| /* |
| * Backend variables and functions. |
| * |
| * Copyright 2000-2013 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <syslog.h> |
| #include <string.h> |
| #include <ctype.h> |
| #include <sys/types.h> |
| |
| #include <common/buffer.h> |
| #include <common/compat.h> |
| #include <common/config.h> |
| #include <common/debug.h> |
| #include <common/hash.h> |
| #include <common/ticks.h> |
| #include <common/time.h> |
| #include <common/namespace.h> |
| |
| #include <types/global.h> |
| |
| #include <proto/acl.h> |
| #include <proto/arg.h> |
| #include <proto/backend.h> |
| #include <proto/channel.h> |
| #include <proto/frontend.h> |
| #include <proto/lb_chash.h> |
| #include <proto/lb_fas.h> |
| #include <proto/lb_fwlc.h> |
| #include <proto/lb_fwrr.h> |
| #include <proto/lb_map.h> |
| #include <proto/log.h> |
| #include <proto/obj_type.h> |
| #include <proto/payload.h> |
| #include <proto/protocol.h> |
| #include <proto/proto_http.h> |
| #include <proto/proto_tcp.h> |
| #include <proto/proxy.h> |
| #include <proto/queue.h> |
| #include <proto/sample.h> |
| #include <proto/server.h> |
| #include <proto/stream.h> |
| #include <proto/raw_sock.h> |
| #include <proto/stream_interface.h> |
| #include <proto/task.h> |
| |
| #ifdef USE_OPENSSL |
| #include <proto/ssl_sock.h> |
| #endif /* USE_OPENSSL */ |
| |
| int be_lastsession(const struct proxy *be) |
| { |
| if (be->be_counters.last_sess) |
| return now.tv_sec - be->be_counters.last_sess; |
| |
| return -1; |
| } |
| |
| /* helper function to invoke the correct hash method */ |
| static unsigned int gen_hash(const struct proxy* px, const char* key, unsigned long len) |
| { |
| unsigned int hash; |
| |
| switch (px->lbprm.algo & BE_LB_HASH_FUNC) { |
| case BE_LB_HFCN_DJB2: |
| hash = hash_djb2(key, len); |
| break; |
| case BE_LB_HFCN_WT6: |
| hash = hash_wt6(key, len); |
| break; |
| case BE_LB_HFCN_CRC32: |
| hash = hash_crc32(key, len); |
| break; |
| case BE_LB_HFCN_SDBM: |
| /* this is the default hash function */ |
| default: |
| hash = hash_sdbm(key, len); |
| break; |
| } |
| |
| return hash; |
| } |
| |
| /* |
| * This function recounts the number of usable active and backup servers for |
| * proxy <p>. These numbers are returned into the p->srv_act and p->srv_bck. |
| * This function also recomputes the total active and backup weights. However, |
| * it does not update tot_weight nor tot_used. Use update_backend_weight() for |
| * this. |
| */ |
| void recount_servers(struct proxy *px) |
| { |
| struct server *srv; |
| |
| px->srv_act = px->srv_bck = 0; |
| px->lbprm.tot_wact = px->lbprm.tot_wbck = 0; |
| px->lbprm.fbck = NULL; |
| for (srv = px->srv; srv != NULL; srv = srv->next) { |
| if (!srv_is_usable(srv)) |
| continue; |
| |
| if (srv->flags & SRV_F_BACKUP) { |
| if (!px->srv_bck && |
| !(px->options & PR_O_USE_ALL_BK)) |
| px->lbprm.fbck = srv; |
| px->srv_bck++; |
| srv->cumulative_weight = px->lbprm.tot_wbck; |
| px->lbprm.tot_wbck += srv->eweight; |
| } else { |
| px->srv_act++; |
| srv->cumulative_weight = px->lbprm.tot_wact; |
| px->lbprm.tot_wact += srv->eweight; |
| } |
| } |
| } |
| |
| /* This function simply updates the backend's tot_weight and tot_used values |
| * after servers weights have been updated. It is designed to be used after |
| * recount_servers() or equivalent. |
| */ |
| void update_backend_weight(struct proxy *px) |
| { |
| if (px->srv_act) { |
| px->lbprm.tot_weight = px->lbprm.tot_wact; |
| px->lbprm.tot_used = px->srv_act; |
| } |
| else if (px->lbprm.fbck) { |
| /* use only the first backup server */ |
| px->lbprm.tot_weight = px->lbprm.fbck->eweight; |
| px->lbprm.tot_used = 1; |
| } |
| else { |
| px->lbprm.tot_weight = px->lbprm.tot_wbck; |
| px->lbprm.tot_used = px->srv_bck; |
| } |
| } |
| |
| /* |
| * This function tries to find a running server for the proxy <px> following |
| * the source hash method. Depending on the number of active/backup servers, |
| * it will either look for active servers, or for backup servers. |
| * If any server is found, it will be returned. If no valid server is found, |
| * NULL is returned. |
| */ |
| struct server *get_server_sh(struct proxy *px, const char *addr, int len) |
| { |
| unsigned int h, l; |
| |
| if (px->lbprm.tot_weight == 0) |
| return NULL; |
| |
| l = h = 0; |
| |
| /* note: we won't hash if there's only one server left */ |
| if (px->lbprm.tot_used == 1) |
| goto hash_done; |
| |
| while ((l + sizeof (int)) <= len) { |
| h ^= ntohl(*(unsigned int *)(&addr[l])); |
| l += sizeof (int); |
| } |
| if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) |
| h = full_hash(h); |
| hash_done: |
| if (px->lbprm.algo & BE_LB_LKUP_CHTREE) |
| return chash_get_server_hash(px, h); |
| else |
| return map_get_server_hash(px, h); |
| } |
| |
| /* |
| * This function tries to find a running server for the proxy <px> following |
| * the URI hash method. In order to optimize cache hits, the hash computation |
| * ends at the question mark. Depending on the number of active/backup servers, |
| * it will either look for active servers, or for backup servers. |
| * If any server is found, it will be returned. If no valid server is found, |
| * NULL is returned. |
| * |
| * This code was contributed by Guillaume Dallaire, who also selected this hash |
| * algorithm out of a tens because it gave him the best results. |
| * |
| */ |
| struct server *get_server_uh(struct proxy *px, char *uri, int uri_len) |
| { |
| unsigned int hash = 0; |
| int c; |
| int slashes = 0; |
| const char *start, *end; |
| |
| if (px->lbprm.tot_weight == 0) |
| return NULL; |
| |
| /* note: we won't hash if there's only one server left */ |
| if (px->lbprm.tot_used == 1) |
| goto hash_done; |
| |
| if (px->uri_len_limit) |
| uri_len = MIN(uri_len, px->uri_len_limit); |
| |
| start = end = uri; |
| while (uri_len--) { |
| c = *end; |
| if (c == '/') { |
| slashes++; |
| if (slashes == px->uri_dirs_depth1) /* depth+1 */ |
| break; |
| } |
| else if (c == '?' && !px->uri_whole) |
| break; |
| end++; |
| } |
| |
| hash = gen_hash(px, start, (end - start)); |
| |
| if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) |
| hash = full_hash(hash); |
| hash_done: |
| if (px->lbprm.algo & BE_LB_LKUP_CHTREE) |
| return chash_get_server_hash(px, hash); |
| else |
| return map_get_server_hash(px, hash); |
| } |
| |
| /* |
| * This function tries to find a running server for the proxy <px> following |
| * the URL parameter hash method. It looks for a specific parameter in the |
| * URL and hashes it to compute the server ID. This is useful to optimize |
| * performance by avoiding bounces between servers in contexts where sessions |
| * are shared but cookies are not usable. If the parameter is not found, NULL |
| * is returned. If any server is found, it will be returned. If no valid server |
| * is found, NULL is returned. |
| */ |
| struct server *get_server_ph(struct proxy *px, const char *uri, int uri_len) |
