blob: 4d855dba1d92f8c5976a5ef2e17fc881853d7dd4 [file] [log] [blame]
/*
* Backend variables and functions.
*
* Copyright 2000-2008 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <syslog.h>
#include <string.h>
#include <ctype.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/debug.h>
#include <common/eb32tree.h>
#include <common/ticks.h>
#include <common/time.h>
#include <types/global.h>
#include <proto/acl.h>
#include <proto/backend.h>
#include <proto/client.h>
#include <proto/fd.h>
#include <proto/httperr.h>
#include <proto/log.h>
#include <proto/proto_http.h>
#include <proto/proto_tcp.h>
#include <proto/queue.h>
#include <proto/session.h>
#include <proto/stream_sock.h>
#include <proto/task.h>
#ifdef CONFIG_HAP_TCPSPLICE
#include <libtcpsplice.h>
#endif
static inline void fwrr_remove_from_tree(struct server *s);
static inline void fwrr_queue_by_weight(struct eb_root *root, struct server *s);
static inline void fwrr_dequeue_srv(struct server *s);
static void fwrr_get_srv(struct server *s);
static void fwrr_queue_srv(struct server *s);
/* This function returns non-zero if a server with the given weight and state
* is usable for LB, otherwise zero.
*/
static inline int srv_is_usable(int state, int weight)
{
if (!weight)
return 0;
if (state & SRV_GOINGDOWN)
return 0;
if (!(state & SRV_RUNNING))
return 0;
return 1;
}
/*
* This function recounts the number of usable active and backup servers for
* proxy <p>. These numbers are returned into the p->srv_act and p->srv_bck.
* This function also recomputes the total active and backup weights. However,
* it does not update tot_weight nor tot_used. Use update_backend_weight() for
* this.
*/
static void recount_servers(struct proxy *px)
{
struct server *srv;
px->srv_act = px->srv_bck = 0;
px->lbprm.tot_wact = px->lbprm.tot_wbck = 0;
px->lbprm.fbck = NULL;
for (srv = px->srv; srv != NULL; srv = srv->next) {
if (!srv_is_usable(srv->state, srv->eweight))
continue;
if (srv->state & SRV_BACKUP) {
if (!px->srv_bck &&
!(px->options & PR_O_USE_ALL_BK))
px->lbprm.fbck = srv;
px->srv_bck++;
px->lbprm.tot_wbck += srv->eweight;
} else {
px->srv_act++;
px->lbprm.tot_wact += srv->eweight;
}
}
}
/* This function simply updates the backend's tot_weight and tot_used values
* after servers weights have been updated. It is designed to be used after
* recount_servers() or equivalent.
*/
static void update_backend_weight(struct proxy *px)
{
if (px->srv_act) {
px->lbprm.tot_weight = px->lbprm.tot_wact;
px->lbprm.tot_used = px->srv_act;
}
else if (px->lbprm.fbck) {
/* use only the first backup server */
px->lbprm.tot_weight = px->lbprm.fbck->eweight;
px->lbprm.tot_used = 1;
}
else {
px->lbprm.tot_weight = px->lbprm.tot_wbck;
px->lbprm.tot_used = px->srv_bck;
}
}
/* this function updates the map according to server <srv>'s new state */
static void map_set_server_status_down(struct server *srv)
{
struct proxy *p = srv->proxy;
if (srv->state == srv->prev_state &&
srv->eweight == srv->prev_eweight)
return;
if (srv_is_usable(srv->state, srv->eweight))
goto out_update_state;
/* FIXME: could be optimized since we know what changed */
recount_servers(p);
update_backend_weight(p);
p->lbprm.map.state |= PR_MAP_RECALC;
out_update_state:
srv->prev_state = srv->state;
srv->prev_eweight = srv->eweight;
}
/* This function updates the map according to server <srv>'s new state */
static void map_set_server_status_up(struct server *srv)
{
struct proxy *p = srv->proxy;
if (srv->state == srv->prev_state &&
srv->eweight == srv->prev_eweight)
return;
if (!srv_is_usable(srv->state, srv->eweight))
goto out_update_state;
/* FIXME: could be optimized since we know what changed */
recount_servers(p);
update_backend_weight(p);
p->lbprm.map.state |= PR_MAP_RECALC;
out_update_state:
srv->prev_state = srv->state;
srv->prev_eweight = srv->eweight;
}
/* This function recomputes the server map for proxy px. It relies on
* px->lbprm.tot_wact, tot_wbck, tot_used, tot_weight, so it must be
* called after recount_servers(). It also expects px->lbprm.map.srv
* to be allocated with the largest size needed. It updates tot_weight.
*/
void recalc_server_map(struct proxy *px)
{
int o, tot, flag;
struct server *cur, *best;
switch (px->lbprm.tot_used) {
case 0: /* no server */
px->lbprm.map.state &= ~PR_MAP_RECALC;
return;
case 1: /* only one server, just fill first entry */
tot = 1;
break;
default:
tot = px->lbprm.tot_weight;
break;
}
/* here we *know* that we have some servers */
if (px->srv_act)
flag = SRV_RUNNING;
else
flag = SRV_RUNNING | SRV_BACKUP;
/* this algorithm gives priority to the first server, which means that
* it will respect the declaration order for equivalent weights, and
* that whatever the weights, the first server called will always be
* the first declared. This is an important asumption for the backup
* case, where we want the first server only.
*/
for (cur = px->srv; cur; cur = cur->next)
cur->wscore = 0;
for (o = 0; o < tot; o++) {
int max = 0;
best = NULL;
for (cur = px->srv; cur; cur = cur->next) {
if (flag == (cur->state &
(SRV_RUNNING | SRV_GOINGDOWN | SRV_BACKUP))) {
int v;
/* If we are forced to return only one server, we don't want to
* go further, because we would return the wrong one due to
* divide overflow.
*/
if (tot == 1) {
best = cur;
/* note that best->wscore will be wrong but we don't care */
break;
}
cur->wscore += cur->eweight;
v = (cur->wscore + tot) / tot; /* result between 0 and 3 */
if (best == NULL || v > max) {
max = v;
best = cur;
}
}
}
px->lbprm.map.srv[o] = best;
best->wscore -= tot;
}
px->lbprm.map.state &= ~PR_MAP_RECALC;
}
/* This function is responsible of building the server MAP for map-based LB
* algorithms, allocating the map, and setting p->lbprm.wmult to the GCD of the
* weights if applicable. It should be called only once per proxy, at config
* time.
*/
void init_server_map(struct proxy *p)
{
struct server *srv;
int pgcd;
int act, bck;
p->lbprm.set_server_status_up = map_set_server_status_up;
p->lbprm.set_server_status_down = map_set_server_status_down;
p->lbprm.update_server_eweight = NULL;
if (!p->srv)
return;
/* We will factor the weights to reduce the table,
* using Euclide's largest common divisor algorithm
*/
pgcd = p->srv->uweight;
for (srv = p->srv->next; srv && pgcd > 1; srv = srv->next) {
int w = srv->uweight;
while (w) {
int t = pgcd % w;
pgcd = w;
w = t;
}
}
/* It is sometimes useful to know what factor to apply
* to the backend's effective weight to know its real
* weight.
*/
p->lbprm.wmult = pgcd;
act = bck = 0;
for (srv = p->srv; srv; srv = srv->next) {
srv->eweight = srv->uweight / pgcd;
srv->prev_eweight = srv->eweight;
srv->prev_state = srv->state;
if (srv->state & SRV_BACKUP)
bck += srv->eweight;
else
act += srv->eweight;
}
/* this is the largest map we will ever need for this servers list */
if (act < bck)
act = bck;
p->lbprm.map.srv = (struct server **)calloc(act, sizeof(struct server *));
/* recounts servers and their weights */
p->lbprm.map.state = PR_MAP_RECALC;
recount_servers(p);
update_backend_weight(p);
recalc_server_map(p);
}
/* This function updates the server trees according to server <srv>'s new
* state. It should be called when server <srv>'s status changes to down.
* It is not important whether the server was already down or not. It is not
* important either that the new state is completely down (the caller may not
* know all the variables of a server's state).
*/
static void fwrr_set_server_status_down(struct server *srv)
{
struct proxy *p = srv->proxy;
struct fwrr_group *grp;
if (srv->state == srv->prev_state &&
srv->eweight == srv->prev_eweight)
return;
if (srv_is_usable(srv->state, srv->eweight))
goto out_update_state;
if (!srv_is_usable(srv->prev_state, srv->prev_eweight))
/* server was already down */
goto out_update_backend;
grp = (srv->state & SRV_BACKUP) ? &p->lbprm.fwrr.bck : &p->lbprm.fwrr.act;
grp->next_weight -= srv->prev_eweight;
if (srv->state & SRV_BACKUP) {
p->lbprm.tot_wbck = p->lbprm.fwrr.bck.next_weight;
p->srv_bck--;
if (srv == p->lbprm.fbck) {
/* we lost the first backup server in a single-backup
* configuration, we must search another one.
*/
struct server *srv2 = p->lbprm.fbck;
do {
srv2 = srv2->next;
} while (srv2 &&
!((srv2->state & SRV_BACKUP) &&
srv_is_usable(srv2->state, srv2->eweight)));
p->lbprm.fbck = srv2;
}
} else {
p->lbprm.tot_wact = p->lbprm.fwrr.act.next_weight;
p->srv_act--;
}
fwrr_dequeue_srv(srv);
fwrr_remove_from_tree(srv);
out_update_backend:
/* check/update tot_used, tot_weight */
update_backend_weight(p);
out_update_state:
srv->prev_state = srv->state;
srv->prev_eweight = srv->eweight;
}
/* This function updates the server trees according to server <srv>'s new
* state. It should be called when server <srv>'s status changes to up.
* It is not important whether the server was already down or not. It is not
* important either that the new state is completely UP (the caller may not
* know all the variables of a server's state). This function will not change
* the weight of a server which was already up.
*/
static void fwrr_set_server_status_up(struct server *srv)
{
struct proxy *p = srv->proxy;
struct fwrr_group *grp;
if (srv->state == srv->prev_state &&
srv->eweight == srv->prev_eweight)
return;
if (!srv_is_usable(srv->state, srv->eweight))
goto out_update_state;
if (srv_is_usable(srv->prev_state, srv->prev_eweight))
/* server was already up */
goto out_update_backend;
grp = (srv->state & SRV_BACKUP) ? &p->lbprm.fwrr.bck : &p->lbprm.fwrr.act;
grp->next_weight += srv->eweight;
if (srv->state & SRV_BACKUP) {
p->lbprm.tot_wbck = p->lbprm.fwrr.bck.next_weight;
p->srv_bck++;
if (!(p->options & PR_O_USE_ALL_BK)) {
if (!p->lbprm.fbck) {
/* there was no backup server anymore */
p->lbprm.fbck = srv;
} else {
/* we may have restored a backup server prior to fbck,
* in which case it should replace it.
*/
struct server *srv2 = srv;
do {
srv2 = srv2->next;
} while (srv2 && (srv2 != p->lbprm.fbck));
if (srv2)
p->lbprm.fbck = srv;
}
}
} else {
p->lbprm.tot_wact = p->lbprm.fwrr.act.next_weight;
p->srv_act++;
}
/* note that eweight cannot be 0 here */
fwrr_get_srv(srv);
srv->npos = grp->curr_pos + (grp->next_weight + grp->curr_weight - grp->curr_pos) / srv->eweight;
fwrr_queue_srv(srv);
out_update_backend:
/* check/update tot_used, tot_weight */
update_backend_weight(p);
out_update_state:
srv->prev_state = srv->state;
srv->prev_eweight = srv->eweight;
}
/* This function must be called after an update to server <srv>'s effective
* weight. It may be called after a state change too.
*/
static void fwrr_update_server_weight(struct server *srv)
{
int old_state, new_state;
struct proxy *p = srv->proxy;
struct fwrr_group *grp;
if (srv->state == srv->prev_state &&
srv->eweight == srv->prev_eweight)
return;
/* If changing the server's weight changes its state, we simply apply
* the procedures we already have for status change. If the state
* remains down, the server is not in any tree, so it's as easy as
* updating its values. If the state remains up with different weights,
* there are some computations to perform to find a new place and
* possibly a new tree for this server.
*/
old_state = srv_is_usable(srv->prev_state, srv->prev_eweight);
new_state = srv_is_usable(srv->state, srv->eweight);
if (!old_state && !new_state) {
srv->prev_state = srv->state;
srv->prev_eweight = srv->eweight;
return;
}
else if (!old_state && new_state) {
fwrr_set_server_status_up(srv);
return;
}
else if (old_state && !new_state) {
fwrr_set_server_status_down(srv);
return;
}
grp = (srv->state & SRV_BACKUP) ? &p->lbprm.fwrr.bck : &p->lbprm.fwrr.act;
grp->next_weight = grp->next_weight - srv->prev_eweight + srv->eweight;
p->lbprm.tot_wact = p->lbprm.fwrr.act.next_weight;
p->lbprm.tot_wbck = p->lbprm.fwrr.bck.next_weight;
if (srv->lb_tree == grp->init) {
fwrr_dequeue_srv(srv);
fwrr_queue_by_weight(grp->init, srv);
}
else if (!srv->lb_tree) {
/* FIXME: server was down. This is not possible right now but
* may be needed soon for slowstart or graceful shutdown.
*/
fwrr_dequeue_srv(srv);
fwrr_get_srv(srv);
srv->npos = grp->curr_pos + (grp->next_weight + grp->curr_weight - grp->curr_pos) / srv->eweight;
fwrr_queue_srv(srv);
} else {
/* The server is either active or in the next queue. If it's
* still in the active queue and it has not consumed all of its
* places, let's adjust its next position.
*/
fwrr_get_srv(srv);
if (srv->eweight > 0) {
int prev_next = srv->npos;
int step = grp->next_weight / srv->eweight;
srv->npos = srv->lpos + step;
srv->rweight = 0;
if (srv->npos > prev_next)
srv->npos = prev_next;
if (srv->npos < grp->curr_pos + 2)
srv->npos = grp->curr_pos + step;
} else {
/* push it into the next tree */
srv->npos = grp->curr_pos + grp->curr_weight;
}
fwrr_dequeue_srv(srv);
fwrr_queue_srv(srv);
}
update_backend_weight(p);
srv->prev_state = srv->state;
srv->prev_eweight = srv->eweight;
}
/* Remove a server from a tree. It must have previously been dequeued. This
* function is meant to be called when a server is going down or has its
* weight disabled.
*/
static inline void fwrr_remove_from_tree(struct server *s)
{
s->lb_tree = NULL;
}
/* Queue a server in the weight tree <root>, assuming the weight is >0.
* We want to sort them by inverted weights, because we need to place
* heavy servers first in order to get a smooth distribution.
*/
static inline void fwrr_queue_by_weight(struct eb_root *root, struct server *s)
{
s->lb_node.key = SRV_EWGHT_MAX - s->eweight;
eb32_insert(root, &s->lb_node);
s->lb_tree = root;
}
/* This function is responsible for building the weight trees in case of fast
* weighted round-robin. It also sets p->lbprm.wdiv to the eweight to uweight
* ratio. Both active and backup groups are initialized.
*/
void fwrr_init_server_groups(struct proxy *p)
{
struct server *srv;
struct eb_root init_head = EB_ROOT;
p->lbprm.set_server_status_up = fwrr_set_server_status_up;
p->lbprm.set_server_status_down = fwrr_set_server_status_down;
p->lbprm.update_server_eweight = fwrr_update_server_weight;
p->lbprm.wdiv = BE_WEIGHT_SCALE;
for (srv = p->srv; srv; srv = srv->next) {
srv->prev_eweight = srv->eweight = srv->uweight * BE_WEIGHT_SCALE;
srv->prev_state = srv->state;
}
recount_servers(p);
update_backend_weight(p);
/* prepare the active servers group */
p->lbprm.fwrr.act.curr_pos = p->lbprm.fwrr.act.curr_weight =
p->lbprm.fwrr.act.next_weight = p->lbprm.tot_wact;
p->lbprm.fwrr.act.curr = p->lbprm.fwrr.act.t0 =
p->lbprm.fwrr.act.t1 = init_head;
p->lbprm.fwrr.act.init = &p->lbprm.fwrr.act.t0;
p->lbprm.fwrr.act.next = &p->lbprm.fwrr.act.t1;
/* prepare the backup servers group */
p->lbprm.fwrr.bck.curr_pos = p->lbprm.fwrr.bck.curr_weight =
p->lbprm.fwrr.bck.next_weight = p->lbprm.tot_wbck;
p->lbprm.fwrr.bck.curr = p->lbprm.fwrr.bck.t0 =
p->lbprm.fwrr.bck.t1 = init_head;
p->lbprm.fwrr.bck.init = &p->lbprm.fwrr.bck.t0;
p->lbprm.fwrr.bck.next = &p->lbprm.fwrr.bck.t1;
/* queue active and backup servers in two distinct groups */
for (srv = p->srv; srv; srv = srv->next) {
if (!srv_is_usable(srv->state, srv->eweight))
continue;
fwrr_queue_by_weight((srv->state & SRV_BACKUP) ?
p->lbprm.fwrr.bck.init :
p->lbprm.fwrr.act.init,
srv);
}
}
/* simply removes a server from a weight tree */
static inline void fwrr_dequeue_srv(struct server *s)
{
eb32_delete(&s->lb_node);
}
/* queues a server into the appropriate group and tree depending on its
* backup status, and ->npos. If the server is disabled, simply assign
* it to the NULL tree.
*/
static void fwrr_queue_srv(struct server *s)
{
struct proxy *p = s->proxy;
struct fwrr_group *grp;
grp = (s->state & SRV_BACKUP) ? &p->lbprm.fwrr.bck : &p->lbprm.fwrr.act;
/* Delay everything which does not fit into the window and everything
* which does not fit into the theorical new window.
*/
if (!srv_is_usable(s->state, s->eweight)) {
fwrr_remove_from_tree(s);
}
else if (s->eweight <= 0 ||
s->npos >= 2 * grp->curr_weight ||
s->npos >= grp->curr_weight + grp->next_weight) {
/* put into next tree, and readjust npos in case we could
* finally take this back to current. */
s->npos -= grp->curr_weight;
fwrr_queue_by_weight(grp->next, s);
}
else {
/* The sorting key is stored in units of s->npos * user_weight
* in order to avoid overflows. As stated in backend.h, the
* lower the scale, the rougher the weights modulation, and the
* higher the scale, the lower the number of servers without
* overflow. With this formula, the result is always positive,
* so we can use eb3é_insert().
*/
s->lb_node.key = SRV_UWGHT_RANGE * s->npos +
(unsigned)(SRV_EWGHT_MAX + s->rweight - s->eweight) / BE_WEIGHT_SCALE;
eb32_insert(&grp->curr, &s->lb_node);
s->lb_tree = &grp->curr;
}
}
/* prepares a server when extracting it from the "init" tree */
static inline void fwrr_get_srv_init(struct server *s)
{
s->npos = s->rweight = 0;
}
/* prepares a server when extracting it from the "next" tree */
static inline void fwrr_get_srv_next(struct server *s)
{
struct fwrr_group *grp = (s->state & SRV_BACKUP) ?
&s->proxy->lbprm.fwrr.bck :
&s->proxy->lbprm.fwrr.act;
s->npos += grp->curr_weight;
}
/* prepares a server when it was marked down */
static inline void fwrr_get_srv_down(struct server *s)
{
struct fwrr_group *grp = (s->state & SRV_BACKUP) ?
&s->proxy->lbprm.fwrr.bck :
&s->proxy->lbprm.fwrr.act;
s->npos = grp->curr_pos;
}
/* prepares a server when extracting it from its tree */
static void fwrr_get_srv(struct server *s)
{
struct proxy *p = s->proxy;
struct fwrr_group *grp = (s->state & SRV_BACKUP) ?
&p->lbprm.fwrr.bck :
&p->lbprm.fwrr.act;
if (s->lb_tree == grp->init) {
fwrr_get_srv_init(s);
}
else if (s->lb_tree == grp->next) {
fwrr_get_srv_next(s);
}
else if (s->lb_tree == NULL) {
fwrr_get_srv_down(s);
}
}
/* switches trees "init" and "next" for FWRR group <grp>. "init" should be empty
* when this happens, and "next" filled with servers sorted by weights.
*/
static inline void fwrr_switch_trees(struct fwrr_group *grp)
{
struct eb_root *swap;
swap = grp->init;
grp->init = grp->next;
grp->next = swap;
grp->curr_weight = grp->next_weight;
grp->curr_pos = grp->curr_weight;
}
/* return next server from the current tree in FWRR group <grp>, or a server
* from the "init" tree if appropriate. If both trees are empty, return NULL.
*/
static struct server *fwrr_get_server_from_group(struct fwrr_group *grp)
{
struct eb32_node *node;
struct server *s;
node = eb32_first(&grp->curr);
s = eb32_entry(node, struct server, lb_node);
if (!node || s->npos > grp->curr_pos) {
/* either we have no server left, or we have a hole */
struct eb32_node *node2;
node2 = eb32_first(grp->init);
if (node2) {
node = node2;
s = eb32_entry(node, struct server, lb_node);
fwrr_get_srv_init(s);
if (s->eweight == 0) /* FIXME: is it possible at all ? */
node = NULL;
}
}
if (node)
return s;
else
return NULL;
}
/* Computes next position of server <s> in the group. It is mandatory for <s>
* to have a non-zero, positive eweight.
*/
static inline void fwrr_update_position(struct fwrr_group *grp, struct server *s)
{
if (!s->npos) {
/* first time ever for this server */
s->lpos = grp->curr_pos;
s->npos = grp->curr_pos + grp->next_weight / s->eweight;
s->rweight += grp->next_weight % s->eweight;
if (s->rweight >= s->eweight) {
s->rweight -= s->eweight;
s->npos++;
}
} else {
s->lpos = s->npos;
s->npos += grp->next_weight / s->eweight;
s->rweight += grp->next_weight % s->eweight;
if (s->rweight >= s->eweight) {
s->rweight -= s->eweight;
s->npos++;
}
}
}
/* Return next server from the current tree in backend <p>, or a server from
* the init tree if appropriate. If both trees are empty, return NULL.
* Saturated servers are skipped and requeued.
*/
static struct server *fwrr_get_next_server(struct proxy *p, struct server *srvtoavoid)
{
struct server *srv, *full, *avoided;
struct fwrr_group *grp;
int switched;
if (p->srv_act)
grp = &p->lbprm.fwrr.act;
else if (p->lbprm.fbck)
return p->lbprm.fbck;
else if (p->srv_bck)
grp = &p->lbprm.fwrr.bck;
else
return NULL;
switched = 0;
avoided = NULL;
full = NULL; /* NULL-terminated list of saturated servers */
while (1) {
/* if we see an empty group, let's first try to collect weights
* which might have recently changed.
*/
if (!grp->curr_weight)
grp->curr_pos = grp->curr_weight = grp->next_weight;
/* get first server from the "current" tree. When the end of
* the tree is reached, we may have to switch, but only once.
*/
while (1) {
srv = fwrr_get_server_from_group(grp);
if (srv)
break;
if (switched) {
if (avoided) {
srv = avoided;
break;
}
goto requeue_servers;
}
switched = 1;
fwrr_switch_trees(grp);
}
/* OK, we have a server. However, it may be saturated, in which
* case we don't want to reconsider it for now. We'll update
* its position and dequeue it anyway, so that we can move it
* to a better place afterwards.
*/
fwrr_update_position(grp, srv);
fwrr_dequeue_srv(srv);
grp->curr_pos++;
if (!srv->maxconn || (!srv->nbpend && srv->served < srv_dynamic_maxconn(srv))) {
/* make sure it is not the server we are trying to exclude... */
if (srv != srvtoavoid || avoided)
break;
avoided = srv; /* ...but remember that is was selected yet avoided */
}
/* the server is saturated or avoided, let's chain it for later reinsertion */
srv->next_full = full;
full = srv;
}
/* OK, we got the best server, let's update it */
fwrr_queue_srv(srv);
requeue_servers:
/* Requeue all extracted servers. If full==srv then it was
* avoided (unsucessfully) and chained, omit it now.
*/
if (unlikely(full != NULL)) {
if (switched) {
/* the tree has switched, requeue all extracted servers
* into "init", because their place was lost, and only
* their weight matters.
*/
do {
if (likely(full != srv))
fwrr_queue_by_weight(grp->init, full);
full = full->next_full;
} while (full);
} else {
/* requeue all extracted servers just as if they were consumed
* so that they regain their expected place.
*/
do {
if (likely(full != srv))
fwrr_queue_srv(full);
full = full->next_full;
} while (full);
}
}
return srv;
}
/* Remove a server from a tree. It must have previously been dequeued. This
* function is meant to be called when a server is going down or has its
* weight disabled.
*/
static inline void fwlc_remove_from_tree(struct server *s)
{
s->lb_tree = NULL;
}
/* simply removes a server from a tree */
static inline void fwlc_dequeue_srv(struct server *s)
{
eb32_delete(&s->lb_node);
}
/* Queue a server in its associated tree, assuming the weight is >0.
* Servers are sorted by #conns/weight. To ensure maximum accuracy,
* we use #conns*SRV_EWGHT_MAX/eweight as the sorting key.
*/
static inline void fwlc_queue_srv(struct server *s)
{
s->lb_node.key = s->served * SRV_EWGHT_MAX / s->eweight;
eb32_insert(s->lb_tree, &s->lb_node);
}
/* Re-position the server in the FWLC tree after it has been assigned one
* connection or after it has released one. Note that it is possible that
* the server has been moved out of the tree due to failed health-checks.
*/
static void fwlc_srv_reposition(struct server *s)
{
if (!s->lb_tree)
return;
fwlc_dequeue_srv(s);
fwlc_queue_srv(s);
}
/* This function updates the server trees according to server <srv>'s new
* state. It should be called when server <srv>'s status changes to down.
* It is not important whether the server was already down or not. It is not
* important either that the new state is completely down (the caller may not
* know all the variables of a server's state).
*/
static void fwlc_set_server_status_down(struct server *srv)
{
struct proxy *p = srv->proxy;
if (srv->state == srv->prev_state &&
srv->eweight == srv->prev_eweight)
return;
if (srv_is_usable(srv->state, srv->eweight))
goto out_update_state;
if (!srv_is_usable(srv->prev_state, srv->prev_eweight))
/* server was already down */
goto out_update_backend;
if (srv->state & SRV_BACKUP) {
p->lbprm.tot_wbck -= srv->prev_eweight;
p->srv_bck--;
if (srv == p->lbprm.fbck) {
/* we lost the first backup server in a single-backup
* configuration, we must search another one.
*/
struct server *srv2 = p->lbprm.fbck;
do {
srv2 = srv2->next;
} while (srv2 &&
!((srv2->state & SRV_BACKUP) &&
srv_is_usable(srv2->state, srv2->eweight)));
p->lbprm.fbck = srv2;
}
} else {
p->lbprm.tot_wact -= srv->prev_eweight;
p->srv_act--;
}
fwlc_dequeue_srv(srv);
fwlc_remove_from_tree(srv);
out_update_backend:
/* check/update tot_used, tot_weight */
update_backend_weight(p);
out_update_state:
srv->prev_state = srv->state;
srv->prev_eweight = srv->eweight;
}
/* This function updates the server trees according to server <srv>'s new
* state. It should be called when server <srv>'s status changes to up.
* It is not important whether the server was already down or not. It is not
* important either that the new state is completely UP (the caller may not
* know all the variables of a server's state). This function will not change
* the weight of a server which was already up.
*/
static void fwlc_set_server_status_up(struct server *srv)
{
struct proxy *p = srv->proxy;
if (srv->state == srv->prev_state &&
srv->eweight == srv->prev_eweight)
return;
if (!srv_is_usable(srv->state, srv->eweight))
goto out_update_state;
if (srv_is_usable(srv->prev_state, srv->prev_eweight))
/* server was already up */
goto out_update_backend;
if (srv->state & SRV_BACKUP) {
srv->lb_tree = &p->lbprm.fwlc.bck;
p->lbprm.tot_wbck += srv->eweight;
p->srv_bck++;
if (!(p->options & PR_O_USE_ALL_BK)) {
if (!p->lbprm.fbck) {
/* there was no backup server anymore */
p->lbprm.fbck = srv;
} else {
/* we may have restored a backup server prior to fbck,
* in which case it should replace it.
*/
struct server *srv2 = srv;
do {
srv2 = srv2->next;
} while (srv2 && (srv2 != p->lbprm.fbck));
if (srv2)
p->lbprm.fbck = srv;
}
}
} else {
srv->lb_tree = &p->lbprm.fwlc.act;
p->lbprm.tot_wact += srv->eweight;
p->srv_act++;
}
/* note that eweight cannot be 0 here */
fwlc_queue_srv(srv);
out_update_backend:
/* check/update tot_used, tot_weight */
update_backend_weight(p);
out_update_state:
srv->prev_state = srv->state;
srv->prev_eweight = srv->eweight;
}
/* This function must be called after an update to server <srv>'s effective
* weight. It may be called after a state change too.
*/
static void fwlc_update_server_weight(struct server *srv)
{
int old_state, new_state;
struct proxy *p = srv->proxy;
if (srv->state == srv->prev_state &&
srv->eweight == srv->prev_eweight)
return;
/* If changing the server's weight changes its state, we simply apply
* the procedures we already have for status change. If the state
* remains down, the server is not in any tree, so it's as easy as
* updating its values. If the state remains up with different weights,
* there are some computations to perform to find a new place and
* possibly a new tree for this server.
*/
old_state = srv_is_usable(srv->prev_state, srv->prev_eweight);
new_state = srv_is_usable(srv->state, srv->eweight);
if (!old_state && !new_state) {
srv->prev_state = srv->state;
srv->prev_eweight = srv->eweight;
return;
}
else if (!old_state && new_state) {
fwlc_set_server_status_up(srv);
return;
}
else if (old_state && !new_state) {
fwlc_set_server_status_down(srv);
return;
}
if (srv->lb_tree)
fwlc_dequeue_srv(srv);
if (srv->state & SRV_BACKUP) {
p->lbprm.tot_wbck += srv->eweight - srv->prev_eweight;
srv->lb_tree = &p->lbprm.fwlc.bck;
} else {
p->lbprm.tot_wact += srv->eweight - srv->prev_eweight;
srv->lb_tree = &p->lbprm.fwlc.act;
}
fwlc_queue_srv(srv);
update_backend_weight(p);
srv->prev_state = srv->state;
srv->prev_eweight = srv->eweight;
}
/* This function is responsible for building the trees in case of fast
* weighted least-conns. It also sets p->lbprm.wdiv to the eweight to
* uweight ratio. Both active and backup groups are initialized.
*/
void fwlc_init_server_tree(struct proxy *p)
{
struct server *srv;
struct eb_root init_head = EB_ROOT;
p->lbprm.set_server_status_up = fwlc_set_server_status_up;
p->lbprm.set_server_status_down = fwlc_set_server_status_down;
p->lbprm.update_server_eweight = fwlc_update_server_weight;
p->lbprm.server_take_conn = fwlc_srv_reposition;
p->lbprm.server_drop_conn = fwlc_srv_reposition;
p->lbprm.wdiv = BE_WEIGHT_SCALE;
for (srv = p->srv; srv; srv = srv->next) {
srv->prev_eweight = srv->eweight = srv->uweight * BE_WEIGHT_SCALE;
srv->prev_state = srv->state;
}
recount_servers(p);
update_backend_weight(p);
p->lbprm.fwlc.act = init_head;
p->lbprm.fwlc.bck = init_head;
/* queue active and backup servers in two distinct groups */
for (srv = p->srv; srv; srv = srv->next) {
if (!srv_is_usable(srv->state, srv->eweight))
continue;
srv->lb_tree = (srv->state & SRV_BACKUP) ? &p->lbprm.fwlc.bck : &p->lbprm.fwlc.act;
fwlc_queue_srv(srv);
}
}
/* Return next server from the FWLC tree in backend <p>. If the tree is empty,
* return NULL. Saturated servers are skipped.
*/
static struct server *fwlc_get_next_server(struct proxy *p, struct server *srvtoavoid)
{
struct server *srv, *avoided;
struct eb32_node *node;
srv = avoided = NULL;
if (p->srv_act)
node = eb32_first(&p->lbprm.fwlc.act);
else if (p->lbprm.fbck)
return p->lbprm.fbck;
else if (p->srv_bck)
node = eb32_first(&p->lbprm.fwlc.bck);
else
return NULL;
while (node) {
/* OK, we have a server. However, it may be saturated, in which
* case we don't want to reconsider it for now, so we'll simply
* skip it. Same if it's the server we try to avoid, in which
* case we simply remember it for later use if needed.
*/
struct server *s;
s = eb32_entry(node, struct server, lb_node);
if (!s->maxconn || (!s->nbpend && s->served < srv_dynamic_maxconn(s))) {
if (s != srvtoavoid) {
srv = s;
break;
}
avoided = s;
}
node = eb32_next(node);
}
if (!srv)
srv = avoided;
return srv;
}
/*
* This function tries to find a running server for the proxy <px> following
* the URL parameter hash method. It looks for a specific parameter in the
* URL and hashes it to compute the server ID. This is useful to optimize
* performance by avoiding bounces between servers in contexts where sessions
* are shared but cookies are not usable. If the parameter is not found, NULL
* is returned. If any server is found, it will be returned. If no valid server
* is found, NULL is returned.
*/
struct server *get_server_ph(struct proxy *px, const char *uri, int uri_len)
{
unsigned long hash = 0;
const char *p;
const char *params;
int plen;
/* when tot_weight is 0 then so is srv_count */
if (px->lbprm.tot_weight == 0)
return NULL;
if ((p = memchr(uri, '?', uri_len)) == NULL)
return NULL;
if (px->lbprm.map.state & PR_MAP_RECALC)
recalc_server_map(px);
p++;
uri_len -= (p - uri);
plen = px->url_param_len;
params = p;
while (uri_len > plen) {
/* Look for the parameter name followed by an equal symbol */
if (params[plen] == '=') {
if (memcmp(params, px->url_param_name, plen) == 0) {
/* OK, we have the parameter here at <params>, and
* the value after the equal sign, at <p>
* skip the equal symbol
*/
p += plen + 1;
uri_len -= plen + 1;
while (uri_len && *p != '&') {
hash = *p + (hash << 6) + (hash << 16) - hash;
uri_len--;
p++;
}
return px->lbprm.map.srv[hash % px->lbprm.tot_weight];
}
}
/* skip to next parameter */
p = memchr(params, '&', uri_len);
if (!p)
return NULL;
p++;
uri_len -= (p - params);
params = p;
}
return NULL;
}
/*
* this does the same as the previous server_ph, but check the body contents
*/
struct server *get_server_ph_post(struct session *s)
{
unsigned long hash = 0;
struct http_txn *txn = &s->txn;
struct buffer *req = s->req;
struct http_msg *msg = &txn->req;
struct proxy *px = s->be;
unsigned int plen = px->url_param_len;
unsigned long body;
unsigned long len;
const char *params;
struct hdr_ctx ctx;
const char *p;
/* tot_weight appears to mean srv_count */
if (px->lbprm.tot_weight == 0)
return NULL;
body = msg->sol[msg->eoh] == '\r' ? msg->eoh + 2 : msg->eoh + 1;
len = req->l - body;
params = req->data + body;
if ( len == 0 )
return NULL;
if (px->lbprm.map.state & PR_MAP_RECALC)
recalc_server_map(px);
ctx.idx = 0;
/* if the message is chunked, we skip the chunk size, but use the value as len */
http_find_header2("Transfer-Encoding", 17, msg->sol, &txn->hdr_idx, &ctx);
if (ctx.idx && ctx.vlen >= 7 && strncasecmp(ctx.line+ctx.val, "chunked", 7) == 0) {
unsigned int chunk = 0;
while ( params < req->rlim && !HTTP_IS_CRLF(*params)) {
char c = *params;
if (ishex(c)) {
unsigned int hex = toupper(c) - '0';
if ( hex > 9 )
hex -= 'A' - '9' - 1;
chunk = (chunk << 4) | hex;
}
else
return NULL;
params++;
len--;
}
/* spec says we get CRLF */
if (HTTP_IS_CRLF(*params) && HTTP_IS_CRLF(params[1]))
params += 2;
else
return NULL;
/* ok we have some encoded length, just inspect the first chunk */
len = chunk;
}
p = params;
while (len > plen) {
/* Look for the parameter name followed by an equal symbol */
if (params[plen] == '=') {
if (memcmp(params, px->url_param_name, plen) == 0) {
/* OK, we have the parameter here at <params>, and
* the value after the equal sign, at <p>
* skip the equal symbol
*/
p += plen + 1;
len -= plen + 1;
while (len && *p != '&') {
if (unlikely(!HTTP_IS_TOKEN(*p))) {
/* if in a POST, body must be URI encoded or its not a URI.
* Do not interprete any possible binary data as a parameter.
*/
if (likely(HTTP_IS_LWS(*p))) /* eol, uncertain uri len */
break;
return NULL; /* oh, no; this is not uri-encoded.
* This body does not contain parameters.
*/
}
hash = *p + (hash << 6) + (hash << 16) - hash;
len--;
p++;
/* should we break if vlen exceeds limit? */
}
return px->lbprm.map.srv[hash % px->lbprm.tot_weight];
}
}
/* skip to next parameter */
p = memchr(params, '&', len);
if (!p)
return NULL;
p++;
len -= (p - params);
params = p;
}
return NULL;
}
/*
* This function applies the load-balancing algorithm to the session, as
* defined by the backend it is assigned to. The session is then marked as
* 'assigned'.
*
* This function MAY NOT be called with SN_ASSIGNED already set. If the session
* had a server previously assigned, it is rebalanced, trying to avoid the same
* server.
* The function tries to keep the original connection slot if it reconnects to
* the same server, otherwise it releases it and tries to offer it.
*
* It is illegal to call this function with a session in a queue.
*
* It may return :
* SRV_STATUS_OK if everything is OK. Session assigned to ->srv
* SRV_STATUS_NOSRV if no server is available. Session is not ASSIGNED
* SRV_STATUS_FULL if all servers are saturated. Session is not ASSIGNED
* SRV_STATUS_INTERNAL for other unrecoverable errors.
*
* Upon successful return, the session flag SN_ASSIGNED is set to indicate that
* it does not need to be called anymore. This means that s->srv can be trusted
* in balance and direct modes.
*
*/
int assign_server(struct session *s)
{
struct server *conn_slot;
int err;
#ifdef DEBUG_FULL
fprintf(stderr,"assign_server : s=%p\n",s);
#endif
err = SRV_STATUS_INTERNAL;
if (unlikely(s->pend_pos || s->flags & SN_ASSIGNED))
goto out_err;
s->prev_srv = s->prev_srv;
conn_slot = s->srv_conn;
/* We have to release any connection slot before applying any LB algo,
* otherwise we may erroneously end up with no available slot.
*/
if (conn_slot)
sess_change_server(s, NULL);
/* We will now try to find the good server and store it into <s->srv>.
* Note that <s->srv> may be NULL in case of dispatch or proxy mode,
* as well as if no server is available (check error code).
*/
s->srv = NULL;
if (s->be->lbprm.algo & BE_LB_ALGO) {
int len;
/* we must check if we have at least one server available */
if (!s->be->lbprm.tot_weight) {
err = SRV_STATUS_NOSRV;
goto out;
}
switch (s->be->lbprm.algo & BE_LB_ALGO) {
case BE_LB_ALGO_RR:
s->srv = fwrr_get_next_server(s->be, s->prev_srv);
if (!s->srv) {
err = SRV_STATUS_FULL;
goto out;
}
break;
case BE_LB_ALGO_LC:
s->srv = fwlc_get_next_server(s->be, s->prev_srv);
if (!s->srv) {
err = SRV_STATUS_FULL;
goto out;
}
break;
case BE_LB_ALGO_SH:
if (s->cli_addr.ss_family == AF_INET)
len = 4;
else if (s->cli_addr.ss_family == AF_INET6)
len = 16;
else {
/* unknown IP family */
err = SRV_STATUS_INTERNAL;
goto out;
}
s->srv = get_server_sh(s->be,
(void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr,
len);
break;
case BE_LB_ALGO_UH:
/* URI hashing */
s->srv = get_server_uh(s->be,
s->txn.req.sol + s->txn.req.sl.rq.u,
s->txn.req.sl.rq.u_l);
break;
case BE_LB_ALGO_PH:
/* URL Parameter hashing */
if (s->txn.meth == HTTP_METH_POST &&
memchr(s->txn.req.sol + s->txn.req.sl.rq.u, '&',
s->txn.req.sl.rq.u_l ) == NULL)
s->srv = get_server_ph_post(s);
else
s->srv = get_server_ph(s->be,
s->txn.req.sol + s->txn.req.sl.rq.u,
s->txn.req.sl.rq.u_l);
if (!s->srv) {
/* parameter not found, fall back to round robin on the map */
s->srv = get_server_rr_with_conns(s->be, s->prev_srv);
if (!s->srv) {
err = SRV_STATUS_FULL;
goto out;
}
}
break;
default:
/* unknown balancing algorithm */
err = SRV_STATUS_INTERNAL;
goto out;
}
if (s->srv != s->prev_srv) {
s->be->cum_lbconn++;
s->srv->cum_lbconn++;
}
}
else if (s->be->options & PR_O_HTTP_PROXY) {
if (!s->srv_addr.sin_addr.s_addr) {
err = SRV_STATUS_NOSRV;
goto out;
}
}
else if (!*(int *)&s->be->dispatch_addr.sin_addr &&
!(s->fe->options & PR_O_TRANSP)) {
err = SRV_STATUS_NOSRV;
goto out;
}
s->flags |= SN_ASSIGNED;
err = SRV_STATUS_OK;
out:
/* Either we take back our connection slot, or we offer it to someone
* else if we don't need it anymore.
*/
if (conn_slot) {
if (conn_slot == s->srv) {
sess_change_server(s, s->srv);
} else {
if (may_dequeue_tasks(conn_slot, s->be))
process_srv_queue(conn_slot);
}
}
out_err:
return err;
}
/*
* This function assigns a server address to a session, and sets SN_ADDR_SET.
* The address is taken from the currently assigned server, or from the
* dispatch or transparent address.
*
* It may return :
* SRV_STATUS_OK if everything is OK.
* SRV_STATUS_INTERNAL for other unrecoverable errors.
*
* Upon successful return, the session flag SN_ADDR_SET is set. This flag is
* not cleared, so it's to the caller to clear it if required.
*
*/
int assign_server_address(struct session *s)
{
#ifdef DEBUG_FULL
fprintf(stderr,"assign_server_address : s=%p\n",s);
#endif
if ((s->flags & SN_DIRECT) || (s->be->lbprm.algo & BE_LB_ALGO)) {
/* A server is necessarily known for this session */
if (!(s->flags & SN_ASSIGNED))
return SRV_STATUS_INTERNAL;
s->srv_addr = s->srv->addr;
/* if this server remaps proxied ports, we'll use
* the port the client connected to with an offset. */
if (s->srv->state & SRV_MAPPORTS) {
if (!(s->fe->options & PR_O_TRANSP) && !(s->flags & SN_FRT_ADDR_SET))
get_frt_addr(s);
if (s->frt_addr.ss_family == AF_INET) {
s->srv_addr.sin_port = htons(ntohs(s->srv_addr.sin_port) +
ntohs(((struct sockaddr_in *)&s->frt_addr)->sin_port));
} else {
s->srv_addr.sin_port = htons(ntohs(s->srv_addr.sin_port) +
ntohs(((struct sockaddr_in6 *)&s->frt_addr)->sin6_port));
}
}
}
else if (*(int *)&s->be->dispatch_addr.sin_addr) {
/* connect to the defined dispatch addr */
s->srv_addr = s->be->dispatch_addr;
}
else if (s->fe->options & PR_O_TRANSP) {
/* in transparent mode, use the original dest addr if no dispatch specified */
if (!(s->flags & SN_FRT_ADDR_SET))
get_frt_addr(s);
memcpy(&s->srv_addr, &s->frt_addr, MIN(sizeof(s->srv_addr), sizeof(s->frt_addr)));
/* when we support IPv6 on the backend, we may add other tests */
//qfprintf(stderr, "Cannot get original server address.\n");
//return SRV_STATUS_INTERNAL;
}
else if (s->be->options & PR_O_HTTP_PROXY) {
/* If HTTP PROXY option is set, then server is already assigned
* during incoming client request parsing. */
}
else {
/* no server and no LB algorithm ! */
return SRV_STATUS_INTERNAL;
}
s->flags |= SN_ADDR_SET;
return SRV_STATUS_OK;
}
/* This function assigns a server to session <s> if required, and can add the
* connection to either the assigned server's queue or to the proxy's queue.
* If ->srv_conn is set, the session is first released from the server.
* It may also be called with SN_DIRECT and/or SN_ASSIGNED though. It will
* be called before any connection and after any retry or redispatch occurs.
*
* It is not allowed to call this function with a session in a queue.
*
* Returns :
*
* SRV_STATUS_OK if everything is OK.
* SRV_STATUS_NOSRV if no server is available. s->srv = NULL.
* SRV_STATUS_QUEUED if the connection has been queued.
* SRV_STATUS_FULL if the server(s) is/are saturated and the
* connection could not be queued in s->srv,
* which may be NULL if we queue on the backend.
* SRV_STATUS_INTERNAL for other unrecoverable errors.
*
*/
int assign_server_and_queue(struct session *s)
{
struct pendconn *p;
int err;
if (s->pend_pos)
return SRV_STATUS_INTERNAL;
err = SRV_STATUS_OK;
if (!(s->flags & SN_ASSIGNED)) {
err = assign_server(s);
if (s->prev_srv) {
/* This session was previously assigned to a server. We have to
* update the session's and the server's stats :
* - if the server changed :
* - set TX_CK_DOWN if txn.flags was TX_CK_VALID
* - set SN_REDISP if it was successfully redispatched
* - increment srv->redispatches and be->redispatches
* - if the server remained the same : update retries.
*/
if (s->prev_srv != s->srv) {
if ((s->txn.flags & TX_CK_MASK) == TX_CK_VALID) {
s->txn.flags &= ~TX_CK_MASK;
s->txn.flags |= TX_CK_DOWN;
}
s->flags |= SN_REDISP;
s->prev_srv->redispatches++;
s->be->redispatches++;
} else {
s->prev_srv->retries++;
s->be->retries++;
}
}
}
switch (err) {
case SRV_STATUS_OK:
/* we have SN_ASSIGNED set */
if (!s->srv)
return SRV_STATUS_OK; /* dispatch or proxy mode */
/* If we already have a connection slot, no need to check any queue */
if (s->srv_conn == s->srv)
return SRV_STATUS_OK;
/* OK, this session already has an assigned server, but no
* connection slot yet. Either it is a redispatch, or it was
* assigned from persistence information (direct mode).
*/
if ((s->flags & SN_REDIRECTABLE) && s->srv->rdr_len) {
/* server scheduled for redirection, and already assigned. We
* don't want to go further nor check the queue.
*/
sess_change_server(s, s->srv); /* not really needed in fact */
return SRV_STATUS_OK;
}
/* We might have to queue this session if the assigned server is full.
* We know we have to queue it into the server's queue, so if a maxqueue
* is set on the server, we must also check that the server's queue is
* not full, in which case we have to return FULL.
*/
if (s->srv->maxconn &&
(s->srv->nbpend || s->srv->served >= srv_dynamic_maxconn(s->srv))) {
if (s->srv->maxqueue > 0 && s->srv->nbpend >= s->srv->maxqueue)
return SRV_STATUS_FULL;
p = pendconn_add(s);
if (p)
return SRV_STATUS_QUEUED;
else
return SRV_STATUS_INTERNAL;
}
/* OK, we can use this server. Let's reserve our place */
sess_change_server(s, s->srv);
return SRV_STATUS_OK;
case SRV_STATUS_FULL:
/* queue this session into the proxy's queue */
p = pendconn_add(s);
if (p)
return SRV_STATUS_QUEUED;
else
return SRV_STATUS_INTERNAL;
case SRV_STATUS_NOSRV:
return err;
case SRV_STATUS_INTERNAL:
return err;
default:
return SRV_STATUS_INTERNAL;
}
}
/*
* This function initiates a connection to the server assigned to this session
* (s->srv, s->srv_addr). It will assign a server if none is assigned yet.
* It can return one of :
* - SN_ERR_NONE if everything's OK
* - SN_ERR_SRVTO if there are no more servers
* - SN_ERR_SRVCL if the connection was refused by the server
* - SN_ERR_PRXCOND if the connection has been limited by the proxy (maxconn)
* - SN_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...)
* - SN_ERR_INTERNAL for any other purely internal errors
* Additionnally, in the case of SN_ERR_RESOURCE, an emergency log will be emitted.
*/
int connect_server(struct session *s)
{
int fd, err;
if (!(s->flags & SN_ADDR_SET)) {
err = assign_server_address(s);
if (err != SRV_STATUS_OK)
return SN_ERR_INTERNAL;
}
if ((fd = s->req->cons->fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) == -1) {
qfprintf(stderr, "Cannot get a server socket.\n");
if (errno == ENFILE)
send_log(s->be, LOG_EMERG,
"Proxy %s reached system FD limit at %d. Please check system tunables.\n",
s->be->id, maxfd);
else if (errno == EMFILE)
send_log(s->be, LOG_EMERG,
"Proxy %s reached process FD limit at %d. Please check 'ulimit-n' and restart.\n",
s->be->id, maxfd);
else if (errno == ENOBUFS || errno == ENOMEM)
send_log(s->be, LOG_EMERG,
"Proxy %s reached system memory limit at %d sockets. Please check system tunables.\n",
s->be->id, maxfd);
/* this is a resource error */
return SN_ERR_RESOURCE;
}
if (fd >= global.maxsock) {
/* do not log anything there, it's a normal condition when this option
* is used to serialize connections to a server !
*/
Alert("socket(): not enough free sockets. Raise -n argument. Giving up.\n");
close(fd);
return SN_ERR_PRXCOND; /* it is a configuration limit */
}
#ifdef CONFIG_HAP_TCPSPLICE
if ((s->fe->options & s->be->options) & PR_O_TCPSPLICE) {
/* TCP splicing supported by both FE and BE */
tcp_splice_initfd(s->cli_fd, fd);
}
#endif
if ((fcntl(fd, F_SETFL, O_NONBLOCK)==-1) ||
(setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one)) == -1)) {
qfprintf(stderr,"Cannot set client socket to non blocking mode.\n");
close(fd);
return SN_ERR_INTERNAL;
}
if (s->be->options & PR_O_TCP_SRV_KA)
setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(one));
if (s->be->options & PR_O_TCP_NOLING)
setsockopt(fd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger));
/* allow specific binding :
* - server-specific at first
* - proxy-specific next
*/
if (s->srv != NULL && s->srv->state & SRV_BIND_SRC) {
struct sockaddr_in *remote = NULL;
int ret, flags = 0;
#if defined(CONFIG_HAP_CTTPROXY) || defined(CONFIG_HAP_LINUX_TPROXY)
switch (s->srv->state & SRV_TPROXY_MASK) {
case SRV_TPROXY_ADDR:
remote = (struct sockaddr_in *)&s->srv->tproxy_addr;
flags = 3;
break;
case SRV_TPROXY_CLI:
flags |= 2;
/* fall through */
case SRV_TPROXY_CIP:
/* FIXME: what can we do if the client connects in IPv6 ? */
flags |= 1;
remote = (struct sockaddr_in *)&s->cli_addr;
break;
}
#endif
ret = tcpv4_bind_socket(fd, flags, &s->srv->source_addr, remote);
if (ret) {
close(fd);
if (ret == 1) {
Alert("Cannot bind to source address before connect() for server %s/%s. Aborting.\n",
s->be->id, s->srv->id);
send_log(s->be, LOG_EMERG,
"Cannot bind to source address before connect() for server %s/%s.\n",
s->be->id, s->srv->id);
} else {
Alert("Cannot bind to tproxy source address before connect() for server %s/%s. Aborting.\n",
s->be->id, s->srv->id);
send_log(s->be, LOG_EMERG,
"Cannot bind to tproxy source address before connect() for server %s/%s.\n",
s->be->id, s->srv->id);
}
return SN_ERR_RESOURCE;
}
}
else if (s->be->options & PR_O_BIND_SRC) {
struct sockaddr_in *remote = NULL;
int ret, flags = 0;
#if defined(CONFIG_HAP_CTTPROXY) || defined(CONFIG_HAP_LINUX_TPROXY)
switch (s->be->options & PR_O_TPXY_MASK) {
case PR_O_TPXY_ADDR:
remote = (struct sockaddr_in *)&s->be->tproxy_addr;
flags = 3;
break;
case PR_O_TPXY_CLI:
flags |= 2;
/* fall through */
case PR_O_TPXY_CIP:
/* FIXME: what can we do if the client connects in IPv6 ? */
flags |= 1;
remote = (struct sockaddr_in *)&s->cli_addr;
break;
}
#endif
ret = tcpv4_bind_socket(fd, flags, &s->be->source_addr, remote);
if (ret) {
close(fd);
if (ret == 1) {
Alert("Cannot bind to source address before connect() for proxy %s. Aborting.\n",
s->be->id);
send_log(s->be, LOG_EMERG,
"Cannot bind to source address before connect() for proxy %s.\n",
s->be->id);
} else {
Alert("Cannot bind to tproxy source address before connect() for proxy %s. Aborting.\n",
s->be->id);
send_log(s->be, LOG_EMERG,
"Cannot bind to tproxy source address before connect() for proxy %s.\n",
s->be->id);
}
return SN_ERR_RESOURCE;
}
}
if ((connect(fd, (struct sockaddr *)&s->srv_addr, sizeof(s->srv_addr)) == -1) &&
(errno != EINPROGRESS) && (errno != EALREADY) && (errno != EISCONN)) {
if (errno == EAGAIN || errno == EADDRINUSE) {
char *msg;
if (errno == EAGAIN) /* no free ports left, try again later */
msg = "no free ports";
else
msg = "local address already in use";
qfprintf(stderr,"Cannot connect: %s.\n",msg);
close(fd);
send_log(s->be, LOG_EMERG,
"Connect() failed for server %s/%s: %s.\n",
s->be->id, s->srv->id, msg);
return SN_ERR_RESOURCE;
} else if (errno == ETIMEDOUT) {
//qfprintf(stderr,"Connect(): ETIMEDOUT");
close(fd);
return SN_ERR_SRVTO;
} else {
// (errno == ECONNREFUSED || errno == ENETUNREACH || errno == EACCES || errno == EPERM)
//qfprintf(stderr,"Connect(): %d", errno);
close(fd);
return SN_ERR_SRVCL;
}
}
fdtab[fd].owner = s->req->cons;
fdtab[fd].state = FD_STCONN; /* connection in progress */
fdtab[fd].cb[DIR_RD].f = &stream_sock_read;
fdtab[fd].cb[DIR_RD].b = s->rep;
fdtab[fd].cb[DIR_WR].f = &stream_sock_write;
fdtab[fd].cb[DIR_WR].b = s->req;
fdtab[fd].peeraddr = (struct sockaddr *)&s->srv_addr;
fdtab[fd].peerlen = sizeof(s->srv_addr);
fd_insert(fd);
EV_FD_SET(fd, DIR_WR); /* for connect status */
s->req->cons->state = SI_ST_CON;
if (s->srv) {
s->srv->cur_sess++;
if (s->srv->cur_sess > s->srv->cur_sess_max)
s->srv->cur_sess_max = s->srv->cur_sess;
if (s->be->lbprm.server_take_conn)
s->be->lbprm.server_take_conn(s->srv);
}
s->req->wex = tick_add_ifset(now_ms, s->be->timeout.connect);
return SN_ERR_NONE; /* connection is OK */
}
/*
* This function checks the retry count during the connect() job.
* It updates the session's retries, so that the caller knows what it
* has to do. It uses the last connection error to set the log when
* it expires. It returns 1 when it has expired, and 0 otherwise.
*/
int srv_count_retry_down(struct session *t, int conn_err)
{
/* we are in front of a retryable error */
t->conn_retries--;
if (t->conn_retries < 0) {
/* if not retryable anymore, let's abort */
//t->req->wex = TICK_ETERNITY;
//srv_close_with_err(t, conn_err, SN_FINST_C,
// 503, error_message(t, HTTP_ERR_503));
if (!t->req->cons->err_type) {
t->req->cons->err_type = SI_ET_CONN_ERR;
t->req->cons->err_loc = t->srv;
}
if (t->srv)
t->srv->failed_conns++;
t->be->failed_conns++;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->be))
process_srv_queue(t->srv);
return 1;
}
return 0;
}
/*
* This function performs the retryable part of the connect() job.
* It updates the session's and retries, so that the caller knows
* what it has to do. It returns 1 when it breaks out of the loop,
* or 0 if it needs to redispatch.
*/
int srv_retryable_connect(struct session *t)
{
int conn_err;
/* This loop ensures that we stop before the last retry in case of a
* redispatchable server.
*/
do {
/* initiate a connection to the server */
conn_err = connect_server(t);
switch (conn_err) {
case SN_ERR_NONE:
//fprintf(stderr,"0: c=%d, s=%d\n", c, s);
if (t->srv)
t->srv->cum_sess++;
return 1;
case SN_ERR_INTERNAL:
if (!t->req->cons->err_type) {
t->req->cons->err_type = SI_ET_CONN_OTHER;
t->req->cons->err_loc = t->srv;
}
//t->req->wex = TICK_ETERNITY;
//srv_close_with_err(t, SN_ERR_INTERNAL, SN_FINST_C,
// 500, error_message(t, HTTP_ERR_500));
if (t->srv)
t->srv->cum_sess++;
if (t->srv)
t->srv->failed_conns++;
t->be->failed_conns++;
/* release other sessions waiting for this server */
if (may_dequeue_tasks(t->srv, t->be))
process_srv_queue(t->srv);
return 1;
}
/* ensure that we have enough retries left */
if (srv_count_retry_down(t, conn_err))
return 1;
} while (t->srv == NULL || t->conn_retries > 0 || !(t->be->options & PR_O_REDISP));
/* We're on our last chance, and the REDISP option was specified.
* We will ignore cookie and force to balance or use the dispatcher.
*/
/* let's try to offer this slot to anybody */
if (may_dequeue_tasks(t->srv, t->be))
process_srv_queue(t->srv);
if (t->srv)
t->srv->cum_sess++; //FIXME?
/* it's left to the dispatcher to choose a server */
t->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET);
t->prev_srv = t->srv;
return 0;
}
/* This function performs the "redispatch" part of a connection attempt. It
* will assign a server if required, queue the connection if required, and
* handle errors that might arise at this level. It can change the server
* state. It will return 1 if it encounters an error, switches the server
* state, or has to queue a connection. Otherwise, it will return 0 indicating
* that the connection is ready to use.
*/
int srv_redispatch_connect(struct session *t)
{
int conn_err;
/* We know that we don't have any connection pending, so we will
* try to get a new one, and wait in this state if it's queued
*/
redispatch:
conn_err = assign_server_and_queue(t);
switch (conn_err) {
case SRV_STATUS_OK:
break;
case SRV_STATUS_FULL:
/* The server has reached its maxqueue limit. Either PR_O_REDISP is set
* and we can redispatch to another server, or it is not and we return
* 503. This only makes sense in DIRECT mode however, because normal LB
* algorithms would never select such a server, and hash algorithms
* would bring us on the same server again. Note that t->srv is set in
* this case.
*/
if ((t->flags & SN_DIRECT) && (t->be->options & PR_O_REDISP)) {
t->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET);
t->prev_srv = t->srv;
goto redispatch;
}
//t->req->wex = TICK_ETERNITY;
//srv_close_with_err(t, SN_ERR_SRVTO, SN_FINST_Q,
// 503, error_message(t, HTTP_ERR_503));
if (!t->req->cons->err_type) {
t->req->cons->err_type = SI_ET_QUEUE_ERR;
t->req->cons->err_loc = t->srv;
}
t->srv->failed_conns++;
t->be->failed_conns++;
return 1;
case SRV_STATUS_NOSRV:
/* note: it is guaranteed that t->srv == NULL here */
//t->req->wex = TICK_ETERNITY;
//srv_close_with_err(t, SN_ERR_SRVTO, SN_FINST_C,
// 503, error_message(t, HTTP_ERR_503));
if (!t->req->cons->err_type) {
t->req->cons->err_type = SI_ET_CONN_ERR;
t->req->cons->err_loc = NULL;
}
t->be->failed_conns++;
return 1;
case SRV_STATUS_QUEUED:
t->req->cons->exp = tick_add_ifset(now_ms, t->be->timeout.queue);
t->req->cons->state = SI_ST_QUE;
/* do nothing else and do not wake any other session up */
return 1;
case SRV_STATUS_INTERNAL:
default:
//t->req->wex = TICK_ETERNITY;
//srv_close_with_err(t, SN_ERR_INTERNAL, SN_FINST_C,
// 500, error_message(t, HTTP_ERR_500));
if (!t->req->cons->err_type) {
t->req->cons->err_type = SI_ET_CONN_OTHER;
t->req->cons->err_loc = t->srv;
}
if (t->srv)
t->srv->cum_sess++;
if (t->srv)
t->srv->failed_conns++;
t->be->failed_conns++;
/* release other sessions waiting for this server */
if (may_dequeue_tasks(t->srv, t->be))
process_srv_queue(t->srv);
return 1;
}
/* if we get here, it's because we got SRV_STATUS_OK, which also
* means that the connection has not been queued.
*/
return 0;
}
int be_downtime(struct proxy *px) {
if (px->lbprm.tot_weight && px->last_change < now.tv_sec) // ignore negative time
return px->down_time;
return now.tv_sec - px->last_change + px->down_time;
}
/* This function parses a "balance" statement in a backend section describing
* <curproxy>. It returns -1 if there is any error, otherwise zero. If it
* returns -1, it may write an error message into ther <err> buffer, for at
* most <errlen> bytes, trailing zero included. The trailing '\n' will not be
* written. The function must be called with <args> pointing to the first word
* after "balance".
*/
int backend_parse_balance(const char **args, char *err, int errlen, struct proxy *curproxy)
{
if (!*(args[0])) {
/* if no option is set, use round-robin by default */
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_RR;
return 0;
}
if (!strcmp(args[0], "roundrobin")) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_RR;
}
else if (!strcmp(args[0], "leastconn")) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_LC;
}
else if (!strcmp(args[0], "source")) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_SH;
}
else if (!strcmp(args[0], "uri")) {
int arg = 1;
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_UH;
while (*args[arg]) {
if (!strcmp(args[arg], "len")) {
if (!*args[arg+1] || (atoi(args[arg+1]) <= 0)) {
snprintf(err, errlen, "'balance uri len' expects a positive integer (got '%s').", args[arg+1]);
return -1;
}
curproxy->uri_len_limit = atoi(args[arg+1]);
arg += 2;
}
else if (!strcmp(args[arg], "depth")) {
if (!*args[arg+1] || (atoi(args[arg+1]) <= 0)) {
snprintf(err, errlen, "'balance uri depth' expects a positive integer (got '%s').", args[arg+1]);
return -1;
}
/* hint: we store the position of the ending '/' (depth+1) so
* that we avoid a comparison while computing the hash.
*/
curproxy->uri_dirs_depth1 = atoi(args[arg+1]) + 1;
arg += 2;
}
else {
snprintf(err, errlen, "'balance uri' only accepts parameters 'len' and 'depth' (got '%s').", args[arg]);
return -1;
}
}
}
else if (!strcmp(args[0], "url_param")) {
if (!*args[1]) {
snprintf(err, errlen, "'balance url_param' requires an URL parameter name.");
return -1;
}
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_PH;
free(curproxy->url_param_name);
curproxy->url_param_name = strdup(args[1]);
curproxy->url_param_len = strlen(args[1]);
if (*args[2]) {
if (strcmp(args[2], "check_post")) {
snprintf(err, errlen, "'balance url_param' only accepts check_post modifier.");
return -1;
}
if (*args[3]) {
/* TODO: maybe issue a warning if there is no value, no digits or too long */
curproxy->url_param_post_limit = str2ui(args[3]);
}
/* if no limit, or faul value in args[3], then default to a moderate wordlen */
if (!curproxy->url_param_post_limit)
curproxy->url_param_post_limit = 48;
else if ( curproxy->url_param_post_limit < 3 )
curproxy->url_param_post_limit = 3; /* minimum example: S=3 or \r\nS=6& */
}
}
else {
snprintf(err, errlen, "'balance' only supports 'roundrobin', 'leastconn', 'source', 'uri' and 'url_param' options.");
return -1;
}
return 0;
}
/************************************************************************/
/* All supported keywords must be declared here. */
/************************************************************************/
/* set test->i to the number of enabled servers on the proxy */
static int
acl_fetch_nbsrv(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
test->flags = ACL_TEST_F_VOL_TEST;
if (expr->arg_len) {
/* another proxy was designated, we must look for it */
for (px = proxy; px; px = px->next)
if ((px->cap & PR_CAP_BE) && !strcmp(px->id, expr->arg.str))
break;
}
if (!px)
return 0;
if (px->srv_act)
test->i = px->srv_act;
else if (px->lbprm.fbck)
test->i = 1;
else
test->i = px->srv_bck;
return 1;
}
/* Note: must not be declared <const> as its list will be overwritten */
static struct acl_kw_list acl_kws = {{ },{
{ "nbsrv", acl_parse_int, acl_fetch_nbsrv, acl_match_int, ACL_USE_NOTHING },
{ NULL, NULL, NULL, NULL },
}};
__attribute__((constructor))
static void __backend_init(void)
{
acl_register_keywords(&acl_kws);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/