blob: 82be2e19afd17a2e1959f347f912677e44463af6 [file] [log] [blame]
/*
* Backend variables and functions.
*
* Copyright 2000-2013 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <syslog.h>
#include <string.h>
#include <ctype.h>
#include <sys/types.h>
#include <import/ebmbtree.h>
#include <haproxy/api.h>
#include <haproxy/acl.h>
#include <haproxy/activity.h>
#include <haproxy/arg.h>
#include <haproxy/backend.h>
#include <haproxy/channel.h>
#include <haproxy/check.h>
#include <haproxy/conn_stream.h>
#include <haproxy/cs_utils.h>
#include <haproxy/frontend.h>
#include <haproxy/global.h>
#include <haproxy/hash.h>
#include <haproxy/http.h>
#include <haproxy/http_ana.h>
#include <haproxy/http_htx.h>
#include <haproxy/htx.h>
#include <haproxy/lb_chash.h>
#include <haproxy/lb_fas.h>
#include <haproxy/lb_fwlc.h>
#include <haproxy/lb_fwrr.h>
#include <haproxy/lb_map.h>
#include <haproxy/log.h>
#include <haproxy/namespace.h>
#include <haproxy/obj_type.h>
#include <haproxy/payload.h>
#include <haproxy/proto_tcp.h>
#include <haproxy/protocol.h>
#include <haproxy/proxy.h>
#include <haproxy/queue.h>
#include <haproxy/sample.h>
#include <haproxy/server.h>
#include <haproxy/session.h>
#include <haproxy/ssl_sock.h>
#include <haproxy/stream.h>
#include <haproxy/task.h>
#include <haproxy/ticks.h>
#include <haproxy/time.h>
#include <haproxy/trace.h>
#define TRACE_SOURCE &trace_strm
int be_lastsession(const struct proxy *be)
{
if (be->be_counters.last_sess)
return now.tv_sec - be->be_counters.last_sess;
return -1;
}
/* helper function to invoke the correct hash method */
static unsigned int gen_hash(const struct proxy* px, const char* key, unsigned long len)
{
unsigned int hash;
switch (px->lbprm.algo & BE_LB_HASH_FUNC) {
case BE_LB_HFCN_DJB2:
hash = hash_djb2(key, len);
break;
case BE_LB_HFCN_WT6:
hash = hash_wt6(key, len);
break;
case BE_LB_HFCN_CRC32:
hash = hash_crc32(key, len);
break;
case BE_LB_HFCN_SDBM:
/* this is the default hash function */
default:
hash = hash_sdbm(key, len);
break;
}
return hash;
}
/*
* This function recounts the number of usable active and backup servers for
* proxy <p>. These numbers are returned into the p->srv_act and p->srv_bck.
* This function also recomputes the total active and backup weights. However,
* it does not update tot_weight nor tot_used. Use update_backend_weight() for
* this.
* This functions is designed to be called before server's weight and state
* commit so it uses 'next' weight and states values.
*
* threads: this is the caller responsibility to lock data. For now, this
* function is called from lb modules, so it should be ok. But if you need to
* call it from another place, be careful (and update this comment).
*/
void recount_servers(struct proxy *px)
{
struct server *srv;
px->srv_act = px->srv_bck = 0;
px->lbprm.tot_wact = px->lbprm.tot_wbck = 0;
px->lbprm.fbck = NULL;
for (srv = px->srv; srv != NULL; srv = srv->next) {
if (!srv_willbe_usable(srv))
continue;
if (srv->flags & SRV_F_BACKUP) {
if (!px->srv_bck &&
!(px->options & PR_O_USE_ALL_BK))
px->lbprm.fbck = srv;
px->srv_bck++;
srv->cumulative_weight = px->lbprm.tot_wbck;
px->lbprm.tot_wbck += srv->next_eweight;
} else {
px->srv_act++;
srv->cumulative_weight = px->lbprm.tot_wact;
px->lbprm.tot_wact += srv->next_eweight;
}
}
}
/* This function simply updates the backend's tot_weight and tot_used values
* after servers weights have been updated. It is designed to be used after
* recount_servers() or equivalent.
*
* threads: this is the caller responsibility to lock data. For now, this
* function is called from lb modules, so it should be ok. But if you need to
* call it from another place, be careful (and update this comment).
*/
void update_backend_weight(struct proxy *px)
{
if (px->srv_act) {
px->lbprm.tot_weight = px->lbprm.tot_wact;
px->lbprm.tot_used = px->srv_act;
}
else if (px->lbprm.fbck) {
/* use only the first backup server */
px->lbprm.tot_weight = px->lbprm.fbck->next_eweight;
px->lbprm.tot_used = 1;
}
else {
px->lbprm.tot_weight = px->lbprm.tot_wbck;
px->lbprm.tot_used = px->srv_bck;
}
}
/*
* This function tries to find a running server for the proxy <px> following
* the source hash method. Depending on the number of active/backup servers,
* it will either look for active servers, or for backup servers.
* If any server is found, it will be returned. If no valid server is found,
* NULL is returned.
*/
static struct server *get_server_sh(struct proxy *px, const char *addr, int len, const struct server *avoid)
{
unsigned int h, l;
if (px->lbprm.tot_weight == 0)
return NULL;
l = h = 0;
/* note: we won't hash if there's only one server left */
if (px->lbprm.tot_used == 1)
goto hash_done;
while ((l + sizeof (int)) <= len) {
h ^= ntohl(*(unsigned int *)(&addr[l]));
l += sizeof (int);
}
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
h = full_hash(h);
hash_done:
if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
return chash_get_server_hash(px, h, avoid);
else
return map_get_server_hash(px, h);
}
/*
* This function tries to find a running server for the proxy <px> following
* the URI hash method. In order to optimize cache hits, the hash computation
* ends at the question mark. Depending on the number of active/backup servers,
* it will either look for active servers, or for backup servers.
* If any server is found, it will be returned. If no valid server is found,
* NULL is returned. The lbprm.arg_opt{1,2,3} values correspond respectively to
* the "whole" optional argument (boolean, bit0), the "len" argument (numeric)
* and the "depth" argument (numeric).
*
* This code was contributed by Guillaume Dallaire, who also selected this hash
* algorithm out of a tens because it gave him the best results.
*
*/
static struct server *get_server_uh(struct proxy *px, char *uri, int uri_len, const struct server *avoid)
{
unsigned int hash = 0;
int c;
int slashes = 0;
const char *start, *end;
if (px->lbprm.tot_weight == 0)
return NULL;
/* note: we won't hash if there's only one server left */
if (px->lbprm.tot_used == 1)
goto hash_done;
if (px->lbprm.arg_opt2) // "len"
uri_len = MIN(uri_len, px->lbprm.arg_opt2);
start = end = uri;
while (uri_len--) {
c = *end;
if (c == '/') {
slashes++;
if (slashes == px->lbprm.arg_opt3) /* depth+1 */
break;
}
else if (c == '?' && !(px->lbprm.arg_opt1 & 1)) // "whole"
break;
end++;
}
hash = gen_hash(px, start, (end - start));
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
hash = full_hash(hash);
hash_done:
if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
return chash_get_server_hash(px, hash, avoid);
else
return map_get_server_hash(px, hash);
}
/*
* This function tries to find a running server for the proxy <px> following
* the URL parameter hash method. It looks for a specific parameter in the
* URL and hashes it to compute the server ID. This is useful to optimize
* performance by avoiding bounces between servers in contexts where sessions
* are shared but cookies are not usable. If the parameter is not found, NULL
* is returned. If any server is found, it will be returned. If no valid server
* is found, NULL is returned.
*/
static struct server *get_server_ph(struct proxy *px, const char *uri, int uri_len, const struct server *avoid)
{
unsigned int hash = 0;
const char *start, *end;
const char *p;
const char *params;
int plen;
/* when tot_weight is 0 then so is srv_count */
if (px->lbprm.tot_weight == 0)
return NULL;
if ((p = memchr(uri, '?', uri_len)) == NULL)
return NULL;
p++;
uri_len -= (p - uri);
plen = px->lbprm.arg_len;
params = p;
while (uri_len > plen) {
/* Look for the parameter name followed by an equal symbol */
if (params[plen] == '=') {
if (memcmp(params, px->lbprm.arg_str, plen) == 0) {
/* OK, we have the parameter here at <params>, and
* the value after the equal sign, at <p>
* skip the equal symbol
*/
p += plen + 1;
start = end = p;
uri_len -= plen + 1;
while (uri_len && *end != '&') {
uri_len--;
end++;
}
hash = gen_hash(px, start, (end - start));
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
hash = full_hash(hash);
if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
return chash_get_server_hash(px, hash, avoid);
else
return map_get_server_hash(px, hash);
}
}
/* skip to next parameter */
p = memchr(params, '&', uri_len);
if (!p)
return NULL;
p++;
uri_len -= (p - params);
params = p;
}
return NULL;
}
/*
* this does the same as the previous server_ph, but check the body contents
*/
static struct server *get_server_ph_post(struct stream *s, const struct server *avoid)
{
unsigned int hash = 0;
struct channel *req = &s->req;
struct proxy *px = s->be;
struct htx *htx = htxbuf(&req->buf);
struct htx_blk *blk;
unsigned int plen = px->lbprm.arg_len;
unsigned long len;
const char *params, *p, *start, *end;
if (px->lbprm.tot_weight == 0)
return NULL;
p = params = NULL;
len = 0;
for (blk = htx_get_first_blk(htx); blk; blk = htx_get_next_blk(htx, blk)) {
enum htx_blk_type type = htx_get_blk_type(blk);
struct ist v;
if (type != HTX_BLK_DATA)
continue;
v = htx_get_blk_value(htx, blk);
p = params = v.ptr;
len = v.len;
break;
}
while (len > plen) {
/* Look for the parameter name followed by an equal symbol */
if (params[plen] == '=') {
if (memcmp(params, px->lbprm.arg_str, plen) == 0) {
/* OK, we have the parameter here at <params>, and
* the value after the equal sign, at <p>
* skip the equal symbol
*/
p += plen + 1;
start = end = p;
len -= plen + 1;
while (len && *end != '&') {
if (unlikely(!HTTP_IS_TOKEN(*p))) {
/* if in a POST, body must be URI encoded or it's not a URI.
* Do not interpret any possible binary data as a parameter.
*/
if (likely(HTTP_IS_LWS(*p))) /* eol, uncertain uri len */
break;
return NULL; /* oh, no; this is not uri-encoded.
* This body does not contain parameters.
*/
}
len--;
end++;
/* should we break if vlen exceeds limit? */
}
hash = gen_hash(px, start, (end - start));
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
hash = full_hash(hash);
if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
return chash_get_server_hash(px, hash, avoid);
else
return map_get_server_hash(px, hash);
}
}
/* skip to next parameter */
p = memchr(params, '&', len);
if (!p)
return NULL;
p++;
len -= (p - params);
params = p;
}
return NULL;
}
/*
* This function tries to find a running server for the proxy <px> following
* the Header parameter hash method. It looks for a specific parameter in the
* URL and hashes it to compute the server ID. This is useful to optimize
* performance by avoiding bounces between servers in contexts where sessions
* are shared but cookies are not usable. If the parameter is not found, NULL
* is returned. If any server is found, it will be returned. If no valid server
* is found, NULL is returned. When lbprm.arg_opt1 is set, the hash will only
* apply to the middle part of a domain name ("use_domain_only" option).
*/
static struct server *get_server_hh(struct stream *s, const struct server *avoid)
{
unsigned int hash = 0;
struct proxy *px = s->be;
unsigned int plen = px->lbprm.arg_len;
unsigned long len;
const char *p;
const char *start, *end;
struct htx *htx = htxbuf(&s->req.buf);
struct http_hdr_ctx ctx = { .blk = NULL };
/* tot_weight appears to mean srv_count */
if (px->lbprm.tot_weight == 0)
return NULL;
/* note: we won't hash if there's only one server left */
if (px->lbprm.tot_used == 1)
goto hash_done;
http_find_header(htx, ist2(px->lbprm.arg_str, plen), &ctx, 0);
/* if the header is not found or empty, let's fallback to round robin */
if (!ctx.blk || !ctx.value.len)
return NULL;
/* Found a the param_name in the headers.
* we will compute the hash based on this value ctx.val.
*/
len = ctx.value.len;
p = ctx.value.ptr;
if (!px->lbprm.arg_opt1) {
hash = gen_hash(px, p, len);
} else {
int dohash = 0;
p += len;
/* special computation, use only main domain name, not tld/host
* going back from the end of string, start hashing at first
* dot stop at next.
* This is designed to work with the 'Host' header, and requires
* a special option to activate this.
*/
end = p;
while (len) {
if (dohash) {
/* Rewind the pointer until the previous char
* is a dot, this will allow to set the start
* position of the domain. */
if (*(p - 1) == '.')
break;
}
else if (*p == '.') {
/* The pointer is rewinded to the dot before the
* tld, we memorize the end of the domain and
* can enter the domain processing. */
end = p;
dohash = 1;
}
p--;
len--;
}
start = p;
hash = gen_hash(px, start, (end - start));
}
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
hash = full_hash(hash);
hash_done:
if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
return chash_get_server_hash(px, hash, avoid);
else
return map_get_server_hash(px, hash);
}
/* RDP Cookie HASH. */
static struct server *get_server_rch(struct stream *s, const struct server *avoid)
{
unsigned int hash = 0;
struct proxy *px = s->be;
unsigned long len;
int ret;
struct sample smp;
int rewind;
/* tot_weight appears to mean srv_count */
if (px->lbprm.tot_weight == 0)
return NULL;
memset(&smp, 0, sizeof(smp));
rewind = co_data(&s->req);
c_rew(&s->req, rewind);
ret = fetch_rdp_cookie_name(s, &smp, px->lbprm.arg_str, px->lbprm.arg_len);
len = smp.data.u.str.data;
c_adv(&s->req, rewind);
if (ret == 0 || (smp.flags & SMP_F_MAY_CHANGE) || len == 0)
return NULL;
/* note: we won't hash if there's only one server left */
if (px->lbprm.tot_used == 1)
goto hash_done;
/* Found the param_name in the headers.
* we will compute the hash based on this value ctx.val.
*/
hash = gen_hash(px, smp.data.u.str.area, len);
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
hash = full_hash(hash);
hash_done:
if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
return chash_get_server_hash(px, hash, avoid);
else
return map_get_server_hash(px, hash);
}
/* sample expression HASH. Returns NULL if the sample is not found or if there
* are no server, relying on the caller to fall back to round robin instead.
*/
static struct server *get_server_expr(struct stream *s, const struct server *avoid)
{
struct proxy *px = s->be;
struct sample *smp;
unsigned int hash = 0;
if (px->lbprm.tot_weight == 0)
return NULL;
/* note: no need to hash if there's only one server left */
if (px->lbprm.tot_used == 1)
goto hash_done;
smp = sample_fetch_as_type(px, s->sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL, px->lbprm.expr, SMP_T_BIN);
if (!smp)
return NULL;
/* We have the desired data. Let's hash it according to the configured
* options and algorithm.
*/
hash = gen_hash(px, smp->data.u.str.area, smp->data.u.str.data);
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
hash = full_hash(hash);
hash_done:
if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
return chash_get_server_hash(px, hash, avoid);
else
return map_get_server_hash(px, hash);
}
/* random value */
static struct server *get_server_rnd(struct stream *s, const struct server *avoid)
{
unsigned int hash = 0;
struct proxy *px = s->be;
struct server *prev, *curr;
int draws = px->lbprm.arg_opt1; // number of draws
/* tot_weight appears to mean srv_count */
if (px->lbprm.tot_weight == 0)
return NULL;
curr = NULL;
do {
prev = curr;
hash = statistical_prng();
curr = chash_get_server_hash(px, hash, avoid);
if (!curr)
break;
/* compare the new server to the previous best choice and pick
* the one with the least currently served requests.
*/
if (prev && prev != curr &&
curr->served * prev->cur_eweight > prev->served * curr->cur_eweight)
curr = prev;
} while (--draws > 0);
/* if the selected server is full, pretend we have none so that we reach
* the backend's queue instead.
*/
if (curr &&
(curr->queue.length || (curr->maxconn && curr->served >= srv_dynamic_maxconn(curr))))
curr = NULL;
return curr;
}
/*
* This function applies the load-balancing algorithm to the stream, as
* defined by the backend it is assigned to. The stream is then marked as
* 'assigned'.
*
* This function MAY NOT be called with SF_ASSIGNED already set. If the stream
* had a server previously assigned, it is rebalanced, trying to avoid the same
* server, which should still be present in target_srv(&s->target) before the call.
* The function tries to keep the original connection slot if it reconnects to
* the same server, otherwise it releases it and tries to offer it.
*
* It is illegal to call this function with a stream in a queue.
*
* It may return :
* SRV_STATUS_OK if everything is OK. ->srv and ->target are assigned.
* SRV_STATUS_NOSRV if no server is available. Stream is not ASSIGNED
* SRV_STATUS_FULL if all servers are saturated. Stream is not ASSIGNED
* SRV_STATUS_INTERNAL for other unrecoverable errors.
*
* Upon successful return, the stream flag SF_ASSIGNED is set to indicate that
* it does not need to be called anymore. This means that target_srv(&s->target)
* can be trusted in balance and direct modes.
*
*/
int assign_server(struct stream *s)
{
struct connection *conn = NULL;
struct server *conn_slot;
struct server *srv = NULL, *prev_srv;
int err;
DPRINTF(stderr,"assign_server : s=%p\n",s);
err = SRV_STATUS_INTERNAL;
if (unlikely(s->pend_pos || s->flags & SF_ASSIGNED))
goto out_err;
prev_srv = objt_server(s->target);
conn_slot = s->srv_conn;
/* We have to release any connection slot before applying any LB algo,
* otherwise we may erroneously end up with no available slot.
*/
if (conn_slot)
sess_change_server(s, NULL);
/* We will now try to find the good server and store it into <objt_server(s->target)>.
* Note that <objt_server(s->target)> may be NULL in case of dispatch or proxy mode,
* as well as if no server is available (check error code).
*/
srv = NULL;
s->target = NULL;
if ((s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_HI &&
((s->sess->flags & SESS_FL_PREFER_LAST) ||
(s->be->options & PR_O_PREF_LAST))) {
struct sess_srv_list *srv_list;
list_for_each_entry(srv_list, &s->sess->srv_list, srv_list) {
struct server *tmpsrv = objt_server(srv_list->target);
if (tmpsrv && tmpsrv->proxy == s->be &&
((s->sess->flags & SESS_FL_PREFER_LAST) ||
(!s->be->max_ka_queue ||
server_has_room(tmpsrv) || (
tmpsrv->queue.length + 1 < s->be->max_ka_queue))) &&
srv_currently_usable(tmpsrv)) {
list_for_each_entry(conn, &srv_list->conn_list, session_list) {
if (!(conn->flags & CO_FL_WAIT_XPRT)) {
srv = tmpsrv;
s->target = &srv->obj_type;
if (conn->flags & CO_FL_SESS_IDLE) {
conn->flags &= ~CO_FL_SESS_IDLE;
s->sess->idle_conns--;
}
goto out_ok;
}
}
}
}
}
if (s->be->lbprm.algo & BE_LB_KIND) {
/* we must check if we have at least one server available */
if (!s->be->lbprm.tot_weight) {
err = SRV_STATUS_NOSRV;
goto out;
}
/* if there's some queue on the backend, with certain algos we
* know it's because all servers are full.
*/
if (s->be->queue.length && s->be->queue.length != s->be->beconn &&
(((s->be->lbprm.algo & (BE_LB_KIND|BE_LB_NEED|BE_LB_PARM)) == BE_LB_ALGO_FAS)|| // first
((s->be->lbprm.algo & (BE_LB_KIND|BE_LB_NEED|BE_LB_PARM)) == BE_LB_ALGO_RR) || // roundrobin
((s->be->lbprm.algo & (BE_LB_KIND|BE_LB_NEED|BE_LB_PARM)) == BE_LB_ALGO_SRR))) { // static-rr
err = SRV_STATUS_FULL;
goto out;
}
/* First check whether we need to fetch some data or simply call
* the LB lookup function. Only the hashing functions will need
* some input data in fact, and will support multiple algorithms.
*/
switch (s->be->lbprm.algo & BE_LB_LKUP) {
case BE_LB_LKUP_RRTREE:
srv = fwrr_get_next_server(s->be, prev_srv);
break;
case BE_LB_LKUP_FSTREE:
srv = fas_get_next_server(s->be, prev_srv);
break;
case BE_LB_LKUP_LCTREE:
srv = fwlc_get_next_server(s->be, prev_srv);
break;
case BE_LB_LKUP_CHTREE:
case BE_LB_LKUP_MAP:
if ((s->be->lbprm.algo & BE_LB_KIND) == BE_LB_KIND_RR) {
/* static-rr (map) or random (chash) */
if ((s->be->lbprm.algo & BE_LB_PARM) == BE_LB_RR_RANDOM)
srv = get_server_rnd(s, prev_srv);
else
srv = map_get_server_rr(s->be, prev_srv);
break;
}
else if ((s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_HI) {
/* unknown balancing algorithm */
err = SRV_STATUS_INTERNAL;
goto out;
}
switch (s->be->lbprm.algo & BE_LB_PARM) {
const struct sockaddr_storage *src;
case BE_LB_HASH_SRC:
src = cs_src(s->csf);
if (src && src->ss_family == AF_INET) {
srv = get_server_sh(s->be,
(void *)&((struct sockaddr_in *)src)->sin_addr,
4, prev_srv);
}
else if (src && src->ss_family == AF_INET6) {
srv = get_server_sh(s->be,
(void *)&((struct sockaddr_in6 *)src)->sin6_addr,
16, prev_srv);
}
else {
/* unknown IP family */
err = SRV_STATUS_INTERNAL;
goto out;
}
break;
case BE_LB_HASH_URI:
/* URI hashing */
if (IS_HTX_STRM(s) && s->txn->req.msg_state >= HTTP_MSG_BODY) {
struct ist uri;
uri = htx_sl_req_uri(http_get_stline(htxbuf(&s->req.buf)));
if (s->be->lbprm.arg_opt1 & 2) {
struct http_uri_parser parser =
http_uri_parser_init(uri);
uri = http_parse_path(&parser);
if (!isttest(uri))
uri = ist("");
}
srv = get_server_uh(s->be, uri.ptr, uri.len, prev_srv);
}
break;
case BE_LB_HASH_PRM:
/* URL Parameter hashing */
if (IS_HTX_STRM(s) && s->txn->req.msg_state >= HTTP_MSG_BODY) {
struct ist uri;
uri = htx_sl_req_uri(http_get_stline(htxbuf(&s->req.buf)));
srv = get_server_ph(s->be, uri.ptr, uri.len, prev_srv);
if (!srv && s->txn->meth == HTTP_METH_POST)
srv = get_server_ph_post(s, prev_srv);
}
break;
case BE_LB_HASH_HDR:
/* Header Parameter hashing */
if (IS_HTX_STRM(s) && s->txn->req.msg_state >= HTTP_MSG_BODY)
srv = get_server_hh(s, prev_srv);
break;
case BE_LB_HASH_RDP:
/* RDP Cookie hashing */
srv = get_server_rch(s, prev_srv);
break;
case BE_LB_HASH_SMP:
/* sample expression hashing */
srv = get_server_expr(s, prev_srv);
break;
default:
/* unknown balancing algorithm */
err = SRV_STATUS_INTERNAL;
goto out;
}
/* If the hashing parameter was not found, let's fall
* back to round robin on the map.
*/
if (!srv) {
if ((s->be->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
srv = chash_get_next_server(s->be, prev_srv);
else
srv = map_get_server_rr(s->be, prev_srv);
}
/* end of map-based LB */
break;
default:
/* unknown balancing algorithm */
err = SRV_STATUS_INTERNAL;
goto out;
}
if (!srv) {
err = SRV_STATUS_FULL;
goto out;
}
else if (srv != prev_srv) {
_HA_ATOMIC_INC(&s->be->be_counters.cum_lbconn);
_HA_ATOMIC_INC(&srv->counters.cum_lbconn);
}
s->target = &srv->obj_type;
}
else if (s->be->options & (PR_O_DISPATCH | PR_O_TRANSP)) {
s->target = &s->be->obj_type;
}
else {
err = SRV_STATUS_NOSRV;
goto out;
}
out_ok:
s->flags |= SF_ASSIGNED;
err = SRV_STATUS_OK;
out:
/* Either we take back our connection slot, or we offer it to someone
* else if we don't need it anymore.
*/
if (conn_slot) {
if (conn_slot == srv) {
sess_change_server(s, srv);
} else {
if (may_dequeue_tasks(conn_slot, s->be))
process_srv_queue(conn_slot);
}
}
out_err:
return err;
}
/* Allocate an address for the destination endpoint
* The address is taken from the currently assigned server, or from the
* dispatch or transparent address.
*
* Returns SRV_STATUS_OK on success. Does nothing if the address was
* already set.
* On error, no address is allocated and SRV_STATUS_INTERNAL is returned.
*/
static int alloc_dst_address(struct sockaddr_storage **ss,
struct server *srv, struct stream *s)
{
const struct sockaddr_storage *dst;
if (*ss)
return SRV_STATUS_OK;
if ((s->flags & SF_DIRECT) || (s->be->lbprm.algo & BE_LB_KIND)) {
/* A server is necessarily known for this stream */
if (!(s->flags & SF_ASSIGNED))
return SRV_STATUS_INTERNAL;
if (!sockaddr_alloc(ss, NULL, 0))
return SRV_STATUS_INTERNAL;
**ss = srv->addr;
set_host_port(*ss, srv->svc_port);
if (!is_addr(*ss)) {
/* if the server has no address, we use the same address
* the client asked, which is handy for remapping ports
* locally on multiple addresses at once. Nothing is done
* for AF_UNIX addresses.
*/
dst = cs_dst(s->csf);
if (dst && dst->ss_family == AF_INET) {
((struct sockaddr_in *)*ss)->sin_family = AF_INET;
((struct sockaddr_in *)*ss)->sin_addr =
((struct sockaddr_in *)dst)->sin_addr;
} else if (dst && dst->ss_family == AF_INET6) {
((struct sockaddr_in6 *)*ss)->sin6_family = AF_INET6;
((struct sockaddr_in6 *)*ss)->sin6_addr =
((struct sockaddr_in6 *)dst)->sin6_addr;
}
}
/* if this server remaps proxied ports, we'll use
* the port the client connected to with an offset. */
if ((srv->flags & SRV_F_MAPPORTS)) {
int base_port;
dst = cs_dst(s->csf);
if (dst) {
/* First, retrieve the port from the incoming connection */
base_port = get_host_port(dst);
/* Second, assign the outgoing connection's port */
base_port += get_host_port(*ss);
set_host_port(*ss, base_port);
}
}
}
else if (s->be->options & PR_O_DISPATCH) {
if (!sockaddr_alloc(ss, NULL, 0))
return SRV_STATUS_INTERNAL;
/* connect to the defined dispatch addr */
**ss = s->be->dispatch_addr;
}
else if ((s->be->options & PR_O_TRANSP)) {
if (!sockaddr_alloc(ss, NULL, 0))
return SRV_STATUS_INTERNAL;
/* in transparent mode, use the original dest addr if no dispatch specified */
dst = cs_dst(s->csf);
if (dst && (dst->ss_family == AF_INET || dst->ss_family == AF_INET6))
**ss = *dst;
}
else {
/* no server and no LB algorithm ! */
return SRV_STATUS_INTERNAL;
}
return SRV_STATUS_OK;
}
/* This function assigns a server to stream <s> if required, and can add the
* connection to either the assigned server's queue or to the proxy's queue.
* If ->srv_conn is set, the stream is first released from the server.
* It may also be called with SF_DIRECT and/or SF_ASSIGNED though. It will
* be called before any connection and after any retry or redispatch occurs.
*
* It is not allowed to call this function with a stream in a queue.
*
* Returns :
*
* SRV_STATUS_OK if everything is OK.
* SRV_STATUS_NOSRV if no server is available. objt_server(s->target) = NULL.
* SRV_STATUS_QUEUED if the connection has been queued.
* SRV_STATUS_FULL if the server(s) is/are saturated and the
* connection could not be queued at the server's,
* which may be NULL if we queue on the backend.
* SRV_STATUS_INTERNAL for other unrecoverable errors.
*
*/
int assign_server_and_queue(struct stream *s)
{
struct pendconn *p;
struct server *srv;
int err;
if (s->pend_pos)
return SRV_STATUS_INTERNAL;
err = SRV_STATUS_OK;
if (!(s->flags & SF_ASSIGNED)) {
struct server *prev_srv = objt_server(s->target);
err = assign_server(s);
if (prev_srv) {
/* This stream was previously assigned to a server. We have to
* update the stream's and the server's stats :
* - if the server changed :
* - set TX_CK_DOWN if txn.flags was TX_CK_VALID
* - set SF_REDISP if it was successfully redispatched
* - increment srv->redispatches and be->redispatches
* - if the server remained the same : update retries.
*/
if (prev_srv != objt_server(s->target)) {
if (s->txn && (s->txn->flags & TX_CK_MASK) == TX_CK_VALID) {
s->txn->flags &= ~TX_CK_MASK;
s->txn->flags |= TX_CK_DOWN;
}
s->flags |= SF_REDISP;
_HA_ATOMIC_INC(&prev_srv->counters.redispatches);
_HA_ATOMIC_INC(&s->be->be_counters.redispatches);
} else {
_HA_ATOMIC_INC(&prev_srv->counters.retries);
_HA_ATOMIC_INC(&s->be->be_counters.retries);
}
}
}
switch (err) {
case SRV_STATUS_OK:
/* we have SF_ASSIGNED set */
srv = objt_server(s->target);
if (!srv)
return SRV_STATUS_OK; /* dispatch or proxy mode */
/* If we already have a connection slot, no need to check any queue */
if (s->srv_conn == srv)
return SRV_STATUS_OK;
/* OK, this stream already has an assigned server, but no
* connection slot yet. Either it is a redispatch, or it was
* assigned from persistence information (direct mode).
*/
if ((s->flags & SF_REDIRECTABLE) && srv->rdr_len) {
/* server scheduled for redirection, and already assigned. We
* don't want to go further nor check the queue.
*/
sess_change_server(s, srv); /* not really needed in fact */
return SRV_STATUS_OK;
}
/* We might have to queue this stream if the assigned server is full.
* We know we have to queue it into the server's queue, so if a maxqueue
* is set on the server, we must also check that the server's queue is
* not full, in which case we have to return FULL.
*/
if (srv->maxconn &&
(srv->queue.length || srv->served >= srv_dynamic_maxconn(srv))) {
if (srv->maxqueue > 0 && srv->queue.length >= srv->maxqueue)
return SRV_STATUS_FULL;
p = pendconn_add(s);
if (p)
return SRV_STATUS_QUEUED;
else
return SRV_STATUS_INTERNAL;
}
/* OK, we can use this server. Let's reserve our place */
sess_change_server(s, srv);
return SRV_STATUS_OK;
case SRV_STATUS_FULL:
/* queue this stream into the proxy's queue */
p = pendconn_add(s);
if (p)
return SRV_STATUS_QUEUED;
else
return SRV_STATUS_INTERNAL;
case SRV_STATUS_NOSRV:
return err;
case SRV_STATUS_INTERNAL:
return err;
default:
return SRV_STATUS_INTERNAL;
}
}
/* Allocate an address for source binding on the specified server or backend.
* The allocation is only performed if the connection is intended to be used
* with transparent mode.
*
* Returns SRV_STATUS_OK if no transparent mode or the address was successfully
* allocated. Otherwise returns SRV_STATUS_INTERNAL. Does nothing if the
* address was already allocated.
*/
static int alloc_bind_address(struct sockaddr_storage **ss,
struct server *srv, struct stream *s)
{
#if defined(CONFIG_HAP_TRANSPARENT)
const struct sockaddr_storage *addr;
struct conn_src *src = NULL;
struct sockaddr_in *sin;
char *vptr;
size_t vlen;
#endif
if (*ss)
return SRV_STATUS_OK;
#if defined(CONFIG_HAP_TRANSPARENT)
if (srv && srv->conn_src.opts & CO_SRC_BIND)
src = &srv->conn_src;
else if (s->be->conn_src.opts & CO_SRC_BIND)
src = &s->be->conn_src;
/* no transparent mode, no need to allocate an address, returns OK */
if (!src)
return SRV_STATUS_OK;
switch (src->opts & CO_SRC_TPROXY_MASK) {
case CO_SRC_TPROXY_ADDR:
if (!sockaddr_alloc(ss, NULL, 0))
return SRV_STATUS_INTERNAL;
**ss = src->tproxy_addr;
break;
case CO_SRC_TPROXY_CLI:
case CO_SRC_TPROXY_CIP:
/* FIXME: what can we do if the client connects in IPv6 or unix socket ? */
addr = cs_src(s->csf);
if (!addr)
return SRV_STATUS_INTERNAL;
if (!sockaddr_alloc(ss, NULL, 0))
return SRV_STATUS_INTERNAL;
**ss = *addr;
break;
case CO_SRC_TPROXY_DYN:
if (!src->bind_hdr_occ || !IS_HTX_STRM(s))
return SRV_STATUS_INTERNAL;
if (!sockaddr_alloc(ss, NULL, 0))
return SRV_STATUS_INTERNAL;
/* bind to the IP in a header */
sin = (struct sockaddr_in *)*ss;
sin->sin_family = AF_INET;
sin->sin_port = 0;
sin->sin_addr.s_addr = 0;
if (!http_get_htx_hdr(htxbuf(&s->req.buf),
ist2(src->bind_hdr_name, src->bind_hdr_len),
src->bind_hdr_occ, NULL, &vptr, &vlen)) {
sockaddr_free(ss);
return SRV_STATUS_INTERNAL;
}
sin->sin_addr.s_addr = htonl(inetaddr_host_lim(vptr, vptr + vlen));
break;
default:
;
}
#endif
return SRV_STATUS_OK;
}
/* Attempt to get a backend connection from the specified mt_list array
* (safe or idle connections). The <is_safe> argument means what type of
* connection the caller wants.
*/
static struct connection *conn_backend_get(struct stream *s, struct server *srv, int is_safe, int64_t hash)
{
struct connection *conn = NULL;
int i; // thread number
int found = 0;
int stop;
/* We need to lock even if this is our own list, because another
* thread may be trying to migrate that connection, and we don't want
* to end up with two threads using the same connection.
*/
i = tid;
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
conn = srv_lookup_conn(is_safe ? &srv->per_thr[tid].safe_conns : &srv->per_thr[tid].idle_conns, hash);
if (conn)
conn_delete_from_tree(&conn->hash_node->node);
/* If we failed to pick a connection from the idle list, let's try again with
* the safe list.
*/
if (!conn && !is_safe && srv->curr_safe_nb > 0) {
conn = srv_lookup_conn(&srv->per_thr[tid].safe_conns, hash);
if (conn) {
conn_delete_from_tree(&conn->hash_node->node);
is_safe = 1;
}
}
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
/* If we found a connection in our own list, and we don't have to
* steal one from another thread, then we're done.
*/
if (conn)
goto done;
/* pool sharing globally disabled ? */
if (!(global.tune.options & GTUNE_IDLE_POOL_SHARED))
goto done;
/* Are we allowed to pick from another thread ? We'll still try
* it if we're running low on FDs as we don't want to create
* extra conns in this case, otherwise we can give up if we have
* too few idle conns.
*/
if (srv->curr_idle_conns < srv->low_idle_conns &&
ha_used_fds < global.tune.pool_low_count)
goto done;
/* Lookup all other threads for an idle connection, starting from last
* unvisited thread.
*/
stop = srv->next_takeover;
if (stop >= global.nbthread)
stop = 0;
i = stop;
do {
if (!srv->curr_idle_thr[i] || i == tid)
continue;
if (HA_SPIN_TRYLOCK(IDLE_CONNS_LOCK, &idle_conns[i].idle_conns_lock) != 0)
continue;
conn = srv_lookup_conn(is_safe ? &srv->per_thr[i].safe_conns : &srv->per_thr[i].idle_conns, hash);
while (conn) {
if (conn->mux->takeover && conn->mux->takeover(conn, i) == 0) {
conn_delete_from_tree(&conn->hash_node->node);
_HA_ATOMIC_INC(&activity[tid].fd_takeover);
found = 1;
break;
}
conn = srv_lookup_conn_next(conn);
}
if (!found && !is_safe && srv->curr_safe_nb > 0) {
conn = srv_lookup_conn(&srv->per_thr[i].safe_conns, hash);
while (conn) {
if (conn->mux->takeover && conn->mux->takeover(conn, i) == 0) {
conn_delete_from_tree(&conn->hash_node->node);
_HA_ATOMIC_INC(&activity[tid].fd_takeover);
found = 1;
is_safe = 1;
break;
}
conn = srv_lookup_conn_next(conn);
}
}
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[i].idle_conns_lock);
} while (!found && (i = (i + 1 == global.nbthread) ? 0 : i + 1) != stop);
if (!found)
conn = NULL;
done:
if (conn) {
_HA_ATOMIC_STORE(&srv->next_takeover, (i + 1 == global.nbthread) ? 0 : i + 1);
srv_use_conn(srv, conn);
_HA_ATOMIC_DEC(&srv->curr_idle_conns);
_HA_ATOMIC_DEC(conn->flags & CO_FL_SAFE_LIST ? &srv->curr_safe_nb : &srv->curr_idle_nb);
_HA_ATOMIC_DEC(&srv->curr_idle_thr[i]);
conn->flags &= ~CO_FL_LIST_MASK;
__ha_barrier_atomic_store();
if ((s->be->options & PR_O_REUSE_MASK) == PR_O_REUSE_SAFE &&
conn->mux->flags & MX_FL_HOL_RISK) {
/* attach the connection to the session private list
*/
conn->owner = s->sess;
session_add_conn(s->sess, conn, conn->target);
}
else {
ebmb_insert(&srv->per_thr[tid].avail_conns,
&conn->hash_node->node,
sizeof(conn->hash_node->hash));
}
}
return conn;
}
static int do_connect_server(struct stream *s, struct connection *conn)
{
int ret = SF_ERR_NONE;
int conn_flags = 0;
if (unlikely(!conn || !conn->ctrl || !conn->ctrl->connect))
return SF_ERR_INTERNAL;
if (!channel_is_empty(&s->res))
conn_flags |= CONNECT_HAS_DATA;
if (s->conn_retries == s->be->conn_retries)
conn_flags |= CONNECT_CAN_USE_TFO;
if (!conn_ctrl_ready(conn) || !conn_xprt_ready(conn)) {
ret = conn->ctrl->connect(conn, conn_flags);
if (ret != SF_ERR_NONE)
return ret;
/* we're in the process of establishing a connection */
s->csb->state = CS_ST_CON;
}
else {
/* try to reuse the existing connection, it will be
* confirmed once we can send on it.
*/
/* Is the connection really ready ? */
if (conn->mux->ctl(conn, MUX_STATUS, NULL) & MUX_STATUS_READY)
s->csb->state = CS_ST_RDY;
else
s->csb->state = CS_ST_CON;
}
/* needs src ip/port for logging */
if (s->flags & SF_SRC_ADDR)
conn_get_src(conn);
return ret;
}
/*
* This function initiates a connection to the server assigned to this stream
* (s->target, (s->csb)->addr.to). It will assign a server if none
* is assigned yet.
* It can return one of :
* - SF_ERR_NONE if everything's OK
* - SF_ERR_SRVTO if there are no more servers
* - SF_ERR_SRVCL if the connection was refused by the server
* - SF_ERR_PRXCOND if the connection has been limited by the proxy (maxconn)
* - SF_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...)
* - SF_ERR_INTERNAL for any other purely internal errors
* Additionally, in the case of SF_ERR_RESOURCE, an emergency log will be emitted.
* The server-facing conn-stream is expected to hold a pre-allocated connection.
*/
static int connect_server(struct stream *s)
{
struct connection *cli_conn = objt_conn(strm_orig(s));
struct connection *srv_conn = NULL;
struct server *srv;
const int reuse_mode = s->be->options & PR_O_REUSE_MASK;
int reuse = 0;
int init_mux = 0;
int err;
#ifdef USE_OPENSSL
struct sample *sni_smp = NULL;
#endif
struct sockaddr_storage *bind_addr = NULL;
int proxy_line_ret;
int64_t hash = 0;
struct conn_hash_params hash_params;
/* in standard configuration, srv will be valid
* it can be NULL for dispatch mode or transparent backend */
srv = objt_server(s->target);
err = alloc_dst_address(&s->csb->dst, srv, s);
if (err != SRV_STATUS_OK)
return SF_ERR_INTERNAL;
err = alloc_bind_address(&bind_addr, srv, s);
if (err != SRV_STATUS_OK)
return SF_ERR_INTERNAL;
#ifdef USE_OPENSSL
if (srv && srv->ssl_ctx.sni) {
sni_smp = sample_fetch_as_type(s->be, s->sess, s,
SMP_OPT_DIR_REQ | SMP_OPT_FINAL,
srv->ssl_ctx.sni, SMP_T_STR);
}
#endif
/* do not reuse if mode is not http */
if (!IS_HTX_STRM(s)) {
DBG_TRACE_STATE("skip idle connections reuse: no htx", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
goto skip_reuse;
}
/* disable reuse if websocket stream and the protocol to use is not the
* same as the main protocol of the server.
*/
if (unlikely(s->flags & SF_WEBSOCKET) && srv) {
if (!srv_check_reuse_ws(srv)) {
DBG_TRACE_STATE("skip idle connections reuse: websocket stream", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
goto skip_reuse;
}
}
/* first, set unique connection parameters and then calculate hash */
memset(&hash_params, 0, sizeof(hash_params));
/* 1. target */
hash_params.target = s->target;
#ifdef USE_OPENSSL
/* 2. sni
* only test if the sample is not null as smp_make_safe (called before
* ssl_sock_set_servername) can only fails if this is not the case
*/
if (sni_smp) {
hash_params.sni_prehash =
conn_hash_prehash(sni_smp->data.u.str.area,
sni_smp->data.u.str.data);
}
#endif /* USE_OPENSSL */
/* 3. destination address */
if (srv && (!is_addr(&srv->addr) || srv->flags & SRV_F_MAPPORTS))
hash_params.dst_addr = s->csb->dst;
/* 4. source address */
hash_params.src_addr = bind_addr;
/* 5. proxy protocol */
if (srv && srv->pp_opts) {
proxy_line_ret = make_proxy_line(trash.area, trash.size, srv, cli_conn, s);
if (proxy_line_ret) {
hash_params.proxy_prehash =
conn_hash_prehash(trash.area, proxy_line_ret);
}
}
hash = conn_calculate_hash(&hash_params);
/* first, search for a matching connection in the session's idle conns */
srv_conn = session_get_conn(s->sess, s->target, hash);
if (srv_conn) {
DBG_TRACE_STATE("reuse connection from session", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
reuse = 1;
}
if (srv && !reuse && reuse_mode != PR_O_REUSE_NEVR) {
/* Below we pick connections from the safe, idle or
* available (which are safe too) lists based
* on the strategy, the fact that this is a first or second
* (retryable) request, with the indicated priority (1 or 2) :
*
* SAFE AGGR ALWS
*
* +-----+-----+ +-----+-----+ +-----+-----+
* req| 1st | 2nd | req| 1st | 2nd | req| 1st | 2nd |
* ----+-----+-----+ ----+-----+-----+ ----+-----+-----+
* safe| - | 2 | safe| 1 | 2 | safe| 1 | 2 |
* ----+-----+-----+ ----+-----+-----+ ----+-----+-----+
* idle| - | 1 | idle| - | 1 | idle| 2 | 1 |
* ----+-----+-----+ ----+-----+-----+ ----+-----+-----+
*
* Idle conns are necessarily looked up on the same thread so
* that there is no concurrency issues.
*/
if (!eb_is_empty(&srv->per_thr[tid].avail_conns)) {
srv_conn = srv_lookup_conn(&srv->per_thr[tid].avail_conns, hash);
if (srv_conn) {
DBG_TRACE_STATE("reuse connection from avail", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
reuse = 1;
}
}
/* if no available connections found, search for an idle/safe */
if (!srv_conn && srv->max_idle_conns && srv->curr_idle_conns > 0) {
const int not_first_req = s->txn && s->txn->flags & TX_NOT_FIRST;
const int idle = srv->curr_idle_nb > 0;
const int safe = srv->curr_safe_nb > 0;
/* second column of the tables above,
* search for an idle then safe conn */
if (not_first_req) {
if (idle || safe)
srv_conn = conn_backend_get(s, srv, 0, hash);
}
/* first column of the tables above */
else if (reuse_mode >= PR_O_REUSE_AGGR) {
/* search for a safe conn */
if (safe)
srv_conn = conn_backend_get(s, srv, 1, hash);
/* search for an idle conn if no safe conn found
* on always reuse mode */
if (!srv_conn &&
reuse_mode == PR_O_REUSE_ALWS && idle) {
/* TODO conn_backend_get should not check the
* safe list is this case */
srv_conn = conn_backend_get(s, srv, 0, hash);
}
}
if (srv_conn) {
DBG_TRACE_STATE("reuse connection from idle/safe", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
reuse = 1;
}
}
}
/* here reuse might have been set above, indicating srv_conn finally
* is OK.
*/
if (ha_used_fds > global.tune.pool_high_count && srv) {
struct connection *tokill_conn = NULL;
struct conn_hash_node *conn_node = NULL;
struct ebmb_node *node = NULL;
/* We can't reuse a connection, and e have more FDs than deemd
* acceptable, attempt to kill an idling connection
*/
/* First, try from our own idle list */
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
node = ebmb_first(&srv->per_thr[tid].idle_conns);
if (node) {
conn_node = ebmb_entry(node, struct conn_hash_node, node);
tokill_conn = conn_node->conn;
ebmb_delete(node);
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
/* Release the idle lock before calling mux->destroy.
* It will in turn call srv_release_conn through
* conn_free which also uses it.
*/
tokill_conn->mux->destroy(tokill_conn->ctx);
}
else {
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
}
/* If not, iterate over other thread's idling pool, and try to grab one */
if (!tokill_conn) {
int i;
for (i = tid; (i = ((i + 1 == global.nbthread) ? 0 : i + 1)) != tid;) {
// just silence stupid gcc which reports an absurd
// out-of-bounds warning for <i> which is always
// exactly zero without threads, but it seems to
// see it possibly larger.
ALREADY_CHECKED(i);
if (HA_SPIN_TRYLOCK(IDLE_CONNS_LOCK, &idle_conns[i].idle_conns_lock) != 0)
continue;
node = ebmb_first(&srv->per_thr[i].idle_conns);
if (node) {
conn_node = ebmb_entry(node, struct conn_hash_node, node);
tokill_conn = conn_node->conn;
ebmb_delete(node);
}
if (!tokill_conn) {
node = ebmb_first(&srv->per_thr[i].safe_conns);
if (node) {
conn_node = ebmb_entry(node, struct conn_hash_node, node);
tokill_conn = conn_node->conn;
ebmb_delete(node);
}
}
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[i].idle_conns_lock);
if (tokill_conn) {
/* We got one, put it into the concerned thread's to kill list, and wake it's kill task */
MT_LIST_APPEND(&idle_conns[i].toremove_conns,
(struct mt_list *)&tokill_conn->toremove_list);
task_wakeup(idle_conns[i].cleanup_task, TASK_WOKEN_OTHER);
break;
}
}
}
}
if (reuse) {
if (srv_conn->mux) {
int avail = srv_conn->mux->avail_streams(srv_conn);
if (avail <= 1) {
/* No more streams available, remove it from the list */
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
conn_delete_from_tree(&srv_conn->hash_node->node);
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
}
if (avail >= 1) {
if (srv_conn->mux->attach(srv_conn, s->csb->endp, s->sess) == -1) {
srv_conn = NULL;
if (cs_reset_endp(s->csb) < 0)
return SF_ERR_INTERNAL;
sc_ep_clr(s->csb, ~CS_EP_DETACHED);
}
}
else
srv_conn = NULL;
}
/* otherwise srv_conn is left intact */
}
else
srv_conn = NULL;
skip_reuse:
/* no reuse or failed to reuse the connection above, pick a new one */
if (!srv_conn) {
srv_conn = conn_new(s->target);
if (srv_conn) {
DBG_TRACE_STATE("alloc new be connection", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
srv_conn->owner = s->sess;
/* connection will be attached to the session if
* http-reuse mode is never or it is not targeted to a
* server */
if (reuse_mode == PR_O_REUSE_NEVR || !srv)
conn_set_private(srv_conn);
/* assign bind_addr to srv_conn */
srv_conn->src = bind_addr;
bind_addr = NULL;
if (!sockaddr_alloc(&srv_conn->dst, 0, 0)) {
conn_free(srv_conn);
return SF_ERR_RESOURCE;
}
srv_conn->hash_node->hash = hash;
}
}
/* if bind_addr is non NULL free it */
sockaddr_free(&bind_addr);
/* srv_conn is still NULL only on allocation failure */
if (!srv_conn)
return SF_ERR_RESOURCE;
/* copy the target address into the connection */
*srv_conn->dst = *s->csb->dst;
/* Copy network namespace from client connection */
srv_conn->proxy_netns = cli_conn ? cli_conn->proxy_netns : NULL;
if (!srv_conn->xprt) {
/* set the correct protocol on the output conn-stream */
if (srv) {
if (conn_prepare(srv_conn, protocol_lookup(srv_conn->dst->ss_family, PROTO_TYPE_STREAM, 0), srv->xprt)) {
conn_free(srv_conn);
return SF_ERR_INTERNAL;
}
} else if (obj_type(s->target) == OBJ_TYPE_PROXY) {
int ret;
/* proxies exclusively run on raw_sock right now */
ret = conn_prepare(srv_conn, protocol_lookup(srv_conn->dst->ss_family, PROTO_TYPE_STREAM, 0), xprt_get(XPRT_RAW));
if (ret < 0 || !(srv_conn->ctrl)) {
conn_free(srv_conn);
return SF_ERR_INTERNAL;
}
}
else {
conn_free(srv_conn);
return SF_ERR_INTERNAL; /* how did we get there ? */
}
if (cs_attach_mux(s->csb, NULL, srv_conn) < 0) {
conn_free(srv_conn);
return SF_ERR_INTERNAL; /* how did we get there ? */
}
srv_conn->ctx = s->csb;
#if defined(USE_OPENSSL) && defined(TLSEXT_TYPE_application_layer_protocol_negotiation)
if (!srv ||
(srv->use_ssl != 1 || (!(srv->ssl_ctx.alpn_str) && !(srv->ssl_ctx.npn_str)) ||
srv->mux_proto || !IS_HTX_STRM(s)))
#endif
init_mux = 1;
/* process the case where the server requires the PROXY protocol to be sent */
srv_conn->send_proxy_ofs = 0;
if (srv && srv->pp_opts) {
srv_conn->flags |= CO_FL_SEND_PROXY;
srv_conn->send_proxy_ofs = 1; /* must compute size */
}
if (srv && (srv->flags & SRV_F_SOCKS4_PROXY)) {
srv_conn->send_proxy_ofs = 1;
srv_conn->flags |= CO_FL_SOCKS4;
}
#if defined(USE_OPENSSL) && defined(TLSEXT_TYPE_application_layer_protocol_negotiation)
/* if websocket stream, try to update connection ALPN. */
if (unlikely(s->flags & SF_WEBSOCKET) &&
srv && srv->use_ssl && srv->ssl_ctx.alpn_str) {
char *alpn = "";
int force = 0;
switch (srv->ws) {
case SRV_WS_AUTO:
alpn = "\x08http/1.1";
force = 0;
break;
case SRV_WS_H1:
alpn = "\x08http/1.1";
force = 1;
break;
case SRV_WS_H2:
alpn = "\x02h2";
force = 1;
break;
}
if (!conn_update_alpn(srv_conn, ist(alpn), force))
DBG_TRACE_STATE("update alpn for websocket", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
}
#endif
}
else {
s->flags |= SF_SRV_REUSED;
/* Currently there seems to be no known cases of xprt ready
* without the mux installed here.
*/
BUG_ON(!srv_conn->mux);
if (!(srv_conn->mux->ctl(srv_conn, MUX_STATUS, NULL) & MUX_STATUS_READY))
s->flags |= SF_SRV_REUSED_ANTICIPATED;
}
/* flag for logging source ip/port */
if (strm_fe(s)->options2 & PR_O2_SRC_ADDR)
s->flags |= SF_SRC_ADDR;
/* disable lingering */
if (s->be->options & PR_O_TCP_NOLING)
s->csb->flags |= CS_FL_NOLINGER;
if (s->flags & SF_SRV_REUSED) {
_HA_ATOMIC_INC(&s->be->be_counters.reuse);
if (srv)
_HA_ATOMIC_INC(&srv->counters.reuse);
} else {
_HA_ATOMIC_INC(&s->be->be_counters.connect);
if (srv)
_HA_ATOMIC_INC(&srv->counters.connect);
}
err = do_connect_server(s, srv_conn);
if (err != SF_ERR_NONE)
return err;
#ifdef USE_OPENSSL
if (!(s->flags & SF_SRV_REUSED)) {
if (smp_make_safe(sni_smp))
ssl_sock_set_servername(srv_conn, sni_smp->data.u.str.area);
}
#endif /* USE_OPENSSL */
/* The CO_FL_SEND_PROXY flag may have been set by the connect method,
* if so, add our handshake pseudo-XPRT now.
*/
if ((srv_conn->flags & CO_FL_HANDSHAKE)) {
if (xprt_add_hs(srv_conn) < 0) {
conn_full_close(srv_conn);
return SF_ERR_INTERNAL;
}
}
conn_xprt_start(srv_conn);
/* We have to defer the mux initialization until after si_connect()
* has been called, as we need the xprt to have been properly
* initialized, or any attempt to recv during the mux init may
* fail, and flag the connection as CO_FL_ERROR.
*/
if (init_mux) {
const struct mux_ops *alt_mux =
likely(!(s->flags & SF_WEBSOCKET)) ? NULL : srv_get_ws_proto(srv);
if (conn_install_mux_be(srv_conn, s->csb, s->sess, alt_mux) < 0) {
conn_full_close(srv_conn);
return SF_ERR_INTERNAL;
}
if (IS_HTX_STRM(s)) {
/* If we're doing http-reuse always, and the connection
* is not private with available streams (an http2
* connection), add it to the available list, so that
* others can use it right away. If the connection is
* private or we're doing http-reuse safe and the mux
* protocol supports multiplexing, add it in the
* session server list.
*/
if (srv && reuse_mode == PR_O_REUSE_ALWS &&
!(srv_conn->flags & CO_FL_PRIVATE) &&
srv_conn->mux->avail_streams(srv_conn) > 0) {
ebmb_insert(&srv->per_thr[tid].avail_conns, &srv_conn->hash_node->node, sizeof(srv_conn->hash_node->hash));
}
else if (srv_conn->flags & CO_FL_PRIVATE ||
(reuse_mode == PR_O_REUSE_SAFE &&
srv_conn->mux->flags & MX_FL_HOL_RISK)) {
/* If it fail now, the same will be done in mux->detach() callback */
session_add_conn(s->sess, srv_conn, srv_conn->target);
}
}
}
#if defined(USE_OPENSSL) && (defined(OPENSSL_IS_BORINGSSL) || (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L))
if (!reuse && cli_conn && srv && srv_conn->mux &&
(srv->ssl_ctx.options & SRV_SSL_O_EARLY_DATA) &&
/* Only attempt to use early data if either the client sent
* early data, so that we know it can handle a 425, or if
* we are allwoed to retry requests on early data failure, and
* it's our first try
*/
((cli_conn->flags & CO_FL_EARLY_DATA) ||
((s->be->retry_type & PR_RE_EARLY_ERROR) && !s->conn_retries)) &&
!channel_is_empty(cs_oc(s->csb)) &&
srv_conn->flags & CO_FL_SSL_WAIT_HS)
srv_conn->flags &= ~(CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN);
#endif
/* set connect timeout */
s->conn_exp = tick_add_ifset(now_ms, s->be->timeout.connect);
if (srv) {
int count;
s->flags |= SF_CURR_SESS;
count = _HA_ATOMIC_ADD_FETCH(&srv->cur_sess, 1);
HA_ATOMIC_UPDATE_MAX(&srv->counters.cur_sess_max, count);
if (s->be->lbprm.server_take_conn)
s->be->lbprm.server_take_conn(srv);
}
/* Now handle synchronously connected sockets. We know the conn-stream
* is at least in state CS_ST_CON. These ones typically are UNIX
* sockets, socket pairs, andoccasionally TCP connections on the
* loopback on a heavily loaded system.
*/
if (srv_conn->flags & CO_FL_ERROR)
sc_ep_set(s->csb, CS_EP_ERROR);
/* If we had early data, and the handshake ended, then
* we can remove the flag, and attempt to wake the task up,
* in the event there's an analyser waiting for the end of
* the handshake.
*/
if (!(srv_conn->flags & (CO_FL_WAIT_XPRT | CO_FL_EARLY_SSL_HS)))
sc_ep_clr(s->csb, CS_EP_WAIT_FOR_HS);
if (!cs_state_in(s->csb->state, CS_SB_EST|CS_SB_DIS|CS_SB_CLO) &&
(srv_conn->flags & CO_FL_WAIT_XPRT) == 0) {
s->conn_exp = TICK_ETERNITY;
cs_oc(s->csb)->flags |= CF_WRITE_NULL;
if (s->csb->state == CS_ST_CON)
s->csb->state = CS_ST_RDY;
}
/* Report EOI on the channel if it was reached from the mux point of
* view.
*
* Note: This test is only required because si_cs_process is also the SI
* wake callback. Otherwise si_cs_recv()/si_cs_send() already take
* care of it.
*/
if (sc_ep_test(s->csb, CS_EP_EOI) && !(cs_ic(s->csb)->flags & CF_EOI))
cs_ic(s->csb)->flags |= (CF_EOI|CF_READ_PARTIAL);
/* catch all sync connect while the mux is not already installed */
if (!srv_conn->mux && !(srv_conn->flags & CO_FL_WAIT_XPRT)) {
if (conn_create_mux(srv_conn) < 0) {
conn_full_close(srv_conn);
return SF_ERR_INTERNAL;
}
}
return SF_ERR_NONE; /* connection is OK */
}
/* This function performs the "redispatch" part of a connection attempt. It
* will assign a server if required, queue the connection if required, and
* handle errors that might arise at this level. It can change the server
* state. It will return 1 if it encounters an error, switches the server
* state, or has to queue a connection. Otherwise, it will return 0 indicating
* that the connection is ready to use.
*/
int srv_redispatch_connect(struct stream *s)
{
struct server *srv;
int conn_err;
/* We know that we don't have any connection pending, so we will
* try to get a new one, and wait in this state if it's queued
*/
redispatch:
conn_err = assign_server_and_queue(s);
srv = objt_server(s->target);
switch (conn_err) {
case SRV_STATUS_OK:
break;
case SRV_STATUS_FULL:
/* The server has reached its maxqueue limit. Either PR_O_REDISP is set
* and we can redispatch to another server, or it is not and we return
* 503. This only makes sense in DIRECT mode however, because normal LB
* algorithms would never select such a server, and hash algorithms
* would bring us on the same server again. Note that s->target is set
* in this case.
*/
if (((s->flags & (SF_DIRECT|SF_FORCE_PRST)) == SF_DIRECT) &&
(s->be->options & PR_O_REDISP)) {
s->flags &= ~(SF_DIRECT | SF_ASSIGNED);
sockaddr_free(&s->csb->dst);
goto redispatch;
}
if (!s->conn_err_type) {
s->conn_err_type = STRM_ET_QUEUE_ERR;
}
_HA_ATOMIC_INC(&srv->counters.failed_conns);
_HA_ATOMIC_INC(&s->be->be_counters.failed_conns);
return 1;
case SRV_STATUS_NOSRV:
/* note: it is guaranteed that srv == NULL here */
if (!s->conn_err_type) {
s->conn_err_type = STRM_ET_CONN_ERR;
}
_HA_ATOMIC_INC(&s->be->be_counters.failed_conns);
return 1;
case SRV_STATUS_QUEUED:
s->conn_exp = tick_add_ifset(now_ms, s->be->timeout.queue);
s->csb->state = CS_ST_QUE;
/* do nothing else and do not wake any other stream up */
return 1;
case SRV_STATUS_INTERNAL:
default:
if (!s->conn_err_type) {
s->conn_err_type = STRM_ET_CONN_OTHER;
}
if (srv)
srv_inc_sess_ctr(srv);
if (srv)
srv_set_sess_last(srv);
if (srv)
_HA_ATOMIC_INC(&srv->counters.failed_conns);
_HA_ATOMIC_INC(&s->be->be_counters.failed_conns);
/* release other streams waiting for this server */
if (may_dequeue_tasks(srv, s->be))
process_srv_queue(srv);
return 1;
}
/* if we get here, it's because we got SRV_STATUS_OK, which also
* means that the connection has not been queued.
*/
return 0;
}
/* Check if the connection request is in such a state that it can be aborted. */
static int back_may_abort_req(struct channel *req, struct stream *s)
{
return ((req->flags & (CF_READ_ERROR)) ||
((req->flags & (CF_SHUTW_NOW|CF_SHUTW)) && /* empty and client aborted */
(channel_is_empty(req) || (s->be->options & PR_O_ABRT_CLOSE))));
}
/* Update back conn-stream status for input states CS_ST_ASS, CS_ST_QUE,
* CS_ST_TAR. Other input states are simply ignored.
* Possible output states are CS_ST_CLO, CS_ST_TAR, CS_ST_ASS, CS_ST_REQ, CS_ST_CON
* and CS_ST_EST. Flags must have previously been updated for timeouts and other
* conditions.
*/
void back_try_conn_req(struct stream *s)
{
struct server *srv = objt_server(s->target);
struct conn_stream *cs = s->csb;
struct channel *req = &s->req;
DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
if (cs->state == CS_ST_ASS) {
/* Server assigned to connection request, we have to try to connect now */
int conn_err;
/* Before we try to initiate the connection, see if the
* request may be aborted instead.
*/
if (back_may_abort_req(req, s)) {
s->conn_err_type |= STRM_ET_CONN_ABRT;
DBG_TRACE_STATE("connection aborted", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
goto abort_connection;
}
conn_err = connect_server(s);
srv = objt_server(s->target);
if (conn_err == SF_ERR_NONE) {
/* state = CS_ST_CON or CS_ST_EST now */
if (srv)
srv_inc_sess_ctr(srv);
if (srv)
srv_set_sess_last(srv);
DBG_TRACE_STATE("connection attempt", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
goto end;
}
/* We have received a synchronous error. We might have to
* abort, retry immediately or redispatch.
*/
if (conn_err == SF_ERR_INTERNAL) {
if (!s->conn_err_type) {
s->conn_err_type = STRM_ET_CONN_OTHER;
}
if (srv)
srv_inc_sess_ctr(srv);
if (srv)
srv_set_sess_last(srv);
if (srv)
_HA_ATOMIC_INC(&srv->counters.failed_conns);
_HA_ATOMIC_INC(&s->be->be_counters.failed_conns);
/* release other streams waiting for this server */
sess_change_server(s, NULL);
if (may_dequeue_tasks(srv, s->be))
process_srv_queue(srv);
/* Failed and not retryable. */
cs_shutr(cs);
cs_shutw(cs);
req->flags |= CF_WRITE_ERROR;
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
/* we may need to know the position in the queue for logging */
pendconn_cond_unlink(s->pend_pos);
/* no stream was ever accounted for this server */
cs->state = CS_ST_CLO;
if (s->srv_error)
s->srv_error(s, cs);
DBG_TRACE_STATE("internal error during connection", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
goto end;
}
/* We are facing a retryable error, but we don't want to run a
* turn-around now, as the problem is likely a source port
* allocation problem, so we want to retry now.
*/
cs->state = CS_ST_CER;
sc_ep_clr(cs, CS_EP_ERROR);
back_handle_st_cer(s);
DBG_TRACE_STATE("connection error, retry", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
/* now cs->state is one of CS_ST_CLO, CS_ST_TAR, CS_ST_ASS, CS_ST_REQ */
}
else if (cs->state == CS_ST_QUE) {
/* connection request was queued, check for any update */
if (!pendconn_dequeue(s)) {
/* The connection is not in the queue anymore. Either
* we have a server connection slot available and we
* go directly to the assigned state, or we need to
* load-balance first and go to the INI state.
*/
s->conn_exp = TICK_ETERNITY;
if (unlikely(!(s->flags & SF_ASSIGNED)))
cs->state = CS_ST_REQ;
else {
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
cs->state = CS_ST_ASS;
}
DBG_TRACE_STATE("dequeue connection request", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
goto end;
}
/* Connection request still in queue... */
if (s->flags & SF_CONN_EXP) {
/* ... and timeout expired */
s->conn_exp = TICK_ETERNITY;
s->flags &= ~SF_CONN_EXP;
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
/* we may need to know the position in the queue for logging */
pendconn_cond_unlink(s->pend_pos);
if (srv)
_HA_ATOMIC_INC(&srv->counters.failed_conns);
_HA_ATOMIC_INC(&s->be->be_counters.failed_conns);
cs_shutr(cs);
cs_shutw(cs);
req->flags |= CF_WRITE_TIMEOUT;
if (!s->conn_err_type)
s->conn_err_type = STRM_ET_QUEUE_TO;
cs->state = CS_ST_CLO;
if (s->srv_error)
s->srv_error(s, cs);
DBG_TRACE_STATE("connection request still queued", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
goto end;
}
/* Connection remains in queue, check if we have to abort it */
if (back_may_abort_req(req, s)) {
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
/* we may need to know the position in the queue for logging */
pendconn_cond_unlink(s->pend_pos);
s->conn_err_type |= STRM_ET_QUEUE_ABRT;
DBG_TRACE_STATE("abort queued connection request", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
goto abort_connection;
}
/* Nothing changed */
}
else if (cs->state == CS_ST_TAR) {
/* Connection request might be aborted */
if (back_may_abort_req(req, s)) {
s->conn_err_type |= STRM_ET_CONN_ABRT;
DBG_TRACE_STATE("connection aborted", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
goto abort_connection;
}
if (!(s->flags & SF_CONN_EXP))
return; /* still in turn-around */
s->flags &= ~SF_CONN_EXP;
s->conn_exp = TICK_ETERNITY;
/* we keep trying on the same server as long as the stream is
* marked "assigned".
* FIXME: Should we force a redispatch attempt when the server is down ?
*/
if (s->flags & SF_ASSIGNED)
cs->state = CS_ST_ASS;
else
cs->state = CS_ST_REQ;
DBG_TRACE_STATE("retry connection now", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
}
end:
DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
return;
abort_connection:
/* give up */
s->conn_exp = TICK_ETERNITY;
s->flags &= ~SF_CONN_EXP;
cs_shutr(cs);
cs_shutw(cs);
cs->state = CS_ST_CLO;
if (s->srv_error)
s->srv_error(s, cs);
DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
return;
}
/* This function initiates a server connection request on a conn-stream
* already in CS_ST_REQ state. Upon success, the state goes to CS_ST_ASS for
* a real connection to a server, indicating that a server has been assigned,
* or CS_ST_RDY for a successful connection to an applet. It may also return
* CS_ST_QUE, or CS_ST_CLO upon error.
*/
void back_handle_st_req(struct stream *s)
{
struct conn_stream *cs = s->csb;
if (cs->state != CS_ST_REQ)
return;
DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
if (unlikely(obj_type(s->target) == OBJ_TYPE_APPLET)) {
struct appctx *appctx;
/* The target is an applet but the CS is in CS_ST_REQ. Thus it
* means no appctx are attached to the CS. Otherwise, it will be
* in CS_ST_RDY state. So, try to create the appctx now.
*/
BUG_ON(cs_appctx(cs));
appctx = cs_applet_create(cs, objt_applet(s->target));
if (!appctx) {
/* No more memory, let's immediately abort. Force the
* error code to ignore the ERR_LOCAL which is not a
* real error.
*/
s->flags &= ~(SF_ERR_MASK | SF_FINST_MASK);
cs_shutr(cs);
cs_shutw(cs);
s->req.flags |= CF_WRITE_ERROR;
s->conn_err_type = STRM_ET_CONN_RES;
cs->state = CS_ST_CLO;
if (s->srv_error)
s->srv_error(s, cs);
DBG_TRACE_STATE("failed to register applet", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
goto end;
}
DBG_TRACE_STATE("applet registered", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
goto end;
}
/* Try to assign a server */
if (srv_redispatch_connect(s) != 0) {
/* We did not get a server. Either we queued the
* connection request, or we encountered an error.
*/
if (cs->state == CS_ST_QUE) {
DBG_TRACE_STATE("connection request queued", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
goto end;
}
/* we did not get any server, let's check the cause */
cs_shutr(cs);
cs_shutw(cs);
s->req.flags |= CF_WRITE_ERROR;
if (!s->conn_err_type)
s->conn_err_type = STRM_ET_CONN_OTHER;
cs->state = CS_ST_CLO;
if (s->srv_error)
s->srv_error(s, cs);
DBG_TRACE_STATE("connection request failed", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
goto end;
}
/* The server is assigned */
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
cs->state = CS_ST_ASS;
be_set_sess_last(s->be);
DBG_TRACE_STATE("connection request assigned to a server", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
end:
DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
}
/* This function is called with (cs->state == CS_ST_CON) meaning that a
* connection was attempted and that the file descriptor is already allocated.
* We must check for timeout, error and abort. Possible output states are
* CS_ST_CER (error), CS_ST_DIS (abort), and CS_ST_CON (no change). This only
* works with connection-based streams. We know that there were no I/O event
* when reaching this function. Timeouts and errors are *not* cleared.
*/
void back_handle_st_con(struct stream *s)
{
struct conn_stream *cs = s->csb;
struct channel *req = &s->req;
struct channel *rep = &s->res;
DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
/* the client might want to abort */
if ((rep->flags & CF_SHUTW) ||
((req->flags & CF_SHUTW_NOW) &&
(channel_is_empty(req) || (s->be->options & PR_O_ABRT_CLOSE)))) {
cs->flags |= CS_FL_NOLINGER;
cs_shutw(cs);
s->conn_err_type |= STRM_ET_CONN_ABRT;
if (s->srv_error)
s->srv_error(s, cs);
/* Note: state = CS_ST_DIS now */
DBG_TRACE_STATE("client abort during connection attempt", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
goto end;
}
done:
/* retryable error ? */
if ((s->flags & SF_CONN_EXP) || sc_ep_test(cs, CS_EP_ERROR)) {
if (!s->conn_err_type) {
if (sc_ep_test(cs, CS_EP_ERROR))
s->conn_err_type = STRM_ET_CONN_ERR;
else
s->conn_err_type = STRM_ET_CONN_TO;
}
cs->state = CS_ST_CER;
DBG_TRACE_STATE("connection failed, retry", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
}
end:
DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
}
/* This function is called with (cs->state == CS_ST_CER) meaning that a
* previous connection attempt has failed and that the file descriptor
* has already been released. Possible causes include asynchronous error
* notification and time out. Possible output states are CS_ST_CLO when
* retries are exhausted, CS_ST_TAR when a delay is wanted before a new
* connection attempt, CS_ST_ASS when it's wise to retry on the same server,
* and CS_ST_REQ when an immediate redispatch is wanted. The buffers are
* marked as in error state. Timeouts and errors are cleared before retrying.
*/
void back_handle_st_cer(struct stream *s)
{
struct conn_stream *cs = s->csb;
int must_tar = sc_ep_test(cs, CS_EP_ERROR);
DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
s->conn_exp = TICK_ETERNITY;
s->flags &= ~SF_CONN_EXP;
s->conn_retries++;
/* we probably have to release last stream from the server */
if (objt_server(s->target)) {
struct connection *conn = cs_conn(cs);
health_adjust(__objt_server(s->target), HANA_STATUS_L4_ERR);
if (s->flags & SF_CURR_SESS) {
s->flags &= ~SF_CURR_SESS;
_HA_ATOMIC_DEC(&__objt_server(s->target)->cur_sess);
}
if (sc_ep_test(cs, CS_EP_ERROR) &&
conn && conn->err_code == CO_ER_SSL_MISMATCH_SNI) {
/* We tried to connect to a server which is configured
* with "verify required" and which doesn't have the
* "verifyhost" directive. The server presented a wrong
* certificate (a certificate for an unexpected name),
* which implies that we have used SNI in the handshake,
* and that the server doesn't have the associated cert
* and presented a default one.
*
* This is a serious enough issue not to retry. It's
* especially important because this wrong name might
* either be the result of a configuration error, and
* retrying will only hammer the server, or is caused
* by the use of a wrong SNI value, most likely
* provided by the client and we don't want to let the
* client provoke retries.
*/
s->conn_retries = s->be->conn_retries;
DBG_TRACE_DEVEL("Bad SSL cert, disable connection retries", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
}
}
/* ensure that we have enough retries left */
if (s->conn_retries >= s->be->conn_retries || !(s->be->retry_type & PR_RE_CONN_FAILED)) {
if (!s->conn_err_type) {
s->conn_err_type = STRM_ET_CONN_ERR;
}
if (objt_server(s->target))
_HA_ATOMIC_INC(&objt_server(s->target)->counters.failed_conns);
_HA_ATOMIC_INC(&s->be->be_counters.failed_conns);
sess_change_server(s, NULL);
if (may_dequeue_tasks(objt_server(s->target), s->be))
process_srv_queue(objt_server(s->target));
/* shutw is enough to stop a connecting socket */
cs_shutw(cs);
s->req.flags |= CF_WRITE_ERROR;
s->res.flags |= CF_READ_ERROR;
cs->state = CS_ST_CLO;
if (s->srv_error)
s->srv_error(s, cs);
DBG_TRACE_STATE("connection failed", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
goto end;
}
/* At this stage, we will trigger a connection retry (with or without
* redispatch). Thus we must reset the SI endpoint on the server side
* an close the attached connection. It is especially important to do it
* now if the retry is not immediately performed, to be sure to release
* resources as soon as possible and to not catch errors from the lower
* layers in an unexpected state (i.e < ST_CONN).
*
* Note: the conn-stream will be switched to ST_REQ, ST_ASS or
* ST_TAR and CS_EP_ERROR and SF_CONN_EXP flags will be unset.
*/
if (cs_reset_endp(cs) < 0) {
if (!s->conn_err_type)
s->conn_err_type = STRM_ET_CONN_OTHER;
if (objt_server(s->target))
_HA_ATOMIC_INC(&objt_server(s->target)->counters.internal_errors);
_HA_ATOMIC_INC(&s->be->be_counters.internal_errors);
sess_change_server(s, NULL);
if (may_dequeue_tasks(objt_server(s->target), s->be))
process_srv_queue(objt_server(s->target));
/* shutw is enough to stop a connecting socket */
cs_shutw(cs);
s->req.flags |= CF_WRITE_ERROR;
s->res.flags |= CF_READ_ERROR;
cs->state = CS_ST_CLO;
if (s->srv_error)
s->srv_error(s, cs);
DBG_TRACE_STATE("error resetting endpoint", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
goto end;
}
stream_choose_redispatch(s);
if (must_tar) {
/* The error was an asynchronous connection error, and we will
* likely have to retry connecting to the same server, most
* likely leading to the same result. To avoid this, we wait
* MIN(one second, connect timeout) before retrying. We don't
* do it when the failure happened on a reused connection
* though.
*/
int delay = 1000;
const int reused = (s->flags & SF_SRV_REUSED) &&
!(s->flags & SF_SRV_REUSED_ANTICIPATED);
if (s->be->timeout.connect && s->be->timeout.connect < delay)
delay = s->be->timeout.connect;
if (!s->conn_err_type)
s->conn_err_type = STRM_ET_CONN_ERR;
/* only wait when we're retrying on the same server */
if ((cs->state == CS_ST_ASS ||
(s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_RR ||
(s->be->srv_act <= 1)) && !reused) {
cs->state = CS_ST_TAR;
s->conn_exp = tick_add(now_ms, MS_TO_TICKS(delay));
}
DBG_TRACE_STATE("retry a new connection", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
}
end:
DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
}
/* This function is called with (cs->state == CS_ST_RDY) meaning that a
* connection was attempted, that the file descriptor is already allocated,
* and that it has succeeded. We must still check for errors and aborts.
* Possible output states are CS_ST_EST (established), CS_ST_CER (error),
* and CS_ST_DIS (abort). This only works with connection-based streams.
* Timeouts and errors are *not* cleared.
*/
void back_handle_st_rdy(struct stream *s)
{
struct conn_stream *cs = s->csb;
struct channel *req = &s->req;
struct channel *rep = &s->res;
DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
if (unlikely(obj_type(s->target) == OBJ_TYPE_APPLET)) {
/* Here the appctx must exists because the CS was set to
* CS_ST_RDY state when the appctx was created.
*/
BUG_ON(!cs_appctx(s->csb));
if (tv_iszero(&s->logs.tv_request))
s->logs.tv_request = now;
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
be_set_sess_last(s->be);
}
/* We know the connection at least succeeded, though it could have
* since met an error for any other reason. At least it didn't time out
* even though the timeout might have been reported right after success.
* We need to take care of various situations here :
* - everything might be OK. We have to switch to established.
* - an I/O error might have been reported after a successful transfer,
* which is not retryable and needs to be logged correctly, and needs
* established as well
* - CS_ST_CON implies !CF_WROTE_DATA but not conversely as we could
* have validated a connection with incoming data (e.g. TCP with a
* banner protocol), or just a successful connect() probe.
* - the client might have requested a connection abort, this needs to
* be checked before we decide to retry anything.
*/
/* it's still possible to handle client aborts or connection retries
* before any data were sent.
*/
if (!(req->flags & CF_WROTE_DATA)) {
/* client abort ? */
if ((rep->flags & CF_SHUTW) ||
((req->flags & CF_SHUTW_NOW) &&
(channel_is_empty(req) || (s->be->options & PR_O_ABRT_CLOSE)))) {
/* give up */
cs->flags |= CS_FL_NOLINGER;
cs_shutw(cs);
s->conn_err_type |= STRM_ET_CONN_ABRT;
if (s->srv_error)
s->srv_error(s, cs);
DBG_TRACE_STATE("client abort during connection attempt", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
goto end;
}
/* retryable error ? */
if (sc_ep_test(cs, CS_EP_ERROR)) {
if (!s->conn_err_type)
s->conn_err_type = STRM_ET_CONN_ERR;
cs->state = CS_ST_CER;
DBG_TRACE_STATE("connection failed, retry", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
goto end;
}
}
/* data were sent and/or we had no error, back_establish() will
* now take over.
*/
DBG_TRACE_STATE("connection established", STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
s->conn_err_type = STRM_ET_NONE;
cs->state = CS_ST_EST;
end:
DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
}
/* sends a log message when a backend goes down, and also sets last
* change date.
*/
void set_backend_down(struct proxy *be)
{
be->last_change = now.tv_sec;
_HA_ATOMIC_INC(&be->down_trans);
if (!(global.mode & MODE_STARTING)) {
ha_alert("%s '%s' has no server available!\n", proxy_type_str(be), be->id);
send_log(be, LOG_EMERG, "%s %s has no server available!\n", proxy_type_str(be), be->id);
}
}
/* Apply RDP cookie persistence to the current stream. For this, the function
* tries to extract an RDP cookie from the request buffer, and look for the
* matching server in the list. If the server is found, it is assigned to the
* stream. This always returns 1, and the analyser removes itself from the
* list. Nothing is performed if a server was already assigned.
*/
int tcp_persist_rdp_cookie(struct stream *s, struct channel *req, int an_bit)
{
struct proxy *px = s->be;
int ret;
struct sample smp;
struct server *srv = px->srv;
uint16_t port;
uint32_t addr;
char *p;
DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_TCP_ANA, s);
if (s->flags & SF_ASSIGNED)
goto no_cookie;
memset(&smp, 0, sizeof(smp));
ret = fetch_rdp_cookie_name(s, &smp, s->be->rdp_cookie_name, s->be->rdp_cookie_len);
if (ret == 0 || (smp.flags & SMP_F_MAY_CHANGE) || smp.data.u.str.data == 0)
goto no_cookie;
/* Considering an rdp cookie detected using acl, str ended with <cr><lf> and should return.
* The cookie format is <ip> "." <port> where "ip" is the integer corresponding to the
* server's IP address in network order, and "port" is the integer corresponding to the
* server's port in network order. Comments please Emeric.
*/
addr = strtoul(smp.data.u.str.area, &p, 10);
if (*p != '.')
goto no_cookie;
p++;
port = ntohs(strtoul(p, &p, 10));
if (*p != '.')
goto no_cookie;
s->target = NULL;
while (srv) {
if (srv->addr.ss_family == AF_INET &&
port == srv->svc_port &&
addr == ((struct sockaddr_in *)&srv->addr)->sin_addr.s_addr) {
if ((srv->cur_state != SRV_ST_STOPPED) || (px->options & PR_O_PERSIST)) {
/* we found the server and it is usable */
s->flags |= SF_DIRECT | SF_ASSIGNED;
s->target = &srv->obj_type;
break;
}
}
srv = srv->next;
}
no_cookie:
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_TCP_ANA, s);
return 1;
}
int be_downtime(struct proxy *px) {
if (px->lbprm.tot_weight && px->last_change < now.tv_sec) // ignore negative time
return px->down_time;
return now.tv_sec - px->last_change + px->down_time;
}
/*
* This function returns a string containing the balancing
* mode of the proxy in a format suitable for stats.
*/
const char *backend_lb_algo_str(int algo) {
if (algo == BE_LB_ALGO_RR)
return "roundrobin";
else if (algo == BE_LB_ALGO_SRR)
return "static-rr";
else if (algo == BE_LB_ALGO_FAS)
return "first";
else if (algo == BE_LB_ALGO_LC)
return "leastconn";
else if (algo == BE_LB_ALGO_SH)
return "source";
else if (algo == BE_LB_ALGO_UH)
return "uri";
else if (algo == BE_LB_ALGO_PH)
return "url_param";
else if (algo == BE_LB_ALGO_HH)
return "hdr";
else if (algo == BE_LB_ALGO_RCH)
return "rdp-cookie";
else if (algo == BE_LB_ALGO_SMP)
return "hash";
else if (algo == BE_LB_ALGO_NONE)
return "none";
else
return "unknown";
}
/* This function parses a "balance" statement in a backend section describing
* <curproxy>. It returns -1 if there is any error, otherwise zero. If it
* returns -1, it will write an error message into the <err> buffer which will
* automatically be allocated and must be passed as NULL. The trailing '\n'
* will not be written. The function must be called with <args> pointing to the
* first word after "balance".
*/
int backend_parse_balance(const char **args, char **err, struct proxy *curproxy)
{
if (!*(args[0])) {
/* if no option is set, use round-robin by default */
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_RR;
return 0;
}
if (strcmp(args[0], "roundrobin") == 0) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_RR;
}
else if (strcmp(args[0], "static-rr") == 0) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_SRR;
}
else if (strcmp(args[0], "first") == 0) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_FAS;
}
else if (strcmp(args[0], "leastconn") == 0) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_LC;
}
else if (!strncmp(args[0], "random", 6)) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_RND;
curproxy->lbprm.arg_opt1 = 2;
if (*(args[0] + 6) == '(' && *(args[0] + 7) != ')') { /* number of draws */
const char *beg;
char *end;
beg = args[0] + 7;
curproxy->lbprm.arg_opt1 = strtol(beg, &end, 0);
if (*end != ')') {
if (!*end)
memprintf(err, "random : missing closing parenthesis.");
else
memprintf(err, "random : unexpected character '%c' after argument.", *end);
return -1;
}
if (curproxy->lbprm.arg_opt1 < 1) {
memprintf(err, "random : number of draws must be at least 1.");
return -1;
}
}
}
else if (strcmp(args[0], "source") == 0) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_SH;
}
else if (strcmp(args[0], "uri") == 0) {
int arg = 1;
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_UH;
curproxy->lbprm.arg_opt1 = 0; // "whole", "path-only"
curproxy->lbprm.arg_opt2 = 0; // "len"
curproxy->lbprm.arg_opt3 = 0; // "depth"
while (*args[arg]) {
if (strcmp(args[arg], "len") == 0) {
if (!*args[arg+1] || (atoi(args[arg+1]) <= 0)) {
memprintf(err, "%s : '%s' expects a positive integer (got '%s').", args[0], args[arg], args[arg+1]);
return -1;
}
curproxy->lbprm.arg_opt2 = atoi(args[arg+1]);
arg += 2;
}
else if (strcmp(args[arg], "depth") == 0) {
if (!*args[arg+1] || (atoi(args[arg+1]) <= 0)) {
memprintf(err, "%s : '%s' expects a positive integer (got '%s').", args[0], args[arg], args[arg+1]);
return -1;
}
/* hint: we store the position of the ending '/' (depth+1) so
* that we avoid a comparison while computing the hash.
*/
curproxy->lbprm.arg_opt3 = atoi(args[arg+1]) + 1;
arg += 2;
}
else if (strcmp(args[arg], "whole") == 0) {
curproxy->lbprm.arg_opt1 |= 1;
arg += 1;
}
else if (strcmp(args[arg], "path-only") == 0) {
curproxy->lbprm.arg_opt1 |= 2;
arg += 1;
}
else {
memprintf(err, "%s only accepts parameters 'len', 'depth', 'path-only', and 'whole' (got '%s').", args[0], args[arg]);
return -1;
}
}
}
else if (strcmp(args[0], "url_param") == 0) {
if (!*args[1]) {
memprintf(err, "%s requires an URL parameter name.", args[0]);
return -1;
}
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_PH;
free(curproxy->lbprm.arg_str);
curproxy->lbprm.arg_str = strdup(args[1]);
curproxy->lbprm.arg_len = strlen(args[1]);
if (*args[2]) {
if (strcmp(args[2], "check_post") != 0) {
memprintf(err, "%s only accepts 'check_post' modifier (got '%s').", args[0], args[2]);
return -1;
}
}
}
else if (strcmp(args[0], "hash") == 0) {
if (!*args[1]) {
memprintf(err, "%s requires a sample expression.", args[0]);
return -1;
}
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_SMP;
ha_free(&curproxy->lbprm.arg_str);
curproxy->lbprm.arg_str = strdup(args[1]);
curproxy->lbprm.arg_len = strlen(args[1]);
if (*args[2]) {
memprintf(err, "%s takes no other argument (got '%s').", args[0], args[2]);
return -1;
}
}
else if (!strncmp(args[0], "hdr(", 4)) {
const char *beg, *end;
beg = args[0] + 4;
end = strchr(beg, ')');
if (!end || end == beg) {
memprintf(err, "hdr requires an http header field name.");
return -1;
}
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_HH;
free(curproxy->lbprm.arg_str);
curproxy->lbprm.arg_len = end - beg;
curproxy->lbprm.arg_str = my_strndup(beg, end - beg);
curproxy->lbprm.arg_opt1 = 0;
if (*args[1]) {
if (strcmp(args[1], "use_domain_only") != 0) {
memprintf(err, "%s only accepts 'use_domain_only' modifier (got '%s').", args[0], args[1]);
return -1;
}
curproxy->lbprm.arg_opt1 = 1;
}
}
else if (!strncmp(args[0], "rdp-cookie", 10)) {
curproxy->lbprm.algo &= ~BE_LB_ALGO;
curproxy->lbprm.algo |= BE_LB_ALGO_RCH;
if ( *(args[0] + 10 ) == '(' ) { /* cookie name */
const char *beg, *end;
beg = args[0] + 11;
end = strchr(beg, ')');
if (!end || end == beg) {
memprintf(err, "rdp-cookie : missing cookie name.");
return -1;
}
free(curproxy->lbprm.arg_str);
curproxy->lbprm.arg_str = my_strndup(beg, end - beg);
curproxy->lbprm.arg_len = end - beg;
}
else if ( *(args[0] + 10 ) == '\0' ) { /* default cookie name 'mstshash' */
free(curproxy->lbprm.arg_str);
curproxy->lbprm.arg_str = strdup("mstshash");
curproxy->lbprm.arg_len = strlen(curproxy->lbprm.arg_str);
}
else { /* syntax */
memprintf(err, "rdp-cookie : missing cookie name.");
return -1;
}
}
else {
memprintf(err, "only supports 'roundrobin', 'static-rr', 'leastconn', 'source', 'uri', 'url_param', 'hdr(name)' and 'rdp-cookie(name)' options.");
return -1;
}
return 0;
}
/************************************************************************/
/* All supported sample and ACL keywords must be declared here. */
/************************************************************************/
/* set temp integer to the number of enabled servers on the proxy.
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_nbsrv(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct proxy *px = args->data.prx;
if (px == NULL)
return 0;
if (px->cap & PR_CAP_DEF)
px = smp->px;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = be_usable_srv(px);
return 1;
}
/* report in smp->flags a success or failure depending on the designated
* server's state. There is no match function involved since there's no pattern.
* Accepts exactly 1 argument. Argument is a server, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_srv_is_up(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct server *srv = args->data.srv;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_BOOL;
if (!(srv->cur_admin & SRV_ADMF_MAINT) &&
(!(srv->check.state & CHK_ST_CONFIGURED) || (srv->cur_state != SRV_ST_STOPPED)))
smp->data.u.sint = 1;
else
smp->data.u.sint = 0;
return 1;
}
/* set temp integer to the number of enabled servers on the proxy.
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_connslots(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct server *iterator;
struct proxy *px = args->data.prx;
if (px == NULL)
return 0;
if (px->cap & PR_CAP_DEF)
px = smp->px;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
for (iterator = px->srv; iterator; iterator = iterator->next) {
if (iterator->cur_state == SRV_ST_STOPPED)
continue;
if (iterator->maxconn == 0 || iterator->maxqueue == 0) {
/* configuration is stupid */
smp->data.u.sint = -1; /* FIXME: stupid value! */
return 1;
}
smp->data.u.sint += (iterator->maxconn - iterator->cur_sess)
+ (iterator->maxqueue - iterator->queue.length);
}
return 1;
}
/* set temp integer to the id of the backend */
static int
smp_fetch_be_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct proxy *px = NULL;
if (smp->strm)
px = smp->strm->be;
else if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
px = __objt_check(smp->sess->origin)->proxy;
if (!px)
return 0;
smp->flags = SMP_F_VOL_TXN;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = px->uuid;
return 1;
}
/* set string to the name of the backend */
static int
smp_fetch_be_name(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct proxy *px = NULL;
if (smp->strm)
px = smp->strm->be;
else if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
px = __objt_check(smp->sess->origin)->proxy;
if (!px)
return 0;
smp->data.u.str.area = (char *)px->id;
if (!smp->data.u.str.area)
return 0;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
smp->data.u.str.data = strlen(smp->data.u.str.area);
return 1;
}
/* set temp integer to the id of the server */
static int
smp_fetch_srv_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct server *srv = NULL;
if (smp->strm)
srv = objt_server(smp->strm->target);
else if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
srv = __objt_check(smp->sess->origin)->server;
if (!srv)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = srv->puid;
return 1;
}
/* set string to the name of the server */
static int
smp_fetch_srv_name(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct server *srv = NULL;
if (smp->strm)
srv = objt_server(smp->strm->target);
else if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
srv = __objt_check(smp->sess->origin)->server;
if (!srv)
return 0;
smp->data.u.str.area = srv->id;
if (!smp->data.u.str.area)
return 0;
smp->data.type = SMP_T_STR;
smp->data.u.str.data = strlen(smp->data.u.str.area);
return 1;
}
/* set temp integer to the number of connections per second reaching the backend.
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_be_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct proxy *px = args->data.prx;
if (px == NULL)
return 0;
if (px->cap & PR_CAP_DEF)
px = smp->px;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = read_freq_ctr(&px->be_sess_per_sec);
return 1;
}
/* set temp integer to the number of concurrent connections on the backend.
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_be_conn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct proxy *px = args->data.prx;
if (px == NULL)
return 0;
if (px->cap & PR_CAP_DEF)
px = smp->px;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = px->beconn;
return 1;
}
/* set temp integer to the number of available connections across available
* servers on the backend.
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_be_conn_free(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct server *iterator;
struct proxy *px = args->data.prx;
unsigned int maxconn;
if (px == NULL)
return 0;
if (px->cap & PR_CAP_DEF)
px = smp->px;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 0;
for (iterator = px->srv; iterator; iterator = iterator->next) {
if (iterator->cur_state == SRV_ST_STOPPED)
continue;
px = iterator->proxy;
if (!srv_currently_usable(iterator) ||
((iterator->flags & SRV_F_BACKUP) &&
(px->srv_act || (iterator != px->lbprm.fbck && !(px->options & PR_O_USE_ALL_BK)))))
continue;
if (iterator->maxconn == 0) {
/* one active server is unlimited, return -1 */
smp->data.u.sint = -1;
return 1;
}
maxconn = srv_dynamic_maxconn(iterator);
if (maxconn > iterator->cur_sess)
smp->data.u.sint += maxconn - iterator->cur_sess;
}
return 1;
}
/* set temp integer to the total number of queued connections on the backend.
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_queue_size(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct proxy *px = args->data.prx;
if (px == NULL)
return 0;
if (px->cap & PR_CAP_DEF)
px = smp->px;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = px->totpend;
return 1;
}
/* set temp integer to the total number of queued connections on the backend divided
* by the number of running servers and rounded up. If there is no running
* server, we return twice the total, just as if we had half a running server.
* This is more or less correct anyway, since we expect the last server to come
* back soon.
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_avg_queue_size(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct proxy *px = args->data.prx;
int nbsrv;
if (px == NULL)
return 0;
if (px->cap & PR_CAP_DEF)
px = smp->px;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
nbsrv = be_usable_srv(px);
if (nbsrv > 0)
smp->data.u.sint = (px->totpend + nbsrv - 1) / nbsrv;
else
smp->data.u.sint = px->totpend * 2;
return 1;
}
/* set temp integer to the number of concurrent connections on the server in the backend.
* Accepts exactly 1 argument. Argument is a server, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_srv_conn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = args->data.srv->cur_sess;
return 1;
}
/* set temp integer to the number of available connections on the server in the backend.
* Accepts exactly 1 argument. Argument is a server, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_srv_conn_free(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
unsigned int maxconn;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
if (args->data.srv->maxconn == 0) {
/* one active server is unlimited, return -1 */
smp->data.u.sint = -1;
return 1;
}
maxconn = srv_dynamic_maxconn(args->data.srv);
if (maxconn > args->data.srv->cur_sess)
smp->data.u.sint = maxconn - args->data.srv->cur_sess;
else
smp->data.u.sint = 0;
return 1;
}
/* set temp integer to the number of connections pending in the server's queue.
* Accepts exactly 1 argument. Argument is a server, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_srv_queue(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = args->data.srv->queue.length;
return 1;
}
/* set temp integer to the number of enabled servers on the proxy.
* Accepts exactly 1 argument. Argument is a server, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_srv_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = read_freq_ctr(&args->data.srv->sess_per_sec);
return 1;
}
/* set temp integer to the server weight.
* Accepts exactly 1 argument. Argument is a server, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_srv_weight(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct server *srv = args->data.srv;
struct proxy *px = srv->proxy;
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = (srv->cur_eweight * px->lbprm.wmult + px->lbprm.wdiv - 1) / px->lbprm.wdiv;
return 1;
}
/* set temp integer to the server initial weight.
* Accepts exactly 1 argument. Argument is a server, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_srv_iweight(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = args->data.srv->iweight;
return 1;
}
/* set temp integer to the server user-specified weight.
* Accepts exactly 1 argument. Argument is a server, other types will lead to
* undefined behaviour.
*/
static int
smp_fetch_srv_uweight(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags = SMP_F_VOL_TEST;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = args->data.srv->uweight;
return 1;
}
static int
smp_fetch_be_server_timeout(const struct arg *args, struct sample *smp, const char *km, void *private)
{
struct proxy *px = NULL;
if (smp->strm)
px = smp->strm->be;
else if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
px = __objt_check(smp->sess->origin)->proxy;
if (!px)
return 0;
smp->flags = SMP_F_VOL_TXN;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = TICKS_TO_MS(px->timeout.server);
return 1;
}
static int
smp_fetch_be_tunnel_timeout(const struct arg *args, struct sample *smp, const char *km, void *private)
{
struct proxy *px = NULL;
if (smp->strm)
px = smp->strm->be;
else if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
px = __objt_check(smp->sess->origin)->proxy;
if (!px)
return 0;
smp->flags = SMP_F_VOL_TXN;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = TICKS_TO_MS(px->timeout.tunnel);
return 1;
}
static int sample_conv_nbsrv(const struct arg *args, struct sample *smp, void *private)
{
struct proxy *px;
if (!smp_make_safe(smp))
return 0;
px = proxy_find_by_name(smp->data.u.str.area, PR_CAP_BE, 0);
if (!px)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = be_usable_srv(px);
return 1;
}
static int
sample_conv_srv_queue(const struct arg *args, struct sample *smp, void *private)
{
struct proxy *px;
struct server *srv;
char *bksep;
if (!smp_make_safe(smp))
return 0;
bksep = strchr(smp->data.u.str.area, '/');
if (bksep) {
*bksep = '\0';
px = proxy_find_by_name(smp->data.u.str.area, PR_CAP_BE, 0);
if (!px)
return 0;
smp->data.u.str.area = bksep + 1;
} else {
if (!(smp->px->cap & PR_CAP_BE))
return 0;
px = smp->px;
}
srv = server_find_by_name(px, smp->data.u.str.area);
if (!srv)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = srv->queue.length;
return 1;
}
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct sample_fetch_kw_list smp_kws = {ILH, {
{ "avg_queue", smp_fetch_avg_queue_size, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "be_conn", smp_fetch_be_conn, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "be_conn_free", smp_fetch_be_conn_free, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "be_id", smp_fetch_be_id, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, },
{ "be_name", smp_fetch_be_name, 0, NULL, SMP_T_STR, SMP_USE_BKEND, },
{ "be_server_timeout", smp_fetch_be_server_timeout, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, },
{ "be_sess_rate", smp_fetch_be_sess_rate, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "be_tunnel_timeout", smp_fetch_be_tunnel_timeout, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, },
{ "connslots", smp_fetch_connslots, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "nbsrv", smp_fetch_nbsrv, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "queue", smp_fetch_queue_size, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "srv_conn", smp_fetch_srv_conn, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "srv_conn_free", smp_fetch_srv_conn_free, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "srv_id", smp_fetch_srv_id, 0, NULL, SMP_T_SINT, SMP_USE_SERVR, },
{ "srv_is_up", smp_fetch_srv_is_up, ARG1(1,SRV), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
{ "srv_name", smp_fetch_srv_name, 0, NULL, SMP_T_STR, SMP_USE_SERVR, },
{ "srv_queue", smp_fetch_srv_queue, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "srv_sess_rate", smp_fetch_srv_sess_rate, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "srv_weight", smp_fetch_srv_weight, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "srv_iweight", smp_fetch_srv_iweight, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ "srv_uweight", smp_fetch_srv_uweight, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
{ /* END */ },
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
/* Note: must not be declared <const> as its list will be overwritten */
static struct sample_conv_kw_list sample_conv_kws = {ILH, {
{ "nbsrv", sample_conv_nbsrv, 0, NULL, SMP_T_STR, SMP_T_SINT },
{ "srv_queue", sample_conv_srv_queue, 0, NULL, SMP_T_STR, SMP_T_SINT },
{ /* END */ },
}};
INITCALL1(STG_REGISTER, sample_register_convs, &sample_conv_kws);
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct acl_kw_list acl_kws = {ILH, {
{ /* END */ },
}};
INITCALL1(STG_REGISTER, acl_register_keywords, &acl_kws);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/