blob: 172d78c8680b91e46de39f96530d5a2bf2649f0c [file] [log] [blame]
/*
* Stream management functions.
*
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <common/cfgparse.h>
#include <common/config.h>
#include <common/buffer.h>
#include <common/debug.h>
#include <common/memory.h>
#include <types/applet.h>
#include <types/capture.h>
#include <types/filters.h>
#include <types/global.h>
#include <proto/acl.h>
#include <proto/action.h>
#include <proto/arg.h>
#include <proto/backend.h>
#include <proto/channel.h>
#include <proto/checks.h>
#include <proto/connection.h>
#include <proto/dumpstats.h>
#include <proto/fd.h>
#include <proto/filters.h>
#include <proto/freq_ctr.h>
#include <proto/frontend.h>
#include <proto/hdr_idx.h>
#include <proto/hlua.h>
#include <proto/listener.h>
#include <proto/log.h>
#include <proto/raw_sock.h>
#include <proto/session.h>
#include <proto/stream.h>
#include <proto/pipe.h>
#include <proto/proto_http.h>
#include <proto/proto_tcp.h>
#include <proto/proxy.h>
#include <proto/queue.h>
#include <proto/server.h>
#include <proto/sample.h>
#include <proto/stick_table.h>
#include <proto/stream_interface.h>
#include <proto/task.h>
#include <proto/vars.h>
struct pool_head *pool2_stream;
struct list streams;
/* list of streams waiting for at least one buffer */
struct list buffer_wq = LIST_HEAD_INIT(buffer_wq);
/* List of all use-service keywords. */
static struct list service_keywords = LIST_HEAD_INIT(service_keywords);
/* This function is called from the session handler which detects the end of
* handshake, in order to complete initialization of a valid stream. It must be
* called with a session (which may be embryonic). It returns the pointer to
* the newly created stream, or NULL in case of fatal error. The client-facing
* end point is assigned to <origin>, which must be valid. The task's context
* is set to the new stream, and its function is set to process_stream().
* Target and analysers are null.
*/
struct stream *stream_new(struct session *sess, struct task *t, enum obj_type *origin)
{
struct stream *s;
struct connection *conn = objt_conn(origin);
struct appctx *appctx = objt_appctx(origin);
if (unlikely((s = pool_alloc2(pool2_stream)) == NULL))
return s;
/* minimum stream initialization required for an embryonic stream is
* fairly low. We need very little to execute L4 ACLs, then we need a
* task to make the client-side connection live on its own.
* - flags
* - stick-entry tracking
*/
s->flags = 0;
s->logs.logwait = sess->fe->to_log;
s->logs.level = 0;
s->logs.accept_date = sess->accept_date; /* user-visible date for logging */
s->logs.tv_accept = sess->tv_accept; /* corrected date for internal use */
tv_zero(&s->logs.tv_request);
s->logs.t_queue = -1;
s->logs.t_connect = -1;
s->logs.t_data = -1;
s->logs.t_close = 0;
s->logs.bytes_in = s->logs.bytes_out = 0;
s->logs.prx_queue_size = 0; /* we get the number of pending conns before us */
s->logs.srv_queue_size = 0; /* we will get this number soon */
/* default logging function */
s->do_log = strm_log;
/* default error reporting function, may be changed by analysers */
s->srv_error = default_srv_error;
/* Initialise the current rule list pointer to NULL. We are sure that
* any rulelist match the NULL pointer.
*/
s->current_rule_list = NULL;
s->current_rule = NULL;
/* Copy SC counters for the stream. We don't touch refcounts because
* any reference we have is inherited from the session. Since the stream
* doesn't exist without the session, the session's existence guarantees
* we don't lose the entry. During the store operation, the stream won't
* touch these ones.
*/
memcpy(s->stkctr, sess->stkctr, sizeof(s->stkctr));
s->sess = sess;
s->si[0].flags = SI_FL_NONE;
s->si[1].flags = SI_FL_ISBACK;
s->uniq_id = global.req_count++;
/* OK, we're keeping the stream, so let's properly initialize the stream */
LIST_ADDQ(&streams, &s->list);
LIST_INIT(&s->back_refs);
LIST_INIT(&s->buffer_wait);
s->flags |= SF_INITIALIZED;
s->unique_id = NULL;
s->task = t;
t->process = process_stream;
t->context = s;
t->expire = TICK_ETERNITY;
/* Note: initially, the stream's backend points to the frontend.
* This changes later when switching rules are executed or
* when the default backend is assigned.
*/
s->be = sess->fe;
s->req.buf = s->res.buf = NULL;
s->req_cap = NULL;
s->res_cap = NULL;
/* Initialise all the variables contexts even if not used.
* This permits to prune these contexts without errors.
*/
vars_init(&s->vars_txn, SCOPE_TXN);
vars_init(&s->vars_reqres, SCOPE_REQ);
/* this part should be common with other protocols */
si_reset(&s->si[0]);
si_set_state(&s->si[0], SI_ST_EST);
/* attach the incoming connection to the stream interface now. */
if (conn)
si_attach_conn(&s->si[0], conn);
else if (appctx)
si_attach_appctx(&s->si[0], appctx);
if (likely(sess->fe->options2 & PR_O2_INDEPSTR))
s->si[0].flags |= SI_FL_INDEP_STR;
/* pre-initialize the other side's stream interface to an INIT state. The
* callbacks will be initialized before attempting to connect.
*/
si_reset(&s->si[1]);
if (likely(sess->fe->options2 & PR_O2_INDEPSTR))
s->si[1].flags |= SI_FL_INDEP_STR;
stream_init_srv_conn(s);
s->target = NULL;
s->pend_pos = NULL;
/* init store persistence */
s->store_count = 0;
channel_init(&s->req);
s->req.flags |= CF_READ_ATTACHED; /* the producer is already connected */
s->req.analysers = 0;
channel_auto_connect(&s->req); /* don't wait to establish connection */
channel_auto_close(&s->req); /* let the producer forward close requests */
s->req.rto = sess->fe->timeout.client;
s->req.wto = TICK_ETERNITY;
s->req.rex = TICK_ETERNITY;
s->req.wex = TICK_ETERNITY;
s->req.analyse_exp = TICK_ETERNITY;
channel_init(&s->res);
s->res.flags |= CF_ISRESP;
s->res.analysers = 0;
if (sess->fe->options2 & PR_O2_NODELAY) {
s->req.flags |= CF_NEVER_WAIT;
s->res.flags |= CF_NEVER_WAIT;
}
s->res.wto = sess->fe->timeout.client;
s->res.rto = TICK_ETERNITY;
s->res.rex = TICK_ETERNITY;
s->res.wex = TICK_ETERNITY;
s->res.analyse_exp = TICK_ETERNITY;
s->txn = NULL;
HLUA_INIT(&s->hlua);
if (flt_stream_init(s) < 0 || flt_stream_start(s) < 0)
goto out_fail_accept;
/* finish initialization of the accepted file descriptor */
if (conn)
conn_data_want_recv(conn);
else if (appctx)
si_applet_want_get(&s->si[0]);
if (sess->fe->accept && sess->fe->accept(s) < 0)
goto out_fail_accept;
/* it is important not to call the wakeup function directly but to
* pass through task_wakeup(), because this one knows how to apply
* priorities to tasks.
*/
task_wakeup(t, TASK_WOKEN_INIT);
return s;
/* Error unrolling */
out_fail_accept:
flt_stream_release(s, 0);
LIST_DEL(&s->list);
pool_free2(pool2_stream, s);
return NULL;
}
/*
* frees the context associated to a stream. It must have been removed first.
*/
static void stream_free(struct stream *s)
{
struct session *sess = strm_sess(s);
struct proxy *fe = sess->fe;
struct bref *bref, *back;
struct connection *cli_conn = objt_conn(sess->origin);
int i;
if (s->pend_pos)
pendconn_free(s->pend_pos);
if (objt_server(s->target)) { /* there may be requests left pending in queue */
if (s->flags & SF_CURR_SESS) {
s->flags &= ~SF_CURR_SESS;
objt_server(s->target)->cur_sess--;
}
if (may_dequeue_tasks(objt_server(s->target), s->be))
process_srv_queue(objt_server(s->target));
}
if (unlikely(s->srv_conn)) {
/* the stream still has a reserved slot on a server, but
* it should normally be only the same as the one above,
* so this should not happen in fact.
*/
sess_change_server(s, NULL);
}
if (s->req.pipe)
put_pipe(s->req.pipe);
if (s->res.pipe)
put_pipe(s->res.pipe);
/* We may still be present in the buffer wait queue */
if (!LIST_ISEMPTY(&s->buffer_wait)) {
LIST_DEL(&s->buffer_wait);
LIST_INIT(&s->buffer_wait);
}
b_drop(&s->req.buf);
b_drop(&s->res.buf);
if (!LIST_ISEMPTY(&buffer_wq))
stream_offer_buffers();
hlua_ctx_destroy(&s->hlua);
if (s->txn)
http_end_txn(s);
/* ensure the client-side transport layer is destroyed */
if (cli_conn)
conn_force_close(cli_conn);
for (i = 0; i < s->store_count; i++) {
if (!s->store[i].ts)
continue;
stksess_free(s->store[i].table, s->store[i].ts);
s->store[i].ts = NULL;
}
if (s->txn) {
pool_free2(pool2_hdr_idx, s->txn->hdr_idx.v);
pool_free2(pool2_http_txn, s->txn);
s->txn = NULL;
}
flt_stream_stop(s);
flt_stream_release(s, 0);
if (fe) {
pool_free2(fe->rsp_cap_pool, s->res_cap);
pool_free2(fe->req_cap_pool, s->req_cap);
}
/* Cleanup all variable contexts. */
vars_prune(&s->vars_txn, s->sess, s);
vars_prune(&s->vars_reqres, s->sess, s);
stream_store_counters(s);
list_for_each_entry_safe(bref, back, &s->back_refs, users) {
/* we have to unlink all watchers. We must not relink them if
* this stream was the last one in the list.
*/
LIST_DEL(&bref->users);
LIST_INIT(&bref->users);
if (s->list.n != &streams)
LIST_ADDQ(&LIST_ELEM(s->list.n, struct stream *, list)->back_refs, &bref->users);
bref->ref = s->list.n;
}
LIST_DEL(&s->list);
si_release_endpoint(&s->si[1]);
si_release_endpoint(&s->si[0]);
/* FIXME: for now we have a 1:1 relation between stream and session so
* the stream must free the session.
*/
pool_free2(pool2_stream, s);
session_free(sess);
/* We may want to free the maximum amount of pools if the proxy is stopping */
if (fe && unlikely(fe->state == PR_STSTOPPED)) {
pool_flush2(pool2_buffer);
pool_flush2(pool2_http_txn);
pool_flush2(pool2_hdr_idx);
pool_flush2(pool2_requri);
pool_flush2(pool2_capture);
pool_flush2(pool2_stream);
pool_flush2(pool2_session);
pool_flush2(pool2_connection);
pool_flush2(pool2_pendconn);
pool_flush2(fe->req_cap_pool);
pool_flush2(fe->rsp_cap_pool);
}
}
/* Allocates a receive buffer for channel <chn>, but only if it's guaranteed
* that it's not the last available buffer or it's the response buffer. Unless
* the buffer is the response buffer, an extra control is made so that we always
* keep <tune.buffers.reserved> buffers available after this allocation. To be
* called at the beginning of recv() callbacks to ensure that the required
* buffers are properly allocated. Returns 0 in case of failure, non-zero
* otherwise.
*/
int stream_alloc_recv_buffer(struct channel *chn)
{
struct stream *s;
struct buffer *b;
int margin = 0;
if (!(chn->flags & CF_ISRESP))
margin = global.tune.reserved_bufs;
s = chn_strm(chn);
b = b_alloc_margin(&chn->buf, margin);
if (b)
return 1;
if (LIST_ISEMPTY(&s->buffer_wait))
LIST_ADDQ(&buffer_wq, &s->buffer_wait);
return 0;
}
/* Allocates a work buffer for stream <s>. It is meant to be called inside
* process_stream(). It will only allocate the side needed for the function
* to work fine, which is the response buffer so that an error message may be
* built and returned. Response buffers may be allocated from the reserve, this
* is critical to ensure that a response may always flow and will never block a
* server from releasing a connection. Returns 0 in case of failure, non-zero
* otherwise.
*/
int stream_alloc_work_buffer(struct stream *s)
{
if (!LIST_ISEMPTY(&s->buffer_wait)) {
LIST_DEL(&s->buffer_wait);
LIST_INIT(&s->buffer_wait);
}
if (b_alloc_margin(&s->res.buf, 0))
return 1;
LIST_ADDQ(&buffer_wq, &s->buffer_wait);
return 0;
}
/* releases unused buffers after processing. Typically used at the end of the
* update() functions. It will try to wake up as many tasks as the number of
* buffers that it releases. In practice, most often streams are blocked on
* a single buffer, so it makes sense to try to wake two up when two buffers
* are released at once.
*/
void stream_release_buffers(struct stream *s)
{
if (s->req.buf->size && buffer_empty(s->req.buf))
b_free(&s->req.buf);
if (s->res.buf->size && buffer_empty(s->res.buf))
b_free(&s->res.buf);
/* if we're certain to have at least 1 buffer available, and there is
* someone waiting, we can wake up a waiter and offer them.
*/
if (!LIST_ISEMPTY(&buffer_wq))
stream_offer_buffers();
}
/* Runs across the list of pending streams waiting for a buffer and wakes one
* up if buffers are available. Will stop when the run queue reaches <rqlimit>.
* Should not be called directly, use stream_offer_buffers() instead.
*/
void __stream_offer_buffers(int rqlimit)
{
struct stream *sess, *bak;
list_for_each_entry_safe(sess, bak, &buffer_wq, buffer_wait) {
if (rqlimit <= run_queue)
break;
if (sess->task->state & TASK_RUNNING)
continue;
LIST_DEL(&sess->buffer_wait);
LIST_INIT(&sess->buffer_wait);
task_wakeup(sess->task, TASK_WOKEN_RES);
}
}
/* perform minimal intializations, report 0 in case of error, 1 if OK. */
int init_stream()
{
LIST_INIT(&streams);
pool2_stream = create_pool("stream", sizeof(struct stream), MEM_F_SHARED);
return pool2_stream != NULL;
}
void stream_process_counters(struct stream *s)
{
struct session *sess = s->sess;
unsigned long long bytes;
void *ptr1,*ptr2;
int i;
bytes = s->req.total - s->logs.bytes_in;
s->logs.bytes_in = s->req.total;
if (bytes) {
sess->fe->fe_counters.bytes_in += bytes;
s->be->be_counters.bytes_in += bytes;
if (objt_server(s->target))
objt_server(s->target)->counters.bytes_in += bytes;
if (sess->listener && sess->listener->counters)
sess->listener->counters->bytes_in += bytes;
for (i = 0; i < MAX_SESS_STKCTR; i++) {
struct stkctr *stkctr = &s->stkctr[i];
if (!stkctr_entry(stkctr)) {
stkctr = &sess->stkctr[i];
if (!stkctr_entry(stkctr))
continue;
}
ptr1 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_CNT);
if (ptr1)
stktable_data_cast(ptr1, bytes_in_cnt) += bytes;
ptr2 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_RATE);
if (ptr2)
update_freq_ctr_period(&stktable_data_cast(ptr2, bytes_in_rate),
stkctr->table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u, bytes);
/* If data was modified, we need to touch to re-schedule sync */
if (ptr1 || ptr2)
stktable_touch(stkctr->table, stkctr_entry(stkctr), 1);
}
}
bytes = s->res.total - s->logs.bytes_out;
s->logs.bytes_out = s->res.total;
if (bytes) {
sess->fe->fe_counters.bytes_out += bytes;
s->be->be_counters.bytes_out += bytes;
if (objt_server(s->target))
objt_server(s->target)->counters.bytes_out += bytes;
if (sess->listener && sess->listener->counters)
sess->listener->counters->bytes_out += bytes;
for (i = 0; i < MAX_SESS_STKCTR; i++) {
struct stkctr *stkctr = &s->stkctr[i];
if (!stkctr_entry(stkctr)) {
stkctr = &sess->stkctr[i];
if (!stkctr_entry(stkctr))
continue;
}
ptr1 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_CNT);
if (ptr1)
stktable_data_cast(ptr1, bytes_out_cnt) += bytes;
ptr2 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_RATE);
if (ptr2)
update_freq_ctr_period(&stktable_data_cast(ptr2, bytes_out_rate),
stkctr->table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u, bytes);
/* If data was modified, we need to touch to re-schedule sync */
if (ptr1 || ptr2)
stktable_touch(stkctr->table, stkctr_entry(stkctr), 1);
}
}
}
/* This function is called with (si->state == SI_ST_CON) meaning that a
* connection was attempted and that the file descriptor is already allocated.
* We must check for establishment, error and abort. Possible output states
* are SI_ST_EST (established), SI_ST_CER (error), SI_ST_DIS (abort), and
* SI_ST_CON (no change). The function returns 0 if it switches to SI_ST_CER,
* otherwise 1. This only works with connection-based streams.
*/
static int sess_update_st_con_tcp(struct stream *s)
{
struct stream_interface *si = &s->si[1];
struct channel *req = &s->req;
struct channel *rep = &s->res;
/* If we got an error, or if nothing happened and the connection timed
* out, we must give up. The CER state handler will take care of retry
* attempts and error reports.
*/
if (unlikely(si->flags & (SI_FL_EXP|SI_FL_ERR))) {
if (unlikely(req->flags & CF_WRITE_PARTIAL)) {
/* Some data were sent past the connection establishment,
* so we need to pretend we're established to log correctly
* and let later states handle the failure.
*/
si->state = SI_ST_EST;
si->err_type = SI_ET_DATA_ERR;
rep->flags |= CF_READ_ERROR | CF_WRITE_ERROR;
return 1;
}
si->exp = TICK_ETERNITY;
si->state = SI_ST_CER;
si_release_endpoint(si);
if (si->err_type)
return 0;
if (si->flags & SI_FL_ERR)
si->err_type = SI_ET_CONN_ERR;
else
si->err_type = SI_ET_CONN_TO;
return 0;
}
/* OK, maybe we want to abort */
if (!(req->flags & CF_WRITE_PARTIAL) &&
unlikely((rep->flags & CF_SHUTW) ||
((req->flags & CF_SHUTW_NOW) && /* FIXME: this should not prevent a connection from establishing */
((!(req->flags & CF_WRITE_ACTIVITY) && channel_is_empty(req)) ||
s->be->options & PR_O_ABRT_CLOSE)))) {
/* give up */
si_shutw(si);
si->err_type |= SI_ET_CONN_ABRT;
if (s->srv_error)
s->srv_error(s, si);
return 1;
}
/* we need to wait a bit more if there was no activity either */
if (!(req->flags & CF_WRITE_ACTIVITY))
return 1;
/* OK, this means that a connection succeeded. The caller will be
* responsible for handling the transition from CON to EST.
*/
si->state = SI_ST_EST;
si->err_type = SI_ET_NONE;
return 1;
}
/* This function is called with (si->state == SI_ST_CER) meaning that a
* previous connection attempt has failed and that the file descriptor
* has already been released. Possible causes include asynchronous error
* notification and time out. Possible output states are SI_ST_CLO when
* retries are exhausted, SI_ST_TAR when a delay is wanted before a new
* connection attempt, SI_ST_ASS when it's wise to retry on the same server,
* and SI_ST_REQ when an immediate redispatch is wanted. The buffers are
* marked as in error state. It returns 0.
*/
static int sess_update_st_cer(struct stream *s)
{
struct stream_interface *si = &s->si[1];
/* we probably have to release last stream from the server */
if (objt_server(s->target)) {
health_adjust(objt_server(s->target), HANA_STATUS_L4_ERR);
if (s->flags & SF_CURR_SESS) {
s->flags &= ~SF_CURR_SESS;
objt_server(s->target)->cur_sess--;
}
}
/* ensure that we have enough retries left */
si->conn_retries--;
if (si->conn_retries < 0) {
if (!si->err_type) {
si->err_type = SI_ET_CONN_ERR;
}
if (objt_server(s->target))
objt_server(s->target)->counters.failed_conns++;
s->be->be_counters.failed_conns++;
sess_change_server(s, NULL);
if (may_dequeue_tasks(objt_server(s->target), s->be))
process_srv_queue(objt_server(s->target));
/* shutw is enough so stop a connecting socket */
si_shutw(si);
s->req.flags |= CF_WRITE_ERROR;
s->res.flags |= CF_READ_ERROR;
si->state = SI_ST_CLO;
if (s->srv_error)
s->srv_error(s, si);
return 0;
}
/* If the "redispatch" option is set on the backend, we are allowed to
* retry on another server. By default this redispatch occurs on the
* last retry, but if configured we allow redispatches to occur on
* configurable intervals, e.g. on every retry. In order to achieve this,
* we must mark the stream unassigned, and eventually clear the DIRECT
* bit to ignore any persistence cookie. We won't count a retry nor a
* redispatch yet, because this will depend on what server is selected.
* If the connection is not persistent, the balancing algorithm is not
* determinist (round robin) and there is more than one active server,
* we accept to perform an immediate redispatch without waiting since
* we don't care about this particular server.
*/
if (objt_server(s->target) &&
(s->be->options & PR_O_REDISP) && !(s->flags & SF_FORCE_PRST) &&
((__objt_server(s->target)->state < SRV_ST_RUNNING) ||
(((s->be->redispatch_after > 0) &&
((s->be->conn_retries - si->conn_retries) %
s->be->redispatch_after == 0)) ||
((s->be->redispatch_after < 0) &&
((s->be->conn_retries - si->conn_retries) %
(s->be->conn_retries + 1 + s->be->redispatch_after) == 0))) ||
(!(s->flags & SF_DIRECT) && s->be->srv_act > 1 &&
((s->be->lbprm.algo & BE_LB_KIND) == BE_LB_KIND_RR)))) {
sess_change_server(s, NULL);
if (may_dequeue_tasks(objt_server(s->target), s->be))
process_srv_queue(objt_server(s->target));
s->flags &= ~(SF_DIRECT | SF_ASSIGNED | SF_ADDR_SET);
si->state = SI_ST_REQ;
} else {
if (objt_server(s->target))
objt_server(s->target)->counters.retries++;
s->be->be_counters.retries++;
si->state = SI_ST_ASS;
}
if (si->flags & SI_FL_ERR) {
/* The error was an asynchronous connection error, and we will
* likely have to retry connecting to the same server, most
* likely leading to the same result. To avoid this, we wait
* MIN(one second, connect timeout) before retrying.
*/
int delay = 1000;
if (s->be->timeout.connect && s->be->timeout.connect < delay)
delay = s->be->timeout.connect;
if (!si->err_type)
si->err_type = SI_ET_CONN_ERR;
/* only wait when we're retrying on the same server */
if (si->state == SI_ST_ASS ||
(s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_RR ||
(s->be->srv_act <= 1)) {
si->state = SI_ST_TAR;
si->exp = tick_add(now_ms, MS_TO_TICKS(delay));
}
return 0;
}
return 0;
}
/*
* This function handles the transition between the SI_ST_CON state and the
* SI_ST_EST state. It must only be called after switching from SI_ST_CON (or
* SI_ST_INI) to SI_ST_EST, but only when a ->proto is defined.
*/
static void sess_establish(struct stream *s)
{
struct stream_interface *si = &s->si[1];
struct channel *req = &s->req;
struct channel *rep = &s->res;
/* First, centralize the timers information */
s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now);
si->exp = TICK_ETERNITY;
if (objt_server(s->target))
health_adjust(objt_server(s->target), HANA_STATUS_L4_OK);
if (s->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */
/* if the user wants to log as soon as possible, without counting
* bytes from the server, then this is the right moment. */
if (!LIST_ISEMPTY(&strm_fe(s)->logformat) && !(s->logs.logwait & LW_BYTES)) {
s->logs.t_close = s->logs.t_connect; /* to get a valid end date */
s->do_log(s);
}
}
else {
rep->flags |= CF_READ_DONTWAIT; /* a single read is enough to get response headers */
}
rep->analysers |= strm_fe(s)->fe_rsp_ana | s->be->be_rsp_ana;
/* Be sure to filter response headers if the backend is an HTTP proxy
* and if there are filters attached to the stream. */
if (s->be->mode == PR_MODE_HTTP && HAS_FILTERS(s))
rep->analysers |= AN_FLT_HTTP_HDRS;
rep->flags |= CF_READ_ATTACHED; /* producer is now attached */
if (req->flags & CF_WAKE_CONNECT) {
req->flags |= CF_WAKE_ONCE;
req->flags &= ~CF_WAKE_CONNECT;
}
if (objt_conn(si->end)) {
/* real connections have timeouts */
req->wto = s->be->timeout.server;
rep->rto = s->be->timeout.server;
}
req->wex = TICK_ETERNITY;
}
/* Check if the connection request is in such a state that it can be aborted. */
static int check_req_may_abort(struct channel *req, struct stream *s)
{
return ((req->flags & (CF_READ_ERROR)) ||
((req->flags & CF_SHUTW_NOW) && /* empty and client aborted */
(channel_is_empty(req) || s->be->options & PR_O_ABRT_CLOSE)));
}
/* Update back stream interface status for input states SI_ST_ASS, SI_ST_QUE,
* SI_ST_TAR. Other input states are simply ignored.