| { |
| unsigned int hash = 0; |
| const char *start, *end; |
| const char *p; |
| const char *params; |
| int plen; |
| |
| /* when tot_weight is 0 then so is srv_count */ |
| if (px->lbprm.tot_weight == 0) |
| return NULL; |
| |
| if ((p = memchr(uri, '?', uri_len)) == NULL) |
| return NULL; |
| |
| p++; |
| |
| uri_len -= (p - uri); |
| plen = px->url_param_len; |
| params = p; |
| |
| while (uri_len > plen) { |
| /* Look for the parameter name followed by an equal symbol */ |
| if (params[plen] == '=') { |
| if (memcmp(params, px->url_param_name, plen) == 0) { |
| /* OK, we have the parameter here at <params>, and |
| * the value after the equal sign, at <p> |
| * skip the equal symbol |
| */ |
| p += plen + 1; |
| start = end = p; |
| uri_len -= plen + 1; |
| |
| while (uri_len && *end != '&') { |
| uri_len--; |
| end++; |
| } |
| hash = gen_hash(px, start, (end - start)); |
| |
| if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) |
| hash = full_hash(hash); |
| |
| if (px->lbprm.algo & BE_LB_LKUP_CHTREE) |
| return chash_get_server_hash(px, hash); |
| else |
| return map_get_server_hash(px, hash); |
| } |
| } |
| /* skip to next parameter */ |
| p = memchr(params, '&', uri_len); |
| if (!p) |
| return NULL; |
| p++; |
| uri_len -= (p - params); |
| params = p; |
| } |
| return NULL; |
| } |
| |
| /* |
| * this does the same as the previous server_ph, but check the body contents |
| */ |
| struct server *get_server_ph_post(struct stream *s) |
| { |
| unsigned int hash = 0; |
| struct http_txn *txn = s->txn; |
| struct channel *req = &s->req; |
| struct http_msg *msg = &txn->req; |
| struct proxy *px = s->be; |
| unsigned int plen = px->url_param_len; |
| unsigned long len = http_body_bytes(msg); |
| const char *params = b_ptr(req->buf, -http_data_rewind(msg)); |
| const char *p = params; |
| const char *start, *end; |
| |
| if (len == 0) |
| return NULL; |
| |
| if (len > req->buf->data + req->buf->size - p) |
| len = req->buf->data + req->buf->size - p; |
| |
| if (px->lbprm.tot_weight == 0) |
| return NULL; |
| |
| while (len > plen) { |
| /* Look for the parameter name followed by an equal symbol */ |
| if (params[plen] == '=') { |
| if (memcmp(params, px->url_param_name, plen) == 0) { |
| /* OK, we have the parameter here at <params>, and |
| * the value after the equal sign, at <p> |
| * skip the equal symbol |
| */ |
| p += plen + 1; |
| start = end = p; |
| len -= plen + 1; |
| |
| while (len && *end != '&') { |
| if (unlikely(!HTTP_IS_TOKEN(*p))) { |
| /* if in a POST, body must be URI encoded or it's not a URI. |
| * Do not interpret any possible binary data as a parameter. |
| */ |
| if (likely(HTTP_IS_LWS(*p))) /* eol, uncertain uri len */ |
| break; |
| return NULL; /* oh, no; this is not uri-encoded. |
| * This body does not contain parameters. |
| */ |
| } |
| len--; |
| end++; |
| /* should we break if vlen exceeds limit? */ |
| } |
| hash = gen_hash(px, start, (end - start)); |
| |
| if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) |
| hash = full_hash(hash); |
| |
| if (px->lbprm.algo & BE_LB_LKUP_CHTREE) |
| return chash_get_server_hash(px, hash); |
| else |
| return map_get_server_hash(px, hash); |
| } |
| } |
| /* skip to next parameter */ |
| p = memchr(params, '&', len); |
| if (!p) |
| return NULL; |
| p++; |
| len -= (p - params); |
| params = p; |
| } |
| return NULL; |
| } |
| |
| |
| /* |
| * This function tries to find a running server for the proxy <px> following |
| * the Header parameter hash method. It looks for a specific parameter in the |
| * URL and hashes it to compute the server ID. This is useful to optimize |
| * performance by avoiding bounces between servers in contexts where sessions |
| * are shared but cookies are not usable. If the parameter is not found, NULL |
| * is returned. If any server is found, it will be returned. If no valid server |
| * is found, NULL is returned. |
| */ |
| struct server *get_server_hh(struct stream *s) |
| { |
| unsigned int hash = 0; |
| struct http_txn *txn = s->txn; |
| struct proxy *px = s->be; |
| unsigned int plen = px->hh_len; |
| unsigned long len; |
| struct hdr_ctx ctx; |
| const char *p; |
| const char *start, *end; |
| |
| /* tot_weight appears to mean srv_count */ |
| if (px->lbprm.tot_weight == 0) |
| return NULL; |
| |
| ctx.idx = 0; |
| |
| /* if the message is chunked, we skip the chunk size, but use the value as len */ |
| http_find_header2(px->hh_name, plen, b_ptr(s->req.buf, -http_hdr_rewind(&txn->req)), &txn->hdr_idx, &ctx); |
| |
| /* if the header is not found or empty, let's fallback to round robin */ |
| if (!ctx.idx || !ctx.vlen) |
| return NULL; |
| |
| /* note: we won't hash if there's only one server left */ |
| if (px->lbprm.tot_used == 1) |
| goto hash_done; |
| |
| /* Found a the hh_name in the headers. |
| * we will compute the hash based on this value ctx.val. |
| */ |
| len = ctx.vlen; |
| p = (char *)ctx.line + ctx.val; |
| if (!px->hh_match_domain) { |
| hash = gen_hash(px, p, len); |
| } else { |
| int dohash = 0; |
| p += len; |
| /* special computation, use only main domain name, not tld/host |
| * going back from the end of string, start hashing at first |
| * dot stop at next. |
| * This is designed to work with the 'Host' header, and requires |
| * a special option to activate this. |
| */ |
| end = p; |
| while (len) { |
| if (dohash) { |
| /* Rewind the pointer until the previous char |
| * is a dot, this will allow to set the start |
| * position of the domain. */ |
| if (*(p - 1) == '.') |
| break; |
| } |
| else if (*p == '.') { |
| /* The pointer is rewinded to the dot before the |
| * tld, we memorize the end of the domain and |
| * can enter the domain processing. */ |
| end = p; |
| dohash = 1; |
| } |
| p--; |
| len--; |
| } |
| start = p; |
| hash = gen_hash(px, start, (end - start)); |
| } |
| if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) |
| hash = full_hash(hash); |
| hash_done: |
| if (px->lbprm.algo & BE_LB_LKUP_CHTREE) |
| return chash_get_server_hash(px, hash); |
| else |
| return map_get_server_hash(px, hash); |
| } |
| |
| /* RDP Cookie HASH. */ |
| struct server *get_server_rch(struct stream *s) |
| { |
| unsigned int hash = 0; |
| struct proxy *px = s->be; |
| unsigned long len; |
| int ret; |
| struct sample smp; |
| int rewind; |
| |
| /* tot_weight appears to mean srv_count */ |
| if (px->lbprm.tot_weight == 0) |
| return NULL; |
| |
| memset(&smp, 0, sizeof(smp)); |
| |
| b_rew(s->req.buf, rewind = s->req.buf->o); |
| |
| ret = fetch_rdp_cookie_name(s, &smp, px->hh_name, px->hh_len); |
| len = smp.data.u.str.len; |
| |
| b_adv(s->req.buf, rewind); |
| |
| if (ret == 0 || (smp.flags & SMP_F_MAY_CHANGE) || len == 0) |
| return NULL; |
| |
| /* note: we won't hash if there's only one server left */ |
| if (px->lbprm.tot_used == 1) |
| goto hash_done; |
| |
| /* Found a the hh_name in the headers. |
| * we will compute the hash based on this value ctx.val. |
| */ |
| hash = gen_hash(px, smp.data.u.str.str, len); |
| |
| if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) |
| hash = full_hash(hash); |
| hash_done: |
| if (px->lbprm.algo & BE_LB_LKUP_CHTREE) |
| return chash_get_server_hash(px, hash); |
| else |
| return map_get_server_hash(px, hash); |
| } |
| |
| /* |
| * This function applies the load-balancing algorithm to the stream, as |
| * defined by the backend it is assigned to. The stream is then marked as |
| * 'assigned'. |
| * |
| * This function MAY NOT be called with SF_ASSIGNED already set. If the stream |
| * had a server previously assigned, it is rebalanced, trying to avoid the same |
| * server, which should still be present in target_srv(&s->target) before the call. |
| * The function tries to keep the original connection slot if it reconnects to |
| * the same server, otherwise it releases it and tries to offer it. |
| * |
| * It is illegal to call this function with a stream in a queue. |
| * |
| * It may return : |
| * SRV_STATUS_OK if everything is OK. ->srv and ->target are assigned. |
| * SRV_STATUS_NOSRV if no server is available. Stream is not ASSIGNED |
| * SRV_STATUS_FULL if all servers are saturated. Stream is not ASSIGNED |
| * SRV_STATUS_INTERNAL for other unrecoverable errors. |
| * |
| * Upon successful return, the stream flag SF_ASSIGNED is set to indicate that |
| * it does not need to be called anymore. This means that target_srv(&s->target) |
| * can be trusted in balance and direct modes. |
| * |
| */ |
| |
| int assign_server(struct stream *s) |
| { |
| struct connection *conn; |
| struct server *conn_slot; |
| struct server *srv, *prev_srv; |
| int err; |
| |
| DPRINTF(stderr,"assign_server : s=%p\n",s); |
| |
| err = SRV_STATUS_INTERNAL; |
| if (unlikely(s->pend_pos || s->flags & SF_ASSIGNED)) |
| goto out_err; |
| |
| prev_srv = objt_server(s->target); |
| conn_slot = s->srv_conn; |
| |
| /* We have to release any connection slot before applying any LB algo, |
| * otherwise we may erroneously end up with no available slot. |
| */ |
| if (conn_slot) |
| sess_change_server(s, NULL); |
| |
| /* We will now try to find the good server and store it into <objt_server(s->target)>. |
| * Note that <objt_server(s->target)> may be NULL in case of dispatch or proxy mode, |
| * as well as if no server is available (check error code). |
| */ |
| |
| srv = NULL; |
| s->target = NULL; |
| conn = objt_conn(s->si[1].end); |
| |
| if (conn && |
| (conn->flags & CO_FL_CONNECTED) && |
| objt_server(conn->target) && __objt_server(conn->target)->proxy == s->be && |
| ((s->txn && s->txn->flags & TX_PREFER_LAST) || |
| ((s->be->options & PR_O_PREF_LAST) && |
| (!s->be->max_ka_queue || |
| server_has_room(__objt_server(conn->target)) || |
| (__objt_server(conn->target)->nbpend + 1) < s->be->max_ka_queue))) && |
| srv_is_usable(__objt_server(conn->target))) { |
| /* This stream was relying on a server in a previous request |
| * and the proxy has "option prefer-last-server" set, so |
| * let's try to reuse the same server. |
| */ |
| srv = __objt_server(conn->target); |
| s->target = &srv->obj_type; |
| } |
| else if (s->be->lbprm.algo & BE_LB_KIND) { |
| /* we must check if we have at least one server available */ |
| if (!s->be->lbprm.tot_weight) { |
| err = SRV_STATUS_NOSRV; |
| goto out; |
| } |
| |
| /* First check whether we need to fetch some data or simply call |
| * the LB lookup function. Only the hashing functions will need |
| * some input data in fact, and will support multiple algorithms. |
| */ |
| switch (s->be->lbprm.algo & BE_LB_LKUP) { |
| case BE_LB_LKUP_RRTREE: |
| srv = fwrr_get_next_server(s->be, prev_srv); |
| break; |
| |
| case BE_LB_LKUP_FSTREE: |
| srv = fas_get_next_server(s->be, prev_srv); |
| break; |
| |
| case BE_LB_LKUP_LCTREE: |
| srv = fwlc_get_next_server(s->be, prev_srv); |
| break; |
| |
| case BE_LB_LKUP_CHTREE: |
| case BE_LB_LKUP_MAP: |
| if ((s->be->lbprm.algo & BE_LB_KIND) == BE_LB_KIND_RR) { |
| if (s->be->lbprm.algo & BE_LB_LKUP_CHTREE) |
| srv = chash_get_next_server(s->be, prev_srv); |
| else |
| srv = map_get_server_rr(s->be, prev_srv); |
| break; |
| } |
| else if ((s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_HI) { |
| /* unknown balancing algorithm */ |
| err = SRV_STATUS_INTERNAL; |
| goto out; |
| } |
| |
| switch (s->be->lbprm.algo & BE_LB_PARM) { |
| case BE_LB_HASH_SRC: |
| conn = objt_conn(strm_orig(s)); |
| if (conn && conn->addr.from.ss_family == AF_INET) { |
| srv = get_server_sh(s->be, |
| (void *)&((struct sockaddr_in *)&conn->addr.from)->sin_addr, |
| 4); |
| } |
| else if (conn && conn->addr.from.ss_family == AF_INET6) { |
| srv = get_server_sh(s->be, |
| (void *)&((struct sockaddr_in6 *)&conn->addr.from)->sin6_addr, |
| 16); |
| } |
| else { |
| /* unknown IP family */ |
| err = SRV_STATUS_INTERNAL; |
| goto out; |
| } |
| break; |
| |
| case BE_LB_HASH_URI: |
| /* URI hashing */ |
| if (!s->txn || s->txn->req.msg_state < HTTP_MSG_BODY) |
| break; |
| srv = get_server_uh(s->be, |
| b_ptr(s->req.buf, -http_uri_rewind(&s->txn->req)), |
| s->txn->req.sl.rq.u_l); |
| break; |
| |
| case BE_LB_HASH_PRM: |
| /* URL Parameter hashing */ |
| if (!s->txn || s->txn->req.msg_state < HTTP_MSG_BODY) |
| break; |
| |
| srv = get_server_ph(s->be, |
| b_ptr(s->req.buf, -http_uri_rewind(&s->txn->req)), |
| s->txn->req.sl.rq.u_l); |
| |
| if (!srv && s->txn->meth == HTTP_METH_POST) |
| srv = get_server_ph_post(s); |
| break; |
| |
| case BE_LB_HASH_HDR: |
| /* Header Parameter hashing */ |
| if (!s->txn || s->txn->req.msg_state < HTTP_MSG_BODY) |
| break; |
| srv = get_server_hh(s); |
| break; |
| |
| case BE_LB_HASH_RDP: |
| /* RDP Cookie hashing */ |
| srv = get_server_rch(s); |
| break; |
| |
| default: |
| /* unknown balancing algorithm */ |
| err = SRV_STATUS_INTERNAL; |
| goto out; |
| } |
| |
| /* If the hashing parameter was not found, let's fall |
| * back to round robin on the map. |
| */ |
| if (!srv) { |
| if (s->be->lbprm.algo & BE_LB_LKUP_CHTREE) |
| srv = chash_get_next_server(s->be, prev_srv); |
| else |
| srv = map_get_server_rr(s->be, prev_srv); |
| } |
| |
| /* end of map-based LB */ |
| break; |
| |
| default: |
| /* unknown balancing algorithm */ |
| err = SRV_STATUS_INTERNAL; |
| goto out; |
| } |
| |
| if (!srv) { |
| err = SRV_STATUS_FULL; |
| goto out; |
| } |
| else if (srv != prev_srv) { |
| s->be->be_counters.cum_lbconn++; |
| srv->counters.cum_lbconn++; |
| } |
| s->target = &srv->obj_type; |
| } |
| else if (s->be->options & (PR_O_DISPATCH | PR_O_TRANSP)) { |
| s->target = &s->be->obj_type; |
| } |
| else if ((s->be->options & PR_O_HTTP_PROXY) && |
| (conn = objt_conn(s->si[1].end)) && |
| is_addr(&conn->addr.to)) { |
| /* in proxy mode, we need a valid destination address */ |
| s->target = &s->be->obj_type; |
| } |
| else { |
| err = SRV_STATUS_NOSRV; |
| goto out; |
| } |
| |
| s->flags |= SF_ASSIGNED; |
| err = SRV_STATUS_OK; |
| out: |
| |
| /* Either we take back our connection slot, or we offer it to someone |
| * else if we don't need it anymore. |
| */ |
| if (conn_slot) { |
| if (conn_slot == srv) { |
| sess_change_server(s, srv); |
| } else { |
| if (may_dequeue_tasks(conn_slot, s->be)) |
| process_srv_queue(conn_slot); |
| } |
| } |
| |
| out_err: |
| return err; |
| } |
| |
| /* |
| * This function assigns a server address to a stream, and sets SF_ADDR_SET. |
| * The address is taken from the currently assigned server, or from the |
| * dispatch or transparent address. |
| * |
| * It may return : |
| * SRV_STATUS_OK if everything is OK. |
| * SRV_STATUS_INTERNAL for other unrecoverable errors. |
| * |
| * Upon successful return, the stream flag SF_ADDR_SET is set. This flag is |
| * not cleared, so it's to the caller to clear it if required. |
| * |
| * The caller is responsible for having already assigned a connection |
| * to si->end. |
| * |
| */ |
| int assign_server_address(struct stream *s) |
| { |
| struct connection *cli_conn = objt_conn(strm_orig(s)); |
| struct connection *srv_conn = objt_conn(s->si[1].end); |
| |
| #ifdef DEBUG_FULL |
| fprintf(stderr,"assign_server_address : s=%p\n",s); |
| #endif |
| |
| if ((s->flags & SF_DIRECT) || (s->be->lbprm.algo & BE_LB_KIND)) { |
| /* A server is necessarily known for this stream */ |
| if (!(s->flags & SF_ASSIGNED)) |
| return SRV_STATUS_INTERNAL; |
| |
| srv_conn->addr.to = objt_server(s->target)->addr; |
| |
| if (!is_addr(&srv_conn->addr.to) && cli_conn) { |
| /* if the server has no address, we use the same address |
| * the client asked, which is handy for remapping ports |
| * locally on multiple addresses at once. Nothing is done |
| * for AF_UNIX addresses. |
| */ |
| conn_get_to_addr(cli_conn); |
| |
| if (cli_conn->addr.to.ss_family == AF_INET) { |
| ((struct sockaddr_in *)&srv_conn->addr.to)->sin_addr = ((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr; |
| } else if (cli_conn->addr.to.ss_family == AF_INET6) { |
| ((struct sockaddr_in6 *)&srv_conn->addr.to)->sin6_addr = ((struct sockaddr_in6 *)&cli_conn->addr.to)->sin6_addr; |
| } |
| } |
| |
| /* if this server remaps proxied ports, we'll use |
| * the port the client connected to with an offset. */ |
| if ((objt_server(s->target)->flags & SRV_F_MAPPORTS) && cli_conn) { |
| int base_port; |
| |
| conn_get_to_addr(cli_conn); |
| |
| /* First, retrieve the port from the incoming connection */ |
| base_port = get_host_port(&cli_conn->addr.to); |
| |
| /* Second, assign the outgoing connection's port */ |
| base_port += get_host_port(&srv_conn->addr.to); |
| set_host_port(&srv_conn->addr.to, base_port); |
| } |
| } |
| else if (s->be->options & PR_O_DISPATCH) { |
| /* connect to the defined dispatch addr */ |
| srv_conn->addr.to = s->be->dispatch_addr; |
| } |
| else if ((s->be->options & PR_O_TRANSP) && cli_conn) { |
| /* in transparent mode, use the original dest addr if no dispatch specified */ |
| conn_get_to_addr(cli_conn); |
| |
| if (cli_conn->addr.to.ss_family == AF_INET || cli_conn->addr.to.ss_family == AF_INET6) |
| srv_conn->addr.to = cli_conn->addr.to; |
| } |
| else if (s->be->options & PR_O_HTTP_PROXY) { |
| /* If HTTP PROXY option is set, then server is already assigned |
| * during incoming client request parsing. */ |
| } |
| else { |
| /* no server and no LB algorithm ! */ |
| return SRV_STATUS_INTERNAL; |
| } |
| |
| /* Copy network namespace from client connection */ |
| srv_conn->proxy_netns = cli_conn ? cli_conn->proxy_netns : NULL; |
| |
| s->flags |= SF_ADDR_SET; |
| return SRV_STATUS_OK; |
| } |
| |
| /* This function assigns a server to stream <s> if required, and can add the |
| * connection to either the assigned server's queue or to the proxy's queue. |
| * If ->srv_conn is set, the stream is first released from the server. |
| * It may also be called with SF_DIRECT and/or SF_ASSIGNED though. It will |
| * be called before any connection and after any retry or redispatch occurs. |
| * |
| * It is not allowed to call this function with a stream in a queue. |
| * |
| * Returns : |
| * |
| * SRV_STATUS_OK if everything is OK. |
| * SRV_STATUS_NOSRV if no server is available. objt_server(s->target) = NULL. |
| * SRV_STATUS_QUEUED if the connection has been queued. |
| * SRV_STATUS_FULL if the server(s) is/are saturated and the |
| * connection could not be queued at the server's, |
| * which may be NULL if we queue on the backend. |
| * SRV_STATUS_INTERNAL for other unrecoverable errors. |
| * |
| */ |
| int assign_server_and_queue(struct stream *s) |
| { |
| struct pendconn *p; |
| struct server *srv; |
| int err; |
| |
| if (s->pend_pos) |
| return SRV_STATUS_INTERNAL; |
| |
| err = SRV_STATUS_OK; |
| if (!(s->flags & SF_ASSIGNED)) { |
| struct server *prev_srv = objt_server(s->target); |
| |
| err = assign_server(s); |
| if (prev_srv) { |
| /* This stream was previously assigned to a server. We have to |
| * update the stream's and the server's stats : |
| * - if the server changed : |
| * - set TX_CK_DOWN if txn.flags was TX_CK_VALID |
| * - set SF_REDISP if it was successfully redispatched |
| * - increment srv->redispatches and be->redispatches |
| * - if the server remained the same : update retries. |
| */ |
| |
| if (prev_srv != objt_server(s->target)) { |
| if (s->txn && (s->txn->flags & TX_CK_MASK) == TX_CK_VALID) { |
| s->txn->flags &= ~TX_CK_MASK; |
| s->txn->flags |= TX_CK_DOWN; |
| } |
| s->flags |= SF_REDISP; |
| prev_srv->counters.redispatches++; |
| s->be->be_counters.redispatches++; |
| } else { |
| prev_srv->counters.retries++; |
| s->be->be_counters.retries++; |
| } |
| } |
| } |
| |
| switch (err) { |
| case SRV_STATUS_OK: |
| /* we have SF_ASSIGNED set */ |
| srv = objt_server(s->target); |
| if (!srv) |
| return SRV_STATUS_OK; /* dispatch or proxy mode */ |
| |
| /* If we already have a connection slot, no need to check any queue */ |
| if (s->srv_conn == srv) |
| return SRV_STATUS_OK; |
| |
| /* OK, this stream already has an assigned server, but no |
| * connection slot yet. Either it is a redispatch, or it was |
| * assigned from persistence information (direct mode). |
| */ |
| if ((s->flags & SF_REDIRECTABLE) && srv->rdr_len) { |
| /* server scheduled for redirection, and already assigned. We |
| * don't want to go further nor check the queue. |
| */ |
| sess_change_server(s, srv); /* not really needed in fact */ |
| return SRV_STATUS_OK; |
| } |
| |
| /* We might have to queue this stream if the assigned server is full. |
| * We know we have to queue it into the server's queue, so if a maxqueue |
| * is set on the server, we must also check that the server's queue is |
| * not full, in which case we have to return FULL. |
| */ |
| if (srv->maxconn && |
| (srv->nbpend || srv->served >= srv_dynamic_maxconn(srv))) { |
| |
| if (srv->maxqueue > 0 && srv->nbpend >= srv->maxqueue) |
| return SRV_STATUS_FULL; |
| |
| p = pendconn_add(s); |
| if (p) |
| return SRV_STATUS_QUEUED; |
| else |
| return SRV_STATUS_INTERNAL; |
| } |
| |
| /* OK, we can use this server. Let's reserve our place */ |
| sess_change_server(s, srv); |
| return SRV_STATUS_OK; |
| |
| case SRV_STATUS_FULL: |
| /* queue this stream into the proxy's queue */ |
| p = pendconn_add(s); |
| if (p) |
| return SRV_STATUS_QUEUED; |
| else |
| return SRV_STATUS_INTERNAL; |
| |
| case SRV_STATUS_NOSRV: |
| return err; |
| |
| case SRV_STATUS_INTERNAL: |
| return err; |
| |
| default: |
| return SRV_STATUS_INTERNAL; |
| } |
| } |
| |
| /* If an explicit source binding is specified on the server and/or backend, and |
| * this source makes use of the transparent proxy, then it is extracted now and |
| * assigned to the stream's pending connection. This function assumes that an |
| * outgoing connection has already been assigned to s->si[1].end. |
| */ |
| static void assign_tproxy_address(struct stream *s) |
| { |
| #if defined(CONFIG_HAP_TRANSPARENT) |
| struct server *srv = objt_server(s->target); |
| struct conn_src *src; |
| struct connection *cli_conn; |
| struct connection *srv_conn = objt_conn(s->si[1].end); |
| |
| if (srv && srv->conn_src.opts & CO_SRC_BIND) |
| src = &srv->conn_src; |
| else if (s->be->conn_src.opts & CO_SRC_BIND) |
| src = &s->be->conn_src; |
| else |
| return; |
| |
| switch (src->opts & CO_SRC_TPROXY_MASK) { |
| case CO_SRC_TPROXY_ADDR: |
| srv_conn->addr.from = src->tproxy_addr; |
| break; |
| case CO_SRC_TPROXY_CLI: |
| case CO_SRC_TPROXY_CIP: |
| /* FIXME: what can we do if the client connects in IPv6 or unix socket ? */ |
| cli_conn = objt_conn(strm_orig(s)); |
| if (cli_conn) |
| srv_conn->addr.from = cli_conn->addr.from; |
| else |
| memset(&srv_conn->addr.from, 0, sizeof(srv_conn->addr.from)); |
| break; |
| case CO_SRC_TPROXY_DYN: |
| if (src->bind_hdr_occ && s->txn) { |
| char *vptr; |
| int vlen; |
| int rewind; |
| |
| /* bind to the IP in a header */ |
| ((struct sockaddr_in *)&srv_conn->addr.from)->sin_family = AF_INET; |
| ((struct sockaddr_in *)&srv_conn->addr.from)->sin_port = 0; |
| ((struct sockaddr_in *)&srv_conn->addr.from)->sin_addr.s_addr = 0; |
| |
| b_rew(s->req.buf, rewind = http_hdr_rewind(&s->txn->req)); |
| if (http_get_hdr(&s->txn->req, src->bind_hdr_name, src->bind_hdr_len, |
| &s->txn->hdr_idx, src->bind_hdr_occ, NULL, &vptr, &vlen)) { |
| ((struct sockaddr_in *)&srv_conn->addr.from)->sin_addr.s_addr = |
| htonl(inetaddr_host_lim(vptr, vptr + vlen)); |
| } |
| b_adv(s->req.buf, rewind); |
| } |
| break; |
| default: |
| memset(&srv_conn->addr.from, 0, sizeof(srv_conn->addr.from)); |
| } |
| #endif |
| } |
| |
| |
| /* |
| * This function initiates a connection to the server assigned to this stream |
| * (s->target, s->si[1].addr.to). It will assign a server if none |
| * is assigned yet. |
| * It can return one of : |
| * - SF_ERR_NONE if everything's OK |
| * - SF_ERR_SRVTO if there are no more servers |
| * - SF_ERR_SRVCL if the connection was refused by the server |
| * - SF_ERR_PRXCOND if the connection has been limited by the proxy (maxconn) |
| * - SF_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...) |
| * - SF_ERR_INTERNAL for any other purely internal errors |
| * Additionally, in the case of SF_ERR_RESOURCE, an emergency log will be emitted. |
| * The server-facing stream interface is expected to hold a pre-allocated connection |
| * in s->si[1].conn. |
| */ |
| int connect_server(struct stream *s) |
| { |
| struct connection *cli_conn; |
| struct connection *srv_conn; |
| struct connection *old_conn; |
| struct server *srv; |
| int reuse = 0; |
| int err; |
| |
| srv = objt_server(s->target); |
| srv_conn = objt_conn(s->si[1].end); |
| if (srv_conn) |
| reuse = s->target == srv_conn->target; |
| |
| if (srv && !reuse) { |
| old_conn = srv_conn; |
| if (old_conn) { |
| srv_conn = NULL; |
| old_conn->owner = NULL; |
| si_detach_endpoint(&s->si[1]); |
| /* note: if the connection was in a server's idle |
| * queue, it doesn't get dequeued. |
| */ |
| } |
| |
| /* Below we pick connections from the safe or idle lists based |
| * on the strategy, the fact that this is a first or second |
| * (retryable) request, with the indicated priority (1 or 2) : |
| * |
| * SAFE AGGR ALWS |
| * |
| * +-----+-----+ +-----+-----+ +-----+-----+ |
| * req| 1st | 2nd | req| 1st | 2nd | req| 1st | 2nd | |
| * ----+-----+-----+ ----+-----+-----+ ----+-----+-----+ |
| * safe| - | 2 | safe| 1 | 2 | safe| 1 | 2 | |
| * ----+-----+-----+ ----+-----+-----+ ----+-----+-----+ |
| * idle| - | 1 | idle| - | 1 | idle| 2 | 1 | |
| * ----+-----+-----+ ----+-----+-----+ ----+-----+-----+ |
| */ |
| |
| if (!LIST_ISEMPTY(&srv->idle_conns) && |
| ((s->be->options & PR_O_REUSE_MASK) != PR_O_REUSE_NEVR && |
| s->txn && (s->txn->flags & TX_NOT_FIRST))) { |
| srv_conn = LIST_ELEM(srv->idle_conns.n, struct connection *, list); |
| } |
| else if (!LIST_ISEMPTY(&srv->safe_conns) && |
| ((s->txn && (s->txn->flags & TX_NOT_FIRST)) || |
| (s->be->options & PR_O_REUSE_MASK) >= PR_O_REUSE_AGGR)) { |
| srv_conn = LIST_ELEM(srv->safe_conns.n, struct connection *, list); |
| } |
| else if (!LIST_ISEMPTY(&srv->idle_conns) && |
| (s->be->options & PR_O_REUSE_MASK) == PR_O_REUSE_ALWS) { |
| srv_conn = LIST_ELEM(srv->idle_conns.n, struct connection *, list); |
| } |
| |
| /* If we've picked a connection from the pool, we now have to |
| * detach it. We may have to get rid of the previous idle |
| * connection we had, so for this we try to swap it with the |
| * other owner's. That way it may remain alive for others to |
| * pick. |
| */ |
| if (srv_conn) { |
| LIST_DEL(&srv_conn->list); |
| LIST_INIT(&srv_conn->list); |
| |
| if (srv_conn->owner) { |
| si_detach_endpoint(srv_conn->owner); |
| if (old_conn && !(old_conn->flags & CO_FL_PRIVATE)) { |
| si_attach_conn(srv_conn->owner, old_conn); |
| si_idle_conn(srv_conn->owner, NULL); |
| } |
| } |
| si_attach_conn(&s->si[1], srv_conn); |
| reuse = 1; |
| } |
| |
| /* we may have to release our connection if we couldn't swap it */ |
| if (old_conn && !old_conn->owner) { |
| LIST_DEL(&old_conn->list); |
| conn_force_close(old_conn); |
| conn_free(old_conn); |
| } |
| } |
| |
| if (reuse) { |
| /* Disable connection reuse if a dynamic source is used. |
| * As long as we don't share connections between servers, |
| * we don't need to disable connection reuse on no-idempotent |
| * requests nor when PROXY protocol is used. |
| */ |
| if (srv && srv->conn_src.opts & CO_SRC_BIND) { |
| if ((srv->conn_src.opts & CO_SRC_TPROXY_MASK) == CO_SRC_TPROXY_DYN) |
| reuse = 0; |
| } |
| else if (s->be->conn_src.opts & CO_SRC_BIND) { |
| if ((s->be->conn_src.opts & CO_SRC_TPROXY_MASK) == CO_SRC_TPROXY_DYN) |
| reuse = 0; |
| } |
| } |
| |
| if (!reuse) |
| srv_conn = si_alloc_conn(&s->si[1]); |
| else { |
