| /* |
| * include/common/memory.h |
| * Memory management definitions.. |
| * |
| * Copyright (C) 2000-2014 Willy Tarreau - w@1wt.eu |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation, version 2.1 |
| * exclusively. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #ifndef _COMMON_MEMORY_H |
| #define _COMMON_MEMORY_H |
| |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <common/config.h> |
| #include <common/mini-clist.h> |
| |
| #ifndef DEBUG_DONT_SHARE_POOLS |
| #define MEM_F_SHARED 0x1 |
| #else |
| #define MEM_F_SHARED 0 |
| #endif |
| #define MEM_F_EXACT 0x2 |
| |
| /* reserve an extra void* at the end of a pool for linking */ |
| #ifdef DEBUG_MEMORY_POOLS |
| #define POOL_EXTRA (sizeof(void *)) |
| #define POOL_LINK(pool, item) (void **)(((char *)item) + (pool->size)) |
| #else |
| #define POOL_EXTRA (0) |
| #define POOL_LINK(pool, item) ((void **)(item)) |
| #endif |
| |
| struct pool_head { |
| void **free_list; |
| struct list list; /* list of all known pools */ |
| unsigned int used; /* how many chunks are currently in use */ |
| unsigned int allocated; /* how many chunks have been allocated */ |
| unsigned int limit; /* hard limit on the number of chunks */ |
| unsigned int minavail; /* how many chunks are expected to be used */ |
| unsigned int size; /* chunk size */ |
| unsigned int flags; /* MEM_F_* */ |
| unsigned int users; /* number of pools sharing this zone */ |
| unsigned int failed; /* failed allocations */ |
| char name[12]; /* name of the pool */ |
| }; |
| |
| /* poison each newly allocated area with this byte if >= 0 */ |
| extern int mem_poison_byte; |
| |
| /* |
| * This function destroys a pull by freeing it completely. |
| * This should be called only under extreme circumstances. |
| */ |
| static inline void pool_destroy(void **pool) |
| { |
| void *temp, *next; |
| next = pool; |
| while (next) { |
| temp = next; |
| next = *(void **)temp; |
| free(temp); |
| } |
| } |
| |
| /* Allocates new entries for pool <pool> until there are at least <avail> + 1 |
| * available, then returns the last one for immediate use, so that at least |
| * <avail> are left available in the pool upon return. NULL is returned if the |
| * last entry could not be allocated. It's important to note that at least one |
| * allocation is always performed even if there are enough entries in the pool. |
| * A call to the garbage collector is performed at most once in case malloc() |
| * returns an error, before returning NULL. |
| */ |
| void *pool_refill_alloc(struct pool_head *pool, unsigned int avail); |
| |
| /* Try to find an existing shared pool with the same characteristics and |
| * returns it, otherwise creates this one. NULL is returned if no memory |
| * is available for a new creation. |
| */ |
| struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags); |
| |
| /* Dump statistics on pools usage. |
| */ |
| void dump_pools_to_trash(); |
| void dump_pools(void); |
| int pool_total_failures(); |
| unsigned long pool_total_allocated(); |
| unsigned long pool_total_used(); |
| |
| /* |
| * This function frees whatever can be freed in pool <pool>. |
| */ |
| void pool_flush2(struct pool_head *pool); |
| |
| /* |
| * This function frees whatever can be freed in all pools, but respecting |
| * the minimum thresholds imposed by owners. |
| */ |
| void pool_gc2(); |
| |
| /* |
| * This function destroys a pull by freeing it completely. |
| * This should be called only under extreme circumstances. |
| */ |
| void *pool_destroy2(struct pool_head *pool); |
| |
| /* |
| * Returns a pointer to type <type> taken from the pool <pool_type> if |
| * available, otherwise returns NULL. No malloc() is attempted, and poisonning |
| * is never performed. The purpose is to get the fastest possible allocation. |
| */ |
| static inline void *pool_get_first(struct pool_head *pool) |
| { |
| void *p; |
| |
| if ((p = pool->free_list) != NULL) { |
| pool->free_list = *POOL_LINK(pool, p); |
| pool->used++; |
| #ifdef DEBUG_MEMORY_POOLS |
| /* keep track of where the element was allocated from */ |
| *POOL_LINK(pool, p) = (void *)pool; |
| #endif |
| } |
| return p; |
| } |
| |
| /* |
| * Returns a pointer to type <type> taken from the pool <pool_type> or |
| * dynamically allocated. In the first case, <pool_type> is updated to point to |
| * the next element in the list. No memory poisonning is ever performed on the |
| * returned area. |
| */ |
| static inline void *pool_alloc_dirty(struct pool_head *pool) |
| { |
| void *p; |
| |
| if ((p = pool_get_first(pool)) == NULL) |
| p = pool_refill_alloc(pool, 0); |
| |
| return p; |
| } |
| |
| /* |
| * Returns a pointer to type <type> taken from the pool <pool_type> or |
| * dynamically allocated. In the first case, <pool_type> is updated to point to |
| * the next element in the list. Memory poisonning is performed if enabled. |
| */ |
| static inline void *pool_alloc2(struct pool_head *pool) |
| { |
| void *p; |
| |
| p = pool_alloc_dirty(pool); |
| #ifdef DEBUG_MEMORY_POOLS |
| if (p) { |
| /* keep track of where the element was allocated from */ |
| *POOL_LINK(pool, p) = (void *)pool; |
| } |
| #endif |
| if (p && mem_poison_byte >= 0) { |
| memset(p, mem_poison_byte, pool->size); |
| } |
| |
| return p; |
| } |
| |
| /* |
| * Puts a memory area back to the corresponding pool. |
| * Items are chained directly through a pointer that |
| * is written in the beginning of the memory area, so |
| * there's no need for any carrier cell. This implies |
| * that each memory area is at least as big as one |
| * pointer. Just like with the libc's free(), nothing |
| * is done if <ptr> is NULL. |
| */ |
| static inline void pool_free2(struct pool_head *pool, void *ptr) |
| { |
| if (likely(ptr != NULL)) { |
| #ifdef DEBUG_MEMORY_POOLS |
| /* we'll get late corruption if we refill to the wrong pool or double-free */ |
| if (*POOL_LINK(pool, ptr) != (void *)pool) |
| *(int *)0 = 0; |
| #endif |
| *POOL_LINK(pool, ptr) = (void *)pool->free_list; |
| pool->free_list = (void *)ptr; |
| pool->used--; |
| } |
| } |
| |
| |
| #endif /* _COMMON_MEMORY_H */ |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |