blob: 5162c22272cce626aa0f310fb67401848892c99c [file] [log] [blame]
/*
* activity measurement functions.
*
* Copyright 2000-2018 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <malloc.h>
#include <haproxy/activity-t.h>
#include <haproxy/api.h>
#include <haproxy/cfgparse.h>
#include <haproxy/channel.h>
#include <haproxy/cli.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/stream_interface.h>
#include <haproxy/tools.h>
/* bit field of profiling options. Beware, may be modified at runtime! */
unsigned int profiling __read_mostly = HA_PROF_TASKS_AOFF;
unsigned long task_profiling_mask __read_mostly = 0;
/* One struct per thread containing all collected measurements */
struct activity activity[MAX_THREADS] __attribute__((aligned(64))) = { };
/* One struct per function pointer hash entry (256 values, 0=collision) */
struct sched_activity sched_activity[256] __attribute__((aligned(64))) = { };
#if USE_MEMORY_PROFILING
/* determine the number of buckets to store stats */
#define MEMPROF_HASH_BITS 10
#define MEMPROF_HASH_BUCKETS (1U << MEMPROF_HASH_BITS)
/* stats:
* - malloc increases alloc
* - free increases free (if non null)
* - realloc increases either depending on the size change.
* when the real size is known (malloc_usable_size()), it's used in free_tot
* and alloc_tot, otherwise the requested size is reported in alloc_tot and
* zero in free_tot.
*/
struct memprof_stats {
const void *caller;
unsigned long long alloc_calls;
unsigned long long free_calls;
unsigned long long alloc_tot;
unsigned long long free_tot;
};
/* last one is for hash collisions ("others") and has no caller address */
struct memprof_stats memprof_stats[MEMPROF_HASH_BUCKETS + 1] = { };
#endif // USE_MEMORY_PROFILING
/* Updates the current thread's statistics about stolen CPU time. The unit for
* <stolen> is half-milliseconds.
*/
void report_stolen_time(uint64_t stolen)
{
activity[tid].cpust_total += stolen;
update_freq_ctr(&activity[tid].cpust_1s, stolen);
update_freq_ctr_period(&activity[tid].cpust_15s, 15000, stolen);
}
/* config parser for global "profiling.tasks", accepts "on" or "off" */
static int cfg_parse_prof_tasks(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
if (strcmp(args[1], "on") == 0)
profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_ON;
else if (strcmp(args[1], "auto") == 0)
profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AOFF;
else if (strcmp(args[1], "off") == 0)
profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_OFF;
else {
memprintf(err, "'%s' expects either 'on', 'auto', or 'off' but got '%s'.", args[0], args[1]);
return -1;
}
return 0;
}
/* parse a "set profiling" command. It always returns 1. */
static int cli_parse_set_profiling(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (strcmp(args[2], "memory") == 0) {
#ifdef USE_MEMORY_PROFILING
if (strcmp(args[3], "on") == 0) {
unsigned int old = profiling;
int i;
while (!_HA_ATOMIC_CAS(&profiling, &old, old | HA_PROF_MEMORY))
;
/* also flush current profiling stats */
for (i = 0; i < sizeof(memprof_stats) / sizeof(memprof_stats[0]); i++) {
HA_ATOMIC_STORE(&memprof_stats[i].alloc_calls, 0);
HA_ATOMIC_STORE(&memprof_stats[i].free_calls, 0);
HA_ATOMIC_STORE(&memprof_stats[i].alloc_tot, 0);
HA_ATOMIC_STORE(&memprof_stats[i].free_tot, 0);
HA_ATOMIC_STORE(&memprof_stats[i].caller, NULL);
}
}
else if (strcmp(args[3], "off") == 0) {
unsigned int old = profiling;
while (!_HA_ATOMIC_CAS(&profiling, &old, old & ~HA_PROF_MEMORY))
;
}
else
return cli_err(appctx, "Expects either 'on' or 'off'.\n");
return 1;
#else
return cli_err(appctx, "Memory profiling not compiled in.\n");
#endif
}
if (strcmp(args[2], "tasks") != 0)
return cli_err(appctx, "Expects etiher 'tasks' or 'memory'.\n");
if (strcmp(args[3], "on") == 0) {
unsigned int old = profiling;
int i;
while (!_HA_ATOMIC_CAS(&profiling, &old, (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_ON))
;
/* also flush current profiling stats */
for (i = 0; i < 256; i++) {
HA_ATOMIC_STORE(&sched_activity[i].calls, 0);
HA_ATOMIC_STORE(&sched_activity[i].cpu_time, 0);
HA_ATOMIC_STORE(&sched_activity[i].lat_time, 0);
HA_ATOMIC_STORE(&sched_activity[i].func, NULL);
}
}
else if (strcmp(args[3], "auto") == 0) {
unsigned int old = profiling;
unsigned int new;
do {
if ((old & HA_PROF_TASKS_MASK) >= HA_PROF_TASKS_AON)
new = (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AON;
else
new = (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AOFF;
} while (!_HA_ATOMIC_CAS(&profiling, &old, new));
}
else if (strcmp(args[3], "off") == 0) {
unsigned int old = profiling;
while (!_HA_ATOMIC_CAS(&profiling, &old, (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_OFF))
;
}
else
return cli_err(appctx, "Expects 'on', 'auto', or 'off'.\n");
return 1;
}
static int cmp_sched_activity(const void *a, const void *b)
{
const struct sched_activity *l = (const struct sched_activity *)a;
const struct sched_activity *r = (const struct sched_activity *)b;
if (l->calls > r->calls)
return -1;
else if (l->calls < r->calls)
return 1;
else
return 0;
}
/* This function dumps all profiling settings. It returns 0 if the output
* buffer is full and it needs to be called again, otherwise non-zero.
