blob: 438ff0a5e82a9ca6ce5a1e22b8f80504af5356e6 [file] [log] [blame]
/*
* Functions operating on SOCK_STREAM and buffers.
*
* Copyright 2000-2009 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <netinet/tcp.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/debug.h>
#include <common/standard.h>
#include <common/ticks.h>
#include <common/time.h>
#include <proto/buffers.h>
#include <proto/client.h>
#include <proto/fd.h>
#include <proto/pipe.h>
#include <proto/stream_sock.h>
#include <proto/task.h>
#include <types/global.h>
/* On recent Linux kernels, the splice() syscall may be used for faster data copy.
* But it's not always defined on some OS versions, and it even happens that some
* definitions are wrong with some glibc due to an offset bug in syscall().
*/
#if defined(CONFIG_HAP_LINUX_SPLICE)
#include <unistd.h>
#include <sys/syscall.h>
#ifndef SPLICE_F_MOVE
#define SPLICE_F_MOVE 0x1
#endif
#ifndef SPLICE_F_NONBLOCK
#define SPLICE_F_NONBLOCK 0x2
#endif
#ifndef SPLICE_F_MORE
#define SPLICE_F_MORE 0x4
#endif
#ifndef __NR_splice
#if defined(__powerpc__) || defined(__powerpc64__)
#define __NR_splice 283
#elif defined(__sparc__) || defined(__sparc64__)
#define __NR_splice 232
#elif defined(__x86_64__)
#define __NR_splice 275
#elif defined(__alpha__)
#define __NR_splice 468
#elif defined (__i386__)
#define __NR_splice 313
#else
#warning unsupported architecture, guessing __NR_splice=313 like x86...
#define __NR_splice 313
#endif /* $arch */
_syscall6(int, splice, int, fdin, loff_t *, off_in, int, fdout, loff_t *, off_out, size_t, len, unsigned long, flags)
#endif /* __NR_splice */
/* A pipe contains 16 segments max, and it's common to see segments of 1448 bytes
* because of timestamps. Use this as a hint for not looping on splice().
*/
#define SPLICE_FULL_HINT 16*1448
/* Returns :
* -1 if splice is not possible or not possible anymore and we must switch to
* user-land copy (eg: to_forward reached)
* 0 when we know that polling is required to get more data (EAGAIN)
* 1 for all other cases (we can safely try again, or if an activity has been
* detected (DATA/NULL/ERR))
* Sets :
* BF_READ_NULL
* BF_READ_PARTIAL
* BF_WRITE_PARTIAL (during copy)
* BF_EMPTY (during copy)
* SI_FL_ERR
* SI_FL_WAIT_ROOM
* (SI_FL_WAIT_RECV)
*
* This function automatically allocates a pipe from the pipe pool. It also
* carefully ensures to clear b->pipe whenever it leaves the pipe empty.
*/
static int stream_sock_splice_in(struct buffer *b, struct stream_interface *si)
{
int fd = si->fd;
int ret, max, total = 0;
int retval = 1;
if (!b->to_forward)
return -1;
if (!(b->flags & BF_KERN_SPLICING))
return -1;
if (b->l) {
/* We're embarrassed, there are already data pending in
* the buffer and we don't want to have them at two
* locations at a time. Let's indicate we need some
* place and ask the consumer to hurry.
*/
si->flags |= SI_FL_WAIT_ROOM;
EV_FD_CLR(fd, DIR_RD);
b->rex = TICK_ETERNITY;
b->cons->chk_snd(b->cons);
return 1;
}
if (unlikely(b->pipe == NULL)) {
if (pipes_used >= global.maxpipes || !(b->pipe = get_pipe())) {
b->flags &= ~BF_KERN_SPLICING;
return -1;
}
}
/* At this point, b->pipe is valid */
while (1) {
max = b->to_forward;
if (max <= 0) {
/* It looks like the buffer + the pipe already contain
* the maximum amount of data to be transferred. Try to
* send those data immediately on the other side if it
* is currently waiting.
*/
retval = -1; /* end of forwarding */
break;
}
ret = splice(fd, NULL, b->pipe->prod, NULL, max,
SPLICE_F_MOVE|SPLICE_F_NONBLOCK);
if (ret <= 0) {
if (ret == 0) {
/* connection closed. This is only detected by
* recent kernels (>= 2.6.27.13).
*/
b->flags |= BF_READ_NULL;
retval = 1; /* no need for further polling */
break;
}
if (errno == EAGAIN) {
/* there are two reasons for EAGAIN :
* - nothing in the socket buffer (standard)
* - pipe is full
* - the connection is closed (kernel < 2.6.27.13)
* Since we don't know if pipe is full, we'll
* stop if the pipe is not empty. Anyway, we
* will almost always fill/empty the pipe.
*/
if (b->pipe->data) {
si->flags |= SI_FL_WAIT_ROOM;
retval = 1;
break;
}
/* We don't know if the connection was closed.
* But if we're called upon POLLIN with an empty
* pipe and get EAGAIN, it is suspect enought to
* try to fall back to the normal recv scheme
* which will be able to deal with the situation.
*/
retval = -1;
break;
}
if (errno == ENOSYS) {
/* splice not supported on this end, disable it */
b->flags &= ~BF_KERN_SPLICING;
si->flags &= ~SI_FL_CAP_SPLICE;
put_pipe(b->pipe);
b->pipe = NULL;
return -1;
}
/* here we have another error */
si->flags |= SI_FL_ERR;
retval = 1;
break;
} /* ret <= 0 */
b->to_forward -= ret;
total += ret;
b->total += ret;
b->pipe->data += ret;
b->flags |= BF_READ_PARTIAL;
b->flags &= ~BF_EMPTY; /* to prevent shutdowns */
if (b->pipe->data >= SPLICE_FULL_HINT ||
ret >= global.tune.recv_enough) {
/* We've read enough of it for this time. */
retval = 1;
break;
}
} /* while */
if (unlikely(!b->pipe->data)) {
put_pipe(b->pipe);
b->pipe = NULL;
}
return retval;
}
#endif /* CONFIG_HAP_LINUX_SPLICE */
/*
* this function is called on a read event from a stream socket.
* It returns 0 if we have a high confidence that we will not be
* able to read more data without polling first. Returns non-zero
* otherwise.
*/
int stream_sock_read(int fd) {
struct stream_interface *si = fdtab[fd].owner;
struct buffer *b = si->ib;
int ret, max, retval, cur_read;
int read_poll = MAX_READ_POLL_LOOPS;
#ifdef DEBUG_FULL
fprintf(stderr,"stream_sock_read : fd=%d, ev=0x%02x, owner=%p\n", fd, fdtab[fd].ev, fdtab[fd].owner);
#endif
retval = 1;
/* stop immediately on errors */
if (fdtab[fd].state == FD_STERROR || (fdtab[fd].ev & FD_POLL_ERR))
goto out_error;
/* stop here if we reached the end of data */
if ((fdtab[fd].ev & (FD_POLL_IN|FD_POLL_HUP)) == FD_POLL_HUP)
goto out_shutdown_r;
/* maybe we were called immediately after an asynchronous shutr */
if (b->flags & BF_SHUTR)
goto out_wakeup;
#if defined(CONFIG_HAP_LINUX_SPLICE)
if (b->to_forward && b->flags & BF_KERN_SPLICING) {
/* Under Linux, if FD_POLL_HUP is set, we have reached the end.
* Since older splice() implementations were buggy and returned
* EAGAIN on end of read, let's bypass the call to splice() now.
*/
if (fdtab[fd].ev & FD_POLL_HUP)
goto out_shutdown_r;
retval = stream_sock_splice_in(b, si);
if (retval >= 0) {
if (si->flags & SI_FL_ERR)
goto out_error;
if (b->flags & BF_READ_NULL)
goto out_shutdown_r;
goto out_wakeup;
}
/* splice not possible (anymore), let's go on on standard copy */
}
#endif
cur_read = 0;
while (1) {
/*
* 1. compute the maximum block size we can read at once.
*/
if (b->l == 0) {
/* let's realign the buffer to optimize I/O */
b->r = b->w = b->lr = b->data;
max = b->max_len;
}
else if (b->r > b->w) {
max = b->data + b->max_len - b->r;
}
else {
max = b->w - b->r;
if (max > b->max_len)
max = b->max_len;
}
if (max == 0) {
b->flags |= BF_FULL;
si->flags |= SI_FL_WAIT_ROOM;
break;
}
/*
* 2. read the largest possible block
*/
#ifndef MSG_NOSIGNAL
{
int skerr;
socklen_t lskerr = sizeof(skerr);
ret = getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr);
if (ret == -1 || skerr)
ret = -1;
else
ret = recv(fd, b->r, max, 0);
}
#else
ret = recv(fd, b->r, max, MSG_NOSIGNAL);
#endif
if (ret > 0) {
b->r += ret;
b->l += ret;
cur_read += ret;
/* if we're allowed to directly forward data, we must update send_max */
if (b->to_forward > 0) {
int fwd = MIN(b->to_forward, ret);
b->send_max += fwd;
b->to_forward -= fwd;
}
if (fdtab[fd].state == FD_STCONN)
fdtab[fd].state = FD_STREADY;
b->flags |= BF_READ_PARTIAL;
b->flags &= ~BF_EMPTY;
if (b->r == b->data + BUFSIZE) {
b->r = b->data; /* wrap around the buffer */
}
b->total += ret;
if (b->l >= b->max_len) {
/* The buffer is now full, there's no point in going through
* the loop again.
*/
if (!(b->flags & BF_STREAMER_FAST) && (cur_read == b->l)) {
b->xfer_small = 0;
b->xfer_large++;
if (b->xfer_large >= 3) {
/* we call this buffer a fast streamer if it manages
* to be filled in one call 3 consecutive times.
*/
b->flags |= (BF_STREAMER | BF_STREAMER_FAST);
//fputc('+', stderr);
}
}
else if ((b->flags & (BF_STREAMER | BF_STREAMER_FAST)) &&
(cur_read <= BUFSIZE / 2)) {
b->xfer_large = 0;
b->xfer_small++;
if (b->xfer_small >= 2) {
/* if the buffer has been at least half full twice,
* we receive faster than we send, so at least it
* is not a "fast streamer".
*/
b->flags &= ~BF_STREAMER_FAST;
//fputc('-', stderr);
}
}
else {
b->xfer_small = 0;
b->xfer_large = 0;
}
b->flags |= BF_FULL;
si->flags |= SI_FL_WAIT_ROOM;
break;
}
/* if too many bytes were missing from last read, it means that
* it's pointless trying to read again because the system does
* not have them in buffers. BTW, if FD_POLL_HUP was present,
* it means that we have reached the end and that the connection
* is closed.
*/
if (ret < max) {
if ((b->flags & (BF_STREAMER | BF_STREAMER_FAST)) &&
(cur_read <= BUFSIZE / 2)) {
b->xfer_large = 0;
b->xfer_small++;
if (b->xfer_small >= 3) {
/* we have read less than half of the buffer in
* one pass, and this happened at least 3 times.
* This is definitely not a streamer.
*/
b->flags &= ~(BF_STREAMER | BF_STREAMER_FAST);
//fputc('!', stderr);
}
}
/* unfortunately, on level-triggered events, POLL_HUP
* is generally delivered AFTER the system buffer is
* empty, so this one might never match.
*/
if (fdtab[fd].ev & FD_POLL_HUP)
goto out_shutdown_r;
/* if a streamer has read few data, it may be because we
* have exhausted system buffers. It's not worth trying
* again.
*/
if (b->flags & BF_STREAMER)
break;
/* generally if we read something smaller than 1 or 2 MSS,
* it means that either we have exhausted the system's
* buffers (streamer or question-response protocol) or
* that the connection will be closed. Streamers are
* easily detected so we return early. For other cases,
* it's still better to perform a last read to be sure,
* because it may save one complete poll/read/wakeup cycle
* in case of shutdown.
*/
if (ret < MIN_RET_FOR_READ_LOOP && b->flags & BF_STREAMER)
break;
/* if we read a large block smaller than what we requested,
* it's almost certain we'll never get anything more.
*/
if (ret >= global.tune.recv_enough)
break;
}
if ((b->flags & BF_READ_DONTWAIT) || --read_poll <= 0)
break;
}
else if (ret == 0) {
/* connection closed */
goto out_shutdown_r;
}
else if (errno == EAGAIN) {
/* Ignore EAGAIN but inform the poller that there is
* nothing to read left if we did not read much, ie
* less than what we were still expecting to read.
* But we may have done some work justifying to notify
* the task.
*/
if (cur_read < MIN_RET_FOR_READ_LOOP)
retval = 0;
break;
}
else {
goto out_error;
}
} /* while (1) */
out_wakeup:
/* We might have some data the consumer is waiting for */
if ((b->send_max || b->pipe) && (b->cons->flags & SI_FL_WAIT_DATA)) {
int last_len = b->pipe ? b->pipe->data : 0;
b->cons->chk_snd(b->cons);
/* check if the consumer has freed some space */
if (!(b->flags & BF_FULL) &&
(!last_len || !b->pipe || b->pipe->data < last_len))
si->flags &= ~SI_FL_WAIT_ROOM;
}
if (si->flags & SI_FL_WAIT_ROOM) {
EV_FD_CLR(fd, DIR_RD);
b->rex = TICK_ETERNITY;
}
else if ((b->flags & (BF_SHUTR|BF_READ_PARTIAL|BF_FULL|BF_READ_NOEXP)) == BF_READ_PARTIAL)
b->rex = tick_add_ifset(now_ms, b->rto);
/* we have to wake up if there is a special event or if we don't have
* any more data to forward.