* Possible output states are SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ, SI_ST_CON
* and SI_ST_EST. Flags must have previously been updated for timeouts and other
* conditions.
*/
static void sess_update_stream_int(struct stream *s)
{
struct server *srv = objt_server(s->target);
struct stream_interface *si = &s->si[1];
struct channel *req = &s->req;
DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d\n",
now_ms, __FUNCTION__,
s,
req, &s->res,
req->rex, s->res.wex,
req->flags, s->res.flags,
req->buf->i, req->buf->o, s->res.buf->i, s->res.buf->o, s->si[0].state, s->si[1].state);
if (si->state == SI_ST_ASS) {
/* Server assigned to connection request, we have to try to connect now */
int conn_err;
/* Before we try to initiate the connection, see if the
* request may be aborted instead.
*/
if (check_req_may_abort(req, s)) {
si->err_type |= SI_ET_CONN_ABRT;
goto abort_connection;
}
conn_err = connect_server(s);
srv = objt_server(s->target);
if (conn_err == SF_ERR_NONE) {
/* state = SI_ST_CON or SI_ST_EST now */
if (srv)
srv_inc_sess_ctr(srv);
if (srv)
srv_set_sess_last(srv);
return;
}
/* We have received a synchronous error. We might have to
* abort, retry immediately or redispatch.
*/
if (conn_err == SF_ERR_INTERNAL) {
if (!si->err_type) {
si->err_type = SI_ET_CONN_OTHER;
}
if (srv)
srv_inc_sess_ctr(srv);
if (srv)
srv_set_sess_last(srv);
if (srv)
srv->counters.failed_conns++;
s->be->be_counters.failed_conns++;
/* release other streams waiting for this server */
sess_change_server(s, NULL);
if (may_dequeue_tasks(srv, s->be))
process_srv_queue(srv);
/* Failed and not retryable. */
si_shutr(si);
si_shutw(si);
req->flags |= CF_WRITE_ERROR;
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
/* no stream was ever accounted for this server */
si->state = SI_ST_CLO;
if (s->srv_error)
s->srv_error(s, si);
return;
}
/* We are facing a retryable error, but we don't want to run a
* turn-around now, as the problem is likely a source port
* allocation problem, so we want to retry now.
*/
si->state = SI_ST_CER;
si->flags &= ~SI_FL_ERR;
sess_update_st_cer(s);
/* now si->state is one of SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ */
return;
}
else if (si->state == SI_ST_QUE) {
/* connection request was queued, check for any update */
if (!s->pend_pos) {
/* The connection is not in the queue anymore. Either
* we have a server connection slot available and we
* go directly to the assigned state, or we need to
* load-balance first and go to the INI state.
*/
si->exp = TICK_ETERNITY;
if (unlikely(!(s->flags & SF_ASSIGNED)))
si->state = SI_ST_REQ;
else {
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
si->state = SI_ST_ASS;
}
return;
}
/* Connection request still in queue... */
if (si->flags & SI_FL_EXP) {
/* ... and timeout expired */
si->exp = TICK_ETERNITY;
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
if (srv)
srv->counters.failed_conns++;
s->be->be_counters.failed_conns++;
si_shutr(si);
si_shutw(si);
req->flags |= CF_WRITE_TIMEOUT;
if (!si->err_type)
si->err_type = SI_ET_QUEUE_TO;
si->state = SI_ST_CLO;
if (s->srv_error)
s->srv_error(s, si);
return;
}
/* Connection remains in queue, check if we have to abort it */
if (check_req_may_abort(req, s)) {
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
si->err_type |= SI_ET_QUEUE_ABRT;
goto abort_connection;
}
/* Nothing changed */
return;
}
else if (si->state == SI_ST_TAR) {
/* Connection request might be aborted */
if (check_req_may_abort(req, s)) {
si->err_type |= SI_ET_CONN_ABRT;
goto abort_connection;
}
if (!(si->flags & SI_FL_EXP))
return; /* still in turn-around */
si->exp = TICK_ETERNITY;
/* we keep trying on the same server as long as the stream is
* marked "assigned".
* FIXME: Should we force a redispatch attempt when the server is down ?
*/
if (s->flags & SF_ASSIGNED)
si->state = SI_ST_ASS;
else
si->state = SI_ST_REQ;
return;
}
return;
abort_connection:
/* give up */
si->exp = TICK_ETERNITY;
si_shutr(si);
si_shutw(si);
si->state = SI_ST_CLO;
if (s->srv_error)
s->srv_error(s, si);
return;
}
/* Set correct stream termination flags in case no analyser has done it. It
* also counts a failed request if the server state has not reached the request
* stage.
*/
static void sess_set_term_flags(struct stream *s)
{
if (!(s->flags & SF_FINST_MASK)) {
if (s->si[1].state < SI_ST_REQ) {
strm_fe(s)->fe_counters.failed_req++;
if (strm_li(s) && strm_li(s)->counters)
strm_li(s)->counters->failed_req++;
s->flags |= SF_FINST_R;
}
else if (s->si[1].state == SI_ST_QUE)
s->flags |= SF_FINST_Q;
else if (s->si[1].state < SI_ST_EST)
s->flags |= SF_FINST_C;
else if (s->si[1].state == SI_ST_EST || s->si[1].prev_state == SI_ST_EST)
s->flags |= SF_FINST_D;
else
s->flags |= SF_FINST_L;
}
}
/* This function initiates a server connection request on a stream interface
* already in SI_ST_REQ state. Upon success, the state goes to SI_ST_ASS for
* a real connection to a server, indicating that a server has been assigned,
* or SI_ST_EST for a successful connection to an applet. It may also return
* SI_ST_QUE, or SI_ST_CLO upon error.
*/
static void sess_prepare_conn_req(struct stream *s)
{
struct stream_interface *si = &s->si[1];
DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d\n",
now_ms, __FUNCTION__,
s,
&s->req, &s->res,
s->req.rex, s->res.wex,
s->req.flags, s->res.flags,
s->req.buf->i, s->req.buf->o, s->res.buf->i, s->res.buf->o, s->si[0].state, s->si[1].state);
if (si->state != SI_ST_REQ)
return;
if (unlikely(obj_type(s->target) == OBJ_TYPE_APPLET)) {
/* the applet directly goes to the EST state */
struct appctx *appctx = objt_appctx(si->end);
if (!appctx || appctx->applet != __objt_applet(s->target))
appctx = stream_int_register_handler(si, objt_applet(s->target));
if (!appctx) {
/* No more memory, let's immediately abort. Force the
* error code to ignore the ERR_LOCAL which is not a
* real error.
*/
s->flags &= ~(SF_ERR_MASK | SF_FINST_MASK);
si_shutr(si);
si_shutw(si);
s->req.flags |= CF_WRITE_ERROR;
si->err_type = SI_ET_CONN_RES;
si->state = SI_ST_CLO;
if (s->srv_error)
s->srv_error(s, si);
return;
}
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
si->state = SI_ST_EST;
si->err_type = SI_ET_NONE;
be_set_sess_last(s->be);
/* let sess_establish() finish the job */
return;
}
/* Try to assign a server */
if (srv_redispatch_connect(s) != 0) {
/* We did not get a server. Either we queued the
* connection request, or we encountered an error.
*/
if (si->state == SI_ST_QUE)
return;
/* we did not get any server, let's check the cause */
si_shutr(si);
si_shutw(si);
s->req.flags |= CF_WRITE_ERROR;
if (!si->err_type)
si->err_type = SI_ET_CONN_OTHER;
si->state = SI_ST_CLO;
if (s->srv_error)
s->srv_error(s, si);
return;
}
/* The server is assigned */
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
si->state = SI_ST_ASS;
be_set_sess_last(s->be);
}
/* This function parses the use-service action ruleset. It executes
* the associated ACL and set an applet as a stream or txn final node.
* it returns ACT_RET_ERR if an error occurs, the proxy left in
* consistent state. It returns ACT_RET_STOP in succes case because
* use-service must be a terminal action. Returns ACT_RET_YIELD
* if the initialisation function require more data.
*/
enum act_return process_use_service(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct appctx *appctx;
/* Initialises the applet if it is required. */
if (flags & ACT_FLAG_FIRST) {
/* Register applet. this function schedules the applet. */
s->target = &rule->applet.obj_type;
if (unlikely(!stream_int_register_handler(&s->si[1], objt_applet(s->target))))
return ACT_RET_ERR;
/* Initialise the context. */
appctx = si_appctx(&s->si[1]);
memset(&appctx->ctx, 0, sizeof(appctx->ctx));
appctx->rule = rule;
}
else
appctx = si_appctx(&s->si[1]);
/* Stops the applet sheduling, in case of the init function miss
* some data.
*/
appctx_pause(appctx);
si_applet_stop_get(&s->si[1]);
/* Call initialisation. */
if (rule->applet.init)
switch (rule->applet.init(appctx, px, s)) {
case 0: return ACT_RET_ERR;
case 1: break;
default: return ACT_RET_YIELD;
}
/* Now we can schedule the applet. */
si_applet_cant_get(&s->si[1]);
appctx_wakeup(appctx);
if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */
sess->fe->fe_counters.intercepted_req++;
/* The flag SF_ASSIGNED prevent from server assignment. */
s->flags |= SF_ASSIGNED;
return ACT_RET_STOP;
}
/* This stream analyser checks the switching rules and changes the backend
* if appropriate. The default_backend rule is also considered, then the
* target backend's forced persistence rules are also evaluated last if any.
* It returns 1 if the processing can continue on next analysers, or zero if it
* either needs more data or wants to immediately abort the request.
*/
static int process_switching_rules(struct stream *s, struct channel *req, int an_bit)
{
struct persist_rule *prst_rule;
struct session *sess = s->sess;
struct proxy *fe = sess->fe;
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->buf->i,
req->analysers);
/* now check whether we have some switching rules for this request */
if (!(s->flags & SF_BE_ASSIGNED)) {
struct switching_rule *rule;
list_for_each_entry(rule, &fe->switching_rules, list) {
int ret = 1;
if (rule->cond) {
ret = acl_exec_cond(rule->cond, fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
/* If the backend name is dynamic, try to resolve the name.
* If we can't resolve the name, or if any error occurs, break
* the loop and fallback to the default backend.
*/
struct proxy *backend;
if (rule->dynamic) {
struct chunk *tmp = get_trash_chunk();
if (!build_logline(s, tmp->str, tmp->size, &rule->be.expr))
break;
backend = proxy_be_by_name(tmp->str);
if (!backend)
break;
}
else
backend = rule->be.backend;
if (!stream_set_backend(s, backend))
goto sw_failed;
break;
}
}
/* To ensure correct connection accounting on the backend, we
* have to assign one if it was not set (eg: a listen). This
* measure also takes care of correctly setting the default
* backend if any.
*/
if (!(s->flags & SF_BE_ASSIGNED))
if (!stream_set_backend(s, fe->defbe.be ? fe->defbe.be : s->be))
goto sw_failed;
}
/* we don't want to run the TCP or HTTP filters again if the backend has not changed */
if (fe == s->be) {
s->req.analysers &= ~AN_REQ_INSPECT_BE;
s->req.analysers &= ~AN_REQ_HTTP_PROCESS_BE;
s->req.analysers &= ~AN_FLT_START_BE;
}
/* as soon as we know the backend, we must check if we have a matching forced or ignored
* persistence rule, and report that in the stream.
*/
list_for_each_entry(prst_rule, &s->be->persist_rules, list) {
int ret = 1;
if (prst_rule->cond) {
ret = acl_exec_cond(prst_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (prst_rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
/* no rule, or the rule matches */
if (prst_rule->type == PERSIST_TYPE_FORCE) {
s->flags |= SF_FORCE_PRST;
} else {
s->flags |= SF_IGNORE_PRST;
}
break;
}
}
return 1;
sw_failed:
/* immediately abort this request in case of allocation failure */
channel_abort(&s->req);
channel_abort(&s->res);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_RESOURCE;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
if (s->txn)
s->txn->status = 500;
s->req.analysers &= AN_FLT_END;
s->req.analyse_exp = TICK_ETERNITY;
return 0;
}
/* This stream analyser works on a request. It applies all use-server rules on
* it then returns 1. The data must already be present in the buffer otherwise
* they won't match. It always returns 1.
*/
static int process_server_rules(struct stream *s, struct channel *req, int an_bit)
{
struct proxy *px = s->be;
struct session *sess = s->sess;
struct server_rule *rule;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->buf->i + req->buf->o,
req->analysers);
if (!(s->flags & SF_ASSIGNED)) {
list_for_each_entry(rule, &px->server_rules, list) {
int ret;
ret = acl_exec_cond(rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (ret) {
struct server *srv = rule->srv.ptr;
if ((srv->state != SRV_ST_STOPPED) ||
(px->options & PR_O_PERSIST) ||
(s->flags & SF_FORCE_PRST)) {
s->flags |= SF_DIRECT | SF_ASSIGNED;
s->target = &srv->obj_type;
break;
}
/* if the server is not UP, let's go on with next rules
* just in case another one is suited.
*/
}
}
}
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
return 1;
}
/* This stream analyser works on a request. It applies all sticking rules on
* it then returns 1. The data must already be present in the buffer otherwise
* they won't match. It always returns 1.
*/
static int process_sticking_rules(struct stream *s, struct channel *req, int an_bit)
{
struct proxy *px = s->be;
struct session *sess = s->sess;
struct sticking_rule *rule;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->buf->i,
req->analysers);
list_for_each_entry(rule, &px->sticking_rules, list) {
int ret = 1 ;
int i;
/* Only the first stick store-request of each table is applied
* and other ones are ignored. The purpose is to allow complex
* configurations which look for multiple entries by decreasing
* order of precision and to stop at the first which matches.
* An example could be a store of the IP address from an HTTP
* header first, then from the source if not found.
*/
for (i = 0; i < s->store_count; i++) {
if (rule->table.t == s->store[i].table)
break;
}
if (i != s->store_count)
continue;
if (rule->cond) {
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
struct stktable_key *key;
key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->expr, NULL);
if (!key)
continue;
if (rule->flags & STK_IS_MATCH) {
struct stksess *ts;
if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) {
if (!(s->flags & SF_ASSIGNED)) {
struct eb32_node *node;
void *ptr;
/* srv found in table */
ptr = stktable_data_ptr(rule->table.t, ts, STKTABLE_DT_SERVER_ID);
node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, server_id));
if (node) {
struct server *srv;
srv = container_of(node, struct server, conf.id);
if ((srv->state != SRV_ST_STOPPED) ||
(px->options & PR_O_PERSIST) ||
(s->flags & SF_FORCE_PRST)) {
s->flags |= SF_DIRECT | SF_ASSIGNED;
s->target = &srv->obj_type;
}
}
}
stktable_touch(rule->table.t, ts, 1);
}
}
if (rule->flags & STK_IS_STORE) {
if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
struct stksess *ts;
ts = stksess_new(rule->table.t, key);
if (ts) {
s->store[s->store_count].table = rule->table.t;
s->store[s->store_count++].ts = ts;
}
}
}
}
}
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
return 1;
}
/* This stream analyser works on a response. It applies all store rules on it
* then returns 1. The data must already be present in the buffer otherwise
* they won't match. It always returns 1.
*/
static int process_store_rules(struct stream *s, struct channel *rep, int an_bit)
{
struct proxy *px = s->be;
struct session *sess = s->sess;
struct sticking_rule *rule;
int i;
int nbreq = s->store_count;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
rep,
rep->rex, rep->wex,
rep->flags,
rep->buf->i,
rep->analysers);
list_for_each_entry(rule, &px->storersp_rules, list) {
int ret = 1 ;
/* Only the first stick store-response of each table is applied
* and other ones are ignored. The purpose is to allow complex
* configurations which look for multiple entries by decreasing
* order of precision and to stop at the first which matches.
* An example could be a store of a set-cookie value, with a
* fallback to a parameter found in a 302 redirect.
*
* The store-response rules are not allowed to override the
* store-request rules for the same table, but they may coexist.
* Thus we can have up to one store-request entry and one store-
* response entry for the same table at any time.
*/
for (i = nbreq; i < s->store_count; i++) {
if (rule->table.t == s->store[i].table)
break;
}
/* skip existing entries for this table */
if (i < s->store_count)
continue;
if (rule->cond) {
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
struct stktable_key *key;
key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->expr, NULL);
if (!key)
continue;
if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
struct stksess *ts;
ts = stksess_new(rule->table.t, key);
if (ts) {
s->store[s->store_count].table = rule->table.t;
s->store[s->store_count++].ts = ts;
}
}
}
}
/* process store request and store response */
for (i = 0; i < s->store_count; i++) {
struct stksess *ts;
void *ptr;
if (objt_server(s->target) && objt_server(s->target)->flags & SRV_F_NON_STICK) {
stksess_free(s->store[i].table, s->store[i].ts);
s->store[i].ts = NULL;
continue;
}
ts = stktable_lookup(s->store[i].table, s->store[i].ts);
if (ts) {
/* the entry already existed, we can free ours */
stktable_touch(s->store[i].table, ts, 1);
stksess_free(s->store[i].table, s->store[i].ts);
}
else
ts = stktable_store(s->store[i].table, s->store[i].ts, 1);
s->store[i].ts = NULL;
ptr = stktable_data_ptr(s->store[i].table, ts, STKTABLE_DT_SERVER_ID);
stktable_data_cast(ptr, server_id) = objt_server(s->target)->puid;
}
s->store_count = 0; /* everything is stored */
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
return 1;
}
/* This macro is very specific to the function below. See the comments in
* process_stream() below to understand the logic and the tests.
*/
#define UPDATE_ANALYSERS(real, list, back, flag) { \
list = (((list) & ~(flag)) | ~(back)) & (real); \
back = real; \
if (!(list)) \
break; \
if (((list) ^ ((list) & ((list) - 1))) < (flag)) \
continue; \
}
/* These 2 following macros call an analayzer for the specified channel if the
* right flag is set. The first one is used for "filterable" analyzers. If a
* stream has some registered filters, pre and post analyaze callbacks are
* called. The second are used for other analyzers (AN_FLT_* and
* AN_REQ/RES_HTTP_XFER_BODY) */
#define FLT_ANALYZE(strm, chn, fun, list, back, flag, ...) \
{ \
if ((list) & (flag)) { \
if (HAS_FILTERS(strm)) { \
if (!flt_pre_analyze((strm), (chn), (flag))) \
break; \
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
break; \
if (!flt_post_analyze((strm), (chn), (flag))) \
break; \
} \
else { \
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
break; \
} \
UPDATE_ANALYSERS((chn)->analysers, (list), \
(back), (flag)); \
} \
}
#define ANALYZE(strm, chn, fun, list, back, flag, ...) \
{ \
if ((list) & (flag)) { \
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
break; \
UPDATE_ANALYSERS((chn)->analysers, (list), \
(back), (flag)); \
} \
}
/* Processes the client, server, request and response jobs of a stream task,
* then puts it back to the wait queue in a clean state, or cleans up its
* resources if it must be deleted. Returns in <next> the date the task wants
* to be woken up, or TICK_ETERNITY. In order not to call all functions for
* nothing too many times, the request and response buffers flags are monitored
* and each function is called only if at least another function has changed at
* least one flag it is interested in.
*/
struct task *process_stream(struct task *t)
{
struct server *srv;
struct stream *s = t->context;
struct session *sess = s->sess;
unsigned int rqf_last, rpf_last;
unsigned int rq_prod_last, rq_cons_last;
unsigned int rp_cons_last, rp_prod_last;
unsigned int req_ana_back;
struct channel *req, *res;
struct stream_interface *si_f, *si_b;
req = &s->req;
res = &s->res;
si_f = &s->si[0];
si_b = &s->si[1];
//DPRINTF(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__,
// si_f->state, si_b->state, si_b->err_type, req->flags, res->flags);
/* this data may be no longer valid, clear it */
if (s->txn)
memset(&s->txn->auth, 0, sizeof(s->txn->auth));
/* This flag must explicitly be set every time */
req->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE);
res->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE);
/* Keep a copy of req/rep flags so that we can detect shutdowns */
rqf_last = req->flags & ~CF_MASK_ANALYSER;
rpf_last = res->flags & ~CF_MASK_ANALYSER;
/* we don't want the stream interface functions to recursively wake us up */
si_f->flags |= SI_FL_DONT_WAKE;
si_b->flags |= SI_FL_DONT_WAKE;
/* 1a: Check for low level timeouts if needed. We just set a flag on
* stream interfaces when their timeouts have expired.
*/
if (unlikely(t->state & TASK_WOKEN_TIMER)) {
stream_int_check_timeouts(si_f);
stream_int_check_timeouts(si_b);
/* check channel timeouts, and close the corresponding stream interfaces
* for future reads or writes. Note: this will also concern upper layers
* but we do not touch any other flag. We must be careful and correctly
* detect state changes when calling them.
*/
channel_check_timeouts(req);
if (unlikely((req->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) {
si_b->flags |= SI_FL_NOLINGER;
si_shutw(si_b);
}
if (unlikely((req->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) {
if (si_f->flags & SI_FL_NOHALF)
si_f->flags |= SI_FL_NOLINGER;
si_shutr(si_f);
}
channel_check_timeouts(res);
if (unlikely((res->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) {
si_f->flags |= SI_FL_NOLINGER;
si_shutw(si_f);
}
if (unlikely((res->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) {
if (si_b->flags & SI_FL_NOHALF)
si_b->flags |= SI_FL_NOLINGER;
si_shutr(si_b);
}
/* Once in a while we're woken up because the task expires. But
* this does not necessarily mean that a timeout has been reached.
* So let's not run a whole stream processing if only an expiration
* timeout needs to be refreshed.
*/
if (!((req->flags | res->flags) &
(CF_SHUTR|CF_READ_ACTIVITY|CF_READ_TIMEOUT|CF_SHUTW|
CF_WRITE_ACTIVITY|CF_WRITE_TIMEOUT|CF_ANA_TIMEOUT)) &&
!((si_f->flags | si_b->flags) & (SI_FL_EXP|SI_FL_ERR)) &&
((t->state & TASK_WOKEN_ANY) == TASK_WOKEN_TIMER)) {
si_f->flags &= ~SI_FL_DONT_WAKE;
si_b->flags &= ~SI_FL_DONT_WAKE;
goto update_exp_and_leave;
}
}
/* below we may emit error messages so we have to ensure that we have
* our buffers properly allocated.
*/
if (!stream_alloc_work_buffer(s)) {
/* No buffer available, we've been subscribed to the list of
* buffer waiters, let's wait for our turn.
*/
si_f->flags &= ~SI_FL_DONT_WAKE;
si_b->flags &= ~SI_FL_DONT_WAKE;
goto update_exp_and_leave;
}
/* 1b: check for low-level errors reported at the stream interface.
* First we check if it's a retryable error (in which case we don't
* want to tell the buffer). Otherwise we report the error one level
* upper by setting flags into the buffers. Note that the side towards
* the client cannot have connect (hence retryable) errors. Also, the
* connection setup code must be able to deal with any type of abort.
*/
srv = objt_server(s->target);
if (unlikely(si_f->flags & SI_FL_ERR)) {
if (si_f->state == SI_ST_EST || si_f->state == SI_ST_DIS) {
si_shutr(si_f);
si_shutw(si_f);
stream_int_report_error(si_f);
if (!(req->analysers) && !(res->analysers)) {
s->be->be_counters.cli_aborts++;
sess->fe->fe_counters.cli_aborts++;
if (srv)
srv->counters.cli_aborts++;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_D;
}
}
}
if (unlikely(si_b->flags & SI_FL_ERR)) {
if (si_b->state == SI_ST_EST || si_b->state == SI_ST_DIS) {
si_shutr(si_b);
si_shutw(si_b);
stream_int_report_error(si_b);
s->be->be_counters.failed_resp++;
if (srv)
srv->counters.failed_resp++;
if (!(req->analysers) && !(res->analysers)) {
s->be->be_counters.srv_aborts++;
sess->fe->fe_counters.srv_aborts++;
if (srv)
srv->counters.srv_aborts++;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_D;
}
}
/* note: maybe we should process connection errors here ? */
}
if (si_b->state == SI_ST_CON) {
/* we were trying to establish a connection on the server side,
* maybe it succeeded, maybe it failed, maybe we timed out, ...
*/
if (unlikely(!sess_update_st_con_tcp(s)))
sess_update_st_cer(s);
else if (si_b->state == SI_ST_EST)
sess_establish(s);
/* state is now one of SI_ST_CON (still in progress), SI_ST_EST
* (established), SI_ST_DIS (abort), SI_ST_CLO (last error),
* SI_ST_ASS/SI_ST_TAR/SI_ST_REQ for retryable errors.
*/
}
rq_prod_last = si_f->state;
rq_cons_last = si_b->state;
rp_cons_last = si_f->state;
rp_prod_last = si_b->state;
resync_stream_interface:
/* Check for connection closure */
DPRINTF(stderr,
"[%u] %s:%d: task=%p s=%p, sfl=0x%08x, rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d, cet=0x%x set=0x%x retr=%d\n",
now_ms, __FUNCTION__, __LINE__,
t,
s, s->flags,
req, res,
req->rex, res->wex,
req->flags, res->flags,
req->buf->i, req->buf->o, res->buf->i, res->buf->o, si_f->state, si_b->state,
si_f->err_type, si_b->err_type,
si_b->conn_retries);
/* nothing special to be done on client side */
if (unlikely(si_f->state == SI_ST_DIS))
si_f->state = SI_ST_CLO;
/* When a server-side connection is released, we have to count it and
* check for pending connections on this server.
*/
if (unlikely(si_b->state == SI_ST_DIS)) {
si_b->state = SI_ST_CLO;
srv = objt_server(s->target);
if (srv) {
if (s->flags & SF_CURR_SESS) {
s->flags &= ~SF_CURR_SESS;
srv->cur_sess--;
}
sess_change_server(s, NULL);
if (may_dequeue_tasks(srv, s->be))
process_srv_queue(srv);
}
}
/*
* Note: of the transient states (REQ, CER, DIS), only REQ may remain
* at this point.
*/
resync_request:
/* Analyse request */
if (((req->flags & ~rqf_last) & CF_MASK_ANALYSER) ||
((req->flags ^ rqf_last) & CF_MASK_STATIC) ||
si_f->state != rq_prod_last ||
si_b->state != rq_cons_last ||
s->task->state & TASK_WOKEN_MSG) {
unsigned int flags = req->flags;
if (si_f->state >= SI_ST_EST) {
int max_loops = global.tune.maxpollevents;
unsigned int ana_list;
unsigned int ana_back;
/* it's up to the analysers to stop new connections,
* disable reading or closing. Note: if an analyser
* disables any of these bits, it is responsible for
* enabling them again when it disables itself, so
* that other analysers are called in similar conditions.
*/
channel_auto_read(req);
channel_auto_connect(req);
channel_auto_close(req);
/* We will call all analysers for which a bit is set in
* req->analysers, following the bit order from LSB
* to MSB. The analysers must remove themselves from
* the list when not needed. Any analyser may return 0
* to break out of the loop, either because of missing
* data to take a decision, or because it decides to
* kill the stream. We loop at least once through each
* analyser, and we may loop again if other analysers
* are added in the middle.
*
* We build a list of analysers to run. We evaluate all
* of these analysers in the order of the lower bit to
* the higher bit. This ordering is very important.
* An analyser will often add/remove other analysers,
* including itself. Any changes to itself have no effect
* on the loop. If it removes any other analysers, we
* want those analysers not to be called anymore during
* this loop. If it adds an analyser that is located
* after itself, we want it to be scheduled for being
* processed during the loop. If it adds an analyser
* which is located before it, we want it to switch to
* it immediately, even if it has already been called
* once but removed since.
*
* In order to achieve this, we compare the analyser
* list after the call with a copy of it before the
* call. The work list is fed with analyser bits that
* appeared during the call. Then we compare previous
* work list with the new one, and check the bits that
* appeared. If the lowest of these bits is lower than
* the current bit, it means we have enabled a previous
* analyser and must immediately loop again.
*/
ana_list = ana_back = req->analysers;
while (ana_list && max_loops--) {
/* Warning! ensure that analysers are always placed in ascending order! */
ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_FLT_START_FE);
FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_FE);
FLT_ANALYZE(s, req, http_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_HTTP);
FLT_ANALYZE(s, req, http_wait_for_request_body, ana_list, ana_back, AN_REQ_HTTP_BODY);
FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE, sess->fe);
FLT_ANALYZE(s, req, process_switching_rules, ana_list, ana_back, AN_REQ_SWITCHING_RULES);
ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_FLT_START_BE);
FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_BE);
FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE, s->be);
FLT_ANALYZE(s, req, http_process_tarpit, ana_list, ana_back, AN_REQ_HTTP_TARPIT);
FLT_ANALYZE(s, req, process_server_rules, ana_list, ana_back, AN_REQ_SRV_RULES);
FLT_ANALYZE(s, req, http_process_request, ana_list, ana_back, AN_REQ_HTTP_INNER);
FLT_ANALYZE(s, req, tcp_persist_rdp_cookie, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE);
FLT_ANALYZE(s, req, process_sticking_rules, ana_list, ana_back, AN_REQ_STICKING_RULES);
ANALYZE (s, req, flt_analyze_http_headers, ana_list, ana_back, AN_FLT_HTTP_HDRS);
ANALYZE (s, req, flt_xfer_data, ana_list, ana_back, AN_FLT_XFER_DATA);
ANALYZE (s, req, http_request_forward_body, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY);
ANALYZE (s, req, flt_end_analyze, ana_list, ana_back, AN_FLT_END);
break;
}
}
rq_prod_last = si_f->state;
rq_cons_last = si_b->state;
req->flags &= ~CF_WAKE_ONCE;
rqf_last = req->flags;
if ((req->flags ^ flags) & CF_MASK_STATIC)
goto resync_request;
}
/* we'll monitor the request analysers while parsing the response,
* because some response analysers may indirectly enable new request
* analysers (eg: HTTP keep-alive).
*/
req_ana_back = req->analysers;
resync_response:
/* Analyse response */
if (((res->flags & ~rpf_last) & CF_MASK_ANALYSER) ||
(res->flags ^ rpf_last) & CF_MASK_STATIC ||
si_f->state != rp_cons_last ||
si_b->state != rp_prod_last ||
s->task->state & TASK_WOKEN_MSG) {
unsigned int flags = res->flags;
if ((res->flags & CF_MASK_ANALYSER) &&
(res->analysers & AN_REQ_ALL)) {
/* Due to HTTP pipelining, the HTTP request analyser might be waiting
* for some free space in the response buffer, so we might need to call
* it when something changes in the response buffer, but still we pass
* it the request buffer. Note that the SI state might very well still
* be zero due to us returning a flow of redirects!
*/
res->analysers &= ~AN_REQ_ALL;
req->flags |= CF_WAKE_ONCE;
}
if (si_b->state >= SI_ST_EST) {
int max_loops = global.tune.maxpollevents;
unsigned int ana_list;
unsigned int ana_back;
/* it's up to the analysers to stop disable reading or
* closing. Note: if an analyser disables any of these
* bits, it is responsible for enabling them again when
* it disables itself, so that other analysers are called
* in similar conditions.
*/
channel_auto_read(res);
channel_auto_close(res);
/* We will call all analysers for which a bit is set in
* res->analysers, following the bit order from LSB
* to MSB. The analysers must remove themselves from
* the list when not needed. Any analyser may return 0
* to break out of the loop, either because of missing
* data to take a decision, or because it decides to
* kill the stream. We loop at least once through each
* analyser, and we may loop again if other analysers
* are added in the middle.
*/
ana_list = ana_back = res->analysers;
while (ana_list && max_loops--) {
/* Warning! ensure that analysers are always placed in ascending order! */
ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_FLT_START_FE);
ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_FLT_START_BE);
FLT_ANALYZE(s, res, tcp_inspect_response, ana_list, ana_back, AN_RES_INSPECT);
FLT_ANALYZE(s, res, http_wait_for_response, ana_list, ana_back, AN_RES_WAIT_HTTP);
FLT_ANALYZE(s, res, process_store_rules, ana_list, ana_back, AN_RES_STORE_RULES);
FLT_ANALYZE(s, res, http_process_res_common, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE, s->be);
ANALYZE (s, res, flt_analyze_http_headers, ana_list, ana_back, AN_FLT_HTTP_HDRS);
ANALYZE (s, res, flt_xfer_data, ana_list, ana_back, AN_FLT_XFER_DATA);
ANALYZE (s, res, http_response_forward_body, ana_list, ana_back, AN_RES_HTTP_XFER_BODY);
ANALYZE (s, res, flt_end_analyze, ana_list, ana_back, AN_FLT_END);
break;
}
}
rp_cons_last = si_f->state;
rp_prod_last = si_b->state;
rpf_last = res->flags;
if ((res->flags ^ flags) & CF_MASK_STATIC)
goto resync_response;
}
/* maybe someone has added some request analysers, so we must check and loop */
if (req->analysers & ~req_ana_back)
goto resync_request;
if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER)
goto resync_request;
/* FIXME: here we should call protocol handlers which rely on
* both buffers.
*/
/*
* Now we propagate unhandled errors to the stream. Normally
* we're just in a data phase here since it means we have not
* seen any analyser who could set an error status.
*/
srv = objt_server(s->target);
if (unlikely(!(s->flags & SF_ERR_MASK))) {
if (req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) {
/* Report it if the client got an error or a read timeout expired */
req->analysers = 0;
if (req->flags & CF_READ_ERROR) {
s->be->be_counters.cli_aborts++;
sess->fe->fe_counters.cli_aborts++;
if (srv)
srv->counters.cli_aborts++;
s->flags |= SF_ERR_CLICL;
}
else if (req->flags & CF_READ_TIMEOUT) {
s->be->be_counters.cli_aborts++;
sess->fe->fe_counters.cli_aborts++;
if (srv)
srv->counters.cli_aborts++;
s->flags |= SF_ERR_CLITO;
}
else if (req->flags & CF_WRITE_ERROR) {
s->be->be_counters.srv_aborts++;
sess->fe->fe_counters.srv_aborts++;
if (srv)
srv->counters.srv_aborts++;
s->flags |= SF_ERR_SRVCL;
}
else {
s->be->be_counters.srv_aborts++;
sess->fe->fe_counters.srv_aborts++;
if (srv)
srv->counters.srv_aborts++;
s->flags |= SF_ERR_SRVTO;
}
sess_set_term_flags(s);
}
else if (res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) {
/* Report it if the server got an error or a read timeout expired */
res->analysers = 0;
if (res->flags & CF_READ_ERROR) {
s->be->be_counters.srv_aborts++;
sess->fe->fe_counters.srv_aborts++;
if (srv)
srv->counters.srv_aborts++;
s->flags |= SF_ERR_SRVCL;
}
else if (res->flags & CF_READ_TIMEOUT) {
s->be->be_counters.srv_aborts++;
sess->fe->fe_counters.srv_aborts++;
if (srv)
srv->counters.srv_aborts++;
s->flags |= SF_ERR_SRVTO;
}
else if (res->flags & CF_WRITE_ERROR) {
s->be->be_counters.cli_aborts++;
sess->fe->fe_counters.cli_aborts++;
if (srv)
srv->counters.cli_aborts++;
s->flags |= SF_ERR_CLICL;
}
else {
s->be->be_counters.cli_aborts++;
sess->fe->fe_counters.cli_aborts++;
if (srv)
srv->counters.cli_aborts++;
s->flags |= SF_ERR_CLITO;
}
sess_set_term_flags(s);
}
}
/*
* Here we take care of forwarding unhandled data. This also includes
* connection establishments and shutdown requests.
*/
/* If noone is interested in analysing data, it's time to forward
* everything. We configure the buffer to forward indefinitely.
* Note that we're checking CF_SHUTR_NOW as an indication of a possible
* recent call to channel_abort().
*/
if (unlikely(!req->analysers &&
!(req->flags & (CF_SHUTW|CF_SHUTR_NOW)) &&
(si_f->state >= SI_ST_EST) &&
(req->to_forward != CHN_INFINITE_FORWARD))) {
/* This buffer is freewheeling, there's no analyser
* attached to it. If any data are left in, we'll permit them to
* move.
*/
channel_auto_read(req);
channel_auto_connect(req);
channel_auto_close(req);
buffer_flush(req->buf);
/* We'll let data flow between the producer (if still connected)
* to the consumer (which might possibly not be connected yet).
*/
if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW)))
channel_forward_forever(req);
/* Just in order to support fetching HTTP contents after start
* of forwarding when the HTTP forwarding analyser is not used,
* we simply reset msg->sov so that HTTP rewinding points to the
* headers.