*/
static int cli_io_handler_show_profiling(struct appctx *appctx)
{
struct sched_activity tmp_activity[256] __attribute__((aligned(64)));
struct stream_interface *si = appctx->owner;
struct buffer *name_buffer = get_trash_chunk();
const char *str;
int i, max;
if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW)))
return 1;
chunk_reset(&trash);
switch (profiling & HA_PROF_TASKS_MASK) {
case HA_PROF_TASKS_AOFF: str="auto-off"; break;
case HA_PROF_TASKS_AON: str="auto-on"; break;
case HA_PROF_TASKS_ON: str="on"; break;
default: str="off"; break;
}
memcpy(tmp_activity, sched_activity, sizeof(tmp_activity));
qsort(tmp_activity, 256, sizeof(tmp_activity[0]), cmp_sched_activity);
chunk_printf(&trash,
"Per-task CPU profiling : %-8s # set profiling tasks {on|auto|off}\n"
"Memory usage profiling : %-8s # set profiling memory {on|off}\n",
str, (profiling & HA_PROF_MEMORY) ? "on" : "off");
chunk_appendf(&trash, "Tasks activity:\n"
" function calls cpu_tot cpu_avg lat_tot lat_avg\n");
for (i = 0; i < 256 && tmp_activity[i].calls; i++) {
chunk_reset(name_buffer);
if (!tmp_activity[i].func)
chunk_printf(name_buffer, "other");
else
resolve_sym_name(name_buffer, "", tmp_activity[i].func);
/* reserve 35 chars for name+' '+#calls, knowing that longer names
* are often used for less often called functions.
*/
max = 35 - name_buffer->data;
if (max < 1)
max = 1;
chunk_appendf(&trash, " %s%*llu", name_buffer->area, max, (unsigned long long)tmp_activity[i].calls);
print_time_short(&trash, " ", tmp_activity[i].cpu_time, "");
print_time_short(&trash, " ", tmp_activity[i].cpu_time / tmp_activity[i].calls, "");
print_time_short(&trash, " ", tmp_activity[i].lat_time, "");
print_time_short(&trash, " ", tmp_activity[i].lat_time / tmp_activity[i].calls, "\n");
}
if (ci_putchk(si_ic(si), &trash) == -1) {
/* failed, try again */
si_rx_room_blk(si);
return 0;
}
return 1;
}
/* This function scans all threads' run queues and collects statistics about
* running tasks. It returns 0 if the output buffer is full and it needs to be
* called again, otherwise non-zero.
*/
static int cli_io_handler_show_tasks(struct appctx *appctx)
{
struct sched_activity tmp_activity[256] __attribute__((aligned(64)));
struct stream_interface *si = appctx->owner;
struct buffer *name_buffer = get_trash_chunk();
struct sched_activity *entry;
const struct tasklet *tl;
const struct task *t;
uint64_t now_ns, lat;
struct eb32sc_node *rqnode;
uint64_t tot_calls;
int thr, queue;
int i, max;
if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW)))
return 1;
/* It's not possible to scan queues in small chunks and yield in the
* middle of the dump and come back again. So what we're doing instead
* is to freeze all threads and inspect their queues at once as fast as
* possible, using a sched_activity array to collect metrics with
* limited collision, then we'll report statistics only. The tasks'
* #calls will reflect the number of occurrences, and the lat_time will
* reflect the latency when set. We prefer to take the time before
* calling thread_isolate() so that the wait time doesn't impact the
* measurement accuracy. However this requires to take care of negative
* times since tasks might be queued after we retrieve it.
*/
now_ns = now_mono_time();
memset(tmp_activity, 0, sizeof(tmp_activity));
thread_isolate();
/* 1. global run queue */
#ifdef USE_THREAD
rqnode = eb32sc_first(&rqueue, ~0UL);
while (rqnode) {
t = eb32sc_entry(rqnode, struct task, rq);
entry = sched_activity_entry(tmp_activity, t->process);
if (t->call_date) {
lat = now_ns - t->call_date;
if ((int64_t)lat > 0)
entry->lat_time += lat;
}
entry->calls++;
rqnode = eb32sc_next(rqnode, ~0UL);
}
#endif
/* 2. all threads's local run queues */
for (thr = 0; thr < global.nbthread; thr++) {
/* task run queue */
rqnode = eb32sc_first(&task_per_thread[thr].rqueue, ~0UL);
while (rqnode) {
t = eb32sc_entry(rqnode, struct task, rq);
entry = sched_activity_entry(tmp_activity, t->process);
if (t->call_date) {
lat = now_ns - t->call_date;
if ((int64_t)lat > 0)
entry->lat_time += lat;
}
entry->calls++;
rqnode = eb32sc_next(rqnode, ~0UL);
}
/* shared tasklet list */
list_for_each_entry(tl, mt_list_to_list(&task_per_thread[thr].shared_tasklet_list), list) {
t = (const struct task *)tl;
entry = sched_activity_entry(tmp_activity, t->process);
if (!TASK_IS_TASKLET(t) && t->call_date) {
lat = now_ns - t->call_date;
if ((int64_t)lat > 0)
entry->lat_time += lat;
}
entry->calls++;
}
/* classful tasklets */
for (queue = 0; queue < TL_CLASSES; queue++) {
list_for_each_entry(tl, &task_per_thread[thr].tasklets[queue], list) {
t = (const struct task *)tl;
entry = sched_activity_entry(tmp_activity, t->process);
if (!TASK_IS_TASKLET(t) && t->call_date) {
lat = now_ns - t->call_date;
if ((int64_t)lat > 0)
entry->lat_time += lat;
}
entry->calls++;
}
}
}
/* hopefully we're done */
thread_release();
chunk_reset(&trash);
tot_calls = 0;
for (i = 0; i < 256; i++)
tot_calls += tmp_activity[i].calls;
qsort(tmp_activity, 256, sizeof(tmp_activity[0]), cmp_sched_activity);
chunk_appendf(&trash, "Running tasks: %d (%d threads)\n"
" function places %% lat_tot lat_avg\n",
(int)tot_calls, global.nbthread);
for (i = 0; i < 256 && tmp_activity[i].calls; i++) {
chunk_reset(name_buffer);
if (!tmp_activity[i].func)
chunk_printf(name_buffer, "other");
else
resolve_sym_name(name_buffer, "", tmp_activity[i].func);
/* reserve 35 chars for name+' '+#calls, knowing that longer names
* are often used for less often called functions.
*/
max = 35 - name_buffer->data;
if (max < 1)
max = 1;
chunk_appendf(&trash, " %s%*llu %3d.%1d",
name_buffer->area, max, (unsigned long long)tmp_activity[i].calls,
(int)(100ULL * tmp_activity[i].calls / tot_calls),
(int)((1000ULL * tmp_activity[i].calls / tot_calls)%10));
print_time_short(&trash, " ", tmp_activity[i].lat_time, "");
print_time_short(&trash, " ", tmp_activity[i].lat_time / tmp_activity[i].calls, "\n");
}
if (ci_putchk(si_ic(si), &trash) == -1) {
/* failed, try again */
si_rx_room_blk(si);
return 0;
}
return 1;
}
/* config keyword parsers */
static struct cfg_kw_list cfg_kws = {ILH, {
{ CFG_GLOBAL, "profiling.tasks", cfg_parse_prof_tasks },
{ 0, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{ { "show", "profiling", NULL }, "show profiling : show CPU profiling options", NULL, cli_io_handler_show_profiling, NULL },
{ { "show", "tasks", NULL }, "show tasks : show running tasks", NULL, cli_io_handler_show_tasks, NULL },
{ { "set", "profiling", NULL }, "set profiling : enable/disable resource profiling", cli_parse_set_profiling, NULL },
{{},}
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);