags |= SF_ASSIGNED;
}
strm->pend_pos = NULL;
pool_free(pool_head_pendconn, p);
return 0;
}
static enum act_return action_set_priority_class(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct sample *smp;
smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.expr, SMP_T_SINT);
if (!smp)
return ACT_RET_CONT;
s->priority_class = queue_limit_class(smp->data.u.sint);
return ACT_RET_CONT;
}
static enum act_return action_set_priority_offset(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct sample *smp;
smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.expr, SMP_T_SINT);
if (!smp)
return ACT_RET_CONT;
s->priority_offset = queue_limit_offset(smp->data.u.sint);
return ACT_RET_CONT;
}
static enum act_parse_ret parse_set_priority_class(const char **args, int *arg, struct proxy *px,
struct act_rule *rule, char **err)
{
unsigned int where = 0;
rule->arg.expr = sample_parse_expr((char **)args, arg, px->conf.args.file,
px->conf.args.line, err, &px->conf.args, NULL);
if (!rule->arg.expr)
return ACT_RET_PRS_ERR;
if (px->cap & PR_CAP_FE)
where |= SMP_VAL_FE_HRQ_HDR;
if (px->cap & PR_CAP_BE)
where |= SMP_VAL_BE_HRQ_HDR;
if (!(rule->arg.expr->fetch->val & where)) {
memprintf(err,
"fetch method '%s' extracts information from '%s', none of which is available here",
args[0], sample_src_names(rule->arg.expr->fetch->use));
free(rule->arg.expr);
return ACT_RET_PRS_ERR;
}
rule->action = ACT_CUSTOM;
rule->action_ptr = action_set_priority_class;
return ACT_RET_PRS_OK;
}
static enum act_parse_ret parse_set_priority_offset(const char **args, int *arg, struct proxy *px,
struct act_rule *rule, char **err)
{
unsigned int where = 0;
rule->arg.expr = sample_parse_expr((char **)args, arg, px->conf.args.file,
px->conf.args.line, err, &px->conf.args, NULL);
if (!rule->arg.expr)
return ACT_RET_PRS_ERR;
if (px->cap & PR_CAP_FE)
where |= SMP_VAL_FE_HRQ_HDR;
if (px->cap & PR_CAP_BE)
where |= SMP_VAL_BE_HRQ_HDR;
if (!(rule->arg.expr->fetch->val & where)) {
memprintf(err,
"fetch method '%s' extracts information from '%s', none of which is available here",
args[0], sample_src_names(rule->arg.expr->fetch->use));
free(rule->arg.expr);
return ACT_RET_PRS_ERR;
}
rule->action = ACT_CUSTOM;
rule->action_ptr = action_set_priority_offset;
return ACT_RET_PRS_OK;
}
static struct action_kw_list tcp_cont_kws = {ILH, {
{ "set-priority-class", parse_set_priority_class },
{ "set-priority-offset", parse_set_priority_offset },
{ /* END */ }
}};
INITCALL1(STG_REGISTER, tcp_req_cont_keywords_register, &tcp_cont_kws);
static struct action_kw_list http_req_kws = {ILH, {
{ "set-priority-class", parse_set_priority_class },
{ "set-priority-offset", parse_set_priority_offset },
{ /* END */ }
}};
INITCALL1(STG_REGISTER, http_req_keywords_register, &http_req_kws);
static int
smp_fetch_priority_class(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->strm->priority_class;
return 1;
}
static int
smp_fetch_priority_offset(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->strm->priority_offset;
return 1;
}
static struct sample_fetch_kw_list smp_kws = {ILH, {
{ "prio_class", smp_fetch_priority_class, 0, NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "prio_offset", smp_fetch_priority_offset, 0, NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ /* END */},
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/