*/
if (s->txn)
s->txn->req.sov = s->txn->req.eoh + s->txn->req.eol - req->buf->o;
}
/* check if it is wise to enable kernel splicing to forward request data */
if (!(req->flags & (CF_KERN_SPLICING|CF_SHUTR)) &&
req->to_forward &&
(global.tune.options & GTUNE_USE_SPLICE) &&
(objt_conn(si_f->end) && __objt_conn(si_f->end)->xprt && __objt_conn(si_f->end)->xprt->rcv_pipe) &&
(objt_conn(si_b->end) && __objt_conn(si_b->end)->xprt && __objt_conn(si_b->end)->xprt->snd_pipe) &&
(pipes_used < global.maxpipes) &&
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) ||
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
(req->flags & CF_STREAMER_FAST)))) {
req->flags |= CF_KERN_SPLICING;
}
/* reflect what the L7 analysers have seen last */
rqf_last = req->flags;
/*
* Now forward all shutdown requests between both sides of the buffer
*/
/* first, let's check if the request buffer needs to shutdown(write), which may
* happen either because the input is closed or because we want to force a close
* once the server has begun to respond. If a half-closed timeout is set, we adjust
* the other side's timeout as well.
*/
if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) ==
(CF_AUTO_CLOSE|CF_SHUTR))) {
channel_shutw_now(req);
}
/* shutdown(write) pending */
if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW &&
channel_is_empty(req))) {
if (req->flags & CF_READ_ERROR)
si_b->flags |= SI_FL_NOLINGER;
si_shutw(si_b);
if (tick_isset(s->be->timeout.serverfin)) {
res->rto = s->be->timeout.serverfin;
res->rex = tick_add(now_ms, res->rto);
}
}
/* shutdown(write) done on server side, we must stop the client too */
if (unlikely((req->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW &&
!req->analysers))
channel_shutr_now(req);
/* shutdown(read) pending */
if (unlikely((req->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) {
if (si_f->flags & SI_FL_NOHALF)
si_f->flags |= SI_FL_NOLINGER;
si_shutr(si_f);
}
/* it's possible that an upper layer has requested a connection setup or abort.
* There are 2 situations where we decide to establish a new connection :
* - there are data scheduled for emission in the buffer
* - the CF_AUTO_CONNECT flag is set (active connection)
*/
if (si_b->state == SI_ST_INI) {
if (!(req->flags & CF_SHUTW)) {
if ((req->flags & CF_AUTO_CONNECT) || !channel_is_empty(req)) {
/* If we have an appctx, there is no connect method, so we
* immediately switch to the connected state, otherwise we
* perform a connection request.
*/
si_b->state = SI_ST_REQ; /* new connection requested */
si_b->conn_retries = s->be->conn_retries;
}
}
else {
si_b->state = SI_ST_CLO; /* shutw+ini = abort */
channel_shutw_now(req); /* fix buffer flags upon abort */
channel_shutr_now(res);
}
}
/* we may have a pending connection request, or a connection waiting
* for completion.
*/
if (si_b->state >= SI_ST_REQ && si_b->state < SI_ST_CON) {
/* prune the request variables and swap to the response variables. */
if (s->vars_reqres.scope != SCOPE_RES) {
vars_prune(&s->vars_reqres, s->sess, s);
vars_init(&s->vars_reqres, SCOPE_RES);
}
do {
/* nb: step 1 might switch from QUE to ASS, but we first want
* to give a chance to step 2 to perform a redirect if needed.
*/
if (si_b->state != SI_ST_REQ)
sess_update_stream_int(s);
if (si_b->state == SI_ST_REQ)
sess_prepare_conn_req(s);
/* applets directly go to the ESTABLISHED state. Similarly,
* servers experience the same fate when their connection
* is reused.
*/
if (unlikely(si_b->state == SI_ST_EST))
sess_establish(s);
/* Now we can add the server name to a header (if requested) */
/* check for HTTP mode and proxy server_name_hdr_name != NULL */
if ((si_b->state >= SI_ST_CON) && (si_b->state < SI_ST_CLO) &&
(s->be->server_id_hdr_name != NULL) &&
(s->be->mode == PR_MODE_HTTP) &&
objt_server(s->target)) {
http_send_name_header(s->txn, s->be, objt_server(s->target)->id);
}
srv = objt_server(s->target);
if (si_b->state == SI_ST_ASS && srv && srv->rdr_len && (s->flags & SF_REDIRECTABLE))
http_perform_server_redirect(s, si_b);
} while (si_b->state == SI_ST_ASS);
}
/* Benchmarks have shown that it's optimal to do a full resync now */
if (si_f->state == SI_ST_DIS || si_b->state == SI_ST_DIS)
goto resync_stream_interface;
/* otherwise we want to check if we need to resync the req buffer or not */
if ((req->flags ^ rqf_last) & CF_MASK_STATIC)
goto resync_request;
/* perform output updates to the response buffer */
/* If noone is interested in analysing data, it's time to forward
* everything. We configure the buffer to forward indefinitely.
* Note that we're checking CF_SHUTR_NOW as an indication of a possible
* recent call to channel_abort().
*/
if (unlikely(!res->analysers &&
!(res->flags & (CF_SHUTW|CF_SHUTR_NOW)) &&
(si_b->state >= SI_ST_EST) &&
(res->to_forward != CHN_INFINITE_FORWARD))) {
/* This buffer is freewheeling, there's no analyser
* attached to it. If any data are left in, we'll permit them to
* move.
*/
channel_auto_read(res);
channel_auto_close(res);
buffer_flush(res->buf);
/* We'll let data flow between the producer (if still connected)
* to the consumer.
*/
if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW)))
channel_forward_forever(res);
/* Just in order to support fetching HTTP contents after start
* of forwarding when the HTTP forwarding analyser is not used,
* we simply reset msg->sov so that HTTP rewinding points to the
* headers.
*/
if (s->txn)
s->txn->rsp.sov = s->txn->rsp.eoh + s->txn->rsp.eol - res->buf->o;
/* if we have no analyser anymore in any direction and have a
* tunnel timeout set, use it now. Note that we must respect
* the half-closed timeouts as well.
*/
if (!req->analysers && s->be->timeout.tunnel) {
req->rto = req->wto = res->rto = res->wto =
s->be->timeout.tunnel;
if ((req->flags & CF_SHUTR) && tick_isset(sess->fe->timeout.clientfin))
res->wto = sess->fe->timeout.clientfin;
if ((req->flags & CF_SHUTW) && tick_isset(s->be->timeout.serverfin))
res->rto = s->be->timeout.serverfin;
if ((res->flags & CF_SHUTR) && tick_isset(s->be->timeout.serverfin))
req->wto = s->be->timeout.serverfin;
if ((res->flags & CF_SHUTW) && tick_isset(sess->fe->timeout.clientfin))
req->rto = sess->fe->timeout.clientfin;
req->rex = tick_add(now_ms, req->rto);
req->wex = tick_add(now_ms, req->wto);
res->rex = tick_add(now_ms, res->rto);
res->wex = tick_add(now_ms, res->wto);
}
}
/* check if it is wise to enable kernel splicing to forward response data */
if (!(res->flags & (CF_KERN_SPLICING|CF_SHUTR)) &&
res->to_forward &&
(global.tune.options & GTUNE_USE_SPLICE) &&
(objt_conn(si_f->end) && __objt_conn(si_f->end)->xprt && __objt_conn(si_f->end)->xprt->snd_pipe) &&
(objt_conn(si_b->end) && __objt_conn(si_b->end)->xprt && __objt_conn(si_b->end)->xprt->rcv_pipe) &&
(pipes_used < global.maxpipes) &&
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) ||
(((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
(res->flags & CF_STREAMER_FAST)))) {
res->flags |= CF_KERN_SPLICING;
}
/* reflect what the L7 analysers have seen last */
rpf_last = res->flags;
/*
* Now forward all shutdown requests between both sides of the buffer
*/
/*
* FIXME: this is probably where we should produce error responses.
*/
/* first, let's check if the response buffer needs to shutdown(write) */
if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) ==
(CF_AUTO_CLOSE|CF_SHUTR))) {
channel_shutw_now(res);
}
/* shutdown(write) pending */
if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW &&
channel_is_empty(res))) {
si_shutw(si_f);
if (tick_isset(sess->fe->timeout.clientfin)) {
req->rto = sess->fe->timeout.clientfin;
req->rex = tick_add(now_ms, req->rto);
}
}
/* shutdown(write) done on the client side, we must stop the server too */
if (unlikely((res->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW) &&
!res->analysers)
channel_shutr_now(res);
/* shutdown(read) pending */
if (unlikely((res->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) {
if (si_b->flags & SI_FL_NOHALF)
si_b->flags |= SI_FL_NOLINGER;
si_shutr(si_b);
}
if (si_f->state == SI_ST_DIS || si_b->state == SI_ST_DIS)
goto resync_stream_interface;
if (req->flags != rqf_last)
goto resync_request;
if ((res->flags ^ rpf_last) & CF_MASK_STATIC)
goto resync_response;
/* we're interested in getting wakeups again */
si_f->flags &= ~SI_FL_DONT_WAKE;
si_b->flags &= ~SI_FL_DONT_WAKE;
/* This is needed only when debugging is enabled, to indicate
* client-side or server-side close. Please note that in the unlikely
* event where both sides would close at once, the sequence is reported
* on the server side first.
*/
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) ||
(global.mode & MODE_VERBOSE)))) {
if (si_b->state == SI_ST_CLO &&
si_b->prev_state == SI_ST_EST) {
chunk_printf(&trash, "%08x:%s.srvcls[%04x:%04x]\n",
s->uniq_id, s->be->id,
objt_conn(si_f->end) ? (unsigned short)objt_conn(si_f->end)->t.sock.fd : -1,
objt_conn(si_b->end) ? (unsigned short)objt_conn(si_b->end)->t.sock.fd : -1);
shut_your_big_mouth_gcc(write(1, trash.str, trash.len));
}
if (si_f->state == SI_ST_CLO &&
si_f->prev_state == SI_ST_EST) {
chunk_printf(&trash, "%08x:%s.clicls[%04x:%04x]\n",
s->uniq_id, s->be->id,
objt_conn(si_f->end) ? (unsigned short)objt_conn(si_f->end)->t.sock.fd : -1,
objt_conn(si_b->end) ? (unsigned short)objt_conn(si_b->end)->t.sock.fd : -1);
shut_your_big_mouth_gcc(write(1, trash.str, trash.len));
}
}
if (likely((si_f->state != SI_ST_CLO) ||
(si_b->state > SI_ST_INI && si_b->state < SI_ST_CLO))) {
if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED))
stream_process_counters(s);
if (si_f->state == SI_ST_EST)
si_update(si_f);
if (si_b->state == SI_ST_EST)
si_update(si_b);
req->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_WRITE_NULL|CF_WRITE_PARTIAL|CF_READ_ATTACHED);
res->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_WRITE_NULL|CF_WRITE_PARTIAL|CF_READ_ATTACHED);
si_f->prev_state = si_f->state;
si_b->prev_state = si_b->state;
si_f->flags &= ~(SI_FL_ERR|SI_FL_EXP);
si_b->flags &= ~(SI_FL_ERR|SI_FL_EXP);
/* Trick: if a request is being waiting for the server to respond,
* and if we know the server can timeout, we don't want the timeout
* to expire on the client side first, but we're still interested
* in passing data from the client to the server (eg: POST). Thus,
* we can cancel the client's request timeout if the server's
* request timeout is set and the server has not yet sent a response.