*/
if ((b->flags & (BF_READ_NULL|BF_READ_ERROR|BF_SHUTR|BF_READ_DONTWAIT)) ||
!b->to_forward ||
si->state != SI_ST_EST ||
b->cons->state != SI_ST_EST ||
(si->flags & SI_FL_ERR))
task_wakeup(si->owner, TASK_WOKEN_IO);
b->flags &= ~BF_READ_DONTWAIT;
fdtab[fd].ev &= ~FD_POLL_IN;
return retval;
out_shutdown_r:
/* we received a shutdown */
fdtab[fd].ev &= ~FD_POLL_HUP;
b->flags |= BF_READ_NULL;
stream_sock_shutr(si);
goto out_wakeup;
out_error:
/* Read error on the file descriptor. We mark the FD as STERROR so
* that we don't use it anymore. The error is reported to the stream
* interface which will take proper action. We must not perturbate the
* buffer because the stream interface wants to ensure transparent
* connection retries.
*/
fdtab[fd].state = FD_STERROR;
fdtab[fd].ev &= ~FD_POLL_STICKY;
EV_FD_REM(fd);
si->flags |= SI_FL_ERR;
retval = 1;
goto out_wakeup;
}
/*
* This function is called to send buffer data to a stream socket.
* It returns -1 in case of unrecoverable error, 0 if the caller needs to poll
* before calling it again, otherwise 1. If a pipe was associated with the
* buffer and it empties it, it releases it as well.
*/
static int stream_sock_write_loop(struct stream_interface *si, struct buffer *b)
{
int write_poll = MAX_WRITE_POLL_LOOPS;
int retval = 1;
int ret, max;
#if defined(CONFIG_HAP_LINUX_SPLICE)
while (b->pipe) {
ret = splice(b->pipe->cons, NULL, si->fd, NULL, b->pipe->data,
SPLICE_F_MOVE|SPLICE_F_NONBLOCK);
if (ret <= 0) {
if (ret == 0 || errno == EAGAIN) {
retval = 0;
return retval;
}
/* here we have another error */
retval = -1;
return retval;
}
b->flags |= BF_WRITE_PARTIAL;
b->pipe->data -= ret;
if (!b->pipe->data) {
put_pipe(b->pipe);
b->pipe = NULL;
break;
}
if (--write_poll <= 0)
return retval;
}
/* At this point, the pipe is empty, but we may still have data pending
* in the normal buffer.
*/
if (!b->l) {
b->flags |= BF_EMPTY;
return retval;
}
#endif
if (!b->send_max)
return retval;
/* when we're in this loop, we already know that there is no spliced
* data left, and that there are sendable buffered data.
*/
while (1) {
if (b->r > b->w)
max = b->r - b->w;
else
max = b->data + BUFSIZE - b->w;
/* limit the amount of outgoing data if required */
if (max > b->send_max)
max = b->send_max;
#ifdef TCP_CORK
/*
* Check if we want to cork output before sending. This typically occurs
* when there are data left in the buffer, or when we reached the end of
* buffer but we know we will close, so we try to merge the ongoing FIN
* with the last data segment.
*/
if ((fdtab[si->fd].flags & (FD_FL_TCP|FD_FL_TCP_NOLING|FD_FL_TCP_CORK)) == FD_FL_TCP) {
if (unlikely((b->send_max == b->l &&
(b->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_HIJACK|BF_WRITE_ENA|BF_SHUTR)) ==
(BF_WRITE_ENA|BF_SHUTR)))) {
/* we have to unconditionally reset TCP_NODELAY for CORK */
setsockopt(si->fd, IPPROTO_TCP, TCP_NODELAY, (char *) &zero, sizeof(zero));
setsockopt(si->fd, SOL_TCP, TCP_CORK, (char *) &one, sizeof(one));
fdtab[si->fd].flags = (fdtab[si->fd].flags & ~FD_FL_TCP_NODELAY) | FD_FL_TCP_CORK;
}
}
#endif
#ifndef MSG_NOSIGNAL
{
int skerr;
socklen_t lskerr = sizeof(skerr);
ret = getsockopt(si->fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr);
if (ret == -1 || skerr)
ret = -1;
else
ret = send(si->fd, b->w, max, MSG_DONTWAIT);
}
#else
ret = send(si->fd, b->w, max, MSG_DONTWAIT | MSG_NOSIGNAL);
#endif
if (ret > 0) {
if (fdtab[si->fd].state == FD_STCONN)
fdtab[si->fd].state = FD_STREADY;
b->flags |= BF_WRITE_PARTIAL;
b->w += ret;
if (b->w == b->data + BUFSIZE)
b->w = b->data; /* wrap around the buffer */
b->l -= ret;
if (likely(b->l < b->max_len))
b->flags &= ~BF_FULL;
if (likely(!b->l)) {
/* optimize data alignment in the buffer */
b->r = b->w = b->lr = b->data;
if (likely(!b->pipe))
b->flags |= BF_EMPTY;
}
b->send_max -= ret;
if (!b->send_max || !b->l)
break;
/* if the system buffer is full, don't insist */
if (ret < max)
break;
if (--write_poll <= 0)
break;
}
else if (ret == 0 || errno == EAGAIN) {
/* nothing written, we need to poll for write first */
retval = 0;
break;
}
else {
/* bad, we got an error */
retval = -1;
break;
}
} /* while (1) */
/* check if we need to uncork the output, for instance when the
* output buffer is empty but not shutr().
*/
if (unlikely((fdtab[si->fd].flags & (FD_FL_TCP|FD_FL_TCP_NODELAY)) == FD_FL_TCP && (b->flags & BF_EMPTY))) {
if ((b->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_HIJACK|BF_WRITE_ENA|BF_SHUTR)) != (BF_WRITE_ENA|BF_SHUTR)) {
#ifdef TCP_CORK
if (fdtab[si->fd].flags & FD_FL_TCP_CORK)
setsockopt(si->fd, SOL_TCP, TCP_CORK, (char *) &zero, sizeof(zero));
#endif
setsockopt(si->fd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one));
fdtab[si->fd].flags = (fdtab[si->fd].flags & ~FD_FL_TCP_CORK) | FD_FL_TCP_NODELAY;
}
}
return retval;
}
/*
* This function is called on a write event from a stream socket.
* It returns 0 if the caller needs to poll before calling it again, otherwise
* non-zero.
*/
int stream_sock_write(int fd)
{
struct stream_interface *si = fdtab[fd].owner;
struct buffer *b = si->ob;
int retval = 1;
#ifdef DEBUG_FULL
fprintf(stderr,"stream_sock_write : fd=%d, owner=%p\n", fd, fdtab[fd].owner);
#endif
retval = 1;
if (fdtab[fd].state == FD_STERROR || (fdtab[fd].ev & FD_POLL_ERR))
goto out_error;
/* we might have been called just after an asynchronous shutw */
if (b->flags & BF_SHUTW)
goto out_wakeup;
if (likely(!(b->flags & BF_EMPTY))) {
/* OK there are data waiting to be sent */
retval = stream_sock_write_loop(si, b);
if (retval < 0)
goto out_error;
}
else {
/* may be we have received a connection acknowledgement in TCP mode without data */
if (likely(fdtab[fd].state == FD_STCONN)) {
/* We have no data to send to check the connection, and
* getsockopt() will not inform us whether the connection
* is still pending. So we'll reuse connect() to check the
* state of the socket. This has the advantage of givig us
* the following info :
* - error
* - connecting (EALREADY, EINPROGRESS)
* - connected (EISCONN, 0)
*/
if ((connect(fd, fdtab[fd].peeraddr, fdtab[fd].peerlen) == 0))
errno = 0;
if (errno == EALREADY || errno == EINPROGRESS) {
retval = 0;
goto out_may_wakeup;
}
if (errno && errno != EISCONN)
goto out_error;
/* OK we just need to indicate that we got a connection
* and that we wrote nothing.
*/
b->flags |= BF_WRITE_NULL;
fdtab[fd].state = FD_STREADY;
}
/* Funny, we were called to write something but there wasn't
* anything. We can get there, for example if we were woken up
* on a write event to finish the splice, but the send_max is 0
* so we cannot write anything from the buffer. Let's disable
* the write event and pretend we never came there.
*/
}
if (!b->pipe && !b->send_max) {
/* the connection is established but we can't write. Either the
* buffer is empty, or we just refrain from sending because the
* send_max limit was reached. Maybe we just wrote the last
* chunk and need to close.
*/
if (((b->flags & (BF_SHUTW|BF_EMPTY|BF_HIJACK|BF_WRITE_ENA|BF_SHUTR)) ==
(BF_EMPTY|BF_WRITE_ENA|BF_SHUTR)) &&
(si->state == SI_ST_EST)) {
stream_sock_shutw(si);
goto out_wakeup;
}
if ((b->flags & (BF_EMPTY|BF_SHUTW)) == BF_EMPTY)
si->flags |= SI_FL_WAIT_DATA;
EV_FD_CLR(fd, DIR_WR);
b->wex = TICK_ETERNITY;
}
out_may_wakeup:
if (b->flags & BF_WRITE_ACTIVITY) {
/* update timeout if we have written something */
if ((b->send_max || b->pipe) &&
(b->flags & (BF_SHUTW|BF_WRITE_PARTIAL)) == BF_WRITE_PARTIAL)
b->wex = tick_add_ifset(now_ms, b->wto);
out_wakeup:
if (tick_isset(si->ib->rex)) {
/* Note: to prevent the client from expiring read timeouts
* during writes, we refresh it. A better solution would be
* to merge read+write timeouts into a unique one, although
* that needs some study particularly on full-duplex TCP
* connections.
*/
si->ib->rex = tick_add_ifset(now_ms, si->ib->rto);
}
/* the producer might be waiting for more room to store data */
if (likely((b->flags & (BF_SHUTW|BF_WRITE_PARTIAL|BF_FULL)) == BF_WRITE_PARTIAL &&
(b->prod->flags & SI_FL_WAIT_ROOM)))
b->prod->chk_rcv(b->prod);
/* we have to wake up if there is a special event or if we don't have
* any more data to forward and it's not planned to send any more.
*/
if (likely((b->flags & (BF_WRITE_NULL|BF_WRITE_ERROR|BF_SHUTW)) ||
(!b->to_forward && !b->send_max && !b->pipe) ||
si->state != SI_ST_EST ||
b->prod->state != SI_ST_EST))
task_wakeup(si->owner, TASK_WOKEN_IO);
}
fdtab[fd].ev &= ~FD_POLL_OUT;
return retval;
out_error:
/* Write error on the file descriptor. We mark the FD as STERROR so
* that we don't use it anymore. The error is reported to the stream
* interface which will take proper action. We must not perturbate the
* buffer because the stream interface wants to ensure transparent
* connection retries.
*/
fdtab[fd].state = FD_STERROR;
fdtab[fd].ev &= ~FD_POLL_STICKY;
EV_FD_REM(fd);
si->flags |= SI_FL_ERR;
task_wakeup(si->owner, TASK_WOKEN_IO);
return 1;
}
/*
* This function performs a shutdown-write on a stream interface in a connected or
* init state (it does nothing for other states). It either shuts the write side
* or closes the file descriptor and marks itself as closed. The buffer flags are
* updated to reflect the new state.
*/
void stream_sock_shutw(struct stream_interface *si)
{
if (si->ob->flags & BF_SHUTW)
return;
si->ob->flags |= BF_SHUTW;
si->ob->wex = TICK_ETERNITY;
si->flags &= ~SI_FL_WAIT_DATA;
switch (si->state) {
case SI_ST_EST:
if (!(si->ib->flags & BF_SHUTR)) {
EV_FD_CLR(si->fd, DIR_WR);
shutdown(si->fd, SHUT_WR);
return;
}
if (fdtab[si->fd].flags & FD_FL_TCP_NOLING) {
/* we have to shut before closing if we disable lingering */
EV_FD_CLR(si->fd, DIR_WR);
shutdown(si->fd, SHUT_WR);
}
/* fall through */
case SI_ST_CON:
/* we may have to close a pending connection, and mark the
* response buffer as shutr
*/
fd_delete(si->fd);
/* fall through */
case SI_ST_CER:
si->state = SI_ST_DIS;
default:
si->flags &= ~SI_FL_WAIT_ROOM;
si->ib->flags |= BF_SHUTR;
si->ib->rex = TICK_ETERNITY;
si->exp = TICK_ETERNITY;
return;
}
}
/*
* This function performs a shutdown-read on a stream interface in a connected or
* init state (it does nothing for other states). It either shuts the read side
* or closes the file descriptor and marks itself as closed. The buffer flags are
* updated to reflect the new state.
*/
void stream_sock_shutr(struct stream_interface *si)
{
if (si->ib->flags & BF_SHUTR)
return;
si->ib->flags |= BF_SHUTR;
si->ib->rex = TICK_ETERNITY;
si->flags &= ~SI_FL_WAIT_ROOM;
if (si->state != SI_ST_EST && si->state != SI_ST_CON)
return;
if (si->ob->flags & BF_SHUTW) {
fd_delete(si->fd);
si->state = SI_ST_DIS;
si->exp = TICK_ETERNITY;
return;
}
EV_FD_CLR(si->fd, DIR_RD);
return;
}
/*
* Updates a connected stream_sock file descriptor status and timeouts
* according to the buffers' flags. It should only be called once after the
* buffer flags have settled down, and before they are cleared. It doesn't
* harm to call it as often as desired (it just slightly hurts performance).
*/
void stream_sock_data_finish(struct stream_interface *si)
{
struct buffer *ib = si->ib;
struct buffer *ob = si->ob;
int fd = si->fd;
DPRINTF(stderr,"[%u] %s: fd=%d owner=%p ib=%p, ob=%p, exp(r,w)=%u,%u ibf=%08x obf=%08x ibl=%d obl=%d si=%d\n",
now_ms, __FUNCTION__,
fd, fdtab[fd].owner,
ib, ob,
ib->rex, ob->wex,
ib->flags, ob->flags,
ib->l, ob->l, si->state);
/* Check if we need to close the read side */
if (!(ib->flags & BF_SHUTR)) {
/* Read not closed, update FD status and timeout for reads */
if (ib->flags & (BF_FULL|BF_HIJACK)) {
/* stop reading */
if ((ib->flags & (BF_FULL|BF_HIJACK)) == BF_FULL)
si->flags |= SI_FL_WAIT_ROOM;
EV_FD_COND_C(fd, DIR_RD);
ib->rex = TICK_ETERNITY;
}
else {
/* (re)start reading and update timeout. Note: we don't recompute the timeout
* everytime we get here, otherwise it would risk never to expire. We only
* update it if is was not yet set, or if we already got some read status.
*/
si->flags &= ~SI_FL_WAIT_ROOM;
EV_FD_COND_S(fd, DIR_RD);
if (!(ib->flags & BF_READ_NOEXP) &&
(!tick_isset(ib->rex) || ib->flags & BF_READ_ACTIVITY))
ib->rex = tick_add_ifset(now_ms, ib->rto);
}
}
/* Check if we need to close the write side */
if (!(ob->flags & BF_SHUTW)) {
/* Write not closed, update FD status and timeout for writes */
if ((ob->send_max == 0 && !ob->pipe) ||
(ob->flags & BF_EMPTY) ||
(ob->flags & (BF_HIJACK|BF_WRITE_ENA)) == 0) {
/* stop writing */
if ((ob->flags & (BF_EMPTY|BF_HIJACK|BF_WRITE_ENA)) == (BF_EMPTY|BF_WRITE_ENA))
si->flags |= SI_FL_WAIT_DATA;
EV_FD_COND_C(fd, DIR_WR);
ob->wex = TICK_ETERNITY;
}
else {
/* (re)start writing and update timeout. Note: we don't recompute the timeout
* everytime we get here, otherwise it would risk never to expire. We only
* update it if is was not yet set, or if we already got some write status.
*/
si->flags &= ~SI_FL_WAIT_DATA;
EV_FD_COND_S(fd, DIR_WR);
if (!tick_isset(ob->wex) || ob->flags & BF_WRITE_ACTIVITY) {
ob->wex = tick_add_ifset(now_ms, ob->wto);
if (tick_isset(ib->rex)) {
/* Note: depending on the protocol, we don't know if we're waiting
* for incoming data or not. So in order to prevent the socket from
* expiring read timeouts during writes, we refresh the read timeout,
* except if it was already infinite.
*/
ib->rex = tick_add_ifset(now_ms, ib->rto);
}
}
}
}
}
/* This function is used for inter-stream-interface calls. It is called by the
* consumer to inform the producer side that it may be interested in checking
* for free space in the buffer. Note that it intentionally does not update
* timeouts, so that we can still check them later at wake-up.
*/
void stream_sock_chk_rcv(struct stream_interface *si)
{
struct buffer *ib = si->ib;
DPRINTF(stderr,"[%u] %s: fd=%d owner=%p ib=%p, ob=%p, exp(r,w)=%u,%u ibf=%08x obf=%08x ibl=%d obl=%d si=%d\n",
now_ms, __FUNCTION__,
si->fd, fdtab[si->fd].owner,
ib, si->ob,
ib->rex, si->ob->wex,
ib->flags, si->ob->flags,
ib->l, si->ob->l, si->state);
if (unlikely(si->state != SI_ST_EST || (ib->flags & BF_SHUTR)))
return;
if (ib->flags & (BF_FULL|BF_HIJACK)) {
/* stop reading */
if ((ib->flags & (BF_FULL|BF_HIJACK)) == BF_FULL)
si->flags |= SI_FL_WAIT_ROOM;
EV_FD_COND_C(si->fd, DIR_RD);
}
else {
/* (re)start reading */
si->flags &= ~SI_FL_WAIT_ROOM;
EV_FD_COND_S(si->fd, DIR_RD);
}
}
/* This function is used for inter-stream-interface calls. It is called by the
* producer to inform the consumer side that it may be interested in checking
* for data in the buffer. Note that it intentionally does not update timeouts,
* so that we can still check them later at wake-up.
*/
void stream_sock_chk_snd(struct stream_interface *si)
{
struct buffer *ob = si->ob;
int retval;
DPRINTF(stderr,"[%u] %s: fd=%d owner=%p ib=%p, ob=%p, exp(r,w)=%u,%u ibf=%08x obf=%08x ibl=%d obl=%d si=%d\n",
now_ms, __FUNCTION__,
si->fd, fdtab[si->fd].owner,
si->ib, ob,
si->ib->rex, ob->wex,
si->ib->flags, ob->flags,
si->ib->l, ob->l, si->state);
if (unlikely(si->state != SI_ST_EST || (ob->flags & BF_SHUTW)))
return;
if (!(si->flags & SI_FL_WAIT_DATA) || /* not waiting for data */
(fdtab[si->fd].ev & FD_POLL_OUT) || /* we'll be called anyway */
!(ob->send_max || ob->pipe) || /* called with nothing to send ! */
!(ob->flags & (BF_HIJACK|BF_WRITE_ENA))) /* we may not write */
return;
retval = stream_sock_write_loop(si, ob);
if (retval < 0) {
/* Write error on the file descriptor. We mark the FD as STERROR so
* that we don't use it anymore and we notify the task.
*/
fdtab[si->fd].state = FD_STERROR;
fdtab[si->fd].ev &= ~FD_POLL_STICKY;
EV_FD_REM(si->fd);
si->flags |= SI_FL_ERR;
goto out_wakeup;
}
if (retval > 0 || (ob->send_max == 0 && !ob->pipe)) {
/* the connection is established but we can't write. Either the
* buffer is empty, or we just refrain from sending because the
* send_max limit was reached. Maybe we just wrote the last
* chunk and need to close.
*/
if (((ob->flags & (BF_SHUTW|BF_EMPTY|BF_HIJACK|BF_WRITE_ENA|BF_SHUTR)) ==
(BF_EMPTY|BF_WRITE_ENA|BF_SHUTR)) &&
(si->state == SI_ST_EST)) {
stream_sock_shutw(si);
goto out_wakeup;
}
if ((ob->flags & (BF_SHUTW|BF_EMPTY|BF_HIJACK|BF_WRITE_ENA)) == (BF_EMPTY|BF_WRITE_ENA))
si->flags |= SI_FL_WAIT_DATA;
ob->wex = TICK_ETERNITY;
}
else {
/* (re)start writing. */
si->flags &= ~SI_FL_WAIT_DATA;
EV_FD_COND_S(si->fd, DIR_WR);
}
if (likely(ob->flags & BF_WRITE_ACTIVITY)) {
/* update timeout if we have written something */
if ((ob->send_max || ob->pipe) &&
(ob->flags & (BF_SHUTW|BF_WRITE_PARTIAL)) == BF_WRITE_PARTIAL)
ob->wex = tick_add_ifset(now_ms, ob->wto);
if (tick_isset(si->ib->rex)) {
/* Note: to prevent the client from expiring read timeouts
* during writes, we refresh it. A better solution would be
* to merge read+write timeouts into a unique one, although
* that needs some study particularly on full-duplex TCP
* connections.
*/
si->ib->rex = tick_add_ifset(now_ms, si->ib->rto);
}
}
/* in case of special condition (error, shutdown, end of write...), we
* have to notify the task.
*/
if (likely((ob->flags & (BF_WRITE_NULL|BF_WRITE_ERROR|BF_SHUTW)) ||
(!ob->to_forward && !ob->send_max && !ob->pipe) ||
si->state != SI_ST_EST)) {
out_wakeup:
task_wakeup(si->owner, TASK_WOKEN_IO);
}
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/