blob: e225d2144dc9d356732dbdb1d36ba6581543f0cc [file] [log] [blame]
/*
* Memory management functions.
*
* Copyright 2000-2007 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <errno.h>
#include <haproxy/activity.h>
#include <haproxy/api.h>
#include <haproxy/applet-t.h>
#include <haproxy/cfgparse.h>
#include <haproxy/channel.h>
#include <haproxy/cli.h>
#include <haproxy/errors.h>
#include <haproxy/global.h>
#include <haproxy/list.h>
#include <haproxy/pool.h>
#include <haproxy/pool-os.h>
#include <haproxy/sc_strm.h>
#include <haproxy/stats-t.h>
#include <haproxy/stconn.h>
#include <haproxy/thread.h>
#include <haproxy/tools.h>
/* These ones are initialized per-thread on startup by init_pools() */
THREAD_LOCAL size_t pool_cache_bytes = 0; /* total cache size */
THREAD_LOCAL size_t pool_cache_count = 0; /* #cache objects */
static struct list pools __read_mostly = LIST_HEAD_INIT(pools);
int mem_poison_byte __read_mostly = 'P';
uint pool_debugging __read_mostly = /* set of POOL_DBG_* flags */
#ifdef DEBUG_FAIL_ALLOC
POOL_DBG_FAIL_ALLOC |
#endif
#ifdef DEBUG_DONT_SHARE_POOLS
POOL_DBG_DONT_MERGE |
#endif
#ifdef DEBUG_POOL_INTEGRITY
POOL_DBG_COLD_FIRST |
#endif
#ifdef DEBUG_POOL_INTEGRITY
POOL_DBG_INTEGRITY |
#endif
#ifdef CONFIG_HAP_NO_GLOBAL_POOLS
POOL_DBG_NO_GLOBAL |
#endif
#if defined(DEBUG_NO_POOLS) || defined(DEBUG_UAF)
POOL_DBG_NO_CACHE |
#endif
#if defined(DEBUG_POOL_TRACING)
POOL_DBG_CALLER |
#endif
#if defined(DEBUG_MEMORY_POOLS)
POOL_DBG_TAG |
#endif
#if defined(DEBUG_UAF)
POOL_DBG_UAF |
#endif
0;
static const struct {
uint flg;
const char *set;
const char *clr;
const char *hlp;
} dbg_options[] = {
/* flg, set, clr, hlp */
{ POOL_DBG_FAIL_ALLOC, "fail", "no-fail", "randomly fail allocations" },
{ POOL_DBG_DONT_MERGE, "no-merge", "merge", "disable merging of similar pools" },
{ POOL_DBG_COLD_FIRST, "cold-first", "hot-first", "pick cold objects first" },
{ POOL_DBG_INTEGRITY, "integrity", "no-integrity", "enable cache integrity checks" },
{ POOL_DBG_NO_GLOBAL, "no-global", "global", "disable global shared cache" },
{ POOL_DBG_NO_CACHE, "no-cache", "cache", "disable thread-local cache" },
{ POOL_DBG_CALLER, "caller", "no-caller", "save caller information in cache" },
{ POOL_DBG_TAG, "tag", "no-tag", "add tag at end of allocated objects" },
{ POOL_DBG_POISON, "poison", "no-poison", "poison newly allocated objects" },
{ POOL_DBG_UAF, "uaf", "no-uaf", "enable use-after-free checks (slow)" },
{ 0 /* end */ }
};
/* describes a snapshot of a pool line about to be dumped by "show pools" */
struct pool_dump_info {
const struct pool_head *entry;
ulong alloc_items;
ulong alloc_bytes;
ulong used_items;
ulong cached_items;
ulong need_avg;
ulong failed_items;
};
/* context used by "show pools" */
struct show_pools_ctx {
char *prefix; /* if non-null, match this prefix name for the pool */
int by_what; /* 0=no sort, 1=by name, 2=by item size, 3=by total alloc */
int maxcnt; /* 0=no limit, other=max number of output entries */
};
static int mem_fail_rate __read_mostly = 0;
static int using_default_allocator __read_mostly = 1;
static int disable_trim __read_mostly = 0;
static int(*my_mallctl)(const char *, void *, size_t *, void *, size_t) = NULL;
/* ask the allocator to trim memory pools.
* This must run under thread isolation so that competing threads trying to
* allocate or release memory do not prevent the allocator from completing
* its job. We just have to be careful as callers might already be isolated
* themselves.
*/
static void trim_all_pools(void)
{
int isolated = thread_isolated();
if (disable_trim)
return;
if (!isolated)
thread_isolate();
if (my_mallctl) {
unsigned int i, narenas = 0;
size_t len = sizeof(narenas);
if (my_mallctl("arenas.narenas", &narenas, &len, NULL, 0) == 0) {
for (i = 0; i < narenas; i ++) {
char mib[32] = {0};
snprintf(mib, sizeof(mib), "arena.%u.purge", i);
(void)my_mallctl(mib, NULL, NULL, NULL, 0);
}
}
} else {
#if defined(HA_HAVE_MALLOC_TRIM)
if (using_default_allocator)
malloc_trim(0);
#elif defined(HA_HAVE_MALLOC_ZONE)
if (using_default_allocator) {
vm_address_t *zones;
unsigned int i, nzones;
if (malloc_get_all_zones(0, NULL, &zones, &nzones) == KERN_SUCCESS) {
for (i = 0; i < nzones; i ++) {
malloc_zone_t *zone = (malloc_zone_t *)zones[i];
/* we cannot purge anonymous zones */
if (zone->zone_name)
malloc_zone_pressure_relief(zone, 0);
}
}
}
#endif
}
if (!isolated)
thread_release();
}
/* check if we're using the same allocator as the one that provides
* malloc_trim() and mallinfo(). The principle is that on glibc, both
* malloc_trim() and mallinfo() are provided, and using mallinfo() we
* can check if malloc() is performed through glibc or any other one
* the executable was linked against (e.g. jemalloc). Prior to this we
* have to check whether we're running on jemalloc by verifying if the
* mallctl() function is provided. Its pointer will be used later.
*/
static void detect_allocator(void)
{
#if defined(__ELF__)
extern int mallctl(const char *, void *, size_t *, void *, size_t) __attribute__((weak));
my_mallctl = mallctl;
#endif
if (!my_mallctl) {
my_mallctl = get_sym_curr_addr("mallctl");
using_default_allocator = (my_mallctl == NULL);
}
if (!my_mallctl) {
#if defined(HA_HAVE_MALLOC_TRIM)
#ifdef HA_HAVE_MALLINFO2
struct mallinfo2 mi1, mi2;
#else
struct mallinfo mi1, mi2;
#endif
void *ptr;
#ifdef HA_HAVE_MALLINFO2
mi1 = mallinfo2();
#else
mi1 = mallinfo();
#endif
ptr = DISGUISE(malloc(1));
#ifdef HA_HAVE_MALLINFO2
mi2 = mallinfo2();
#else
mi2 = mallinfo();
#endif
free(DISGUISE(ptr));
using_default_allocator = !!memcmp(&mi1, &mi2, sizeof(mi1));
#elif defined(HA_HAVE_MALLOC_ZONE)
using_default_allocator = (malloc_default_zone() != NULL);
#endif
}
}
static int is_trim_enabled(void)
{
return using_default_allocator;
}
static int mem_should_fail(const struct pool_head *pool)
{
int ret = 0;
if (mem_fail_rate > 0 && !(global.mode & MODE_STARTING)) {
if (mem_fail_rate > statistical_prng_range(100))
ret = 1;
else
ret = 0;
}
return ret;
}
/* Try to find an existing shared pool with the same characteristics and
* returns it, otherwise creates this one. NULL is returned if no memory
* is available for a new creation. Two flags are supported :
* - MEM_F_SHARED to indicate that the pool may be shared with other users
* - MEM_F_EXACT to indicate that the size must not be rounded up
*/
struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags)
{
unsigned int extra_mark, extra_caller, extra;
struct pool_head *pool;
struct pool_head *entry;
struct list *start;
unsigned int align;
int thr __maybe_unused;
/* We need to store a (void *) at the end of the chunks. Since we know
* that the malloc() function will never return such a small size,
* let's round the size up to something slightly bigger, in order to
* ease merging of entries. Note that the rounding is a power of two.
* This extra (void *) is not accounted for in the size computation
* so that the visible parts outside are not affected.
*
* Note: for the LRU cache, we need to store 2 doubly-linked lists.
*/
extra_mark = (pool_debugging & POOL_DBG_TAG) ? POOL_EXTRA_MARK : 0;
extra_caller = (pool_debugging & POOL_DBG_CALLER) ? POOL_EXTRA_CALLER : 0;
extra = extra_mark + extra_caller;
if (!(flags & MEM_F_EXACT)) {
align = 4 * sizeof(void *); // 2 lists = 4 pointers min
size = ((size + extra + align - 1) & -align) - extra;
}
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
/* we'll store two lists there, we need the room for this. This is
* guaranteed by the test above, except if MEM_F_EXACT is set, or if
* the only EXTRA part is in fact the one that's stored in the cache
* in addition to the pci struct.
*/
if (size + extra - extra_caller < sizeof(struct pool_cache_item))
size = sizeof(struct pool_cache_item) + extra_caller - extra;
}
/* TODO: thread: we do not lock pool list for now because all pools are
* created during HAProxy startup (so before threads creation) */
start = &pools;
pool = NULL;
list_for_each_entry(entry, &pools, list) {
if (entry->size == size) {
/* either we can share this place and we take it, or
* we look for a shareable one or for the next position
* before which we will insert a new one.
*/
if ((flags & entry->flags & MEM_F_SHARED) &&
(!(pool_debugging & POOL_DBG_DONT_MERGE) ||
strcmp(name, entry->name) == 0)) {
/* we can share this one */
pool = entry;
DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name);
break;
}
}
else if (entry->size > size) {
/* insert before this one */
start = &entry->list;
break;
}
}
if (!pool) {
void *pool_addr;
pool_addr = calloc(1, sizeof(*pool) + __alignof__(*pool));
if (!pool_addr)
return NULL;
/* always provide an aligned pool */
pool = (struct pool_head*)((((size_t)pool_addr) + __alignof__(*pool)) & -(size_t)__alignof__(*pool));
pool->base_addr = pool_addr; // keep it, it's the address to free later
if (name)
strlcpy2(pool->name, name, sizeof(pool->name));
pool->alloc_sz = size + extra;
pool->size = size;
pool->flags = flags;
LIST_APPEND(start, &pool->list);
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
/* update per-thread pool cache if necessary */
for (thr = 0; thr < MAX_THREADS; thr++) {
LIST_INIT(&pool->cache[thr].list);
pool->cache[thr].tid = thr;
pool->cache[thr].pool = pool;
}
}
}
pool->users++;
return pool;
}
/* Tries to allocate an object for the pool <pool> using the system's allocator
* and directly returns it. The pool's allocated counter is checked and updated,
* but no other checks are performed.
*/
void *pool_get_from_os(struct pool_head *pool)
{
if (!pool->limit || pool->allocated < pool->limit) {
void *ptr;
if (pool_debugging & POOL_DBG_UAF)
ptr = pool_alloc_area_uaf(pool->alloc_sz);
else
ptr = pool_alloc_area(pool->alloc_sz);
if (ptr) {
_HA_ATOMIC_INC(&pool->allocated);
return ptr;
}
_HA_ATOMIC_INC(&pool->failed);
}
activity[tid].pool_fail++;
return NULL;
}
/* Releases a pool item back to the operating system and atomically updates
* the allocation counter.
*/
void pool_put_to_os(struct pool_head *pool, void *ptr)
{
if (pool_debugging & POOL_DBG_UAF)
pool_free_area_uaf(ptr, pool->alloc_sz);
else
pool_free_area(ptr, pool->alloc_sz);
_HA_ATOMIC_DEC(&pool->allocated);
}
/* Tries to allocate an object for the pool <pool> using the system's allocator
* and directly returns it. The pool's counters are updated but the object is
* never cached, so this is usable with and without local or shared caches.
*/
void *pool_alloc_nocache(struct pool_head *pool)
{
void *ptr = NULL;
ptr = pool_get_from_os(pool);
if (!ptr)
return NULL;
swrate_add_scaled(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used, POOL_AVG_SAMPLES/4);
_HA_ATOMIC_INC(&pool->used);
/* keep track of where the element was allocated from */
POOL_DEBUG_SET_MARK(pool, ptr);
POOL_DEBUG_TRACE_CALLER(pool, (struct pool_cache_item *)ptr, NULL);
return ptr;
}
/* Release a pool item back to the OS and keeps the pool's counters up to date.
* This is always defined even when pools are not enabled (their usage stats
* are maintained).
*/
void pool_free_nocache(struct pool_head *pool, void *ptr)
{
_HA_ATOMIC_DEC(&pool->used);
swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used);
pool_put_to_os(pool, ptr);
}
/* Updates <pch>'s fill_pattern and fills the free area after <item> with it,
* up to <size> bytes. The item part is left untouched.
*/
void pool_fill_pattern(struct pool_cache_head *pch, struct pool_cache_item *item, uint size)
{
ulong *ptr = (ulong *)item;
uint ofs;
ulong u;
if (size <= sizeof(*item))
return;
/* Upgrade the fill_pattern to change about half of the bits
* (to be sure to catch static flag corruption), and apply it.
*/
u = pch->fill_pattern += ~0UL / 3; // 0x55...55
ofs = sizeof(*item) / sizeof(*ptr);
while (ofs < size / sizeof(*ptr))
ptr[ofs++] = u;
}
/* check for a pool_cache_item integrity after extracting it from the cache. It
* must have been previously initialized using pool_fill_pattern(). If any
* corruption is detected, the function provokes an immediate crash.
*/
void pool_check_pattern(struct pool_cache_head *pch, struct pool_cache_item *item, uint size)
{
const ulong *ptr = (const ulong *)item;
uint ofs;
ulong u;
if (size <= sizeof(*item))
return;
/* let's check that all words past *item are equal */
ofs = sizeof(*item) / sizeof(*ptr);
u = ptr[ofs++];
while (ofs < size / sizeof(*ptr)) {
if (unlikely(ptr[ofs] != u))
ABORT_NOW();
ofs++;
}
}
/* removes up to <count> items from the end of the local pool cache <ph> for
* pool <pool>. The shared pool is refilled with these objects in the limit
* of the number of acceptable objects, and the rest will be released to the
* OS. It is not a problem is <count> is larger than the number of objects in
* the local cache. The counters are automatically updated. Must not be used
* with pools disabled.
*/
static void pool_evict_last_items(struct pool_head *pool, struct pool_cache_head *ph, uint count)
{
struct pool_cache_item *item;
struct pool_item *pi, *head = NULL;
uint released = 0;
uint cluster = 0;
uint to_free_max;
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
/* Note: this will be zero when global pools are disabled */
to_free_max = pool_releasable(pool);
while (released < count && !LIST_ISEMPTY(&ph->list)) {
item = LIST_PREV(&ph->list, typeof(item), by_pool);
BUG_ON(&item->by_pool == &ph->list);
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
pool_check_pattern(ph, item, pool->size);
LIST_DELETE(&item->by_pool);
LIST_DELETE(&item->by_lru);
if (to_free_max > released || cluster) {
/* will never match when global pools are disabled */
pi = (struct pool_item *)item;
pi->next = NULL;
pi->down = head;
head = pi;
cluster++;
if (cluster >= CONFIG_HAP_POOL_CLUSTER_SIZE) {
/* enough to make a cluster */
pool_put_to_shared_cache(pool, head, cluster);
cluster = 0;
head = NULL;
}
} else
pool_free_nocache(pool, item);
released++;
}
/* incomplete cluster left */
if (cluster)
pool_put_to_shared_cache(pool, head, cluster);
ph->count -= released;
pool_cache_count -= released;
pool_cache_bytes -= released * pool->size;
}
/* Evicts some of the oldest objects from one local cache, until its number of
* objects is no more than 16+1/8 of the total number of locally cached objects
* or the total size of the local cache is no more than 75% of its maximum (i.e.
* we don't want a single cache to use all the cache for itself). For this, the
* list is scanned in reverse. If <full> is non-null, all objects are evicted.
* Must not be used when pools are disabled.
*/
void pool_evict_from_local_cache(struct pool_head *pool, int full)
{
struct pool_cache_head *ph = &pool->cache[tid];
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
while ((ph->count && full) ||
(ph->count >= CONFIG_HAP_POOL_CLUSTER_SIZE &&
ph->count >= 16 + pool_cache_count / 8 &&
pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4)) {
pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE);
}
}
/* Evicts some of the oldest objects from the local cache, pushing them to the
* global pool. Must not be used when pools are disabled.
*/
void pool_evict_from_local_caches()
{
struct pool_cache_item *item;
struct pool_cache_head *ph;
struct pool_head *pool;
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
do {
item = LIST_PREV(&th_ctx->pool_lru_head, struct pool_cache_item *, by_lru);
BUG_ON(&item->by_lru == &th_ctx->pool_lru_head);
/* note: by definition we remove oldest objects so they also are the
* oldest in their own pools, thus their next is the pool's head.
*/
ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list);
BUG_ON(ph->tid != tid);
pool = container_of(ph - tid, struct pool_head, cache);
BUG_ON(pool != ph->pool);
pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE);
} while (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 7 / 8);
}
/* Frees an object to the local cache, possibly pushing oldest objects to the
* shared cache, which itself may decide to release some of them to the OS.
* While it is unspecified what the object becomes past this point, it is
* guaranteed to be released from the users' perpective. A caller address may
* be passed and stored into the area when DEBUG_POOL_TRACING is set. Must not
* be used with pools disabled.
*/
void pool_put_to_cache(struct pool_head *pool, void *ptr, const void *caller)
{
struct pool_cache_item *item = (struct pool_cache_item *)ptr;
struct pool_cache_head *ph = &pool->cache[tid];
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
LIST_INSERT(&ph->list, &item->by_pool);
LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
POOL_DEBUG_TRACE_CALLER(pool, item, caller);
ph->count++;
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
pool_fill_pattern(ph, item, pool->size);
pool_cache_count++;
pool_cache_bytes += pool->size;
if (unlikely(pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4)) {
if (ph->count >= 16 + pool_cache_count / 8 + CONFIG_HAP_POOL_CLUSTER_SIZE)
pool_evict_from_local_cache(pool, 0);
if (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE)
pool_evict_from_local_caches();
}
}
/* Tries to refill the local cache <pch> from the shared one for pool <pool>.
* This is only used when pools are in use and shared pools are enabled. No
* malloc() is attempted, and poisonning is never performed. The purpose is to
* get the fastest possible refilling so that the caller can easily check if
* the cache has enough objects for its use. Must not be used when pools are
* disabled.
*/
void pool_refill_local_from_shared(struct pool_head *pool, struct pool_cache_head *pch)
{
struct pool_cache_item *item;
struct pool_item *ret, *down;
uint count;
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
/* we'll need to reference the first element to figure the next one. We
* must temporarily lock it so that nobody allocates then releases it,
* or the dereference could fail.
*/
ret = _HA_ATOMIC_LOAD(&pool->free_list);
do {
while (unlikely(ret == POOL_BUSY)) {
__ha_cpu_relax();
ret = _HA_ATOMIC_LOAD(&pool->free_list);
}
if (ret == NULL)
return;
} while (unlikely((ret = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY));
if (unlikely(ret == NULL)) {
HA_ATOMIC_STORE(&pool->free_list, NULL);
return;
}
/* this releases the lock */
HA_ATOMIC_STORE(&pool->free_list, ret->next);
/* now store the retrieved object(s) into the local cache */
count = 0;
for (; ret; ret = down) {
down = ret->down;
item = (struct pool_cache_item *)ret;
POOL_DEBUG_TRACE_CALLER(pool, item, NULL);
LIST_INSERT(&pch->list, &item->by_pool);
LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
count++;
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
pool_fill_pattern(pch, item, pool->size);
}
HA_ATOMIC_ADD(&pool->used, count);
pch->count += count;
pool_cache_count += count;
pool_cache_bytes += count * pool->size;
}
/* Adds pool item cluster <item> to the shared cache, which contains <count>
* elements. The caller is advised to first check using pool_releasable() if
* it's wise to add this series of objects there. Both the pool and the item's
* head must be valid.
*/
void pool_put_to_shared_cache(struct pool_head *pool, struct pool_item *item, uint count)
{
struct pool_item *free_list;
_HA_ATOMIC_SUB(&pool->used, count);
free_list = _HA_ATOMIC_LOAD(&pool->free_list);
do {
while (unlikely(free_list == POOL_BUSY)) {
__ha_cpu_relax();
free_list = _HA_ATOMIC_LOAD(&pool->free_list);
}
_HA_ATOMIC_STORE(&item->next, free_list);
__ha_barrier_atomic_store();
} while (!_HA_ATOMIC_CAS(&pool->free_list, &free_list, item));
__ha_barrier_atomic_store();
swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used);
}
/*
* This function frees whatever can be freed in pool <pool>.
*/
void pool_flush(struct pool_head *pool)
{
struct pool_item *next, *temp, *down;
if (!pool || (pool_debugging & (POOL_DBG_NO_CACHE|POOL_DBG_NO_GLOBAL)))
return;
/* The loop below atomically detaches the head of the free list and
* replaces it with a NULL. Then the list can be released.
*/
next = pool->free_list;
do {
while (unlikely(next == POOL_BUSY)) {
__ha_cpu_relax();
next = _HA_ATOMIC_LOAD(&pool->free_list);
}
if (next == NULL)
return;
} while (unlikely((next = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY));
_HA_ATOMIC_STORE(&pool->free_list, NULL);
__ha_barrier_atomic_store();
while (next) {
temp = next;
next = temp->next;
for (; temp; temp = down) {
down = temp->down;
pool_put_to_os(pool, temp);
}
}
/* here, we should have pool->allocated == pool->used */
}
/*
* This function frees whatever can be freed in all pools, but respecting
* the minimum thresholds imposed by owners. It makes sure to be alone to
* run by using thread_isolate(). <pool_ctx> is unused.
*/
void pool_gc(struct pool_head *pool_ctx)
{
struct pool_head *entry;
int isolated = thread_isolated();
if (!isolated)
thread_isolate();
list_for_each_entry(entry, &pools, list) {
struct pool_item *temp, *down;
while (entry->free_list &&
(int)(entry->allocated - entry->used) > (int)entry->minavail) {
temp = entry->free_list;
entry->free_list = temp->next;
for (; temp; temp = down) {
down = temp->down;
pool_put_to_os(entry, temp);
}
}
}
trim_all_pools();
if (!isolated)
thread_release();
}
/*
* Returns a pointer to type <type> taken from the pool <pool_type> or
* dynamically allocated. In the first case, <pool_type> is updated to point to
* the next element in the list. <flags> is a binary-OR of POOL_F_* flags.
* Prefer using pool_alloc() which does the right thing without flags.
*/
void *__pool_alloc(struct pool_head *pool, unsigned int flags)
{
void *p = NULL;
void *caller = __builtin_return_address(0);
if (unlikely(pool_debugging & POOL_DBG_FAIL_ALLOC))
if (!(flags & POOL_F_NO_FAIL) && mem_should_fail(pool))
return NULL;
if (likely(!(pool_debugging & POOL_DBG_NO_CACHE)) && !p)
p = pool_get_from_cache(pool, caller);
if (unlikely(!p))
p = pool_alloc_nocache(pool);
if (likely(p)) {
#ifdef USE_MEMORY_PROFILING
if (unlikely(profiling & HA_PROF_MEMORY)) {
struct memprof_stats *bin;
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_P_ALLOC);
_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
_HA_ATOMIC_ADD(&bin->alloc_tot, pool->size);
_HA_ATOMIC_STORE(&bin->info, pool);
}
#endif
if (unlikely(flags & POOL_F_MUST_ZERO))
memset(p, 0, pool->size);
else if (unlikely(!(flags & POOL_F_NO_POISON) && (pool_debugging & POOL_DBG_POISON)))
memset(p, mem_poison_byte, pool->size);
}
return p;
}
/*
* Puts a memory area back to the corresponding pool. <ptr> be valid. Using
* pool_free() is preferred.
*/
void __pool_free(struct pool_head *pool, void *ptr)
{
const void *caller = __builtin_return_address(0);
/* we'll get late corruption if we refill to the wrong pool or double-free */
POOL_DEBUG_CHECK_MARK(pool, ptr);
POOL_DEBUG_RESET_MARK(pool, ptr);
#ifdef USE_MEMORY_PROFILING
if (unlikely(profiling & HA_PROF_MEMORY) && ptr) {
struct memprof_stats *bin;
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_P_FREE);
_HA_ATOMIC_ADD(&bin->free_calls, 1);
_HA_ATOMIC_ADD(&bin->free_tot, pool->size);
_HA_ATOMIC_STORE(&bin->info, pool);
}
#endif
if (unlikely(pool_debugging & POOL_DBG_NO_CACHE)) {
pool_free_nocache(pool, ptr);
return;
}
pool_put_to_cache(pool, ptr, caller);
}
/*
* This function destroys a pool by freeing it completely, unless it's still
* in use. This should be called only under extreme circumstances. It always
* returns NULL if the resulting pool is empty, easing the clearing of the old
* pointer, otherwise it returns the pool.
* .
*/
void *pool_destroy(struct pool_head *pool)
{
if (pool) {
if (!(pool_debugging & POOL_DBG_NO_CACHE))
pool_evict_from_local_cache(pool, 1);
pool_flush(pool);
if (pool->used)
return pool;
pool->users--;
if (!pool->users) {
LIST_DELETE(&pool->list);
/* note that if used == 0, the cache is empty */
free(pool->base_addr);
}
}
return NULL;
}
/* This destroys all pools on exit. It is *not* thread safe. */
void pool_destroy_all()
{
struct pool_head *entry, *back;
list_for_each_entry_safe(entry, back, &pools, list) {
/* there's only one occurrence of each pool in the list,
* and we're existing instead of looping on the whole
* list just to decrement users, force it to 1 here.
*/
entry->users = 1;
pool_destroy(entry);
}
}
/* used by qsort in "show pools" to sort by name */
static int cmp_dump_pools_name(const void *a, const void *b)
{
const struct pool_dump_info *l = (const struct pool_dump_info *)a;
const struct pool_dump_info *r = (const struct pool_dump_info *)b;
return strcmp(l->entry->name, r->entry->name);
}
/* used by qsort in "show pools" to sort by item size */
static int cmp_dump_pools_size(const void *a, const void *b)
{
const struct pool_dump_info *l = (const struct pool_dump_info *)a;
const struct pool_dump_info *r = (const struct pool_dump_info *)b;
if (l->entry->size > r->entry->size)
return -1;
else if (l->entry->size < r->entry->size)
return 1;
else
return 0;
}
/* used by qsort in "show pools" to sort by usage */
static int cmp_dump_pools_usage(const void *a, const void *b)
{
const struct pool_dump_info *l = (const struct pool_dump_info *)a;
const struct pool_dump_info *r = (const struct pool_dump_info *)b;
if (l->alloc_bytes > r->alloc_bytes)
return -1;
else if (l->alloc_bytes < r->alloc_bytes)
return 1;
else
return 0;
}
/* will not dump more than this number of entries. Anything beyond this will
* likely not fit into a regular output buffer anyway.
*/
#define POOLS_MAX_DUMPED_ENTRIES 1024
/* This function dumps memory usage information into the trash buffer.
* It may sort by a criterion if <by_what> is non-zero, and limit the
* number of output lines if <max> is non-zero. It may limit only to
* pools whose names start with <pfx> if <pfx> is non-null.
*/
void dump_pools_to_trash(int by_what, int max, const char *pfx)
{
struct pool_dump_info pool_info[POOLS_MAX_DUMPED_ENTRIES];
struct pool_head *entry;
unsigned long long allocated, used;
int nbpools, i;
unsigned long long cached_bytes = 0;
uint cached = 0;
allocated = used = nbpools = 0;
list_for_each_entry(entry, &pools, list) {
if (nbpools >= POOLS_MAX_DUMPED_ENTRIES)
break;
/* do not dump unused entries when sorting by usage */
if (by_what == 3 && !entry->allocated)
continue;
/* verify the pool name if a prefix is requested */
if (pfx && strncmp(entry->name, pfx, strlen(pfx)) != 0)
continue;
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
for (cached = i = 0; i < global.nbthread; i++)
cached += entry->cache[i].count;
}
pool_info[nbpools].entry = entry;
pool_info[nbpools].alloc_items = entry->allocated;
pool_info[nbpools].alloc_bytes = (ulong)entry->size * entry->allocated;
pool_info[nbpools].used_items = entry->used;
pool_info[nbpools].cached_items = cached;
pool_info[nbpools].need_avg = swrate_avg(entry->needed_avg, POOL_AVG_SAMPLES);
pool_info[nbpools].failed_items = entry->failed;
nbpools++;
}
if (by_what == 1) /* sort by name */
qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_name);
else if (by_what == 2) /* sort by item size */
qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_size);
else if (by_what == 3) /* sort by total usage */
qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_usage);
chunk_printf(&trash, "Dumping pools usage");
if (!max || max >= POOLS_MAX_DUMPED_ENTRIES)
max = POOLS_MAX_DUMPED_ENTRIES;
if (nbpools >= max)
chunk_appendf(&trash, " (limited to the first %u entries)", max);
chunk_appendf(&trash, ". Use SIGQUIT to flush them.\n");
for (i = 0; i < nbpools && i < max; i++) {
chunk_appendf(&trash, " - Pool %s (%lu bytes) : %lu allocated (%lu bytes), %lu used"
" (~%lu by thread caches)"
", needed_avg %lu, %lu failures, %u users, @%p%s\n",
pool_info[i].entry->name, (ulong)pool_info[i].entry->size,
pool_info[i].alloc_items, pool_info[i].alloc_bytes,
pool_info[i].used_items, pool_info[i].cached_items,
pool_info[i].need_avg, pool_info[i].failed_items,
pool_info[i].entry->users, pool_info[i].entry,
(pool_info[i].entry->flags & MEM_F_SHARED) ? " [SHARED]" : "");
cached_bytes += pool_info[i].cached_items * (ulong)pool_info[i].entry->size;
allocated += pool_info[i].alloc_items * (ulong)pool_info[i].entry->size;
used += pool_info[i].used_items * (ulong)pool_info[i].entry->size;
}
chunk_appendf(&trash, "Total: %d pools, %llu bytes allocated, %llu used"
" (~%llu by thread caches)"
".\n",
nbpools, allocated, used, cached_bytes
);
}
/* Dump statistics on pools usage. */
void dump_pools(void)
{
dump_pools_to_trash(0, 0, NULL);
qfprintf(stderr, "%s", trash.area);
}
/* This function returns the total number of failed pool allocations */
int pool_total_failures()
{
struct pool_head *entry;
int failed = 0;
list_for_each_entry(entry, &pools, list)
failed += entry->failed;
return failed;
}
/* This function returns the total amount of memory allocated in pools (in bytes) */
unsigned long pool_total_allocated()
{
struct pool_head *entry;
unsigned long allocated = 0;
list_for_each_entry(entry, &pools, list)
allocated += entry->allocated * entry->size;
return allocated;
}
/* This function returns the total amount of memory used in pools (in bytes) */
unsigned long pool_total_used()
{
struct pool_head *entry;
unsigned long used = 0;
list_for_each_entry(entry, &pools, list)
used += entry->used * entry->size;
return used;
}
/* This function parses a string made of a set of debugging features as
* specified after -dM on the command line, and will set pool_debugging
* accordingly. On success it returns a strictly positive value. It may zero
* with the first warning in <err>, -1 with a help message in <err>, or -2 with
* the first error in <err> return the first error in <err>. <err> is undefined
* on success, and will be non-null and locally allocated on help/error/warning.
* The caller must free it. Warnings are used to report features that were not
* enabled at build time, and errors are used to report unknown features.
*/
int pool_parse_debugging(const char *str, char **err)
{
struct ist args;
char *end;
uint new_dbg;
int v;
/* if it's empty or starts with a number, it's the mem poisonning byte */
v = strtol(str, &end, 0);
if (!*end || *end == ',') {
mem_poison_byte = *str ? v : 'P';
if (mem_poison_byte >= 0)
pool_debugging |= POOL_DBG_POISON;
else
pool_debugging &= ~POOL_DBG_POISON;
str = end;
}
new_dbg = pool_debugging;
for (args = ist(str); istlen(args); args = istadv(istfind(args, ','), 1)) {
struct ist feat = iststop(args, ',');
if (!istlen(feat))
continue;
if (isteq(feat, ist("help"))) {
ha_free(err);
memprintf(err,
"-dM alone enables memory poisonning with byte 0x50 on allocation. A numeric\n"
"value may be appended immediately after -dM to use another value (0 supported).\n"
"Then an optional list of comma-delimited keywords may be appended to set or\n"
"clear some debugging options ('*' marks the current setting):\n\n"
" set clear description\n"
" -----------------+-----------------+-----------------------------------------\n");
for (v = 0; dbg_options[v].flg; v++) {
memprintf(err, "%s %c %-15s|%c %-15s| %s\n",
*err,
(pool_debugging & dbg_options[v].flg) ? '*' : ' ',
dbg_options[v].set,
(pool_debugging & dbg_options[v].flg) ? ' ' : '*',
dbg_options[v].clr,
dbg_options[v].hlp);
}
memprintf(err,
"%s -----------------+-----------------+-----------------------------------------\n"
"Examples:\n"
" Disable merging and enable poisonning with byte 'P': -dM0x50,no-merge\n"
" Randomly fail allocations: -dMfail\n"
" Detect out-of-bound corruptions: -dMno-merge,tag\n"
" Detect post-free cache corruptions: -dMno-merge,cold-first,integrity,caller\n"
" Detect all cache corruptions: -dMno-merge,cold-first,integrity,tag,caller\n"
" Detect UAF (disables cache, very slow): -dMuaf\n"
" Detect post-cache UAF: -dMuaf,cache,no-merge,cold-first,integrity,tag,caller\n"
" Detect post-free cache corruptions: -dMno-merge,cold-first,integrity,caller\n",
*err);
return -1;
}
for (v = 0; dbg_options[v].flg; v++) {
if (isteq(feat, ist(dbg_options[v].set))) {
new_dbg |= dbg_options[v].flg;
/* UAF implicitly disables caching, but it's
* still possible to forcefully re-enable it.
*/
if (dbg_options[v].flg == POOL_DBG_UAF)
new_dbg |= POOL_DBG_NO_CACHE;
break;
}
else if (isteq(feat, ist(dbg_options[v].clr))) {
new_dbg &= ~dbg_options[v].flg;
break;
}
}
if (!dbg_options[v].flg) {
memprintf(err, "unknown pool debugging feature <%.*s>", (int)istlen(feat), istptr(feat));
return -2;
}
}
pool_debugging = new_dbg;
return 1;
}
/* parse a "show pools" command. It returns 1 on failure, 0 if it starts to dump. */
static int cli_parse_show_pools(char **args, char *payload, struct appctx *appctx, void *private)
{
struct show_pools_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
int arg;
for (arg = 2; *args[arg]; arg++) {
if (strcmp(args[arg], "byname") == 0) {
ctx->by_what = 1; // sort output by name
}
else if (strcmp(args[arg], "bysize") == 0) {
ctx->by_what = 2; // sort output by item size
}
else if (strcmp(args[arg], "byusage") == 0) {
ctx->by_what = 3; // sort output by total allocated size
}
else if (strcmp(args[arg], "match") == 0 && *args[arg+1]) {
ctx->prefix = strdup(args[arg+1]); // only pools starting with this
arg++;
}
else if (isdigit((unsigned char)*args[arg])) {
ctx->maxcnt = atoi(args[arg]); // number of entries to dump
}
else
return cli_err(appctx, "Expects either 'byname', 'bysize', 'byusage', 'match <pfx>', or a max number of output lines.\n");
}
return 0;
}
/* release the "show pools" context */
static void cli_release_show_pools(struct appctx *appctx)
{
struct show_pools_ctx *ctx = appctx->svcctx;
ha_free(&ctx->prefix);
}
/* This function dumps memory usage information onto the stream connector's
* read buffer. It returns 0 as long as it does not complete, non-zero upon
* completion. No state is used.
*/
static int cli_io_handler_dump_pools(struct appctx *appctx)
{
struct show_pools_ctx *ctx = appctx->svcctx;
dump_pools_to_trash(ctx->by_what, ctx->maxcnt, ctx->prefix);
if (applet_putchk(appctx, &trash) == -1)
return 0;
return 1;
}
/* callback used to create early pool <name> of size <size> and store the
* resulting pointer into <ptr>. If the allocation fails, it quits with after
* emitting an error message.
*/
void create_pool_callback(struct pool_head **ptr, char *name, unsigned int size)
{
*ptr = create_pool(name, size, MEM_F_SHARED);
if (!*ptr) {
ha_alert("Failed to allocate pool '%s' of size %u : %s. Aborting.\n",
name, size, strerror(errno));
exit(1);
}
}
/* Initializes all per-thread arrays on startup */
static void init_pools()
{
int thr;
for (thr = 0; thr < MAX_THREADS; thr++) {
LIST_INIT(&ha_thread_ctx[thr].pool_lru_head);
}
detect_allocator();
}
INITCALL0(STG_PREPARE, init_pools);
/* Report in build options if trim is supported */
static void pools_register_build_options(void)
{
if (is_trim_enabled()) {
char *ptr = NULL;
memprintf(&ptr, "Support for malloc_trim() is enabled.");
hap_register_build_opts(ptr, 1);
}
}
INITCALL0(STG_REGISTER, pools_register_build_options);
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{ { "show", "pools", NULL }, "show pools [by*] [match <pfx>] [nb] : report information about the memory pools usage", cli_parse_show_pools, cli_io_handler_dump_pools, cli_release_show_pools },
{{},}
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
/* config parser for global "tune.fail-alloc" */
static int mem_parse_global_fail_alloc(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
mem_fail_rate = atoi(args[1]);
if (mem_fail_rate < 0 || mem_fail_rate > 100) {
memprintf(err, "'%s' expects a numeric value between 0 and 100.", args[0]);
return -1;
}
return 0;
}
/* config parser for global "no-memory-trimming" */
static int mem_parse_global_no_mem_trim(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(0, args, err, NULL))
return -1;
disable_trim = 1;
return 0;
}
/* register global config keywords */
static struct cfg_kw_list mem_cfg_kws = {ILH, {
{ CFG_GLOBAL, "tune.fail-alloc", mem_parse_global_fail_alloc },
{ CFG_GLOBAL, "no-memory-trimming", mem_parse_global_no_mem_trim },
{ 0, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &mem_cfg_kws);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/