*/
if ((res->flags & (CF_AUTO_CLOSE|CF_SHUTR)) == 0 &&
(tick_isset(req->wex) || tick_isset(res->rex))) {
req->flags |= CF_READ_NOEXP;
req->rex = TICK_ETERNITY;
}
update_exp_and_leave:
/* Note: please ensure that if you branch here you disable SI_FL_DONT_WAKE */
t->expire = tick_first(tick_first(req->rex, req->wex),
tick_first(res->rex, res->wex));
if (req->analysers)
t->expire = tick_first(t->expire, req->analyse_exp);
if (si_f->exp)
t->expire = tick_first(t->expire, si_f->exp);
if (si_b->exp)
t->expire = tick_first(t->expire, si_b->exp);
#ifdef DEBUG_FULL
fprintf(stderr,
"[%u] queuing with exp=%u req->rex=%u req->wex=%u req->ana_exp=%u"
" rep->rex=%u rep->wex=%u, si[0].exp=%u, si[1].exp=%u, cs=%d, ss=%d\n",
now_ms, t->expire, req->rex, req->wex, req->analyse_exp,
res->rex, res->wex, si_f->exp, si_b->exp, si_f->state, si_b->state);
#endif
#ifdef DEBUG_DEV
/* this may only happen when no timeout is set or in case of an FSM bug */
if (!tick_isset(t->expire))
ABORT_NOW();
#endif
stream_release_buffers(s);
return t; /* nothing more to do */
}
sess->fe->feconn--;
if (s->flags & SF_BE_ASSIGNED)
s->be->beconn--;
jobs--;
if (sess->listener) {
if (!(sess->listener->options & LI_O_UNLIMITED))
actconn--;
sess->listener->nbconn--;
if (sess->listener->state == LI_FULL)
resume_listener(sess->listener);
/* Dequeues all of the listeners waiting for a resource */
if (!LIST_ISEMPTY(&global_listener_queue))
dequeue_all_listeners(&global_listener_queue);
if (!LIST_ISEMPTY(&sess->fe->listener_queue) &&
(!sess->fe->fe_sps_lim || freq_ctr_remain(&sess->fe->fe_sess_per_sec, sess->fe->fe_sps_lim, 0) > 0))
dequeue_all_listeners(&sess->fe->listener_queue);
}
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) {
chunk_printf(&trash, "%08x:%s.closed[%04x:%04x]\n",
s->uniq_id, s->be->id,
objt_conn(si_f->end) ? (unsigned short)objt_conn(si_f->end)->t.sock.fd : -1,
objt_conn(si_b->end) ? (unsigned short)objt_conn(si_b->end)->t.sock.fd : -1);
shut_your_big_mouth_gcc(write(1, trash.str, trash.len));
}
s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now);
stream_process_counters(s);
if (s->txn && s->txn->status) {
int n;
n = s->txn->status / 100;
if (n < 1 || n > 5)
n = 0;
if (sess->fe->mode == PR_MODE_HTTP) {
sess->fe->fe_counters.p.http.rsp[n]++;
}
if ((s->flags & SF_BE_ASSIGNED) &&
(s->be->mode == PR_MODE_HTTP)) {
s->be->be_counters.p.http.rsp[n]++;
s->be->be_counters.p.http.cum_req++;
}
}
/* let's do a final log if we need it */
if (!LIST_ISEMPTY(&sess->fe->logformat) && s->logs.logwait &&
!(s->flags & SF_MONITOR) &&
(!(sess->fe->options & PR_O_NULLNOLOG) || req->total)) {
s->do_log(s);
}
/* update time stats for this stream */
stream_update_time_stats(s);
/* the task MUST not be in the run queue anymore */
stream_free(s);
task_delete(t);
task_free(t);
return NULL;
}
/* Update the stream's backend and server time stats */
void stream_update_time_stats(struct stream *s)
{
int t_request;
int t_queue;
int t_connect;
int t_data;
int t_close;
struct server *srv;
t_request = 0;
t_queue = s->logs.t_queue;
t_connect = s->logs.t_connect;
t_close = s->logs.t_close;
t_data = s->logs.t_data;
if (s->be->mode != PR_MODE_HTTP)
t_data = t_connect;
if (t_connect < 0 || t_data < 0)
return;
if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept))
t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request);
t_data -= t_connect;
t_connect -= t_queue;
t_queue -= t_request;
srv = objt_server(s->target);
if (srv) {
swrate_add(&srv->counters.q_time, TIME_STATS_SAMPLES, t_queue);
swrate_add(&srv->counters.c_time, TIME_STATS_SAMPLES, t_connect);
swrate_add(&srv->counters.d_time, TIME_STATS_SAMPLES, t_data);
swrate_add(&srv->counters.t_time, TIME_STATS_SAMPLES, t_close);
}
swrate_add(&s->be->be_counters.q_time, TIME_STATS_SAMPLES, t_queue);
swrate_add(&s->be->be_counters.c_time, TIME_STATS_SAMPLES, t_connect);
swrate_add(&s->be->be_counters.d_time, TIME_STATS_SAMPLES, t_data);
swrate_add(&s->be->be_counters.t_time, TIME_STATS_SAMPLES, t_close);
}
/*
* This function adjusts sess->srv_conn and maintains the previous and new
* server's served stream counts. Setting newsrv to NULL is enough to release
* current connection slot. This function also notifies any LB algo which might
* expect to be informed about any change in the number of active streams on a
* server.
*/
void sess_change_server(struct stream *sess, struct server *newsrv)
{
if (sess->srv_conn == newsrv)
return;
if (sess->srv_conn) {
sess->srv_conn->served--;
if (sess->srv_conn->proxy->lbprm.server_drop_conn)
sess->srv_conn->proxy->lbprm.server_drop_conn(sess->srv_conn);
stream_del_srv_conn(sess);
}
if (newsrv) {
newsrv->served++;
if (newsrv->proxy->lbprm.server_take_conn)
newsrv->proxy->lbprm.server_take_conn(newsrv);
stream_add_srv_conn(sess, newsrv);
}
}
/* Handle server-side errors for default protocols. It is called whenever a a
* connection setup is aborted or a request is aborted in queue. It sets the
* stream termination flags so that the caller does not have to worry about
* them. It's installed as ->srv_error for the server-side stream_interface.
*/
void default_srv_error(struct stream *s, struct stream_interface *si)
{
int err_type = si->err_type;
int err = 0, fin = 0;
if (err_type & SI_ET_QUEUE_ABRT) {
err = SF_ERR_CLICL;
fin = SF_FINST_Q;
}
else if (err_type & SI_ET_CONN_ABRT) {
err = SF_ERR_CLICL;
fin = SF_FINST_C;
}
else if (err_type & SI_ET_QUEUE_TO) {
err = SF_ERR_SRVTO;
fin = SF_FINST_Q;
}
else if (err_type & SI_ET_QUEUE_ERR) {
err = SF_ERR_SRVCL;
fin = SF_FINST_Q;
}
else if (err_type & SI_ET_CONN_TO) {
err = SF_ERR_SRVTO;
fin = SF_FINST_C;
}
else if (err_type & SI_ET_CONN_ERR) {
err = SF_ERR_SRVCL;
fin = SF_FINST_C;
}
else if (err_type & SI_ET_CONN_RES) {
err = SF_ERR_RESOURCE;
fin = SF_FINST_C;
}
else /* SI_ET_CONN_OTHER and others */ {
err = SF_ERR_INTERNAL;
fin = SF_FINST_C;
}
if (!(s->flags & SF_ERR_MASK))
s->flags |= err;
if (!(s->flags & SF_FINST_MASK))
s->flags |= fin;
}
/* kill a stream and set the termination flags to <why> (one of SF_ERR_*) */
void stream_shutdown(struct stream *stream, int why)
{
if (stream->req.flags & (CF_SHUTW|CF_SHUTW_NOW))
return;
channel_shutw_now(&stream->req);
channel_shutr_now(&stream->res);
stream->task->nice = 1024;
if (!(stream->flags & SF_ERR_MASK))
stream->flags |= why;
task_wakeup(stream->task, TASK_WOKEN_OTHER);
}
/************************************************************************/
/* All supported ACL keywords must be declared here. */
/************************************************************************/
/* Returns a pointer to a stkctr depending on the fetch keyword name.
* It is designed to be called as sc[0-9]_* sc_* or src_* exclusively.
* sc[0-9]_* will return a pointer to the respective field in the
* stream <l4>. sc_* requires an UINT argument specifying the stick
* counter number. src_* will fill a locally allocated structure with
* the table and entry corresponding to what is specified with src_*.
* NULL may be returned if the designated stkctr is not tracked. For
* the sc_* and sc[0-9]_* forms, an optional table argument may be
* passed. When present, the currently tracked key is then looked up
* in the specified table instead of the current table. The purpose is
* to be able to convery multiple values per key (eg: have gpc0 from
* multiple tables). <strm> is allowed to be NULL, in which case only
* the session will be consulted.
*/
struct stkctr *
smp_fetch_sc_stkctr(struct session *sess, struct stream *strm, const struct arg *args, const char *kw)
{
static struct stkctr stkctr;
struct stkctr *stkptr;
struct stksess *stksess;
unsigned int num = kw[2] - '0';
int arg = 0;
if (num == '_' - '0') {
/* sc_* variant, args[0] = ctr# (mandatory) */
num = args[arg++].data.sint;
if (num >= MAX_SESS_STKCTR)
return NULL;
}
else if (num > 9) { /* src_* variant, args[0] = table */
struct stktable_key *key;
struct connection *conn = objt_conn(sess->origin);
struct sample smp;
if (!conn)
return NULL;
/* Fetch source adress in a sample. */
smp.px = NULL;
smp.sess = sess;
smp.strm = strm;
if (!smp_fetch_src(NULL, &smp, NULL, NULL))
return NULL;
/* Converts into key. */
key = smp_to_stkey(&smp, &args->data.prx->table);
if (!key)
return NULL;
stkctr.table = &args->data.prx->table;
stkctr_set_entry(&stkctr, stktable_lookup_key(stkctr.table, key));
return &stkctr;
}
/* Here, <num> contains the counter number from 0 to 9 for
* the sc[0-9]_ form, or even higher using sc_(num) if needed.
* args[arg] is the first optional argument. We first lookup the
* ctr form the stream, then from the session if it was not there.
*/
if (strm)
stkptr = &strm->stkctr[num];
if (!strm || !stkctr_entry(stkptr)) {
stkptr = &sess->stkctr[num];
if (!stkctr_entry(stkptr))
return NULL;
}
stksess = stkctr_entry(stkptr);
if (!stksess)
return NULL;
if (unlikely(args[arg].type == ARGT_TAB)) {
/* an alternate table was specified, let's look up the same key there */
stkctr.table = &args[arg].data.prx->table;
stkctr_set_entry(&stkctr, stktable_lookup(stkctr.table, stksess));
return &stkctr;
}
return stkptr;
}
/* same as smp_fetch_sc_stkctr() but dedicated to src_* and can create
* the entry if it doesn't exist yet. This is needed for a few fetch
* functions which need to create an entry, such as src_inc_gpc* and
* src_clr_gpc*.
*/
struct stkctr *
smp_create_src_stkctr(struct session *sess, struct stream *strm, const struct arg *args, const char *kw)
{
static struct stkctr stkctr;
struct stktable_key *key;
struct connection *conn = objt_conn(sess->origin);
struct sample smp;
if (strncmp(kw, "src_", 4) != 0)
return NULL;
if (!conn)
return NULL;
/* Fetch source adress in a sample. */
smp.px = NULL;
smp.sess = sess;
smp.strm = strm;
if (!smp_fetch_src(NULL, &smp, NULL, NULL))
return NULL;
/* Converts into key. */
key = smp_to_stkey(&smp, &args->data.prx->table);
if (!key)
return NULL;
stkctr.table = &args->data.prx->table;
stkctr_set_entry(&stkctr, stktable_update_key(stkctr.table, key));
return &stkctr;
}
/* set return a boolean indicating if the requested stream counter is
* currently being tracked or not.
* Supports being called as "sc[0-9]_tracked" only.
*/
static int
smp_fetch_sc_tracked(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = !!smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
return 1;
}
/* set <smp> to the General Purpose Flag 0 value from the stream's tracked
* frontend counters or from the src.
* Supports being called as "sc[0-9]_get_gpc0" or "src_get_gpt0" only. Value
* zero is returned if the key is new.
*/
static int
smp_fetch_sc_get_gpt0(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPT0);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = stktable_data_cast(ptr, gpt0);
}
return 1;
}
/* set <smp> to the General Purpose Counter 0 value from the stream's tracked
* frontend counters or from the src.
* Supports being called as "sc[0-9]_get_gpc0" or "src_get_gpc0" only. Value
* zero is returned if the key is new.
*/
static int
smp_fetch_sc_get_gpc0(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = stktable_data_cast(ptr, gpc0);
}
return 1;
}
/* set <smp> to the General Purpose Counter 0's event rate from the stream's
* tracked frontend counters or from the src.
* Supports being called as "sc[0-9]_gpc0_rate" or "src_gpc0_rate" only.
* Value zero is returned if the key is new.
*/
static int
smp_fetch_sc_gpc0_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0_RATE);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, gpc0_rate),
stkctr->table->data_arg[STKTABLE_DT_GPC0_RATE].u);
}
return 1;
}
/* Increment the General Purpose Counter 0 value from the stream's tracked
* frontend counters and return it into temp integer.
* Supports being called as "sc[0-9]_inc_gpc0" or "src_inc_gpc0" only.
*/
static int
smp_fetch_sc_inc_gpc0(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) == NULL)
stkctr = smp_create_src_stkctr(smp->sess, smp->strm, args, kw);
if (stkctr && stkctr_entry(stkctr)) {
void *ptr1,*ptr2;
/* First, update gpc0_rate if it's tracked. Second, update its
* gpc0 if tracked. Returns gpc0's value otherwise the curr_ctr.
*/
ptr1 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0_RATE);
if (ptr1) {
update_freq_ctr_period(&stktable_data_cast(ptr1, gpc0_rate),
stkctr->table->data_arg[STKTABLE_DT_GPC0_RATE].u, 1);
smp->data.u.sint = (&stktable_data_cast(ptr1, gpc0_rate))->curr_ctr;
}
ptr2 = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0);
if (ptr2)
smp->data.u.sint = ++stktable_data_cast(ptr2, gpc0);
/* If data was modified, we need to touch to re-schedule sync */
if (ptr1 || ptr2)
stktable_touch(stkctr->table, stkctr_entry(stkctr), 1);
}
return 1;
}
/* Clear the General Purpose Counter 0 value from the stream's tracked
* frontend counters and return its previous value into temp integer.
* Supports being called as "sc[0-9]_clr_gpc0" or "src_clr_gpc0" only.
*/
static int
smp_fetch_sc_clr_gpc0(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) == NULL)
stkctr = smp_create_src_stkctr(smp->sess, smp->strm, args, kw);
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = stktable_data_cast(ptr, gpc0);
stktable_data_cast(ptr, gpc0) = 0;
/* If data was modified, we need to touch to re-schedule sync */
stktable_touch(stkctr->table, stkctr_entry(stkctr), 1);
}
return 1;
}
/* set <smp> to the cumulated number of connections from the stream's tracked
* frontend counters. Supports being called as "sc[0-9]_conn_cnt" or
* "src_conn_cnt" only.
*/
static int
smp_fetch_sc_conn_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_CNT);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = stktable_data_cast(ptr, conn_cnt);
}
return 1;
}
/* set <smp> to the connection rate from the stream's tracked frontend
* counters. Supports being called as "sc[0-9]_conn_rate" or "src_conn_rate"
* only.
*/
static int
smp_fetch_sc_conn_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_RATE);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, conn_rate),
stkctr->table->data_arg[STKTABLE_DT_CONN_RATE].u);
}
return 1;
}
/* set temp integer to the number of connections from the stream's source address
* in the table pointed to by expr, after updating it.
* Accepts exactly 1 argument of type table.
*/
static int
smp_fetch_src_updt_conn_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = objt_conn(smp->sess->origin);
struct stksess *ts;
struct stktable_key *key;
void *ptr;
struct proxy *px;
if (!conn)
return 0;
/* Fetch source adress in a sample. */
if (!smp_fetch_src(NULL, smp, NULL, NULL))
return 0;
/* Converts into key. */
key = smp_to_stkey(smp, &args->data.prx->table);
if (!key)
return 0;
px = args->data.prx;
if ((ts = stktable_update_key(&px->table, key)) == NULL)
/* entry does not exist and could not be created */
return 0;
ptr = stktable_data_ptr(&px->table, ts, STKTABLE_DT_CONN_CNT);
if (!ptr)
return 0; /* parameter not stored in this table */
smp->data.type = SMP_T_SINT;
smp->data.u.sint = ++stktable_data_cast(ptr, conn_cnt);
/* Touch was previously performed by stktable_update_key */
smp->flags = SMP_F_VOL_TEST;
return 1;
}
/* set <smp> to the number of concurrent connections from the stream's tracked
* frontend counters. Supports being called as "sc[0-9]_conn_cur" or
* "src_conn_cur" only.
*/
static int
smp_fetch_sc_conn_cur(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_CUR);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = stktable_data_cast(ptr, conn_cur);
}
return 1;
}
/* set <smp> to the cumulated number of streams from the stream's tracked
* frontend counters. Supports being called as "sc[0-9]_sess_cnt" or
* "src_sess_cnt" only.
*/
static int
smp_fetch_sc_sess_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_CNT);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = stktable_data_cast(ptr, sess_cnt);
}
return 1;
}
/* set <smp> to the stream rate from the stream's tracked frontend counters.
* Supports being called as "sc[0-9]_sess_rate" or "src_sess_rate" only.
*/
static int
smp_fetch_sc_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_RATE);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, sess_rate),
stkctr->table->data_arg[STKTABLE_DT_SESS_RATE].u);
}
return 1;
}
/* set <smp> to the cumulated number of HTTP requests from the stream's tracked
* frontend counters. Supports being called as "sc[0-9]_http_req_cnt" or
* "src_http_req_cnt" only.
*/
static int
smp_fetch_sc_http_req_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_REQ_CNT);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = stktable_data_cast(ptr, http_req_cnt);
}
return 1;
}
/* set <smp> to the HTTP request rate from the stream's tracked frontend
* counters. Supports being called as "sc[0-9]_http_req_rate" or
* "src_http_req_rate" only.
*/
static int
smp_fetch_sc_http_req_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_REQ_RATE);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate),
stkctr->table->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u);
}
return 1;
}
/* set <smp> to the cumulated number of HTTP requests errors from the stream's
* tracked frontend counters. Supports being called as "sc[0-9]_http_err_cnt" or
* "src_http_err_cnt" only.
*/
static int
smp_fetch_sc_http_err_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_ERR_CNT);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = stktable_data_cast(ptr, http_err_cnt);
}
return 1;
}
/* set <smp> to the HTTP request error rate from the stream's tracked frontend
* counters. Supports being called as "sc[0-9]_http_err_rate" or
* "src_http_err_rate" only.
*/
static int
smp_fetch_sc_http_err_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_ERR_RATE);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, http_err_rate),
stkctr->table->data_arg[STKTABLE_DT_HTTP_ERR_RATE].u);
}
return 1;
}
/* set <smp> to the number of kbytes received from clients, as found in the
* stream's tracked frontend counters. Supports being called as
* "sc[0-9]_kbytes_in" or "src_kbytes_in" only.
*/
static int
smp_fetch_sc_kbytes_in(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_CNT);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = stktable_data_cast(ptr, bytes_in_cnt) >> 10;
}
return 1;
}
/* set <smp> to the data rate received from clients in bytes/s, as found
* in the stream's tracked frontend counters. Supports being called as
* "sc[0-9]_bytes_in_rate" or "src_bytes_in_rate" only.
*/
static int
smp_fetch_sc_bytes_in_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_RATE);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, bytes_in_rate),
stkctr->table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u);
}
return 1;
}
/* set <smp> to the number of kbytes sent to clients, as found in the
* stream's tracked frontend counters. Supports being called as
* "sc[0-9]_kbytes_out" or "src_kbytes_out" only.
*/
static int
smp_fetch_sc_kbytes_out(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_CNT);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = stktable_data_cast(ptr, bytes_out_cnt) >> 10;
}
return 1;
}
/* set <smp> to the data rate sent to clients in bytes/s, as found in the
* stream's tracked frontend counters. Supports being called as
* "sc[0-9]_bytes_out_rate" or "src_bytes_out_rate" only.
*/
static int
smp_fetch_sc_bytes_out_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
if (stkctr_entry(stkctr) != NULL) {
void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_RATE);
if (!ptr)
return 0; /* parameter not stored */
smp->data.u.sint = read_freq_ctr_period(&stktable_data_cast(ptr, bytes_out_rate),
stkctr->table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u);
}
return 1;
}
/* set <smp> to the number of active trackers on the SC entry in the stream's
* tracked frontend counters. Supports being called as "sc[0-9]_trackers" only.
*/
static int
smp_fetch_sc_trackers(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct stkctr *stkctr;
stkctr = smp_fetch_sc_stkctr(smp->sess, smp->strm, args, kw);
if (!stkctr)
return 0;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = stkctr_entry(stkctr)->ref_cnt;
return 1;
}
/* set temp integer to the number of used entries in the table pointed to by expr.
* Accepts exactly 1 argument of type table.
*/
static int
smp_fetch_table_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = args->data.prx->table.current;
return 1;
}
/* set temp integer to the number of free entries in the table pointed to by expr.
* Accepts exactly 1 argument of type table.
*/
static int
smp_fetch_table_avl(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct proxy *px;
px = args->data.prx;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = px->table.size - px->table.current;
return 1;
}
/* 0=OK, <0=Alert, >0=Warning */
static enum act_parse_ret stream_parse_use_service(const char **args, int *cur_arg,
struct proxy *px, struct act_rule *rule,
char **err)
{
struct action_kw *kw;
/* Check if the service name exists. */
if (*(args[*cur_arg]) == 0) {
memprintf(err, "'%s' expects a service name.", args[0]);
return ACT_RET_PRS_ERR;
}
/* lookup for keyword corresponding to a service. */
kw = action_lookup(&service_keywords, args[*cur_arg]);
if (!kw) {
memprintf(err, "'%s' unknown service name.", args[1]);
return ACT_RET_PRS_ERR;
}
(*cur_arg)++;
/* executes specific rule parser. */
rule->kw = kw;
if (kw->parse((const char **)args, cur_arg, px, rule, err) == ACT_RET_PRS_ERR)
return ACT_RET_PRS_ERR;
/* Register processing function. */
rule->action_ptr = process_use_service;
rule->action = ACT_CUSTOM;
return ACT_RET_PRS_OK;
}
void service_keywords_register(struct action_kw_list *kw_list)
{
LIST_ADDQ(&service_keywords, &kw_list->list);
}
/* main configuration keyword registration. */
static struct action_kw_list stream_tcp_keywords = { ILH, {
{ "use-service", stream_parse_use_service },
{ /* END */ }
}};
static struct action_kw_list stream_http_keywords = { ILH, {
{ "use-service", stream_parse_use_service },
{ /* END */ }
}};
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct acl_kw_list acl_kws = {ILH, {
{ /* END */ },
}};
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct sample_fetch_kw_list smp_fetch_keywords = {ILH, {
{ "sc_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_conn_cnt", smp_fetch_sc_conn_cnt, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_conn_cur", smp_fetch_sc_conn_cur, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_conn_rate", smp_fetch_sc_conn_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_get_gpt0", smp_fetch_sc_get_gpt0, ARG2(1,SINT,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
{ "sc_get_gpc0", smp_fetch_sc_get_gpc0, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_http_err_rate", smp_fetch_sc_http_err_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_http_req_rate", smp_fetch_sc_http_req_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_kbytes_in", smp_fetch_sc_kbytes_in, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "sc_kbytes_out", smp_fetch_sc_kbytes_out, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "sc_sess_cnt", smp_fetch_sc_sess_cnt, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_sess_rate", smp_fetch_sc_sess_rate, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc_tracked", smp_fetch_sc_tracked, ARG2(1,SINT,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
{ "sc_trackers", smp_fetch_sc_trackers, ARG2(1,SINT,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_conn_cur", smp_fetch_sc_conn_cur, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_conn_rate", smp_fetch_sc_conn_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_get_gpt0", smp_fetch_sc_get_gpt0, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
{ "sc0_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "sc0_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "sc0_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_sess_rate", smp_fetch_sc_sess_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc0_tracked", smp_fetch_sc_tracked, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
{ "sc0_trackers", smp_fetch_sc_trackers, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_conn_cur", smp_fetch_sc_conn_cur, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_conn_rate", smp_fetch_sc_conn_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_get_gpt0", smp_fetch_sc_get_gpt0, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
{ "sc1_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "sc1_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "sc1_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_sess_rate", smp_fetch_sc_sess_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc1_tracked", smp_fetch_sc_tracked, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
{ "sc1_trackers", smp_fetch_sc_trackers, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_conn_cur", smp_fetch_sc_conn_cur, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_conn_rate", smp_fetch_sc_conn_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_get_gpt0", smp_fetch_sc_get_gpt0, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
{ "sc2_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "sc2_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "sc2_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_sess_rate", smp_fetch_sc_sess_rate, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "sc2_tracked", smp_fetch_sc_tracked, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
{ "sc2_trackers", smp_fetch_sc_trackers, ARG1(0,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "src_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_conn_cur", smp_fetch_sc_conn_cur, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_conn_rate", smp_fetch_sc_conn_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_get_gpt0", smp_fetch_sc_get_gpt0, ARG1(1,TAB), NULL, SMP_T_BOOL, SMP_USE_L4CLI, },
{ "src_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_sess_rate", smp_fetch_sc_sess_rate, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "src_updt_conn_cnt", smp_fetch_src_updt_conn_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_L4CLI, },
{ "table_avl", smp_fetch_table_avl, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "table_cnt", smp_fetch_table_cnt, ARG1(1,TAB), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ /* END */ },
}};
__attribute__((constructor))
static void __stream_init(void)
{
sample_register_fetches(&smp_fetch_keywords);
acl_register_keywords(&acl_kws);
tcp_req_cont_keywords_register(&stream_tcp_keywords);
http_req_keywords_register(&stream_http_keywords);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/