| /* reusing our connection, take it out of the idle list */ |
| LIST_DEL(&srv_conn->list); |
| LIST_INIT(&srv_conn->list); |
| } |
| |
| if (!srv_conn) |
| return SF_ERR_RESOURCE; |
| |
| if (!(s->flags & SF_ADDR_SET)) { |
| err = assign_server_address(s); |
| if (err != SRV_STATUS_OK) |
| return SF_ERR_INTERNAL; |
| } |
| |
| if (!conn_xprt_ready(srv_conn)) { |
| /* the target was only on the stream, assign it to the SI now */ |
| srv_conn->target = s->target; |
| |
| /* set the correct protocol on the output stream interface */ |
| if (srv) { |
| conn_prepare(srv_conn, protocol_by_family(srv_conn->addr.to.ss_family), srv->xprt); |
| } |
| else if (obj_type(s->target) == OBJ_TYPE_PROXY) { |
| /* proxies exclusively run on raw_sock right now */ |
| conn_prepare(srv_conn, protocol_by_family(srv_conn->addr.to.ss_family), &raw_sock); |
| if (!objt_conn(s->si[1].end) || !objt_conn(s->si[1].end)->ctrl) |
| return SF_ERR_INTERNAL; |
| } |
| else |
| return SF_ERR_INTERNAL; /* how did we get there ? */ |
| |
| /* process the case where the server requires the PROXY protocol to be sent */ |
| srv_conn->send_proxy_ofs = 0; |
| if (srv && srv->pp_opts) { |
| srv_conn->flags |= CO_FL_PRIVATE; |
| srv_conn->send_proxy_ofs = 1; /* must compute size */ |
| cli_conn = objt_conn(strm_orig(s)); |
| if (cli_conn) |
| conn_get_to_addr(cli_conn); |
| } |
| |
| si_attach_conn(&s->si[1], srv_conn); |
| |
| assign_tproxy_address(s); |
| } |
| else { |
| /* the connection is being reused, just re-attach it */ |
| si_attach_conn(&s->si[1], srv_conn); |
| s->flags |= SF_SRV_REUSED; |
| } |
| |
| /* flag for logging source ip/port */ |
| if (strm_fe(s)->options2 & PR_O2_SRC_ADDR) |
| s->si[1].flags |= SI_FL_SRC_ADDR; |
| |
| /* disable lingering */ |
| if (s->be->options & PR_O_TCP_NOLING) |
| s->si[1].flags |= SI_FL_NOLINGER; |
| |
| err = si_connect(&s->si[1]); |
| |
| if (err != SF_ERR_NONE) |
| return err; |
| |
| /* set connect timeout */ |
| s->si[1].exp = tick_add_ifset(now_ms, s->be->timeout.connect); |
| |
| if (srv) { |
| s->flags |= SF_CURR_SESS; |
| srv->cur_sess++; |
| if (srv->cur_sess > srv->counters.cur_sess_max) |
| srv->counters.cur_sess_max = srv->cur_sess; |
| if (s->be->lbprm.server_take_conn) |
| s->be->lbprm.server_take_conn(srv); |
| |
| #ifdef USE_OPENSSL |
| if (srv->ssl_ctx.sni) { |
| struct sample *smp; |
| int rewind; |
| |
| /* Tricky case : we have already scheduled the pending |
| * HTTP request or TCP data for leaving. So in HTTP we |
| * rewind exactly the headers, otherwise we rewind the |
| * output data. |
| */ |
| rewind = s->txn ? http_hdr_rewind(&s->txn->req) : s->req.buf->o; |
| b_rew(s->req.buf, rewind); |
| |
| smp = sample_fetch_as_type(s->be, s->sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL, srv->ssl_ctx.sni, SMP_T_STR); |
| |
| /* restore the pointers */ |
| b_adv(s->req.buf, rewind); |
| |
| if (smp_make_safe(smp)) { |
| ssl_sock_set_servername(srv_conn, smp->data.u.str.str); |
| srv_conn->flags |= CO_FL_PRIVATE; |
| } |
| } |
| #endif /* USE_OPENSSL */ |
| |
| } |
| |
| return SF_ERR_NONE; /* connection is OK */ |
| } |
| |
| |
| /* This function performs the "redispatch" part of a connection attempt. It |
| * will assign a server if required, queue the connection if required, and |
| * handle errors that might arise at this level. It can change the server |
| * state. It will return 1 if it encounters an error, switches the server |
| * state, or has to queue a connection. Otherwise, it will return 0 indicating |
| * that the connection is ready to use. |
| */ |
| |
| int srv_redispatch_connect(struct stream *s) |
| { |
| struct server *srv; |
| int conn_err; |
| |
| /* We know that we don't have any connection pending, so we will |
| * try to get a new one, and wait in this state if it's queued |
| */ |
| redispatch: |
| conn_err = assign_server_and_queue(s); |
| srv = objt_server(s->target); |
| |
| switch (conn_err) { |
| case SRV_STATUS_OK: |
| break; |
| |
| case SRV_STATUS_FULL: |
| /* The server has reached its maxqueue limit. Either PR_O_REDISP is set |
| * and we can redispatch to another server, or it is not and we return |
| * 503. This only makes sense in DIRECT mode however, because normal LB |
| * algorithms would never select such a server, and hash algorithms |
| * would bring us on the same server again. Note that s->target is set |
| * in this case. |
| */ |
| if (((s->flags & (SF_DIRECT|SF_FORCE_PRST)) == SF_DIRECT) && |
| (s->be->options & PR_O_REDISP)) { |
| s->flags &= ~(SF_DIRECT | SF_ASSIGNED | SF_ADDR_SET); |
| goto redispatch; |
| } |
| |
| if (!s->si[1].err_type) { |
| s->si[1].err_type = SI_ET_QUEUE_ERR; |
| } |
| |
| srv->counters.failed_conns++; |
| s->be->be_counters.failed_conns++; |
| return 1; |
| |
| case SRV_STATUS_NOSRV: |
| /* note: it is guaranteed that srv == NULL here */ |
| if (!s->si[1].err_type) { |
| s->si[1].err_type = SI_ET_CONN_ERR; |
| } |
| |
| s->be->be_counters.failed_conns++; |
| return 1; |
| |
| case SRV_STATUS_QUEUED: |
| s->si[1].exp = tick_add_ifset(now_ms, s->be->timeout.queue); |
| s->si[1].state = SI_ST_QUE; |
| /* do nothing else and do not wake any other stream up */ |
| return 1; |
| |
| case SRV_STATUS_INTERNAL: |
| default: |
| if (!s->si[1].err_type) { |
| s->si[1].err_type = SI_ET_CONN_OTHER; |
| } |
| |
| if (srv) |
| srv_inc_sess_ctr(srv); |
| if (srv) |
| srv_set_sess_last(srv); |
| if (srv) |
| srv->counters.failed_conns++; |
| s->be->be_counters.failed_conns++; |
| |
| /* release other streams waiting for this server */ |
| if (may_dequeue_tasks(srv, s->be)) |
| process_srv_queue(srv); |
| return 1; |
| } |
| /* if we get here, it's because we got SRV_STATUS_OK, which also |
| * means that the connection has not been queued. |
| */ |
| return 0; |
| } |
| |
| /* sends a log message when a backend goes down, and also sets last |
| * change date. |
| */ |
| void set_backend_down(struct proxy *be) |
| { |
| be->last_change = now.tv_sec; |
| be->down_trans++; |
| |
| if (!(global.mode & MODE_STARTING)) { |
| Alert("%s '%s' has no server available!\n", proxy_type_str(be), be->id); |
| send_log(be, LOG_EMERG, "%s %s has no server available!\n", proxy_type_str(be), be->id); |
| } |
| } |
| |
| /* Apply RDP cookie persistence to the current stream. For this, the function |
| * tries to extract an RDP cookie from the request buffer, and look for the |
| * matching server in the list. If the server is found, it is assigned to the |
| * stream. This always returns 1, and the analyser removes itself from the |
| * list. Nothing is performed if a server was already assigned. |
| */ |
| int tcp_persist_rdp_cookie(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct proxy *px = s->be; |
| int ret; |
| struct sample smp; |
| struct server *srv = px->srv; |
| struct sockaddr_in addr; |
| char *p; |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| req->buf->i, |
| req->analysers); |
| |
| if (s->flags & SF_ASSIGNED) |
| goto no_cookie; |
| |
| memset(&smp, 0, sizeof(smp)); |
| |
| ret = fetch_rdp_cookie_name(s, &smp, s->be->rdp_cookie_name, s->be->rdp_cookie_len); |
| if (ret == 0 || (smp.flags & SMP_F_MAY_CHANGE) || smp.data.u.str.len == 0) |
| goto no_cookie; |
| |
| memset(&addr, 0, sizeof(addr)); |
| addr.sin_family = AF_INET; |
| |
| /* Considering an rdp cookie detected using acl, str ended with <cr><lf> and should return */ |
| addr.sin_addr.s_addr = strtoul(smp.data.u.str.str, &p, 10); |
| if (*p != '.') |
| goto no_cookie; |
| p++; |
| addr.sin_port = (unsigned short)strtoul(p, &p, 10); |
| if (*p != '.') |
| goto no_cookie; |
| |
| s->target = NULL; |
| while (srv) { |
| if (srv->addr.ss_family == AF_INET && |
| memcmp(&addr, &(srv->addr), sizeof(addr)) == 0) { |
| if ((srv->state != SRV_ST_STOPPED) || (px->options & PR_O_PERSIST)) { |
| /* we found the server and it is usable */ |
| s->flags |= SF_DIRECT | SF_ASSIGNED; |
| s->target = &srv->obj_type; |
| break; |
| } |
| } |
| srv = srv->next; |
| } |
| |
| no_cookie: |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| |
| int be_downtime(struct proxy *px) { |
| if (px->lbprm.tot_weight && px->last_change < now.tv_sec) // ignore negative time |
| return px->down_time; |
| |
| return now.tv_sec - px->last_change + px->down_time; |
| } |
| |
| /* |
| * This function returns a string containing the balancing |
| * mode of the proxy in a format suitable for stats. |
| */ |
| |
| const char *backend_lb_algo_str(int algo) { |
| |
| if (algo == BE_LB_ALGO_RR) |
| return "roundrobin"; |
| else if (algo == BE_LB_ALGO_SRR) |
| return "static-rr"; |
| else if (algo == BE_LB_ALGO_FAS) |
| return "first"; |
| else if (algo == BE_LB_ALGO_LC) |
| return "leastconn"; |
| else if (algo == BE_LB_ALGO_SH) |
| return "source"; |
| else if (algo == BE_LB_ALGO_UH) |
| return "uri"; |
| else if (algo == BE_LB_ALGO_PH) |
| return "url_param"; |
| else if (algo == BE_LB_ALGO_HH) |
| return "hdr"; |
| else if (algo == BE_LB_ALGO_RCH) |
| return "rdp-cookie"; |
| else if (algo == BE_LB_ALGO_NONE) |
| return "none"; |
| else |
| return "unknown"; |
| } |
| |
| /* This function parses a "balance" statement in a backend section describing |
| * <curproxy>. It returns -1 if there is any error, otherwise zero. If it |
| * returns -1, it will write an error message into the <err> buffer which will |
| * automatically be allocated and must be passed as NULL. The trailing '\n' |
| * will not be written. The function must be called with <args> pointing to the |
| * first word after "balance". |
| */ |
| int backend_parse_balance(const char **args, char **err, struct proxy *curproxy) |
| { |
| if (!*(args[0])) { |
| /* if no option is set, use round-robin by default */ |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_RR; |
| return 0; |
| } |
| |
| if (!strcmp(args[0], "roundrobin")) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_RR; |
| } |
| else if (!strcmp(args[0], "static-rr")) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_SRR; |
| } |
| else if (!strcmp(args[0], "first")) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_FAS; |
| } |
| else if (!strcmp(args[0], "leastconn")) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_LC; |
| } |
| else if (!strcmp(args[0], "source")) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_SH; |
| } |
| else if (!strcmp(args[0], "uri")) { |
| int arg = 1; |
| |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_UH; |
| |
| curproxy->uri_whole = 0; |
| |
| while (*args[arg]) { |
| if (!strcmp(args[arg], "len")) { |
| if (!*args[arg+1] || (atoi(args[arg+1]) <= 0)) { |
| memprintf(err, "%s : '%s' expects a positive integer (got '%s').", args[0], args[arg], args[arg+1]); |
| return -1; |
| } |
| curproxy->uri_len_limit = atoi(args[arg+1]); |
| arg += 2; |
| } |
| else if (!strcmp(args[arg], "depth")) { |
| if (!*args[arg+1] || (atoi(args[arg+1]) <= 0)) { |
| memprintf(err, "%s : '%s' expects a positive integer (got '%s').", args[0], args[arg], args[arg+1]); |
| return -1; |
| } |
| /* hint: we store the position of the ending '/' (depth+1) so |
| * that we avoid a comparison while computing the hash. |
| */ |
| curproxy->uri_dirs_depth1 = atoi(args[arg+1]) + 1; |
| arg += 2; |
| } |
| else if (!strcmp(args[arg], "whole")) { |
| curproxy->uri_whole = 1; |
| arg += 1; |
| } |
| else { |
| memprintf(err, "%s only accepts parameters 'len', 'depth', and 'whole' (got '%s').", args[0], args[arg]); |
| return -1; |
| } |
| } |
| } |
| else if (!strcmp(args[0], "url_param")) { |
| if (!*args[1]) { |
| memprintf(err, "%s requires an URL parameter name.", args[0]); |
| return -1; |
| } |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_PH; |
| |
| free(curproxy->url_param_name); |
| curproxy->url_param_name = strdup(args[1]); |
| curproxy->url_param_len = strlen(args[1]); |
| if (*args[2]) { |
| if (strcmp(args[2], "check_post")) { |
| memprintf(err, "%s only accepts 'check_post' modifier (got '%s').", args[0], args[2]); |
| return -1; |
| } |
| } |
| } |
| else if (!strncmp(args[0], "hdr(", 4)) { |
| const char *beg, *end; |
| |
| beg = args[0] + 4; |
| end = strchr(beg, ')'); |
| |
| if (!end || end == beg) { |
| memprintf(err, "hdr requires an http header field name."); |
| return -1; |
| } |
| |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_HH; |
| |
| free(curproxy->hh_name); |
| curproxy->hh_len = end - beg; |
| curproxy->hh_name = my_strndup(beg, end - beg); |
| curproxy->hh_match_domain = 0; |
| |
| if (*args[1]) { |
| if (strcmp(args[1], "use_domain_only")) { |
| memprintf(err, "%s only accepts 'use_domain_only' modifier (got '%s').", args[0], args[1]); |
| return -1; |
| } |
| curproxy->hh_match_domain = 1; |
| } |
| } |
| else if (!strncmp(args[0], "rdp-cookie", 10)) { |
| curproxy->lbprm.algo &= ~BE_LB_ALGO; |
| curproxy->lbprm.algo |= BE_LB_ALGO_RCH; |
| |
| if ( *(args[0] + 10 ) == '(' ) { /* cookie name */ |
| const char *beg, *end; |
| |
| beg = args[0] + 11; |
| end = strchr(beg, ')'); |
| |
| if (!end || end == beg) { |
| memprintf(err, "rdp-cookie : missing cookie name."); |
| return -1; |
| } |
| |
| free(curproxy->hh_name); |
| curproxy->hh_name = my_strndup(beg, end - beg); |
| curproxy->hh_len = end - beg; |
| } |
| else if ( *(args[0] + 10 ) == '\0' ) { /* default cookie name 'mstshash' */ |
| free(curproxy->hh_name); |
| curproxy->hh_name = strdup("mstshash"); |
| curproxy->hh_len = strlen(curproxy->hh_name); |
| } |
| else { /* syntax */ |
| memprintf(err, "rdp-cookie : missing cookie name."); |
| return -1; |
| } |
| } |
| else { |
| memprintf(err, "only supports 'roundrobin', 'static-rr', 'leastconn', 'source', 'uri', 'url_param', 'hdr(name)' and 'rdp-cookie(name)' options."); |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| /************************************************************************/ |
| /* All supported sample and ACL keywords must be declared here. */ |
| /************************************************************************/ |
| |
| /* set temp integer to the number of enabled servers on the proxy. |
| * Accepts exactly 1 argument. Argument is a backend, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_nbsrv(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct proxy *px; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| px = args->data.prx; |
| |
| if (px->srv_act) |
| smp->data.u.sint = px->srv_act; |
| else if (px->lbprm.fbck) |
| smp->data.u.sint = 1; |
| else |
| smp->data.u.sint = px->srv_bck; |
| |
| return 1; |
| } |
| |
| /* report in smp->flags a success or failure depending on the designated |
| * server's state. There is no match function involved since there's no pattern. |
| * Accepts exactly 1 argument. Argument is a server, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_srv_is_up(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct server *srv = args->data.srv; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_BOOL; |
| if (!(srv->admin & SRV_ADMF_MAINT) && |
| (!(srv->check.state & CHK_ST_CONFIGURED) || (srv->state != SRV_ST_STOPPED))) |
| smp->data.u.sint = 1; |
| else |
| smp->data.u.sint = 0; |
| return 1; |
| } |
| |
| /* set temp integer to the number of enabled servers on the proxy. |
| * Accepts exactly 1 argument. Argument is a backend, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_connslots(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| struct server *iterator; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = 0; |
| |
| for (iterator = args->data.prx->srv; iterator; iterator = iterator->next) { |
| if (iterator->state == SRV_ST_STOPPED) |
| continue; |
| |
| if (iterator->maxconn == 0 || iterator->maxqueue == 0) { |
| /* configuration is stupid */ |
| smp->data.u.sint = -1; /* FIXME: stupid value! */ |
| return 1; |
| } |
| |
| smp->data.u.sint += (iterator->maxconn - iterator->cur_sess) |
| + (iterator->maxqueue - iterator->nbpend); |
| } |
| |
| return 1; |
| } |
| |
| /* set temp integer to the id of the backend */ |
| static int |
| smp_fetch_be_id(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| if (!smp->strm) |
| return 0; |
| |
| smp->flags = SMP_F_VOL_TXN; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = smp->strm->be->uuid; |
| return 1; |
| } |
| |
| /* set temp integer to the id of the server */ |
| static int |
| smp_fetch_srv_id(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| if (!smp->strm) |
| return 0; |
| |
| if (!objt_server(smp->strm->target)) |
| return 0; |
| |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = objt_server(smp->strm->target)->puid; |
| |
| return 1; |
| } |
| |
| /* set temp integer to the number of connections per second reaching the backend. |
| * Accepts exactly 1 argument. Argument is a backend, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_be_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = read_freq_ctr(&args->data.prx->be_sess_per_sec); |
| return 1; |
| } |
| |
| /* set temp integer to the number of concurrent connections on the backend. |
| * Accepts exactly 1 argument. Argument is a backend, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_be_conn(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = args->data.prx->beconn; |
| return 1; |
| } |
| |
| /* set temp integer to the total number of queued connections on the backend. |
| * Accepts exactly 1 argument. Argument is a backend, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_queue_size(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = args->data.prx->totpend; |
| return 1; |
| } |
| |
| /* set temp integer to the total number of queued connections on the backend divided |
| * by the number of running servers and rounded up. If there is no running |
| * server, we return twice the total, just as if we had half a running server. |
| * This is more or less correct anyway, since we expect the last server to come |
| * back soon. |
| * Accepts exactly 1 argument. Argument is a backend, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_avg_queue_size(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| int nbsrv; |
| struct proxy *px; |
| |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| px = args->data.prx; |
| |
| if (px->srv_act) |
| nbsrv = px->srv_act; |
| else if (px->lbprm.fbck) |
| nbsrv = 1; |
| else |
| nbsrv = px->srv_bck; |
| |
| if (nbsrv > 0) |
| smp->data.u.sint = (px->totpend + nbsrv - 1) / nbsrv; |
| else |
| smp->data.u.sint = px->totpend * 2; |
| |
| return 1; |
| } |
| |
| /* set temp integer to the number of concurrent connections on the server in the backend. |
| * Accepts exactly 1 argument. Argument is a server, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_srv_conn(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = args->data.srv->cur_sess; |
| return 1; |
| } |
| |
| /* set temp integer to the number of enabled servers on the proxy. |
| * Accepts exactly 1 argument. Argument is a server, other types will lead to |
| * undefined behaviour. |
| */ |
| static int |
| smp_fetch_srv_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags = SMP_F_VOL_TEST; |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = read_freq_ctr(&args->data.srv->sess_per_sec); |
| return 1; |
| } |
| |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Please take care of keeping this list alphabetically sorted. |
| */ |
| static struct sample_fetch_kw_list smp_kws = {ILH, { |
| { "avg_queue", smp_fetch_avg_queue_size, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "be_conn", smp_fetch_be_conn, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "be_id", smp_fetch_be_id, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, }, |
| { "be_sess_rate", smp_fetch_be_sess_rate, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "connslots", smp_fetch_connslots, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "nbsrv", smp_fetch_nbsrv, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "queue", smp_fetch_queue_size, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "srv_conn", smp_fetch_srv_conn, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { "srv_id", smp_fetch_srv_id, 0, NULL, SMP_T_SINT, SMP_USE_SERVR, }, |
| { "srv_is_up", smp_fetch_srv_is_up, ARG1(1,SRV), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, |
| { "srv_sess_rate", smp_fetch_srv_sess_rate, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, }, |
| { /* END */ }, |
| }}; |
| |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Please take care of keeping this list alphabetically sorted. |
| */ |
| static struct acl_kw_list acl_kws = {ILH, { |
| { /* END */ }, |
| }}; |
| |
| |
| __attribute__((constructor)) |
| static void __backend_init(void) |
| { |
| sample_register_fetches(&smp_kws); |
| acl_register_keywords(&acl_kws); |
| } |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |