blob: 900b9a719d8d4ac1019ea15960bdb3f53d163913 [file] [log] [blame]
----------------------
HAProxy
Configuration Manual
----------------------
version 1.3.15
willy tarreau
2008/01/22
This document covers the configuration language as implemented in the version
specified above. It does not provide any hint, example or advice. For such
documentation, please refer to the Reference Manual or the Architecture Manual.
Note to documentation contributors : this document is formated with 80 columns
per line, with even number of spaces for indentation and without tabs. Please
follow these rules strictly so that it remains easily printable everywhere. If
a line needs to be printed verbatim and does not fit, please end each line with
a backslash ('\') and continue on next line.
HAProxy's configuration process involves 3 major sources of parameters :
- the arguments from the command-line, which always take precedence
- the "global" section, which sets process-wide parameters
- the proxies sections which can take form of "defaults", "listen",
"frontend" and "backend".
The configuration file syntax consists in lines beginning with a keyword
referenced in this manual, optionally followed by one or several parameters
delimited by spaces. If spaces have to be entered in strings, then they must be
preceeded by a backslash ('\') to be escaped. Backslashes also have to be
escaped by doubling them.
Some parameters involve values representating time, such as timeouts. These
values are generally expressed in milliseconds (unless explicitly stated
otherwise) but may be expressed in any other unit by suffixing the unit to the
numeric value. It is important to consider this because it will not be repeated
for every keyword. Supported units are :
- us : microseconds. 1 microsecond = 1/1000000 second
- ms : milliseconds. 1 millisecond = 1/1000 second. This is the default.
- s : seconds. 1s = 1000ms
- m : minutes. 1m = 60s = 60000ms
- h : hours. 1h = 60m = 3600s = 3600000ms
- d : days. 1d = 24h = 1440m = 86400s = 86400000ms
1. Global parameters
--------------------
Parameters in the "global" section are process-wide and often OS-specific. They
are generally set once for all and do not need being changed once correct. Some
of them have command-line equivalents.
The following keywords are supported in the "global" section :
* Process management and security
- chroot
- daemon
- gid
- group
- log
- nbproc
- pidfile
- uid
- ulimit-n
- user
- stats
* Performance tuning
- maxconn
- noepoll
- nokqueue
- nopoll
- nosepoll
- spread-checks
- tune.maxaccept
- tune.maxpollevents
* Debugging
- debug
- quiet
1.1) Process management and security
------------------------------------
chroot <jail dir>
Changes current directory to <jail dir> and performs a chroot() there before
dropping privileges. This increases the security level in case an unknown
vulnerability would be exploited, since it would make it very hard for the
attacker to exploit the system. This only works when the process is started
with superuser privileges. It is important to ensure that <jail_dir> is both
empty and unwritable to anyone.
daemon
Makes the process fork into background. This is the recommended mode of
operation. It is equivalent to the command line "-D" argument. It can be
disabled by the command line "-db" argument.
gid <number>
Changes the process' group ID to <number>. It is recommended that the group
ID is dedicated to HAProxy or to a small set of similar daemons. HAProxy must
be started with a user belonging to this group, or with superuser privileges.
See also "group" and "uid".
group <group name>
Similar to "gid" but uses the GID of group name <group name> from /etc/group.
See also "gid" and "user".
log <address> <facility> [max level]
Adds a global syslog server. Up to two global servers can be defined. They
will receive logs for startups and exits, as well as all logs from proxies
configured with "log global".
<address> can be one of:
- An IPv4 address optionally followed by a colon and a UDP port. If
no port is specified, 514 is used by default (the standard syslog
port).
- A filesystem path to a UNIX domain socket, keeping in mind
considerations for chroot (be sure the path is accessible inside
the chroot) and uid/gid (be sure the path is appropriately
writeable).
<facility> must be one of the 24 standard syslog facilities :
kern user mail daemon auth syslog lpr news
uucp cron auth2 ftp ntp audit alert cron2
local0 local1 local2 local3 local4 local5 local6 local7
An optional level can be specified to filter outgoing messages. By default,
all messages are sent. If a level is specified, only messages with a severity
at least as important as this level will be sent. 8 levels are known :
emerg alert crit err warning notice info debug
nbproc <number>
Creates <number> processes when going daemon. This requires the "daemon"
mode. By default, only one process is created, which is the recommended mode
of operation. For systems limited to small sets of file descriptors per
process, it may be needed to fork multiple daemons. USING MULTIPLE PROCESSES
IS HARDER TO DEBUG AND IS REALLY DISCOURAGED. See also "daemon".
pidfile <pidfile>
Writes pids of all daemons into file <pidfile>. This option is equivalent to
the "-p" command line argument. The file must be accessible to the user
starting the process. See also "daemon".
stats socket <path> [{uid | user} <uid>] [{gid | group} <gid>] [mode <mode>]
Creates a UNIX socket in stream mode at location <path>. Any previously
existing socket will be backed up then replaced. Connections to this socket
will get a CSV-formated output of the process statistics in response to the
"show stat" command followed by a line feed, and more general process
information in response to the "show info" command followed by a line feed.
On platforms which support it, it is possible to restrict access to this
socket by specifying numerical IDs after "uid" and "gid", or valid user and
group names after the "user" and "group" keywords. It is also possible to
restrict permissions on the socket by passing an octal value after the "mode"
keyword (same syntax as chmod). Depending on the platform, the permissions on
the socket will be inherited from the directory which hosts it, or from the
user the process is started with.
stats timeout <timeout, in milliseconds>
The default timeout on the stats socket is set to 10 seconds. It is possible
to change this value with "stats timeout". The value must be passed in
milliseconds, or be suffixed by a time unit among { us, ms, s, m, h, d }.
stats maxconn <connections>
By default, the stats socket is limited to 10 concurrent connections. It is
possible to change this value with "stats maxconn".
uid <number>
Changes the process' user ID to <number>. It is recommended that the user ID
is dedicated to HAProxy or to a small set of similar daemons. HAProxy must
be started with superuser privileges in order to be able to switch to another
one. See also "gid" and "user".
ulimit-n <number>
Sets the maximum number of per-process file-descriptors to <number>. By
default, it is automatically computed, so it is recommended not to use this
option.
user <user name>
Similar to "uid" but uses the UID of user name <user name> from /etc/passwd.
See also "uid" and "group".
1.2) Performance tuning
-----------------------
maxconn <number>
Sets the maximum per-process number of concurrent connections to <number>. It
is equivalent to the command-line argument "-n". Proxies will stop accepting
connections when this limit is reached. The "ulimit-n" parameter is
automatically adjusted according to this value. See also "ulimit-n".
noepoll
Disables the use of the "epoll" event polling system on Linux. It is
equivalent to the command-line argument "-de". The next polling system
used will generally be "poll". See also "nosepoll", and "nopoll".
nokqueue
Disables the use of the "kqueue" event polling system on BSD. It is
equivalent to the command-line argument "-dk". The next polling system
used will generally be "poll". See also "nopoll".
nopoll
Disables the use of the "poll" event polling system. It is equivalent to the
command-line argument "-dp". The next polling system used will be "select".
It should never be needed to disable "poll" since it's available on all
platforms supported by HAProxy. See also "nosepoll", and "nopoll" and
"nokqueue".
nosepoll
Disables the use of the "speculative epoll" event polling system on Linux. It
is equivalent to the command-line argument "-ds". The next polling system
used will generally be "epoll". See also "nosepoll", and "nopoll".
spread-checks <0..50, in percent>
Sometimes it is desirable to avoid sending health checks to servers at exact
intervals, for instance when many logical servers are located on the same
physical server. With the help of this parameter, it becomes possible to add
some randomness in the check interval between 0 and +/- 50%. A value between
2 and 5 seems to show good results. The default value remains at 0.
tune.maxaccept <number>
Sets the maximum number of consecutive accepts that a process may perform on
a single wake up. High values give higher priority to high connection rates,
while lower values give higher priority to already established connections.
This value is unlimited by default in single process mode. However, in
multi-process mode (nbproc > 1), it defaults to 8 so that when one process
wakes up, it does not take all incoming connections for itself and leaves a
part of them to other processes. Setting this value to zero or less disables
the limitation. It should normally not be needed to tweak this value.
tune.maxpollevents <number>
Sets the maximum amount of events that can be processed at once in a call to
the polling system. The default value is adapted to the operating system. It
has been noticed that reducing it below 200 tends to slightly decrease
latency at the expense of network bandwidth, and increasing it above 200
tends to trade latency for slightly increased bandwidth.
1.3) Debugging
---------------
debug
Enables debug mode which dumps to stdout all exchanges, and disables forking
into background. It is the equivalent of the command-line argument "-d". It
should never be used in a production configuration since it may prevent full
system startup.
quiet
Do not display any message during startup. It is equivalent to the command-
line argument "-q".
2) Proxies
----------
Proxy configuration can be located in a set of sections :
- defaults <name>
- frontend <name>
- backend <name>
- listen <name>
A "defaults" section sets default parameters for all other sections following
its declaration. Those default parameters are reset by the next "defaults"
section. See below for the list of parameters which can be set in a "defaults"
section. The name is optional but its use is encouraged for better readability.
A "frontend" section describes a set of listening sockets accepting client
connections.
A "backend" section describes a set of servers to which the proxy will connect
to forward incoming connections.
A "listen" section defines a complete proxy with its frontend and backend
parts combined in one section. It is generally useful for TCP-only traffic.
All proxy names must be formed from upper and lower case letters, digits,
'-' (dash), '_' (underscore) , '.' (dot) and ':' (colon). ACL names are
case-sensitive, which means that "www" and "WWW" are two different proxies.
Historically, all proxy names could overlap, it just caused troubles in the
logs. Since the introduction of content switching, it is mandatory that two
proxies with overlapping capabilities (frontend/backend) have different names.
However, it is still permitted that a frontend and a backend share the same
name, as this configuration seems to be commonly encountered.
Right now, two major proxy modes are supported : "tcp", also known as layer 4,
and "http", also known as layer 7. In layer 4 mode, HAProxy simply forwards
bidirectionnal traffic between two sides. In layer 7 mode, HAProxy analyzes the
protocol, and can interact with it by allowing, blocking, switching, adding,
modifying, or removing arbitrary contents in requests or responses, based on
arbitrary criteria.
2.1) Quick reminder about HTTP
------------------------------
When a proxy is running in HTTP mode, both the request and the response are
fully analyzed and indexed, thus it becomes possible to build matching criteria
on almost anything found in the contents.
However, it is important to understand how HTTP requests and responses are
formed, and how HAProxy decomposes them. It will then become easier to write
correct rules and to debug existing configurations.
2.1.1) The HTTP transaction model
---------------------------------
The HTTP protocol is transaction-driven. This means that each request will lead
to one and only one response. Traditionnally, a TCP connection is established
from the client to the server, a request is sent by the client on the
connection, the server responds and the connection is closed. A new request
will involve a new connection :
[CON1] [REQ1] ... [RESP1] [CLO1] [CON2] [REQ2] ... [RESP2] [CLO2] ...
In this mode, called the "HTTP close" mode, there are as many connection
establishments as there are HTTP transactions. Since the connection is closed
by the server after the response, the client does not need to know the content
length.
Due to the transactional nature of the protocol, it was possible to improve it
to avoid closing a connection between two subsequent transactions. In this mode
however, it is mandatory that the server indicates the content length for each
response so that the client does not wait indefinitely. For this, a special
header is used: "Content-length". This mode is called the "keep-alive" mode :
[CON] [REQ1] ... [RESP1] [REQ2] ... [RESP2] [CLO] ...
Its advantages are a reduced latency between transactions, and less processing
power required on the server side. It is generally better than the close mode,
but not always because the clients often limit their concurrent connections to
a smaller value. HAProxy currently does not support the HTTP keep-alive mode,
but knows how to transform it to the close mode.
A last improvement in the communications is the pipelining mode. It still uses
keep-alive, but the client does not wait for the first response to send the
second request. This is useful for fetching large number of images composing a
page :
[CON] [REQ1] [REQ2] ... [RESP1] [RESP2] [CLO] ...
This can obviously have a tremendous benefit on performance because the network
latency is eliminated between subsequent requests. Many HTTP agents do not
correctly support pipelining since there is no way to associate a response with
the corresponding request in HTTP. For this reason, it is mandatory for the
server to reply in the exact same order as the requests were received.
Right now, HAProxy only supports the first mode (HTTP close) if it needs to
process the request. This means that for each request, there will be one TCP
connection. If keep-alive or pipelining are required, HAProxy will still
support them, but will only see the first request and the first response of
each transaction. While this is generally problematic with regards to logs,
content switching or filtering, it most often causes no problem for persistence
with cookie insertion.
2.1.2) HTTP request
-------------------
First, let's consider this HTTP request :
Line Contents
number
1 GET /serv/login.php?lang=en&profile=2 HTTP/1.1
2 Host: www.mydomain.com
3 User-agent: my small browser
4 Accept: image/jpeg, image/gif
5 Accept: image/png
2.1.2.1) The Request line
-------------------------
Line 1 is the "request line". It is always composed of 3 fields :
- a METHOD : GET
- a URI : /serv/login.php?lang=en&profile=2
- a version tag : HTTP/1.1
All of them are delimited by what the standard calls LWS (linear white spaces),
which are commonly spaces, but can also be tabs or line feeds/carriage returns
followed by spaces/tabs. The method itself cannot contain any colon (':') and
is limited to alphabetic letters. All those various combinations make it
desirable that HAProxy performs the splitting itself rather than leaving it to
the user to write a complex or inaccurate regular expression.
The URI itself can have several forms :
- A "relative URI" :
/serv/login.php?lang=en&profile=2
It is a complete URL without the host part. This is generally what is
received by servers, reverse proxies and transparent proxies.
- An "absolute URI", also called a "URL" :
http://192.168.0.12:8080/serv/login.php?lang=en&profile=2
It is composed of a "scheme" (the protocol name followed by '://'), a host
name or address, optionally a colon (':') followed by a port number, then
a relative URI beginning at the first slash ('/') after the address part.
This is generally what proxies receive, but a server supporting HTTP/1.1
must accept this form too.
- a star ('*') : this form is only accepted in association with the OPTIONS
method and is not relayable. It is used to inquiry a next hop's
capabilities.
- an address:port combination : 192.168.0.12:80
This is used with the CONNECT method, which is used to establish TCP
tunnels through HTTP proxies, generally for HTTPS, but sometimes for
other protocols too.
In a relative URI, two sub-parts are identified. The part before the question
mark is called the "path". It is typically the relative path to static objects
on the server. The part after the question mark is called the "query string".
It is mostly used with GET requests sent to dynamic scripts and is very
specific to the language, framework or application in use.
2.1.2.2) The request headers
----------------------------
The headers start at the second line. They are composed of a name at the
beginning of the line, immediately followed by a colon (':'). Traditionally,
an LWS is added after the colon but that's not required. Then come the values.
Multiple identical headers may be folded into one single line, delimiting the
values with commas, provided that their order is respected. This is commonly
encountered in the "Cookie:" field. A header may span over multiple lines if
the subsequent lines begin with an LWS. In the example in 2.1.2, lines 4 and 5
define a total of 3 values for the "Accept:" header.
Contrary to a common mis-conception, header names are not case-sensitive, and
their values are not either if they refer to other header names (such as the
"Connection:" header).
The end of the headers is indicated by the first empty line. People often say
that it's a double line feed, which is not exact, even if a double line feed
is one valid form of empty line.
Fortunately, HAProxy takes care of all these complex combinations when indexing
headers, checking values and counting them, so there is no reason to worry
about the way they could be written, but it is important not to accuse an
application of being buggy if it does unusual, valid things.
Important note:
As suggested by RFC2616, HAProxy normalizes headers by replacing line breaks
in the middle of headers by LWS in order to join multi-line headers. This
is necessary for proper analysis and helps less capable HTTP parsers to work
correctly and not to be fooled by such complex constructs.
2.1.3) HTTP response
--------------------
An HTTP response looks very much like an HTTP request. Both are called HTTP
messages. Let's consider this HTTP response :
Line Contents
number
1 HTTP/1.1 200 OK
2 Content-length: 350
3 Content-Type: text/html
2.1.3.1) The Response line
--------------------------
Line 1 is the "response line". It is always composed of 3 fields :
- a version tag : HTTP/1.1
- a status code : 200
- a reason : OK
The status code is always 3-digit. The first digit indicates a general status :
- 2xx = OK, content is following (eg: 200, 206)
- 3xx = OK, no content following (eg: 302, 304)
- 4xx = error caused by the client (eg: 401, 403, 404)
- 5xx = error caused by the server (eg: 500, 502, 503)
Please refer to RFC2616 for the detailed meaning of all such codes. The
"reason" field is just a hint, but is not parsed by clients. Anything can be
found there, but it's a common practice to respect the well-established
messages. It can be composed of one or multiple words, such as "OK", "Found",
or "Authentication Required".
2.1.3.2) The response headers
-----------------------------
Response headers work exactly like request headers, and as such, HAProxy uses
the same parsing function for both. Please refer to paragraph 2.1.2.2 for more
details.
2.2) Proxy keywords matrix
----------------------------
The following list of keywords is supported. Most of them may only be used in a
limited set of section types. Some of them are marked as "deprecated" because
they are inherited from an old syntax which may be confusing or functionally
limited, and there are new recommended keywords to replace them. Keywords
listed with [no] can be optionally inverted using the "no" prefix, ex. "no
option contstats". This makes sense when the option has been enabled by default
and must be disabled for a specific instance.
keyword defaults frontend listen backend
----------------------+----------+----------+---------+---------
acl - X X X
appsession - - X X
backlog X X X -
balance X - X X
bind - X X -
block - X X X
capture cookie - X X -
capture request header - X X -
capture response header - X X -
clitimeout X X X - (deprecated)
contimeout X - X X (deprecated)
cookie X - X X
default_backend - X X -
disabled X X X X
dispatch - - X X
enabled X X X X
errorfile X X X X
errorloc X X X X
errorloc302 X X X X
errorloc303 X X X X
fullconn X - X X
grace - X X X
http-check disable-on-404 X - X X
log X X X X
maxconn X X X -
mode X X X X
monitor fail - X X -
monitor-net X X X -
monitor-uri X X X -
[no] option abortonclose X - X X
[no] option allbackups X - X X
[no] option checkcache X - X X
[no] option clitcpka X X X -
[no] option contstats X X X -
[no] option dontlognull X X X -
[no] option forceclose X - X X
option forwardfor X X X X
[no] option http_proxy X X X X
option httpchk X - X X
[no] option httpclose X X X X
option httplog X X X X
[no] option logasap X X X -
[no] option nolinger X X X X
[no] option persist X - X X
[no] option redispatch X - X X
option smtpchk X - X X
[no] option srvtcpka X - X X
option ssl-hello-chk X - X X
option tcpka X X X X
option tcplog X X X X
[no] option tcpsplice X X X X
[no] option transparent X X X -
redisp X - X X (deprecated)
redispatch X - X X (deprecated)
reqadd - X X X
reqallow - X X X
reqdel - X X X
reqdeny - X X X
reqiallow - X X X
reqidel - X X X
reqideny - X X X
reqipass - X X X
reqirep - X X X
reqisetbe - X X X
reqitarpit - X X X
reqpass - X X X
reqrep - X X X
reqsetbe - X X X
reqtarpit - X X X
retries X - X X
rspadd - X X X
rspdel - X X X
rspdeny - X X X
rspidel - X X X
rspideny - X X X
rspirep - X X X
rsprep - X X X
server - - X X
source X - X X
srvtimeout X - X X (deprecated)
stats auth X - X X
stats enable X - X X
stats realm X - X X
stats refresh X - X X
stats scope X - X X
stats uri X - X X
stats hide-version X - X X
timeout check X - X X
timeout client X X X -
timeout clitimeout X X X - (deprecated)
timeout connect X - X X
timeout contimeout X - X X (deprecated)
timeout http-request X X X -
timeout queue X - X X
timeout server X - X X
timeout srvtimeout X - X X (deprecated)
timeout tarpit X X X X
transparent X X X - (deprecated)
use_backend - X X -
----------------------+----------+----------+---------+---------
keyword defaults frontend listen backend
2.2.1) Alphabetically sorted keywords reference
-----------------------------------------------
This section provides a description of each keyword and its usage.
acl <aclname> <criterion> [flags] [operator] <value> ...
Declare or complete an access list.
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | yes
Example:
acl invalid_src src 0.0.0.0/7 224.0.0.0/3
acl invalid_src src_port 0:1023
acl local_dst hdr(host) -i localhost
See section 2.3 about ACL usage.
appsession <cookie> len <length> timeout <holdtime>
Define session stickiness on an existing application cookie.
May be used in sections : defaults | frontend | listen | backend
no | no | yes | yes
Arguments :
<cookie> this is the name of the cookie used by the application and which
HAProxy will have to learn for each new session.
<length> this is the number of characters that will be memorized and
checked in each cookie value.
<holdtime> this is the time after which the cookie will be removed from
memory if unused. If no unit is specified, this time is in
milliseconds.
When an application cookie is defined in a backend, HAProxy will check when
the server sets such a cookie, and will store its value in a table, and
associate it with the server's identifier. Up to <length> characters from
the value will be retained. On each connection, haproxy will look for this
cookie both in the "Cookie:" headers, and as a URL parameter in the query
string. If a known value is found, the client will be directed to the server
associated with this value. Otherwise, the load balancing algorithm is
applied. Cookies are automatically removed from memory when they have been
unused for a duration longer than <holdtime>.
The definition of an application cookie is limited to one per backend.
Example :
appsession JSESSIONID len 52 timeout 3h
See also : "cookie", "capture cookie" and "balance".
backlog <conns>
Give hints to the system about the approximate listen backlog desired size
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | no
Arguments :
<conns> is the number of pending connections. Depending on the operating
system, it may represent the number of already acknowledged
connections, of non-acknowledged ones, or both.
In order to protect against SYN flood attacks, one solution is to increase
the system's SYN backlog size. Depending on the system, sometimes it is just
tunable via a system parameter, sometimes it is not adjustable at all, and
sometimes the system relies on hints given by the application at the time of
the listen() syscall. By default, HAProxy passes the frontend's maxconn value
to the listen() syscall. On systems which can make use of this value, it can
sometimes be useful to be able to specify a different value, hence this
backlog parameter.
On Linux 2.4, the parameter is ignored by the system. On Linux 2.6, it is
used as a hint and the system accepts up to the smallest greater power of
two, and never more than some limits (usually 32768).
See also : "maxconn" and the target operating system's tuning guide.
balance <algorithm> [ <arguments> ]
Define the load balancing algorithm to be used in a backend.
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<algorithm> is the algorithm used to select a server when doing load
balancing. This only applies when no persistence information
is available, or when a connection is redispatched to another
server. <algorithm> may be one of the following :
roundrobin Each server is used in turns, according to their weights.
This is the smoothest and fairest algorithm when the server's
processing time remains equally distributed. This algorithm
is dynamic, which means that server weights may be adjusted
on the fly for slow starts for instance.
source The source IP address is hashed and divided by the total
weight of the running servers to designate which server will
receive the request. This ensures that the same client IP
address will always reach the same server as long as no
server goes down or up. If the hash result changes due to the
number of running servers changing, many clients will be
directed to a different server. This algorithm is generally
used in TCP mode where no cookie may be inserted. It may also
be used on the Internet to provide a best-effort stickyness
to clients which refuse session cookies. This algorithm is
static, which means that changing a server's weight on the
fly will have no effect.
uri The left part of the URI (before the question mark) is hashed
and divided by the total weight of the running servers. The
result designates which server will receive the request. This
ensures that a same URI will always be directed to the same
server as long as no server goes up or down. This is used
with proxy caches and anti-virus proxies in order to maximize
the cache hit rate. Note that this algorithm may only be used
in an HTTP backend. This algorithm is static, which means
that changing a server's weight on the fly will have no
effect.
url_param The URL parameter specified in argument will be looked up in
the query string of each HTTP request. If it is found
followed by an equal sign ('=') and a value, then the value
is hashed and divided by the total weight of the running
servers. The result designates which server will receive the
request. This is used to track user identifiers in requests
and ensure that a same user ID will always be sent to the
same server as long as no server goes up or down. If no value
is found or if the parameter is not found, then a round robin
algorithm is applied. Note that this algorithm may only be
used in an HTTP backend. This algorithm is static, which
means that changing a server's weight on the fly will have no
effect.
<arguments> is an optional list of arguments which may be needed by some
algorithms. Right now, only the "url_param" algorithm supports
a mandatory argument.
The definition of the load balancing algorithm is mandatory for a backend
and limited to one per backend.
Examples :
balance roundrobin
balance url_param userid
See also : "dispatch", "cookie", "appsession", "transparent" and "http_proxy".
bind [<address>]:<port> [, ...]
bind [<address>]:<port> [, ...] transparent
Define one or several listening addresses and/or ports in a frontend.
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | no
Arguments :
<address> is optional and can be a host name, an IPv4 address, an IPv6
address, or '*'. It designates the address the frontend will
listen on. If unset, all IPv4 addresses of the system will be
listened on. The same will apply for '*' or the system's
special address "0.0.0.0".
<port> is the TCP port number the proxy will listen on. The port is
mandatory. Note that in the case of an IPv6 address, the port
is always the number after the last colon (':').
transparent is an optional keyword which is supported only on certain
Linux kernels. It indicates that the addresses will be bound
even if they do not belong to the local machine. Any packet
targetting any of these addresses will be caught just as if
the address was locally configured. This normally requires
that IP forwarding is enabled. Caution! do not use this with
the default address '*', as it would redirect any traffic for
the specified port. This keyword is available only when
HAProxy is built with USE_LINUX_TPROXY=1.
It is possible to specify a list of address:port combinations delimited by
commas. The frontend will then listen on all of these addresses. There is no
fixed limit to the number of addresses and ports which can be listened on in
a frontend, as well as there is no limit to the number of "bind" statements
in a frontend.
Example :
listen http_proxy
bind :80,:443
bind 10.0.0.1:10080,10.0.0.1:10443
See also : "source".
block { if | unless } <condition>
Block a layer 7 request if/unless a condition is matched
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | yes
The HTTP request will be blocked very early in the layer 7 processing
if/unless <condition> is matched. A 403 error will be returned if the request
is blocked. The condition has to reference ACLs (see section 2.3). This is
typically used to deny access to certain sensible resources if some
conditions are met or not met. There is no fixed limit to the number of
"block" statements per instance.
Example:
acl invalid_src src 0.0.0.0/7 224.0.0.0/3
acl invalid_src src_port 0:1023
acl local_dst hdr(host) -i localhost
block if invalid_src || local_dst
See section 2.3 about ACL usage.
capture cookie <name> len <length>
Capture and log a cookie in the request and in the response.
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | no
Arguments :
<name> is the beginning of the name of the cookie to capture. In order
to match the exact name, simply suffix the name with an equal
sign ('='). The full name will appear in the logs, which is
useful with application servers which adjust both the cookie name
and value (eg: ASPSESSIONXXXXX).
<length> is the maximum number of characters to report in the logs, which
include the cookie name, the equal sign and the value, all in the
standard "name=value" form. The string will be truncated on the
right if it exceeds <length>.
Only the first cookie is captured. Both the "cookie" request headers and the
"set-cookie" response headers are monitored. This is particularly useful to
check for application bugs causing session crossing or stealing between
users, because generally the user's cookies can only change on a login page.
When the cookie was not presented by the client, the associated log column
will report "-". When a request does not cause a cookie to be assigned by the
server, a "-" is reported in the response column.
The capture is performed in the frontend only because it is necessary that
the log format does not change for a given frontend depending on the
backends. This may change in the future. Note that there can be only one
"capture cookie" statement in a frontend. The maximum capture length is
configured in the souces by default to 64 characters. It is not possible to
specify a capture in a "defaults" section.
Example:
capture cookie ASPSESSION len 32
See also : "capture request header", "capture response header" as well as
section 2.6 about logging.
capture request header <name> len <length>
Capture and log the first occurrence of the specified request header.
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | no
Arguments :
<name> is the name of the header to capture. The header names are not
case-sensitive, but it is a common practice to write them as they
appear in the requests, with the first letter of each word in
upper case. The header name will not appear in the logs, only the
value is reported, but the position in the logs is respected.
<length> is the maximum number of characters to extract from the value and
report in the logs. The string will be truncated on the right if
it exceeds <length>.
Only the first value of the first occurrence of the header is captured. The
value will be added to the logs between braces ('{}'). If multiple headers
are captured, they will be delimited by a vertical bar ('|') and will appear
in the same order they were declared in the configuration. Common uses for
request header captures include the "Host" field in virtual hosting
environments, the "Content-length" when uploads are supported, "User-agent"
to quickly differenciate between real users and robots, and "X-Forwarded-For"
in proxied environments to find where the request came from.
There is no limit to the number of captured request headers, but each capture
is limited to 64 characters. In order to keep log format consistent for a
same frontend, header captures can only be declared in a frontend. It is not
possible to specify a capture in a "defaults" section.
Example:
capture request header Host len 15
capture request header X-Forwarded-For len 15
capture request header Referrer len 15
See also : "capture cookie", "capture response header" as well as section 2.6
about logging.
capture response header <name> len <length>
Capture and log the first occurrence of the specified response header.
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | no
Arguments :
<name> is the name of the header to capture. The header names are not
case-sensitive, but it is a common practice to write them as they
appear in the response, with the first letter of each word in
upper case. The header name will not appear in the logs, only the
value is reported, but the position in the logs is respected.
<length> is the maximum number of characters to extract from the value and
report in the logs. The string will be truncated on the right if
it exceeds <length>.
Only the first value of the first occurrence of the header is captured. The
result will be added to the logs between braces ('{}') after the captured
request headers. If multiple headers are captured, they will be delimited by
a vertical bar ('|') and will appear in the same order they were declared in
the configuration. Common uses for response header captures include the
"Content-length" header which indicates how many bytes are expected to be
returned, the "Location" header to track redirections.
There is no limit to the number of captured response headers, but each
capture is limited to 64 characters. In order to keep log format consistent
for a same frontend, header captures can only be declared in a frontend. It
is not possible to specify a capture in a "defaults" section.
Example:
capture response header Content-length len 9
capture response header Location len 15
See also : "capture cookie", "capture request header" as well as section 2.6
about logging.
clitimeout <timeout>
Set the maximum inactivity time on the client side.
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | no
Arguments :
<timeout> is the timeout value is specified in milliseconds by default, but
can be in any other unit if the number is suffixed by the unit,
as explained at the top of this document.
The inactivity timeout applies when the client is expected to acknowledge or
send data. In HTTP mode, this timeout is particularly important to consider
during the first phase, when the client sends the request, and during the
response while it is reading data sent by the server. The value is specified
in milliseconds by default, but can be in any other unit if the number is
suffixed by the unit, as specified at the top of this document. In TCP mode
(and to a lesser extent, in HTTP mode), it is highly recommended that the
client timeout remains equal to the server timeout in order to avoid complex
situations to debug. It is a good practice to cover one or several TCP packet
losses by specifying timeouts that are slightly above multiples of 3 seconds
(eg: 4 or 5 seconds).
This parameter is specific to frontends, but can be specified once for all in
"defaults" sections. This is in fact one of the easiest solutions not to
forget about it. An unspecified timeout results in an infinite timeout, which
is not recommended. Such a usage is accepted and works but reports a warning
during startup because it may results in accumulation of expired sessions in
the system if the system's timeouts are not configured either.
This parameter is provided for compatibility but is currently deprecated.
Please use "timeout client" instead.
See also : "timeout client", "timeout http-request", "timeout server", and
"srvtimeout".
contimeout <timeout>
Set the maximum time to wait for a connection attempt to a server to succeed.
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<timeout> is the timeout value is specified in milliseconds by default, but
can be in any other unit if the number is suffixed by the unit,
as explained at the top of this document.
If the server is located on the same LAN as haproxy, the connection should be
immediate (less than a few milliseconds). Anyway, it is a good practice to
cover one or several TCP packet losses by specifying timeouts that are
slightly above multiples of 3 seconds (eg: 4 or 5 seconds). By default, the
connect timeout also presets the queue timeout to the same value if this one
has not been specified. Historically, the contimeout was also used to set the
tarpit timeout in a listen section, which is not possible in a pure frontend.
This parameter is specific to backends, but can be specified once for all in
"defaults" sections. This is in fact one of the easiest solutions not to
forget about it. An unspecified timeout results in an infinite timeout, which
is not recommended. Such a usage is accepted and works but reports a warning
during startup because it may results in accumulation of failed sessions in
the system if the system's timeouts are not configured either.
This parameter is provided for backwards compatibility but is currently
deprecated. Please use "timeout connect", "timeout queue" or "timeout tarpit"
instead.
See also : "timeout connect", "timeout queue", "timeout tarpit",
"timeout server", "contimeout".
cookie <name> [ rewrite|insert|prefix ] [ indirect ] [ nocache ] [ postonly ]
Enable cookie-based persistence in a backend.
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<name> is the name of the cookie which will be monitored, modified or
inserted in order to bring persistence. This cookie is sent to
the client via a "Set-Cookie" header in the response, and is
brought back by the client in a "Cookie" header in all requests.
Special care should be taken to choose a name which does not
conflict with any likely application cookie. Also, if the same
backends are subject to be used by the same clients (eg:
HTTP/HTTPS), care should be taken to use different cookie names
between all backends if persistence between them is not desired.
rewrite This keyword indicates that the cookie will be provided by the
server and that haproxy will have to modify its value to set the
server's identifier in it. This mode is handy when the management
of complex combinations of "Set-cookie" and "Cache-control"
headers is left to the application. The application can then
decide whether or not it is appropriate to emit a persistence
cookie. Since all responses should be monitored, this mode only
works in HTTP close mode. Unless the application behaviour is
very complex and/or broken, it is advised not to start with this
mode for new deployments. This keyword is incompatible with
"insert" and "prefix".
insert This keyword indicates that the persistence cookie will have to
be inserted by haproxy in the responses. If the server emits a
cookie with the same name, it will be replaced anyway. For this
reason, this mode can be used to upgrade existing configurations
running in the "rewrite" mode. The cookie will only be a session
cookie and will not be stored on the client's disk. Due to
caching effects, it is generally wise to add the "indirect" and
"nocache" or "postonly" keywords (see below). The "insert"
keyword is not compatible with "rewrite" and "prefix".
prefix This keyword indicates that instead of relying on a dedicated
cookie for the persistence, an existing one will be completed.
This may be needed in some specific environments where the client
does not support more than one single cookie and the application
already needs it. In this case, whenever the server sets a cookie
named <name>, it will be prefixed with the server's identifier
and a delimiter. The prefix will be removed from all client
requests so that the server still finds the cookie it emitted.
Since all requests and responses are subject to being modified,
this mode requires the HTTP close mode. The "prefix" keyword is
not compatible with "rewrite" and "insert".
indirect When this option is specified in insert mode, cookies will only
be added when the server was not reached after a direct access,
which means that only when a server is elected after applying a
load-balancing algorithm, or after a redispatch, then the cookie
will be inserted. If the client has all the required information
to connect to the same server next time, no further cookie will
be inserted. In all cases, when the "indirect" option is used in
insert mode, the cookie is always removed from the requests
transmitted to the server. The persistence mechanism then becomes
totally transparent from the application point of view.
nocache This option is recommended in conjunction with the insert mode
when there is a cache between the client and HAProxy, as it
ensures that a cacheable response will be tagged non-cacheable if
a cookie needs to be inserted. This is important because if all
persistence cookies are added on a cacheable home page for
instance, then all customers will then fetch the page from an
outer cache and will all share the same persistence cookie,
leading to one server receiving much more traffic than others.
See also the "insert" and "postonly" options.
postonly This option ensures that cookie insertion will only be performed
on responses to POST requests. It is an alternative to the
"nocache" option, because POST responses are not cacheable, so
this ensures that the persistence cookie will never get cached.
Since most sites do not need any sort of persistence before the
first POST which generally is a login request, this is a very
efficient method to optimize caching without risking to find a
persistence cookie in the cache.
See also the "insert" and "nocache" options.
There can be only one persistence cookie per HTTP backend, and it can be
declared in a defaults section. The value of the cookie will be the value
indicated after the "cookie" keyword in a "server" statement. If no cookie
is declared for a given server, the cookie is not set.
Examples :
cookie JSESSIONID prefix
cookie SRV insert indirect nocache
cookie SRV insert postonly indirect
See also : "appsession", "balance source", "capture cookie", "server".
default_backend <backend>
Specify the backend to use when no "use_backend" rule has been matched.
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | no
Arguments :
<backend> is the name of the backend to use.
When doing content-switching between frontend and backends using the
"use_backend" keyword, it is often useful to indicate which backend will be
used when no rule has matched. It generally is the dynamic backend which
will catch all undetermined requests.
The "default_backend" keyword is also supported in TCP mode frontends to
facilitate the ordering of configurations in frontends and backends,
eventhough it does not make much more sense in case of TCP due to the fact
that use_backend currently does not work in TCP mode.
Example :
use_backend dynamic if url_dyn
use_backend static if url_css url_img extension_img
default_backend dynamic
See also : "use_backend", "reqsetbe", "reqisetbe"
disabled
Disable a proxy, frontend or backend.
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments : none
The "disabled" keyword is used to disable an instance, mainly in order to
liberate a listening port or to temporarily disable a service. The instance
will still be created and its configuration will be checked, but it will be
created in the "stopped" state and will appear as such in the statistics. It
will not receive any traffic nor will it send any health-checks or logs. It
is possible to disable many instances at once by adding the "disabled"
keyword in a "defaults" section.
See also : "enabled"
enabled
Enable a proxy, frontend or backend.
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments : none
The "enabled" keyword is used to explicitly enable an instance, when the
defaults has been set to "disabled". This is very rarely used.
See also : "disabled"
errorfile <code> <file>
Return a file contents instead of errors generated by HAProxy
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments :
<code> is the HTTP status code. Currently, HAProxy is capable of
generating codes 400, 403, 408, 500, 502, 503, and 504.
<file> designates a file containing the full HTTP response. It is
recommended to follow the common practice of appending ".http" to
the filename so that people do not confuse the response with HTML
error pages.
It is important to understand that this keyword is not meant to rewrite
errors returned by the server, but errors detected and returned by HAProxy.
This is why the list of supported errors is limited to a small set.
The files are returned verbatim on the TCP socket. This allows any trick such
as redirections to another URL or site, as well as tricks to clean cookies,
force enable or disable caching, etc... The package provides default error
files returning the same contents as default errors.
The files are read at the same time as the configuration and kept in memory.
For this reason, the errors continue to be returned even when the process is
chrooted, and no file change is considered while the process is running. A
simple method for developing those files consists in associating them to the
403 status code and interrogating a blocked URL.
See also : "errorloc", "errorloc302", "errorloc303"
errorloc <code> <url>
errorloc302 <code> <url>
Return an HTTP redirection to a URL instead of errors generated by HAProxy
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments :
<code> is the HTTP status code. Currently, HAProxy is capable of
generating codes 400, 403, 408, 500, 502, 503, and 504.
<url> it is the exact contents of the "Location" header. It may contain
either a relative URI to an error page hosted on the same site,
or an absolute URI designating an error page on another site.
Special care should be given to relative URIs to avoid redirect
loops if the URI itself may generate the same error (eg: 500).
It is important to understand that this keyword is not meant to rewrite
errors returned by the server, but errors detected and returned by HAProxy.
This is why the list of supported errors is limited to a small set.
Note that both keyword return the HTTP 302 status code, which tells the
client to fetch the designated URL using the same HTTP method. This can be
quite problematic in case of non-GET methods such as POST, because the URL
sent to the client might not be allowed for something other than GET. To
workaround this problem, please use "errorloc303" which send the HTTP 303
status code, indicating to the client that the URL must be fetched with a GET
request.
See also : "errorfile", "errorloc303"
errorloc303 <code> <url>
Return an HTTP redirection to a URL instead of errors generated by HAProxy
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments :
<code> is the HTTP status code. Currently, HAProxy is capable of
generating codes 400, 403, 408, 500, 502, 503, and 504.
<url> it is the exact contents of the "Location" header. It may contain
either a relative URI to an error page hosted on the same site,
or an absolute URI designating an error page on another site.
Special care should be given to relative URIs to avoid redirect
loops if the URI itself may generate the same error (eg: 500).
It is important to understand that this keyword is not meant to rewrite
errors returned by the server, but errors detected and returned by HAProxy.
This is why the list of supported errors is limited to a small set.
Note that both keyword return the HTTP 303 status code, which tells the
client to fetch the designated URL using the same HTTP GET method. This
solves the usual problems associated with "errorloc" and the 302 code. It is
possible that some very old browsers designed before HTTP/1.1 do not support
it, but no such problem has been reported till now.
See also : "errorfile", "errorloc", "errorloc302"
fullconn <conns>
Specify at what backend load the servers will reach their maxconn
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<conns> is the number of connections on the backend which will make the
servers use the maximal number of connections.
When a server has a "maxconn" parameter specified, it means that its number
of concurrent connections will never go higher. Additionally, if it has a
"minconn" parameter, it indicates a dynamic limit following the backend's
load. The server will then always accept at least <minconn> connections,
never more than <maxconn>, and the limit will be on the ramp between both
values when the backend has less than <conns> concurrent connections. This
makes it possible to limit the load on the servers during normal loads, but
push it further for important loads without overloading the servers during
exceptionnal loads.
Example :
# The servers will accept between 100 and 1000 concurrent connections each
# and the maximum of 1000 will be reached when the backend reaches 10000
# connections.
backend dynamic
fullconn 10000
server srv1 dyn1:80 minconn 100 maxconn 1000
server srv2 dyn2:80 minconn 100 maxconn 1000
See also : "maxconn", "server"
grace <time>
Maintain a proxy operational for some time after a soft stop
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | yes
Arguments :
<time> is the time (by default in milliseconds) for which the instance
will remain operational with the frontend sockets still listening
when a soft-stop is received via the SIGUSR1 signal.
This may be used to ensure that the services disappear in a certain order.
This was designed so that frontends which are dedicated to monitoring by an
external equipement fail immediately while other ones remain up for the time
needed by the equipment to detect the failure.
Note that currently, there is very little benefit in using this parameter,
and it may in fact complicate the soft-reconfiguration process more than
simplify it.
http-check disable-on-404
Enable a maintenance mode upon HTTP/404 response to health-checks
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments : none
When this option is set, a server which returns an HTTP code 404 will be
excluded from further load-balancing, but will still receive persistent
connections. This provides a very convenient method for Web administrators
to perform a graceful shutdown of their servers. It is also important to note
that a server which is detected as failed while it was in this mode will not
generate an alert, just a notice. If the server responds 2xx or 3xx again, it
will immediately be reinserted into the farm. The status on the stats page
reports "NOLB" for a server in this mode. It is important to note that this
option only works in conjunction with the "httpchk" option.
See also : "option httpchk"
log global
log <address> <facility> [<level>]
Enable per-instance logging of events and traffic.
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments :
global should be used when the instance's logging parameters are the
same as the global ones. This is the most common usage. "global"
replaces <address>, <facility> and <level> with those of the log
entries found in the "global" section. Only one "log global"
statement may be used per instance, and this form takes no other
parameter.
<address> indicates where to send the logs. It takes the same format as
for the "global" section's logs, and can be one of :
- An IPv4 address optionally followed by a colon (':') and a UDP
port. If no port is specified, 514 is used by default (the
standard syslog port).
- A filesystem path to a UNIX domain socket, keeping in mind
considerations for chroot (be sure the path is accessible
inside the chroot) and uid/gid (be sure the path is
appropriately writeable).
<facility> must be one of the 24 standard syslog facilities :
kern user mail daemon auth syslog lpr news
uucp cron auth2 ftp ntp audit alert cron2
local0 local1 local2 local3 local4 local5 local6 local7
<level> is optional and can be specified to filter outgoing messages. By
default, all messages are sent. If a level is specified, only
messages with a severity at least as important as this level
will be sent. 8 levels are known :
emerg alert crit err warning notice info debug
Note that up to two "log" entries may be specified per instance. However, if
"log global" is used and if the "global" section already contains 2 log
entries, then additional log entries will be ignored.
Also, it is important to keep in mind that it is the frontend which decides
what to log, and that in case of content switching, the log entries from the
backend will be ignored.
Example :
log global
log 127.0.0.1:514 local0 notice
maxconn <conns>
Fix the maximum number of concurrent connections on a frontend
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | no
Arguments :
<conns> is the maximum number of concurrent connections the frontend will
accept to serve. Excess connections will be queued by the system
in the socket's listen queue and will be served once a connection
closes.
If the system supports it, it can be useful on big sites to raise this limit
very high so that haproxy manages connection queues, instead of leaving the
clients with unanswered connection attempts. This value should not exceed the
global maxconn. Also, keep in mind that a connection contains two buffers
of 8kB each, as well as some other data resulting in about 17 kB of RAM being
consumed per established connection. That means that a medium system equipped
with 1GB of RAM can withstand around 40000-50000 concurrent connections if
properly tuned.
Also, when <conns> is set to large values, it is possible that the servers
are not sized to accept such loads, and for this reason it is generally wise
to assign them some reasonable connection limits.
See also : "server", global section's "maxconn", "fullconn"
mode { tcp|http|health }
Set the running mode or protocol of the instance
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments :
tcp The instance will work in pure TCP mode. A full-duplex connection
will be established between clients and servers, and no layer 7
examination will be performed. This is the default mode. It
should be used for SSL, SSH, SMTP, ...
http The instance will work in HTTP mode. The client request will be
analyzed in depth before connecting to any server. Any request
which is not RFC-compliant will be rejected. Layer 7 filtering,
processing and switching will be possible. This is the mode which
brings HAProxy most of its value.
health The instance will work in "health" mode. It will just reply "OK"
to incoming connections and close the connection. Nothing will be
logged. This mode is used to reply to external components health
checks. This mode is deprecated and should not be used anymore as
it is possible to do the same and even better by combining TCP or
HTTP modes with the "monitor" keyword.
When doing content switching, it is mandatory that the frontend and the
backend are in the same mode (generally HTTP), otherwise the configuration
will be refused.
Example :
defaults http_instances
mode http
See also : "monitor", "monitor-net"
monitor fail [if | unless] <condition>
Add a condition to report a failure to a monitor HTTP request.
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | no
Arguments :
if <cond> the monitor request will fail if the condition is satisfied,
and will succeed otherwise. The condition should describe a
combinated test which must induce a failure if all conditions
are met, for instance a low number of servers both in a
backend and its backup.
unless <cond> the monitor request will succeed only if the condition is
satisfied, and will fail otherwise. Such a condition may be
based on a test on the presence of a minimum number of active
servers in a list of backends.
This statement adds a condition which can force the response to a monitor
request to report a failure. By default, when an external component queries
the URI dedicated to monitoring, a 200 response is returned. When one of the
conditions above is met, haproxy will return 503 instead of 200. This is
very useful to report a site failure to an external component which may base
routing advertisements between multiple sites on the availability reported by
haproxy. In this case, one would rely on an ACL involving the "nbsrv"
criterion. Note that "monitor fail" only works in HTTP mode.
Example:
frontend www
mode http
acl site_dead nbsrv(dynamic) lt 2
acl site_dead nbsrv(static) lt 2
monitor-uri /site_alive
monitor fail if site_dead
See also : "monitor-net", "monitor-uri"
monitor-net <source>
Declare a source network which is limited to monitor requests
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | no
Arguments :
<source> is the source IPv4 address or network which will only be able to
get monitor responses to any request. It can be either an IPv4
address, a host name, or an address followed by a slash ('/')
followed by a mask.
In TCP mode, any connection coming from a source matching <source> will cause
the connection to be immediately closed without any log. This allows another
equipement to probe the port and verify that it is still listening, without
forwarding the connection to a remote server.
In HTTP mode, a connection coming from a source matching <source> will be
accepted, the following response will be sent without waiting for a request,
then the connection will be closed : "HTTP/1.0 200 OK". This is normally
enough for any front-end HTTP probe to detect that the service is UP and
running without forwarding the request to a backend server.
Monitor requests are processed very early. It is not possible to block nor
divert them using ACLs. They cannot be logged either, and it is the intended
purpose. They are only used to report HAProxy's health to an upper component,
nothing more. Right now, it is not possible to set failure conditions on
requests caught by "monitor-net".
Example :
# addresses .252 and .253 are just probing us.
frontend www
monitor-net 192.168.0.252/31
See also : "monitor fail", "monitor-uri"
monitor-uri <uri>
Intercept a URI used by external components' monitor requests
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | no
Arguments :
<uri> is the exact URI which we want to intercept to return HAProxy's
health status instead of forwarding the request.
When an HTTP request referencing <uri> will be received on a frontend,
HAProxy will not forward it nor log it, but instead will return either
"HTTP/1.0 200 OK" or "HTTP/1.0 503 Service unavailable", depending on failure
conditions defined with "monitor fail". This is normally enough for any
front-end HTTP probe to detect that the service is UP and running without
forwarding the request to a backend server. Note that the HTTP method, the
version and all headers are ignored, but the request must at least be valid
at the HTTP level. This keyword may only be used with an HTTP-mode frontend.
Monitor requests are processed very early. It is not possible to block nor
divert them using ACLs. They cannot be logged either, and it is the intended
purpose. They are only used to report HAProxy's health to an upper component,
nothing more. However, it is possible to add any number of conditions using
"monitor fail" and ACLs so that the result can be adjusted to whatever check
can be imagined (most often the number of available servers in a backend).
Example :
# Use /haproxy_test to report haproxy's status
frontend www
mode http
monitor-uri /haproxy_test
See also : "monitor fail", "monitor-net"
option abortonclose
no option abortonclose
Enable or disable early dropping of aborted requests pending in queues.
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments : none
In presence of very high loads, the servers will take some time to respond.
The per-instance connection queue will inflate, and the response time will
increase respective to the size of the queue times the average per-session
response time. When clients will wait for more than a few seconds, they will
often hit the "STOP" button on their browser, leaving a useless request in
the queue, and slowing down other users, and the servers as well, because the
request will eventually be served, then aborted at the first error
encountered while delivering the response.
As there is no way to distinguish between a full STOP and a simple output
close on the client side, HTTP agents should be conservative and consider
that the client might only have closed its output channel while waiting for
the response. However, this introduces risks of congestion when lots of users
do the same, and is completely useless nowadays because probably no client at
all will close the session while waiting for the response. Some HTTP agents
support this behaviour (Squid, Apache, HAProxy), and others do not (TUX, most
hardware-based load balancers). So the probability for a closed input channel
to represent a user hitting the "STOP" button is close to 100%, and the risk
of being the single component to break rare but valid traffic is extremely
low, which adds to the temptation to be able to abort a session early while
still not served and not pollute the servers.
In HAProxy, the user can choose the desired behaviour using the option
"abortonclose". By default (without the option) the behaviour is HTTP
compliant and aborted requests will be served. But when the option is
specified, a session with an incoming channel closed will be aborted while
it is still possible, either pending in the queue for a connection slot, or
during the connection establishment if the server has not yet acknowledged
the connection request. This considerably reduces the queue size and the load
on saturated servers when users are tempted to click on STOP, which in turn
reduces the response time for other users.
If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
See also : "timeout queue" and server's "maxconn" and "maxqueue" parameters
option allbackups
no option allbackups
Use either all backup servers at a time or only the first one
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments : none
By default, the first operational backup server gets all traffic when normal
servers are all down. Sometimes, it may be preferred to use multiple backups
at once, because one will not be enough. When "option allbackups" is enabled,
the load balancing will be performed among all backup servers when all normal
ones are unavailable. The same load balancing algorithm will be used and the
servers' weights will be respected. Thus, there will not be any priority
order between the backup servers anymore.
This option is mostly used with static server farms dedicated to return a
"sorry" page when an application is completely offline.
If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
option checkcache
no option checkcache
Analyze all server responses and block requests with cachable cookies
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments : none
Some high-level frameworks set application cookies everywhere and do not
always let enough control to the developer to manage how the responses should
be cached. When a session cookie is returned on a cachable object, there is a
high risk of session crossing or stealing between users traversing the same
caches. In some situations, it is better to block the response than to let
some sensible session information go in the wild.
The option "checkcache" enables deep inspection of all server responses for
strict compliance with HTTP specification in terms of cachability. It
carefully checks "Cache-control", "Pragma" and "Set-cookie" headers in server
response to check if there's a risk of caching a cookie on a client-side
proxy. When this option is enabled, the only responses which can be delivered
to the client are :
- all those without "Set-Cookie" header ;
- all those with a return code other than 200, 203, 206, 300, 301, 410,
provided that the server has not set a "Cache-control: public" header ;
- all those that come from a POST request, provided that the server has not
set a 'Cache-Control: public' header ;
- those with a 'Pragma: no-cache' header
- those with a 'Cache-control: private' header
- those with a 'Cache-control: no-store' header
- those with a 'Cache-control: max-age=0' header
- those with a 'Cache-control: s-maxage=0' header
- those with a 'Cache-control: no-cache' header
- those with a 'Cache-control: no-cache="set-cookie"' header
- those with a 'Cache-control: no-cache="set-cookie,' header
(allowing other fields after set-cookie)
If a response doesn't respect these requirements, then it will be blocked
just as if it was from an "rspdeny" filter, with an "HTTP 502 bad gateway".
The session state shows "PH--" meaning that the proxy blocked the response
during headers processing. Additionnaly, an alert will be sent in the logs so
that admins are informed that there's something to be fixed.
Due to the high impact on the application, the application should be tested
in depth with the option enabled before going to production. It is also a
good practice to always activate it during tests, even if it is not used in
production, as it will report potentially dangerous application behaviours.
If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
option clitcpka
no option clitcpka
Enable or disable the sending of TCP keepalive packets on the client side
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | no
Arguments : none
When there is a firewall or any session-aware component between a client and
a server, and when the protocol involves very long sessions with long idle
periods (eg: remote desktops), there is a risk that one of the intermediate
components decides to expire a session which has remained idle for too long.
Enabling socket-level TCP keep-alives makes the system regularly send packets
to the other end of the connection, leaving it active. The delay between
keep-alive probes is controlled by the system only and depends both on the
operating system and its tuning parameters.
It is important to understand that keep-alive packets are neither emitted nor
received at the application level. It is only the network stacks which sees
them. For this reason, even if one side of the proxy already uses keep-alives
to maintain its connection alive, those keep-alive packets will not be
forwarded to the other side of the proxy.
Please note that this has nothing to do with HTTP keep-alive.
Using option "clitcpka" enables the emission of TCP keep-alive probes on the
client side of a connection, which should help when session expirations are
noticed between HAProxy and a client.
If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
See also : "option srvtcpka", "option tcpka"
option contstats
Enable continuous traffic statistics updates
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | no
Arguments : none
By default, counters used for statistics calculation are incremented
only when a session finishes. It works quite well when serving small
objects, but with big ones (for example large images or archives) or
with A/V streaming, a graph generated from haproxy counters looks like
a hedgehog. With this option enabled counters get incremented continuously,
during a whole session. Recounting touches a hotpath directly so
it is not enabled by default, as it has small performance impact (~0.5%).
option dontlognull
no option dontlognull
Enable or disable logging of null connections
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | no
Arguments : none
In certain environments, there are components which will regularly connect to
various systems to ensure that they are still alive. It can be the case from
another load balancer as well as from monitoring systems. By default, even a
simple port probe or scan will produce a log. If those connections pollute
the logs too much, it is possible to enable option "dontlognull" to indicate
that a connection on which no data has been transferred will not be logged,
which typically corresponds to those probes.
It is generally recommended not to use this option in uncontrolled
environments (eg: internet), otherwise scans and other malicious activities
would not be logged.
If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
See also : "log", "monitor-net", "monitor-uri" and section 2.6 about logging.
option forceclose
no option forceclose
Enable or disable active connection closing after response is transferred.
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments : none
Some HTTP servers do not necessarily close the connections when they receive
the "Connection: close" set by "option httpclose", and if the client does not
close either, then the connection remains open till the timeout expires. This
causes high number of simultaneous connections on the servers and shows high
global session times in the logs.
When this happens, it is possible to use "option forceclose". It will
actively close the outgoing server channel as soon as the server begins to
reply and only if the request buffer is empty. Note that this should NOT be
used if CONNECT requests are expected between the client and the server. This
option implicitly enables the "httpclose" option.
If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
See also : "option httpclose"
option forwardfor [ except <network> ]
Enable insertion of the X-Forwarded-For header to requests sent to servers
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments :
<network> is an optional argument used to disable this option for sources
matching <network>
Since HAProxy works in reverse-proxy mode, the servers see its IP address as
their client address. This is sometimes annoying when the client's IP address
is expected in server logs. To solve this problem, the well-known HTTP header
"X-Forwarded-For" may be added by HAProxy to all requests sent to the server.
This header contains a value representing the client's IP address. Since this
header is always appended at the end of the existing header list, the server
must be configured to always use the last occurrence of this header only. See
the server's manual to find how to enable use of this standard header.
Sometimes, a same HAProxy instance may be shared between a direct client
access and a reverse-proxy access (for instance when an SSL reverse-proxy is
used to decrypt HTTPS traffic). It is possible to disable the addition of the
header for a known source address or network by adding the "except" keyword
followed by the network address. In this case, any source IP matching the
network will not cause an addition of this header. Most common uses are with
private networks or 127.0.0.1.
This option may be specified either in the frontend or in the backend. If at
least one of them uses it, the header will be added.
It is important to note that as long as HAProxy does not support keep-alive
connections, only the first request of a connection will receive the header.
For this reason, it is important to ensure that "option httpclose" is set
when using this option.
Example :
# Public HTTP address also used by stunnel on the same machine
frontend www
mode http
option forwardfor except 127.0.0.1 # stunnel already adds the header
See also : "option httpclose"
option http_proxy
no option http_proxy
Enable or disable plain HTTP proxy mode
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments : none
It sometimes happens that people need a pure HTTP proxy which understands
basic proxy requests without caching nor any fancy feature. In this case,
it may be worth setting up an HAProxy instance with the "option http_proxy"
set. In this mode, no server is declared, and the connection is forwarded to
the IP address and port found in the URL after the "http://" scheme.
No host address resolution is performed, so this only works when pure IP
addresses are passed. Since this option's usage perimeter is rather limited,
it will probably be used only by experts who know they need exactly it. Last,
if the clients are susceptible of sending keep-alive requests, it will be
needed to add "option http_close" to ensure that all requests will correctly
be analyzed.
If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
Example :
# this backend understands HTTP proxy requests and forwards them directly.
backend direct_forward
option httpclose
option http_proxy
See also : "option httpclose"
option httpchk
option httpchk <uri>
option httpchk <method> <uri>
option httpchk <method> <uri> <version>
Enable HTTP protocol to check on the servers health
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<method> is the optional HTTP method used with the requests. When not set,
the "OPTIONS" method is used, as it generally requires low server
processing and is easy to filter out from the logs. Any method
may be used, though it is not recommended to invent non-standard
ones.
<uri> is the URI referenced in the HTTP requests. It defaults to " / "
which is accessible by default on almost any server, but may be
changed to any other URI. Query strings are permitted.
<version> is the optional HTTP version string. It defaults to "HTTP/1.0"
but some servers might behave incorrectly in HTTP 1.0, so turning
it to HTTP/1.1 may sometimes help. Note that the Host field is
mandatory in HTTP/1.1, and as a trick, it is possible to pass it
after "\r\n" following the version string.
By default, server health checks only consist in trying to establish a TCP
connection. When "option httpchk" is specified, a complete HTTP request is
sent once the TCP connection is established, and responses 2xx and 3xx are
considered valid, while all other ones indicate a server failure, including
the lack of any response.
The port and interval are specified in the server configuration.
This option does not necessarily require an HTTP backend, it also works with
plain TCP backends. This is particularly useful to check simple scripts bound
to some dedicated ports using the inetd daemon.
Examples :
# Relay HTTPS traffic to Apache instance and check service availability
# using HTTP request "OPTIONS * HTTP/1.1" on port 80.
backend https_relay
mode tcp
option httpchk OPTIONS * HTTP/1.1\r\nHost: www
server apache1 192.168.1.1:443 check port 80
See also : "option ssl-hello-chk", "option smtpchk", "http-check" and the
"check", "port" and "interval" server options.
option httpclose
no option httpclose
Enable or disable passive HTTP connection closing
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments : none
As stated in section 2.1, HAProxy does not yes support the HTTP keep-alive
mode. So by default, if a client communicates with a server in this mode, it
will only analyze, log, and process the first request of each connection. To
workaround this limitation, it is possible to specify "option httpclose". It
will check if a "Connection: close" header is already set in each direction,
and will add one if missing. Each end should react to this by actively
closing the TCP connection after each transfer, thus resulting in a switch to
the HTTP close mode. Any "Connection" header different from "close" will also
be removed.
It seldom happens that some servers incorrectly ignore this header and do not
close the connection eventough they reply "Connection: close". For this
reason, they are not compatible with older HTTP 1.0 browsers. If this
happens it is possible to use the "option forceclose" which actively closes
the request connection once the server responds.
This option may be set both in a frontend and in a backend. It is enabled if
at least one of the frontend or backend holding a connection has it enabled.
If "option forceclose" is specified too, it has precedence over "httpclose".
If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
See also : "option forceclose"
option httplog
Enable logging of HTTP request, session state and timers
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments : none
By default, the log output format is very poor, as it only contains the
source and destination addresses, and the instance name. By specifying
"option httplog", each log line turns into a much richer format including,
but not limited to, the HTTP request, the connection timers, the session
status, the connections numbers, the captured headers and cookies, the
frontend, backend and server name, and of course the source address and
ports.
This option may be set either in the frontend or the backend.
See also : section 2.6 about logging.
option logasap
no option logasap
Enable or disable early logging of HTTP requests
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | no
Arguments : none
By default, HTTP requests are logged upon termination so that the total
transfer time and the number of bytes appear in the logs. When large objects
are being transferred, it may take a while before the request appears in the
logs. Using "option logasap", the request gets logged as soon as the server
sends the complete headers. The only missing information in the logs will be
the total number of bytes which will indicate everything except the amount
of data transferred, and the total time which will not take the transfer
time into account. In such a situation, it's a good practice to capture the
"Content-Length" response header so that the logs at least indicate how many
bytes are expected to be transferred.
See also : "option httplog", "capture response header", and section 2.6 about
logging.
option nolinger
no option nolinger
Enable or disable immediate session ressource cleaning after close
May be used in sections: defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments : none
When clients or servers abort connections in a dirty way (eg: they are
physically disconnected), the session timeouts triggers and the session is
closed. But it will remain in FIN_WAIT1 state for some time in the system,
using some resources and possibly limiting the ability to establish newer
connections.
When this happens, it is possible to activate "option nolinger" which forces
the system to immediately remove any socket's pending data on close. Thus,
the session is instantly purged from the system's tables. This usually has
side effects such as increased number of TCP resets due to old retransmits
getting immediately rejected. Some firewalls may sometimes complain about
this too.
For this reason, it is not recommended to use this option when not absolutely
needed. You know that you need it when you have thousands of FIN_WAIT1
sessions on your system (TIME_WAIT ones do not count).
This option may be used both on frontends and backends, depending on the side
where it is required. Use it on the frontend for clients, and on the backend
for servers.
If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
option persist
no option persist
Enable or disable forced persistence on down servers
May be used in sections: defaults | frontend | listen | backend
yes | no | yes | yes
Arguments : none
When an HTTP request reaches a backend with a cookie which references a dead
server, by default it is redispatched to another server. It is possible to
force the request to be sent to the dead server first using "option persist"
if absolutely needed. A common use case is when servers are under extreme
load and spend their time flapping. In this case, the users would still be
directed to the server they opened the session on, in the hope they would be
correctly served. It is recommended to use "option redispatch" in conjunction
with this option so that in the event it would not be possible to connect to
the server at all (server definitely dead), the client would finally be
redirected to another valid server.
If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
See also : "option redispatch", "retries"
option redispatch
no option redispatch
Enable or disable session redistribution in case of connection failure
May be used in sections: defaults | frontend | listen | backend
yes | no | yes | yes
Arguments : none
In HTTP mode, if a server designated by a cookie is down, clients may
definitely stick to it because they cannot flush the cookie, so they will not
be able to access the service anymore.
Specifying "option redispatch" will allow the proxy to break their
persistence and redistribute them to a working server.
It also allows to retry last connection to another server in case of multiple
connection failures. Of course, it requires having "retries" set to a nonzero
value.
This form is the preferred form, which replaces both the "redispatch" and
"redisp" keywords.
If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
See also : "redispatch", "retries"
option smtpchk
option smtpchk <hello> <domain>
Use SMTP health checks for server testing
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<hello> is an optional argument. It is the "hello" command to use. It can
be either "HELO" (for SMTP) or "EHLO" (for ESTMP). All other
values will be turned into the default command ("HELO").
<domain> is the domain name to present to the server. It may only be
specified (and is mandatory) if the hello command has been
specified. By default, "localhost" is used.
When "option smtpchk" is set, the health checks will consist in TCP
connections followed by an SMTP command. By default, this command is
"HELO localhost". The server's return code is analyzed and only return codes
starting with a "2" will be considered as valid. All other responses,
including a lack of response will constitute an error and will indicate a
dead server.
This test is meant to be used with SMTP servers or relays. Depending on the
request, it is possible that some servers do not log each connection attempt,
so you may want to experiment to improve the behaviour. Using telnet on port
25 is often easier than adjusting the configuration.
Most often, an incoming SMTP server needs to see the client's IP address for
various purposes, including spam filtering, anti-spoofing and logging. When
possible, it is often wise to masquerade the client's IP address when
connecting to the server using the "usesrc" argument of the "source" keyword,
which requires the cttproxy feature to be compiled in.
Example :
option smtpchk HELO mydomain.org
See also : "option httpchk", "source"
option srvtcpka
no option srvtcpka
Enable or disable the sending of TCP keepalive packets on the server side
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments : none
When there is a firewall or any session-aware component between a client and
a server, and when the protocol involves very long sessions with long idle
periods (eg: remote desktops), there is a risk that one of the intermediate
components decides to expire a session which has remained idle for too long.
Enabling socket-level TCP keep-alives makes the system regularly send packets
to the other end of the connection, leaving it active. The delay between
keep-alive probes is controlled by the system only and depends both on the
operating system and its tuning parameters.
It is important to understand that keep-alive packets are neither emitted nor
received at the application level. It is only the network stacks which sees
them. For this reason, even if one side of the proxy already uses keep-alives
to maintain its connection alive, those keep-alive packets will not be
forwarded to the other side of the proxy.
Please note that this has nothing to do with HTTP keep-alive.
Using option "srvtcpka" enables the emission of TCP keep-alive probes on the
server side of a connection, which should help when session expirations are
noticed between HAProxy and a server.
If this option has been enabled in a "defaults" section, it can be disabled
in a specific instance by prepending the "no" keyword before it.
See also : "option clitcpka", "option tcpka"
option ssl-hello-chk
Use SSLv3 client hello health checks for server testing
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments : none
When some SSL-based protocols are relayed in TCP mode through HAProxy, it is
possible to test that the server correctly talks SSL instead of just testing
that it accepts the TCP connection. When "option ssl-hello-chk" is set, pure
SSLv3 client hello messages are sent once the connection is established to
the server, and the response is analyzed to find an SSL server hello message.
The server is considered valid only when the response contains this server
hello message.
All servers tested till there correctly reply to SSLv3 client hello messages,
and most servers tested do not even log the requests containing only hello
messages, which is appreciable.
See also: "option httpchk"
option tcpka
Enable or disable the sending of TCP keepalive packets on both sides
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments : none
When there is a firewall or any session-aware component between a client and
a server, and when the protocol involves very long sessions with long idle
periods (eg: remote desktops), there is a risk that one of the intermediate
components decides to expire a session which has remained idle for too long.
Enabling socket-level TCP keep-alives makes the system regularly send packets
to the other end of the connection, leaving it active. The delay between
keep-alive probes is controlled by the system only and depends both on the
operating system and its tuning parameters.
It is important to understand that keep-alive packets are neither emitted nor
received at the application level. It is only the network stacks which sees
them. For this reason, even if one side of the proxy already uses keep-alives
to maintain its connection alive, those keep-alive packets will not be
forwarded to the other side of the proxy.
Please note that this has nothing to do with HTTP keep-alive.
Using option "tcpka" enables the emission of TCP keep-alive probes on both
the client and server sides of a connection. Note that this is meaningful
only in "defaults" or "listen" sections. If this option is used in a
frontend, only the client side will get keep-alives, and if this option is
used in a backend, only the server side will get keep-alives. For this
reason, it is strongly recommended to explicitly use "option clitcpka" and
"option srvtcpka" when the configuration is split between frontends and
backends.
See also : "option clitcpka", "option srvtcpka"
option tcplog
Enable advanced logging of TCP connections with session state and timers
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments : none
By default, the log output format is very poor, as it only contains the
source and destination addresses, and the instance name. By specifying
"option tcplog", each log line turns into a much richer format including, but
not limited to, the connection timers, the session status, the connections
numbers, the frontend, backend and server name, and of course the source
address and ports. This option is useful for pure TCP proxies in order to
find which of the client or server disconnects or times out. For normal HTTP
proxies, it's better to use "option httplog" which is even more complete.
This option may be set either in the frontend or the backend.
See also : "option httplog", and section 2.6 about logging.
option tcpsplice [ experimental ]
Enable linux kernel-based acceleration of data relaying
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments : none
This option is only available when HAProxy has been built for use on Linux
with USE_TCPSPLICE=1. This option requires a kernel patch which is available
on http://www.linux-l7sw.org/.
When "option tcpsplice" is set, as soon as the server's response headers have
been transferred, the session handling is transferred to the kernel which
will forward all subsequent data from the server to the client untill the
session closes. This leads to much faster data transfers between client and
server since the data is not copied twice between kernel and user space, but
there are some limitations such as the lack of information about the number
of bytes transferred and the total transfer time.
This is an experimental feature. It happens to reliably work but issues
caused by corner cases are to be expected.
Note that this option requires that the process permanently runs with
CAP_NETADMIN privileges, which most often translates into running as root.
option transparent
no option transparent
Enable client-side transparent proxying
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | no
Arguments : none
This option was introduced in order to provide layer 7 persistence to layer 3
load balancers. The idea is to use the OS's ability to redirect an incoming
connection for a remote address to a local process (here HAProxy), and let
this process know what address was initially requested. When this option is
used, sessions without cookies will be forwarded to the original destination
IP address of the incoming request (which should match that of another
equipment), while requests with cookies will still be forwarded to the
appropriate server.
Note that contrary to a common belief, this option does NOT make HAProxy
present the client's IP to the server when establishing the connection.
Use of this option is really discouraged, and since no really valid use of it
has been reported for years, it will probably be removed in future versions.
See also: the "usersrc" argument of the "source" keyword, and the
"transparent" option of the "bind" keyword.
redisp (deprecated)
redispatch (deprecated)
Enable or disable session redistribution in case of connection failure
May be used in sections: defaults | frontend | listen | backend
yes | no | yes | yes
Arguments : none
In HTTP mode, if a server designated by a cookie is down, clients may
definitely stick to it because they cannot flush the cookie, so they will not
be able to access the service anymore.
Specifying "redispatch" will allow the proxy to break their persistence and
redistribute them to a working server.
It also allows to retry last connection to another server in case of multiple
connection failures. Of course, it requires having "retries" set to a nonzero
value.
This form is deprecated, do not use it in any new configuration, use the new
"option redispatch" instead.
See also : "option redispatch"
reqadd <string>
Add a header at the end of the HTTP request
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | yes
Arguments :
<string> is the complete line to be added. Any space or known delimiter
must be escaped using a backslash ('\'). Please refer to section
2.5 about HTTP header manipulation for more information.
A new line consisting in <string> followed by a line feed will be added after
the last header of an HTTP request.
Header transformations only apply to traffic which passes through HAProxy,
and not to traffic generated by HAProxy, such as health-checks or error
responses.
See also: "rspadd" and section 2.5 about HTTP header manipulation
reqallow <search>
reqiallow <search> (ignore case)
Definitely allow an HTTP request if a line matches a regular expression
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | yes
Arguments :
<search> is the regular expression applied to HTTP headers and to the
request line. This is an extended regular expression. Parenthesis
grouping is supported and no preliminary backslash is required.
Any space or known delimiter must be escaped using a backslash
('\'). The pattern applies to a full line at a time. The
"reqallow" keyword strictly matches case while "reqiallow"
ignores case.
A request containing any line which matches extended regular expression
<search> will mark the request as allowed, even if any later test would
result in a deny. The test applies both to the request line and to request
headers. Keep in mind that URLs in request line are case-sensitive while
header names are not.
It is easier, faster and more powerful to use ACLs to write access policies.
Reqdeny, reqallow and reqpass should be avoided in new designs.
Example :
# allow www.* but refuse *.local
reqiallow ^Host:\ www\.
reqideny ^Host:\ .*\.local
See also: "reqdeny", "acl", "block" and section 2.5 about HTTP header
manipulation
reqdel <search>
reqidel <search> (ignore case)
Delete all headers matching a regular expression in an HTTP request
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | yes
Arguments :
<search> is the regular expression applied to HTTP headers and to the
request line. This is an extended regular expression. Parenthesis
grouping is supported and no preliminary backslash is required.
Any space or known delimiter must be escaped using a backslash
('\'). The pattern applies to a full line at a time. The "reqdel"
keyword strictly matches case while "reqidel" ignores case.
Any header line matching extended regular expression <search> in the request
will be completely deleted. Most common use of this is to remove unwanted
and/or dangerous headers or cookies from a request before passing it to the
next servers.
Header transformations only apply to traffic which passes through HAProxy,
and not to traffic generated by HAProxy, such as health-checks or error
responses. Keep in mind that header names are not case-sensitive.
Example :
# remove X-Forwarded-For header and SERVER cookie
reqidel ^X-Forwarded-For:.*
reqidel ^Cookie:.*SERVER=
See also: "reqadd", "reqrep", "rspdel" and section 2.5 about HTTP header
manipulation
reqdeny <search>
reqideny <search> (ignore case)
Deny an HTTP request if a line matches a regular expression
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | yes
Arguments :
<search> is the regular expression applied to HTTP headers and to the
request line. This is an extended regular expression. Parenthesis
grouping is supported and no preliminary backslash is required.
Any space or known delimiter must be escaped using a backslash
('\'). The pattern applies to a full line at a time. The
"reqdeny" keyword strictly matches case while "reqideny" ignores
case.
A request containing any line which matches extended regular expression
<search> will mark the request as denied, even if any later test would
result in an allow. The test applies both to the request line and to request
headers. Keep in mind that URLs in request line are case-sensitive while
header names are not.
A denied request will generate an "HTTP 403 forbidden" response once the
complete request has been parsed. This is consistent with what is practiced
using ACLs.
It is easier, faster and more powerful to use ACLs to write access policies.
Reqdeny, reqallow and reqpass should be avoided in new designs.
Example :
# refuse *.local, then allow www.*
reqideny ^Host:\ .*\.local
reqiallow ^Host:\ www\.
See also: "reqallow", "rspdeny", "acl", "block" and section 2.5 about HTTP
header manipulation
reqpass <search>
reqipass <search> (ignore case)
Ignore any HTTP request line matching a regular expression in next rules
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | yes
Arguments :
<search> is the regular expression applied to HTTP headers and to the
request line. This is an extended regular expression. Parenthesis
grouping is supported and no preliminary backslash is required.
Any space or known delimiter must be escaped using a backslash
('\'). The pattern applies to a full line at a time. The
"reqpass" keyword strictly matches case while "reqipass" ignores
case.
A request containing any line which matches extended regular expression
<search> will skip next rules, without assigning any deny or allow verdict.
The test applies both to the request line and to request headers. Keep in
mind that URLs in request line are case-sensitive while header names are not.
It is easier, faster and more powerful to use ACLs to write access policies.
Reqdeny, reqallow and reqpass should be avoided in new designs.
Example :
# refuse *.local, then allow www.*, but ignore "www.private.local"
reqipass ^Host:\ www.private\.local
reqideny ^Host:\ .*\.local
reqiallow ^Host:\ www\.
See also: "reqallow", "reqdeny", "acl", "block" and section 2.5 about HTTP
header manipulation
reqrep <search> <string>
reqirep <search> <string> (ignore case)
Replace a regular expression with a string in an HTTP request line
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | yes
Arguments :
<search> is the regular expression applied to HTTP headers and to the
request line. This is an extended regular expression. Parenthesis
grouping is supported and no preliminary backslash is required.
Any space or known delimiter must be escaped using a backslash
('\'). The pattern applies to a full line at a time. The "reqrep"
keyword strictly matches case while "reqirep" ignores case.
<string> is the complete line to be added. Any space or known delimiter
must be escaped using a backslash ('\'). References to matched
pattern groups are possible using the common \N form, with N
being a single digit between 0 and 9. Please refer to section
2.5 about HTTP header manipulation for more information.
Any line matching extended regular expression <search> in the request (both
the request line and header lines) will be completely replaced with <string>.
Most common use of this is to rewrite URLs or domain names in "Host" headers.
Header transformations only apply to traffic which passes through HAProxy,
and not to traffic generated by HAProxy, such as health-checks or error
responses. Note that for increased readability, it is suggested to add enough
spaces between the request and the response. Keep in mind that URLs in
request line are case-sensitive while header names are not.
Example :
# replace "/static/" with "/" at the beginning of any request path.
reqrep ^([^\ ]*)\ /static/(.*) \1\ /\2
# replace "www.mydomain.com" with "www" in the host name.
reqirep ^Host:\ www.mydomain.com Host:\ www
See also: "reqadd", "reqdel", "rsprep" and section 2.5 about HTTP header
manipulation
reqtarpit <search>
reqitarpit <search> (ignore case)
Tarpit an HTTP request containing a line matching a regular expression
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | yes
Arguments :
<search> is the regular expression applied to HTTP headers and to the
request line. This is an extended regular expression. Parenthesis
grouping is supported and no preliminary backslash is required.
Any space or known delimiter must be escaped using a backslash
('\'). The pattern applies to a full line at a time. The
"reqtarpit" keyword strictly matches case while "reqitarpit"
ignores case.
A request containing any line which matches extended regular expression
<search> will be tarpitted, which means that it will connect to nowhere, will
be kept open for a pre-defined time, then will return an HTTP error 500 so
that the attacker does not suspect it has been tarpitted. The status 500 will
be reported in the logs, but the completion flags will indicate "PT". The
delay is defined by "timeout tarpit", or "timeout connect" if the former is
not set.
The goal of the tarpit is to slow down robots attacking servers with
identifiable requests. Many robots limit their outgoing number of connections
and stay connected waiting for a reply which can take several minutes to
come. Depending on the environment and attack, it may be particularly
efficient at reducing the load on the network and firewalls.
Example :
# ignore user-agents reporting any flavour of "Mozilla" or "MSIE", but
# block all others.
reqipass ^User-Agent:\.*(Mozilla|MSIE)
reqitarpit ^User-Agent:
See also: "reqallow", "reqdeny", "reqpass", and section 2.5 about HTTP header
manipulation
rspadd <string>
Add a header at the end of the HTTP response
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | yes
Arguments :
<string> is the complete line to be added. Any space or known delimiter
must be escaped using a backslash ('\'). Please refer to section
2.5 about HTTP header manipulation for more information.
A new line consisting in <string> followed by a line feed will be added after
the last header of an HTTP response.
Header transformations only apply to traffic which passes through HAProxy,
and not to traffic generated by HAProxy, such as health-checks or error
responses.
See also: "reqadd" and section 2.5 about HTTP header manipulation
rspdel <search>
rspidel <search> (ignore case)
Delete all headers matching a regular expression in an HTTP response
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | yes
Arguments :
<search> is the regular expression applied to HTTP headers and to the
response line. This is an extended regular expression, so
parenthesis grouping is supported and no preliminary backslash
is required. Any space or known delimiter must be escaped using
a backslash ('\'). The pattern applies to a full line at a time.
The "rspdel" keyword strictly matches case while "rspidel"
ignores case.
Any header line matching extended regular expression <search> in the response
will be completely deleted. Most common use of this is to remove unwanted
and/or sensible headers or cookies from a response before passing it to the
client.
Header transformations only apply to traffic which passes through HAProxy,
and not to traffic generated by HAProxy, such as health-checks or error
responses. Keep in mind that header names are not case-sensitive.
Example :
# remove the Server header from responses
reqidel ^Server:.*
See also: "rspadd", "rsprep", "reqdel" and section 2.5 about HTTP header
manipulation
rspdeny <search>
rspideny <search> (ignore case)
Block an HTTP response if a line matches a regular expression
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | yes
Arguments :
<search> is the regular expression applied to HTTP headers and to the
response line. This is an extended regular expression, so
parenthesis grouping is supported and no preliminary backslash
is required. Any space or known delimiter must be escaped using
a backslash ('\'). The pattern applies to a full line at a time.
The "rspdeny" keyword strictly matches case while "rspideny"
ignores case.
A response containing any line which matches extended regular expression
<search> will mark the request as denied. The test applies both to the
response line and to response headers. Keep in mind that header names are not
case-sensitive.
Main use of this keyword is to prevent sensitive information leak and to
block the response before it reaches the client. If a response is denied, it
will be replaced with an HTTP 502 error so that the client never retrieves
any sensitive data.
It is easier, faster and more powerful to use ACLs to write access policies.
Rspdeny should be avoided in new designs.
Example :
# Ensure that no content type matching ms-word will leak
rspideny ^Content-type:\.*/ms-word
See also: "reqdeny", "acl", "block" and section 2.5 about HTTP header
manipulation
rsprep <search> <string>
rspirep <search> <string> (ignore case)
Replace a regular expression with a string in an HTTP response line
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | yes
Arguments :
<search> is the regular expression applied to HTTP headers and to the
response line. This is an extended regular expression, so
parenthesis grouping is supported and no preliminary backslash
is required. Any space or known delimiter must be escaped using
a backslash ('\'). The pattern applies to a full line at a time.
The "rsprep" keyword strictly matches case while "rspirep"
ignores case.
<string> is the complete line to be added. Any space or known delimiter
must be escaped using a backslash ('\'). References to matched
pattern groups are possible using the common \N form, with N
being a single digit between 0 and 9. Please refer to section
2.5 about HTTP header manipulation for more information.
Any line matching extended regular expression <search> in the response (both
the response line and header lines) will be completely replaced with
<string>. Most common use of this is to rewrite Location headers.
Header transformations only apply to traffic which passes through HAProxy,
and not to traffic generated by HAProxy, such as health-checks or error
responses. Note that for increased readability, it is suggested to add enough
spaces between the request and the response. Keep in mind that header names
are not case-sensitive.
Example :
# replace "Location: 127.0.0.1:8080" with "Location: www.mydomain.com"
rspirep ^Location:\ 127.0.0.1:8080 Location:\ www.mydomain.com
See also: "rspadd", "rspdel", "reqrep" and section 2.5 about HTTP header
manipulation
server <name> <address>[:port] [param*]
Declare a server in a backend
May be used in sections : defaults | frontend | listen | backend
no | no | yes | yes
Arguments :
<name> is the internal name assigned to this server. This name will
appear in logs and alerts.
<address> is the IPv4 address of the server. Alternatively, a resolvable
hostname is supported, but this name will be resolved during
start-up.
<ports> is an optional port specification. If set, all connections will
be sent to this port. If unset, the same port the client
connected to will be used. The port may also be prefixed by a "+"
or a "-". In this case, the server's port will be determined by
adding this value to the client's port.
<param*> is a list of parameters for this server. The "server" keywords
accepts an important number of options and has a complete section
dedicated to it. Please refer to section 2.4 for more details.
Examples :
server first 10.1.1.1:1080 cookie first check inter 1000
server second 10.1.1.2:1080 cookie second check inter 1000
See also : section 2.4 about server options
source <addr>[:<port>] [usesrc { <addr2>[:<port2>] | client | clientip } ]
Set the source address for outgoing connections
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<addr> is the IPv4 address HAProxy will bind to before connecting to a
server. This address is also used as a source for health checks.
The default value of 0.0.0.0 means that the system will select
the most appropriate address to reach its destination.
<port> is an optional port. It is normally not needed but may be useful
in some very specific contexts. The default value of zero means
the system will select a free port.
<addr2> is the IP address to present to the server when connections are
forwarded in full transparent proxy mode. This is currently only
supported on some patched Linux kernels. When this address is
specified, clients connecting to the server will be presented
with this address, while health checks will still use the address
<addr>.
<port2> is the optional port to present to the server when connections
are forwarded in full transparent proxy mode (see <addr2> above).
The default value of zero means the system will select a free
port.
The "source" keyword is useful in complex environments where a specific
address only is allowed to connect to the servers. It may be needed when a
private address must be used through a public gateway for instance, and it is
known that the system cannot determine the adequate source address by itself.
An extension which is available on certain patched Linux kernels may be used
through the "usesrc" optional keyword. It makes it possible to connect to the
servers with an IP address which does not belong to the system itself. This
is called "full transparent proxy mode". For this to work, the destination
servers have to route their traffic back to this address through the machine
running HAProxy, and IP forwarding must generally be enabled on this machine.
In this "full transparent proxy" mode, it is possible to force a specific IP
address to be presented to the servers. This is not much used in fact. A more
common use is to tell HAProxy to present the client's IP address. For this,
there are two methods :
- present the client's IP and port addresses. This is the most transparent
mode, but it can cause problems when IP connection tracking is enabled on
the machine, because a same connection may be seen twice with different
states. However, this solution presents the huge advantage of not
limiting the system to the 64k outgoing address+port couples, because all
of the client ranges may be used.
- present only the client's IP address and select a spare port. This
solution is still quite elegant but slightly less transparent (downstream
firewalls logs will not match upstream's). It also presents the downside
of limiting the number of concurrent connections to the usual 64k ports.
However, since the upstream and downstream ports are different, local IP
connection tracking on the machine will not be upset by the reuse of the
same session.
Note that depending on the transparent proxy technology used, it may be
required to force the source address. In fact, cttproxy version 2 requires an
IP address in <addr> above, and does not support setting of "0.0.0.0" as the
IP address because it creates NAT entries which much match the exact outgoing
address. Tproxy version 4 and some other kernel patches which work in pure
forwarding mode generally will not have this limitation.
This option sets the default source for all servers in the backend. It may
also be specified in a "defaults" section. Finer source address specification
is possible at the server level using the "source" server option. Refer to
section 2.4 for more information.
Examples :
backend private
# Connect to the servers using our 192.168.1.200 source address
source 192.168.1.200
backend transparent_ssl1
# Connect to the SSL farm from the client's source address
source 192.168.1.200 usesrc clientip
backend transparent_ssl2
# Connect to the SSL farm from the client's source address and port
# not recommended if IP conntrack is present on the local machine.
source 192.168.1.200 usesrc client
backend transparent_ssl3
# Connect to the SSL farm from the client's source address. It
# is more conntrack-friendly.
source 192.168.1.200 usesrc clientip
backend transparent_smtp
# Connect to the SMTP farm from the client's source address/port
# with Tproxy version 4.
source 0.0.0.0 usesrc clientip
See also : the "source" server option in section 2.4, the Tproxy patches for
the Linux kernel on www.balabit.com, the "bind" keyword.
srvtimeout <timeout> (deprecated)
Set the maximum inactivity time on the server side.
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<timeout> is the timeout value specified in milliseconds by default, but
can be in any other unit if the number is suffixed by the unit,
as explained at the top of this document.
The inactivity timeout applies when the server is expected to acknowledge or
send data. In HTTP mode, this timeout is particularly important to consider
during the first phase of the server's response, when it has to send the
headers, as it directly represents the server's processing time for the
request. To find out what value to put there, it's often good to start with
what would be considered as unacceptable response times, then check the logs
to observe the response time distribution, and adjust the value accordingly.
The value is specified in milliseconds by default, but can be in any other
unit if the number is suffixed by the unit, as specified at the top of this
document. In TCP mode (and to a lesser extent, in HTTP mode), it is highly
recommended that the client timeout remains equal to the server timeout in
order to avoid complex situations to debug. Whatever the expected server
response times, it is a good practice to cover at least one or several TCP
packet losses by specifying timeouts that are slightly above multiples of 3
seconds (eg: 4 or 5 seconds minimum).
This parameter is specific to backends, but can be specified once for all in
"defaults" sections. This is in fact one of the easiest solutions not to
forget about it. An unspecified timeout results in an infinite timeout, which
is not recommended. Such a usage is accepted and works but reports a warning
during startup because it may results in accumulation of expired sessions in
the system if the system's timeouts are not configured either.
This parameter is provided for compatibility but is currently deprecated.
Please use "timeout server" instead.
See also : "timeout server", "timeout client" and "clitimeout".
stats auth <user>:<passwd>
Enable statistics with authentication and grant access to an account
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<user> is a user name to grant access to
<passwd> is the cleartext password associated to this user
This statement enables statistics with default settings, and restricts access
to declared users only. It may be repeated as many times as necessary to
allow as many users as desired. When a user tries to access the statistics
without a valid account, a "401 Forbidden" response will be returned so that
the browser asks the user to provide a valid user and password. The real
which will be returned to the browser is configurable using "stats realm".
Since the authentication method is HTTP Basic Authentication, the passwords
circulate in cleartext on the network. Thus, it was decided that the
configuration file would also use cleartext passwords to remind the users
that those ones should not be sensible and not shared with any other account.
It is also possible to reduce the scope of the proxies which appear in the
report using "stats scope".
Though this statement alone is enough to enable statistics reporting, it is
recommended to set all other settings in order to avoid relying on default
unobvious parameters.
Example :
# public access (limited to this backend only)
backend public_www
server srv1 192.168.0.1:80
stats enable
stats hide-version
stats scope .
stats uri /admin?stats
stats realm Haproxy\ Statistics
stats auth admin1:AdMiN123
stats auth admin2:AdMiN321
# internal monitoring access (unlimited)
backend private_monitoring
stats enable
stats uri /admin?stats
stats refresh 5s
See also : "stats enable", "stats realm", "stats scope", "stats uri"
stats enable
Enable statistics reporting with default settings
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments : none
This statement enables statistics reporting with default settings defined
at build time. Unless stated otherwise, these settings are used :
- stats uri : /haproxy?stats
- stats realm : "HAProxy Statistics"
- stats auth : no authentication
- stats scope : no restriction
Though this statement alone is enough to enable statistics reporting, it is
recommended to set all other settings in order to avoid relying on default
unobvious parameters.
Example :
# public access (limited to this backend only)
backend public_www
server srv1 192.168.0.1:80
stats enable
stats hide-version
stats scope .
stats uri /admin?stats
stats realm Haproxy\ Statistics
stats auth admin1:AdMiN123
stats auth admin2:AdMiN321
# internal monitoring access (unlimited)
backend private_monitoring
stats enable
stats uri /admin?stats
stats refresh 5s
See also : "stats auth", "stats realm", "stats uri"
stats realm <realm>
Enable statistics and set authentication realm
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<realm> is the name of the HTTP Basic Authentication realm reported to
the browser. The browser uses it to display it in the pop-up
inviting the user to enter a valid username and password.
The realm is read as a single word, so any spaces in it should be escaped
using a backslash ('\').
This statement is useful only in conjunction with "stats auth" since it is
only related to authentication.
Though this statement alone is enough to enable statistics reporting, it is
recommended to set all other settings in order to avoid relying on default
unobvious parameters.
Example :
# public access (limited to this backend only)
backend public_www
server srv1 192.168.0.1:80
stats enable
stats hide-version
stats scope .
stats uri /admin?stats
stats realm Haproxy\ Statistics
stats auth admin1:AdMiN123
stats auth admin2:AdMiN321
# internal monitoring access (unlimited)
backend private_monitoring
stats enable
stats uri /admin?stats
stats refresh 5s
See also : "stats auth", "stats enable", "stats uri"
stats refresh <delay>
Enable statistics with automatic refresh
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<delay> is the suggested refresh delay, specified in seconds, which will
be returned to the browser consulting the report page. While the
browser is free to apply any delay, it will generally respect it
and refresh the page this every seconds. The refresh interval may
be specified in any other non-default time unit, by suffixing the
unit after the value, as explained at the top of this document.
This statement is useful on monitoring displays with a permanent page
reporting the load balancer's activity. When set, the HTML report page will
include a link "refresh"/"stop refresh" so that the user can select whether
he wants automatic refresh of the page or not.
Though this statement alone is enough to enable statistics reporting, it is
recommended to set all other settings in order to avoid relying on default
unobvious parameters.
Example :
# public access (limited to this backend only)
backend public_www
server srv1 192.168.0.1:80
stats enable
stats hide-version
stats scope .
stats uri /admin?stats
stats realm Haproxy\ Statistics
stats auth admin1:AdMiN123
stats auth admin2:AdMiN321
# internal monitoring access (unlimited)
backend private_monitoring
stats enable
stats uri /admin?stats
stats refresh 5s
See also : "stats auth", "stats enable", "stats realm", "stats uri"
stats scope { <name> | "." }
Enable statistics and limit access scope
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<name> is the name of a listen, frontend or backend section to be
reported. The special name "." (a single dot) designates the
section in which the statement appears.
When this statement is specified, only the sections enumerated with this
statement will appear in the report. All other ones will be hidden. This
statement may appear as many times as needed if multiple sections need to be
reported. Please note that the name checking is performed as simple string
comparisons, and that it is never checked that a give section name really
exists.
Though this statement alone is enough to enable statistics reporting, it is
recommended to set all other settings in order to avoid relying on default
unobvious parameters.
Example :
# public access (limited to this backend only)
backend public_www
server srv1 192.168.0.1:80
stats enable
stats hide-version
stats scope .
stats uri /admin?stats
stats realm Haproxy\ Statistics
stats auth admin1:AdMiN123
stats auth admin2:AdMiN321
# internal monitoring access (unlimited)
backend private_monitoring
stats enable
stats uri /admin?stats
stats refresh 5s
See also : "stats auth", "stats enable", "stats realm", "stats uri"
stats uri <prefix>
Enable statistics and define the URI prefix to access them
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<prefix> is the prefix of any URI which will be redirected to stats. This
prefix may contain a question mark ('?') to indicate part of a
query string.
The statistics URI is intercepted on the relayed traffic, so it appears as a
page within the normal application. It is strongly advised to ensure that the
selected URI will never appear in the application, otherwise it will never be
possible to reach it in the application.
The default URI compiled in haproxy is "/haproxy?stats", but this may be
changed at build time, so it's better to always explictly specify it here.
It is generally a good idea to include a question mark in the URI so that
intermediate proxies refrain from caching the results. Also, since any string
beginning with the prefix will be accepted as a stats request, the question
mark helps ensuring that no valid URI will begin with the same words.
It is sometimes very convenient to use "/" as the URI prefix, and put that
statement in a "listen" instance of its own. That makes it easy to dedicate
an address or a port to statistics only.
Though this statement alone is enough to enable statistics reporting, it is
recommended to set all other settings in order to avoid relying on default
unobvious parameters.
Example :
# public access (limited to this backend only)
backend public_www
server srv1 192.168.0.1:80
stats enable
stats hide-version
stats scope .
stats uri /admin?stats
stats realm Haproxy\ Statistics
stats auth admin1:AdMiN123
stats auth admin2:AdMiN321
# internal monitoring access (unlimited)
backend private_monitoring
stats enable
stats uri /admin?stats
stats refresh 5s
See also : "stats auth", "stats enable", "stats realm"
stats hide-version
Enable statistics and hide HAProxy version reporting
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments : none
By default, the stats page reports some useful status information along with
the statistics. Among them is HAProxy's version. However, it is generally
considered dangerous to report precise version to anyone, as it can help them
target known weaknesses with specific attacks. The "stats hide-version"
statement removes the version from the statistics report. This is recommended
for public sites or any site with a weak login/password.
Though this statement alone is enough to enable statistics reporting, it is
recommended to set all other settings in order to avoid relying on default
unobvious parameters.
Example :
# public access (limited to this backend only)
backend public_www
server srv1 192.168.0.1:80
stats enable
stats hide-version
stats scope .
stats uri /admin?stats
stats realm Haproxy\ Statistics
stats auth admin1:AdMiN123
stats auth admin2:AdMiN321
# internal monitoring access (unlimited)
backend private_monitoring
stats enable
stats uri /admin?stats
stats refresh 5s
See also : "stats auth", "stats enable", "stats realm", "stats uri"
timeout check <timeout>
Set additional check timeout, but only after a connection has been already
established.
May be used in sections: defaults | frontend | listen | backend
yes | no | yes | yes
Arguments:
<timeout> is the timeout value specified in milliseconds by default, but
can be in any other unit if the number is suffixed by the unit,
as explained at the top of this document.
If set, haproxy uses min("timeout connect", "inter") as a connect timeout
for check and "timeout check" as an additional read timeout. The "min" is
used so that people running with *very* long "timeout connect" (eg. those
who needed this due to the queue or tarpit) do not slow down their checks.
Of course it is better to use "check queue" and "check tarpit" instead of
long "timeout connect".
If "timeout check" is not set haproxy uses "inter" for complete check
timeout (connect + read) exactly like all <1.3.15 version.
In most cases check request is much simpler and faster to handle than normal
requests and people may want to kick out laggy servers so this timeout should
be smaller than "timeout server".
This parameter is specific to backends, but can be specified once for all in
"defaults" sections. This is in fact one of the easiest solutions not to
forget about it.
See also: "timeout connect", "timeout queue", "timeout server",
"timeout tarpit".
timeout client <timeout>
timeout clitimeout <timeout> (deprecated)
Set the maximum inactivity time on the client side.
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | no
Arguments :
<timeout> is the timeout value specified in milliseconds by default, but
can be in any other unit if the number is suffixed by the unit,
as explained at the top of this document.
The inactivity timeout applies when the client is expected to acknowledge or
send data. In HTTP mode, this timeout is particularly important to consider
during the first phase, when the client sends the request, and during the
response while it is reading data sent by the server. The value is specified
in milliseconds by default, but can be in any other unit if the number is
suffixed by the unit, as specified at the top of this document. In TCP mode
(and to a lesser extent, in HTTP mode), it is highly recommended that the
client timeout remains equal to the server timeout in order to avoid complex
situations to debug. It is a good practice to cover one or several TCP packet
losses by specifying timeouts that are slightly above multiples of 3 seconds
(eg: 4 or 5 seconds).
This parameter is specific to frontends, but can be specified once for all in
"defaults" sections. This is in fact one of the easiest solutions not to
forget about it. An unspecified timeout results in an infinite timeout, which
is not recommended. Such a usage is accepted and works but reports a warning
during startup because it may results in accumulation of expired sessions in
the system if the system's timeouts are not configured either.
This parameter replaces the old, deprecated "clitimeout". It is recommended
to use it to write new configurations. The form "timeout clitimeout" is
provided only by backwards compatibility but its use is strongly discouraged.
See also : "clitimeout", "timeout server".
timeout connect <timeout>
timeout contimeout <timeout> (deprecated)
Set the maximum time to wait for a connection attempt to a server to succeed.
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<timeout> is the timeout value specified in milliseconds by default, but
can be in any other unit if the number is suffixed by the unit,
as explained at the top of this document.
If the server is located on the same LAN as haproxy, the connection should be
immediate (less than a few milliseconds). Anyway, it is a good practice to
cover one or several TCP packet losses by specifying timeouts that are
slightly above multiples of 3 seconds (eg: 4 or 5 seconds). By default, the
connect timeout also presets both queue and tarpit timeouts to the same value
if these have not been specified.
This parameter is specific to backends, but can be specified once for all in
"defaults" sections. This is in fact one of the easiest solutions not to
forget about it. An unspecified timeout results in an infinite timeout, which
is not recommended. Such a usage is accepted and works but reports a warning
during startup because it may results in accumulation of failed sessions in
the system if the system's timeouts are not configured either.
This parameter replaces the old, deprecated "contimeout". It is recommended
to use it to write new configurations. The form "timeout contimeout" is
provided only by backwards compatibility but its use is strongly discouraged.
See also: "timeout check", "timeout queue", "timeout server", "contimeout",
"timeout tarpit".
timeout http-request <timeout>
Set the maximum allowed time to wait for a complete HTTP request
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | no
Arguments :
<timeout> is the timeout value specified in milliseconds by default, but
can be in any other unit if the number is suffixed by the unit,
as explained at the top of this document.
In order to offer DoS protection, it may be required to lower the maximum
accepted time to receive a complete HTTP request without affecting the client
timeout. This helps protecting against established connections on which
nothing is sent. The client timeout cannot offer a good protection against
this abuse because it is an inactivity timeout, which means that if the
attacker sends one character every now and then, the timeout will not
trigger. With the HTTP request timeout, no matter what speed the client
types, the request will be aborted if it does not complete in time.
Note that this timeout only applies to the header part of the request, and
not to any data. As soon as the empty line is received, this timeout is not
used anymore.
Generally it is enough to set it to a few seconds, as most clients send the
full request immediately upon connection. Add 3 or more seconds to cover TCP
retransmits but that's all. Setting it to very low values (eg: 50 ms) will
generally work on local networks as long as there are no packet losses. This
will prevent people from sending bare HTTP requests using telnet.
If this parameter is not set, the client timeout still applies between each
chunk of the incoming request.
See also : "timeout client".
timeout queue <timeout>
Set the maximum time to wait in the queue for a connection slot to be free
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<timeout> is the timeout value specified in milliseconds by default, but
can be in any other unit if the number is suffixed by the unit,
as explained at the top of this document.
When a server's maxconn is reached, connections are left pending in a queue
which may be server-specific or global to the backend. In order not to wait
indefinitely, a timeout is applied to requests pending in the queue. If the
timeout is reached, it is considered that the request will almost never be
served, so it is dropped and a 503 error is returned to the client.
The "timeout queue" statement allows to fix the maximum time for a request to
be left pending in a queue. If unspecified, the same value as the backend's
connection timeout ("timeout connect") is used, for backwards compatibility
with older versions with no "timeout queue" parameter.
See also : "timeout connect", "contimeout".
timeout server <timeout>
timeout srvtimeout <timeout> (deprecated)
Set the maximum inactivity time on the server side.
May be used in sections : defaults | frontend | listen | backend
yes | no | yes | yes
Arguments :
<timeout> is the timeout value specified in milliseconds by default, but
can be in any other unit if the number is suffixed by the unit,
as explained at the top of this document.
The inactivity timeout applies when the server is expected to acknowledge or
send data. In HTTP mode, this timeout is particularly important to consider
during the first phase of the server's response, when it has to send the
headers, as it directly represents the server's processing time for the
request. To find out what value to put there, it's often good to start with
what would be considered as unacceptable response times, then check the logs
to observe the response time distribution, and adjust the value accordingly.
The value is specified in milliseconds by default, but can be in any other
unit if the number is suffixed by the unit, as specified at the top of this
document. In TCP mode (and to a lesser extent, in HTTP mode), it is highly
recommended that the client timeout remains equal to the server timeout in
order to avoid complex situations to debug. Whatever the expected server
response times, it is a good practice to cover at least one or several TCP
packet losses by specifying timeouts that are slightly above multiples of 3
seconds (eg: 4 or 5 seconds minimum).
This parameter is specific to backends, but can be specified once for all in
"defaults" sections. This is in fact one of the easiest solutions not to
forget about it. An unspecified timeout results in an infinite timeout, which
is not recommended. Such a usage is accepted and works but reports a warning
during startup because it may results in accumulation of expired sessions in
the system if the system's timeouts are not configured either.
This parameter replaces the old, deprecated "srvtimeout". It is recommended
to use it to write new configurations. The form "timeout srvtimeout" is
provided only by backwards compatibility but its use is strongly discouraged.
See also : "srvtimeout", "timeout client".
timeout tarpit <timeout>
Set the duration for which tapitted connections will be maintained
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | yes
Arguments :
<timeout> is the tarpit duration specified in milliseconds by default, but
can be in any other unit if the number is suffixed by the unit,
as explained at the top of this document.
When a connection is tarpitted using "reqtarpit", it is maintained open with
no activity for a certain amount of time, then closed. "timeout tarpit"
defines how long it will be maintained open.
The value is specified in milliseconds by default, but can be in any other
unit if the number is suffixed by the unit, as specified at the top of this
document. If unspecified, the same value as the backend's connection timeout
("timeout connect") is used, for backwards compatibility with older versions
with no "timeout tapit" parameter.
See also : "timeout connect", "contimeout".
transparent (deprecated)
Enable client-side transparent proxying
May be used in sections : defaults | frontend | listen | backend
yes | yes | yes | no
Arguments : none
This keyword was introduced in order to provide layer 7 persistence to layer
3 load balancers. The idea is to use the OS's ability to redirect an incoming
connection for a remote address to a local process (here HAProxy), and let
this process know what address was initially requested. When this option is
used, sessions without cookies will be forwarded to the original destination
IP address of the incoming request (which should match that of another
equipment), while requests with cookies will still be forwarded to the
appropriate server.
The "transparent" keyword is deprecated, use "option transparent" instead.
Note that contrary to a common belief, this option does NOT make HAProxy
present the client's IP to the server when establishing the connection.
Use of this option is really discouraged, and since no really valid use of it
has been reported for years, it will probably be removed in future versions.
See also: "option transparent"
use_backend <backend> if <condition>
use_backend <backend> unless <condition>
Switch to a specific backend if/unless a Layer 7 condition is matched.
May be used in sections : defaults | frontend | listen | backend
no | yes | yes | no
Arguments :
<backend> is the name of a valid backend or "listen" section.
<condition> is a condition composed of ACLs, as described in section 2.3.
When doing content-switching, connections arrive on a frontend and are then
dispatched to various backends depending on a number of conditions. The
relation between the conditions and the backends is described with the
"use_backend" keyword. This is supported only in HTTP mode.
There may be as many "use_backend" rules as desired. All of these rules are
evaluated in their declaration order, and the first one which matches will
assign the backend.
In the first form, the backend will be used if the condition is met. In the
second form, the backend will be used if the condition is not met. If no
condition is valid, the backend defined with "default_backend" will be used.
If no default backend is defined, either the servers in the same section are
used (in case of a "listen" section) or, in case of a frontend, no server is
used and a 503 service unavailable response is returned.
See also: "default_backend" and section 2.3 about ACLs.
2.3) Using ACLs
---------------
The use of Access Control Lists (ACL) provides a flexible solution to perform
content switching and generally to take decisions based on content extracted
from the request, the response or any environmental status. The principle is
simple :
- define test criteria with sets of values
- perform actions only if a set of tests is valid
The actions generally consist in blocking the request, or selecting a backend.
In order to define a test, the "acl" keyword is used. The syntax is :
acl <aclname> <criterion> [flags] [operator] <value> ...
This creates a new ACL <aclname> or completes an existing one with new tests.
Those tests apply to the portion of request/response specified in <criterion>
and may be adjusted with optional flags [flags]. Some criteria also support
an operator which may be specified before the set of values. The values are
of the type supported by the criterion, and are separated by spaces.
ACL names must be formed from upper and lower case letters, digits, '-' (dash),
'_' (underscore) , '.' (dot) and ':' (colon). ACL names are case-sensitive,
which means that "my_acl" and "My_Acl" are two different ACLs.
There is no enforced limit to the number of ACLs. The unused ones do not affect
performance, they just consume a small amount of memory.
The following ACL flags are currently supported :
-i : ignore case during matching.
-- : force end of flags. Useful when a string looks like one of the flags.
Supported types of values are :
- integers or integer ranges
- strings
- regular expressions
- IP addresses and networks
2.3.1) Matching integers
------------------------
Matching integers is special in that ranges and operators are permitted. Note
that integer matching only applies to positive values. A range is a value
expressed with a lower and an upper bound separated with a colon, both of which
may be omitted.
For instance, "1024:65535" is a valid range to represent a range of
unprivileged ports, and "1024:" would also work. "0:1023" is a valid
representation of privileged ports, and ":1023" would also work.
For an easier usage, comparison operators are also supported. Note that using
operators with ranges does not make much sense and is strongly discouraged.
Similarly, it does not make much sense to perform order comparisons with a set
of values.
Available operators for integer matching are :
eq : true if the tested value equals at least one value
ge : true if the tested value is greater than or equal to at least one value
gt : true if the tested value is greater than at least one value
le : true if the tested value is less than or equal to at least one value
lt : true if the tested value is less than at least one value
For instance, the following ACL matches any negative Content-Length header :
acl negative-length hdr_val(content-length) lt 0
2.3.2) Matching strings
-----------------------
String matching applies to verbatim strings as they are passed, with the
exception of the backslash ("\") which makes it possible to escape some
characters such as the space. If the "-i" flag is passed before the first
string, then the matching will be performed ignoring the case. In order
to match the string "-i", either set it second, or pass the "--" flag
before the first string. Same applies of course to match the string "--".
2.3.3) Matching regular expressions (regexes)
---------------------------------------------
Just like with string matching, regex matching applies to verbatim strings as
they are passed, with the exception of the backslash ("\") which makes it
possible to escape some characters such as the space. If the "-i" flag is
passed before the first regex, then the matching will be performed ignoring
the case. In order to match the string "-i", either set it second, or pass
the "--" flag before the first string. Same principle applies of course to
match the string "--".
2.3.4) Matching IPv4 addresses
------------------------------
IPv4 addresses values can be specified either as plain addresses or with a
netmask appended, in which case the IPv4 address matches whenever it is
within the network. Plain addresses may also be replaced with a resolvable
host name, but this practice is generally discouraged as it makes it more
difficult to read and debug configurations. If hostnames are used, you should
at least ensure that they are present in /etc/hosts so that the configuration
does not depend on any random DNS match at the moment the configuration is
parsed.
2.3.5) Available matching criteria
----------------------------------
2.3.5.1) Matching at Layer 4 and below
--------------------------------------
A first set of criteria applies to information which does not require any
analysis of the request or response contents. Those generally include TCP/IP
addresses and ports, as well as internal values independant on the stream.
always_false
This one never matches. All values and flags are ignored. It may be used as
a temporary replacement for another one when adjusting configurations.
always_true
This one always matches. All values and flags are ignored. It may be used as
a temporary replacement for another one when adjusting configurations.
src <ip_address>
Applies to the client's IPv4 address. It is usually used to limit access to
certain resources such as statistics. Note that it is the TCP-level source
address which is used, and not the address of a client behind a proxy.
src_port <integer>
Applies to the client's TCP source port. This has a very limited usage.
dst <ip_address>
Applies to the local IPv4 address the client connected to. It can be used to
switch to a different backend for some alternative addresses.
dst_port <integer>
Applies to the local port the client connected to. It can be used to switch
to a different backend for some alternative ports.
dst_conn <integer>
Applies to the number of currently established connections on the frontend,
including the one being evaluated. It can be used to either return a sorry
page before hard-blocking, or to use a specific backend to drain new requests
when the farm is considered saturated.
nbsrv <integer>
nbsrv(backend) <integer>
Returns true when the number of usable servers of either the current backend
or the named backend matches the values or ranges specified. This is used to
switch to an alternate backend when the number of servers is too low to
to handle some load. It is useful to report a failure when combined with
"monitor fail".
2.3.5.2) Matching at Layer 7
----------------------------
A second set of criteria applies to information which can be found at the
application layer (layer 7). Those require that a full HTTP request has been
read, and are only evaluated then. They may require slightly more CPU resources
than the layer 4 ones, but not much since the request and response are indexed.
method <string>
Applies to the method in the HTTP request, eg: "GET". Some predefined ACL
already check for most common methods.
req_ver <string>
Applies to the version string in the HTTP request, eg: "1.0". Some predefined
ACL already check for versions 1.0 and 1.1.
path <string>
Returns true when the path part of the request, which starts at the first
slash and ends before the question mark, equals one of the strings. It may be
used to match known files, such as /favicon.ico.
path_beg <string>
Returns true when the path begins with one of the strings. This can be used
to send certain directory names to alternative backends.
path_end <string>
Returns true when the path ends with one of the strings. This may be used to
control file name extension.
path_sub <string>
Returns true when the path contains one of the strings. It can be used to
detect particular patterns in paths, such as "../" for example. See also
"path_dir".
path_dir <string>
Returns true when one of the strings is found isolated or delimited with
slashes in the path. This is used to perform filename or directory name
matching without the risk of wrong match due to colliding prefixes. See also
"url_dir" and "path_sub".
path_dom <string>
Returns true when one of the strings is found isolated or delimited with dots
in the path. This may be used to perform domain name matching in proxy
requests. See also "path_sub" and "url_dom".
path_reg <regex>
Returns true when the path matches one of the regular expressions. It can be
used any time, but it is important to remember that regex matching is slower
than other methods. See also "url_reg" and all "path_" criteria.
url <string>
Applies to the whole URL passed in the request. The only real use is to match
"*", for which there already is a predefined ACL.
url_beg <string>
Returns true when the URL begins with one of the strings. This can be used to
check whether a URL begins with a slash or with a protocol scheme.
url_end <string>
Returns true when the URL ends with one of the strings. It has very limited
use. "path_end" should be used instead for filename matching.
url_sub <string>
Returns true when the URL contains one of the strings. It can be used to
detect particular patterns in query strings for example. See also "path_sub".
url_dir <string>
Returns true when one of the strings is found isolated or delimited with
slashes in the URL. This is used to perform filename or directory name
matching without the risk of wrong match due to colliding prefixes. See also
"path_dir" and "url_sub".
url_dom <string>
Returns true when one of the strings is found isolated or delimited with dots
in the URL. This is used to perform domain name matching without the risk of
wrong match due to colliding prefixes. See also "url_sub".
url_reg <regex>
Returns true when the URL matches one of the regular expressions. It can be
used any time, but it is important to remember that regex matching is slower
than other methods. See also "path_reg" and all "url_" criteria.
url_ip <ip_address>
Applies to the IP address specified in the absolute URI in an HTTP request.
It can be used to prevent access to certain resources such as local network.
It is useful with option "http_proxy".
url_port <integer>
Applies to the port specified in the absolute URI in an HTTP request. It can
be used to prevent access to certain resources. It is useful with option
"http_proxy". Note that if the port is not specified in the request, port 80
is assumed.
hdr <string>
hdr(header) <string>
Note: all the "hdr*" matching criteria either apply to all headers, or to a
particular header whose name is passed between parenthesis and without any
space. The header name is not case-sensitive. The header matching complies
with RFC2616, and treats as separate headers all values delimited by commas.
The "hdr" criteria returns true if any of the headers matching the criteria
match any of the strings. This can be used to check exact for values. For
instance, checking that "connection: close" is set :
hdr(Connection) -i close
hdr_beg <string>
hdr_beg(header) <string>
Returns true when one of the headers begins with one of the strings. See
"hdr" for more information on header matching.
hdr_end <string>
hdr_end(header) <string>
Returns true when one of the headers ends with one of the strings. See "hdr"
for more information on header matching.
hdr_sub <string>
hdr_sub(header) <string>
Returns true when one of the headers contains one of the strings. See "hdr"
for more information on header matching.
hdr_dir <string>
hdr_dir(header) <string>
Returns true when one of the headers contains one of the strings either
isolated or delimited by slashes. This is used to perform filename or
directory name matching, and may be used with Referer. See "hdr" for more
information on header matching.
hdr_dom <string>
hdr_dom(header) <string>
Returns true when one of the headers contains one of the strings either
isolated or delimited by dots. This is used to perform domain name matching,
and may be used with the Host header. See "hdr" for more information on
header matching.
hdr_reg <regex>
hdr_reg(header) <regex>
Returns true when one of the headers matches of the regular expressions. It
can be used at any time, but it is important to remember that regex matching
is slower than other methods. See also other "hdr_" criteria, as well as
"hdr" for more information on header matching.
hdr_val <integer>
hdr_val(header) <integer>
Returns true when one of the headers starts with a number which matches the
values or ranges specified. This may be used to limit content-length to
acceptable values for example. See "hdr" for more information on header
matching.
hdr_cnt <integer>
hdr_cnt(header) <integer>
Returns true when the number of occurrence of the specified header matches
the values or ranges specified. It is important to remember that one header
line may count as several headers if it has several values. This is used to
detect presence, absence or abuse of a specific header, as well as to block
request smugling attacks by rejecting requests which contain more than one
of certain headers. See "hdr" for more information on header matching.
2.3.6) Pre-defined ACLs
-----------------------
Some predefined ACLs are hard-coded so that they do not have to be declared in
every frontend which needs them. They all have their names in upper case in
order to avoid confusion. Their equivalence is provided below. Please note that
only the first three ones are not layer 7 based.
ACL name Equivalent to Usage
---------------+-----------------------------+---------------------------------
TRUE always_true 1 always match
FALSE always_false 0 never match
LOCALHOST src 127.0.0.1/8 match connection from local host
HTTP_1.0 req_ver 1.0 match HTTP version 1.0
HTTP_1.1 req_ver 1.1 match HTTP version 1.1
METH_CONNECT method CONNECT match HTTP CONNECT method
METH_GET method GET HEAD match HTTP GET or HEAD method
METH_HEAD method HEAD match HTTP HEAD method
METH_OPTIONS method OPTIONS match HTTP OPTIONS method
METH_POST method POST match HTTP POST method
METH_TRACE method TRACE match HTTP TRACE method
HTTP_URL_ABS url_reg ^[^/:]*:// match absolute URL with scheme
HTTP_URL_SLASH url_beg / match URL begining with "/"
HTTP_URL_STAR url * match URL equal to "*"
HTTP_CONTENT hdr_val(content-length) gt 0 match an existing content-length
---------------+-----------------------------+---------------------------------
2.3.7) Using ACLs to form conditions
------------------------------------
Some actions are only performed upon a valid condition. A condition is a
combination of ACLs with operators. 3 operators are supported :
- AND (implicit)
- OR (explicit with the "or" keyword or the "||" operator)
- Negation with the exclamation mark ("!")
A condition is formed as a disjonctive form :
[!]acl1 [!]acl2 ... [!]acln { or [!]acl1 [!]acl2 ... [!]acln } ...
Such conditions are generally used after an "if" or "unless" statement,
indicating when the condition will trigger the action.
For instance, to block HTTP requests to the "*" URL with methods other than
"OPTIONS", as well as POST requests without content-length, and GET or HEAD
requests with a content-length greater than 0, and finally every request which
is not either GET/HEAD/POST/OPTIONS !
acl missing_cl hdr_cnt(Content-length) eq 0
block if HTTP_URL_STAR !METH_OPTIONS || METH_POST missing_cl
block if METH_GET HTTP_CONTENT
block unless METH_GET or METH_POST or METH_OPTIONS
To select a different backend for requests to static contents on the "www" site
and to every request on the "img", "video", "download" and "ftp" hosts :
acl url_static path_beg /static /images /img /css
acl url_static path_end .gif .png .jpg .css .js
acl host_www hdr_beg(host) -i www
acl host_static hdr_beg(host) -i img. video. download. ftp.
# now use backend "static" for all static-only hosts, and for static urls
# of host "www". Use backend "www" for the rest.
use_backend static if host_static or host_www url_static
use_backend www if host_www
See section 2.2 for detailed help on the "block" and "use_backend" keywords.
2.4) Server options
-------------------
The "server" keyword supports a certain number of settings which are all passed
as arguments on the server line. The order in which those arguments appear does
not count, and they are all optional. Some of those settings are single words
(booleans) while others expect one or several values after them. In this case,
the values must immediately follow the setting name. All those settings must be
specified after the server's address if they are used :
server <name> <address>[:port] [settings ...]
The currently supported settings are the following ones.
addr <ipv4>
Using the "addr" parameter, it becomes possible to use a different IP address
to send health-checks. On some servers, it may be desirable to dedicate an IP
address to specific component able to perform complex tests which are more
suitable to health-checks than the application. This parameter is ignored if
the "check" parameter is not set. See also the "port" parameter.
backup
When "backup" is present on a server line, the server is only used in load
balancing when all other non-backup servers are unavailable. Requests coming
with a persistence cookie referencing the server will always be served
though. By default, only the first operational backup server is used, unless
the "allbackups" option is set in the backend. See also the "allbackups"
option.
check
This option enables health checks on the server. By default, a server is
always considered available. If "check" is set, the server will receive
periodic health checks to ensure that it is really able to serve requests.
The default address and port to send the tests to are those of the server,
and the default source is the same as the one defined in the backend. It is
possible to change the address using the "addr" parameter, the port using the
"port" parameter, the source address using the "source" address, and the
interval and timers using the "inter", "rise" and "fall" parameters. The
request method is define in the backend using the "httpchk", "smtpchk",
and "ssl-hello-chk" options. Please refer to those options and parameters for
more information.
cookie <value>
The "cookie" parameter sets the cookie value assigned to the server to
<value>. This value will be checked in incoming requests, and the first
operational server possessing the same value will be selected. In return, in
cookie insertion or rewrite modes, this value will be assigned to the cookie
sent to the client. There is nothing wrong in having several servers sharing
the same cookie value, and it is in fact somewhat common between normal and
backup servers. See also the "cookie" keyword in backend section.
fall <count>
The "fall" parameter states that a server will be considered as dead after
<count> consecutive unsuccessful health checks. This value defaults to 3 if
unspecified. See also the "check", "inter" and "rise" parameters.
inter <delay>
fastinter <delay>
downinter <delay>
The "inter" parameter sets the interval between two consecutive health checks
to <delay> milliseconds. If left unspecified, the delay defaults to 2000 ms.
It is also possible to use "fastinter" and "downinter" to optimize delays
between checks depending on the server state :
Server state | Interval used
---------------------------------+-----------------------------------------
UP 100% (non-transitional) | "inter"
---------------------------------+-----------------------------------------
Transitionally UP (going down), |
Transitionally DOWN (going up), | "fastinter" if set, "inter" otherwise.
or yet unchecked. |
---------------------------------+-----------------------------------------
DOWN 100% (non-transitional) | "downinter" if set, "inter" otherwise.
---------------------------------+-----------------------------------------
Just as with every other time-based parameter, they can be entered in any
other explicit unit among { us, ms, s, m, h, d }. The "inter" parameter also
serves as a timeout for health checks sent to servers if "timeout check" is
not set. In order to reduce "resonance" effects when multiple servers are
hosted on the same hardware, the health-checks of all servers are started
with a small time offset between them. It is also possible to add some random
noise in the health checks interval using the global "spread-checks"
keyword. This makes sense for instance when a lot of backends use the same
servers.
maxconn <maxconn>
The "maxconn" parameter specifies the maximal number of concurrent
connections that will be sent to this server. If the number of incoming
concurrent requests goes higher than this value, they will be queued, waiting
for a connection to be released. This parameter is very important as it can
save fragile servers from going down under extreme loads. If a "minconn"
parameter is specified, the limit becomes dynamic. The default value is "0"
which means unlimited. See also the "minconn" and "maxqueue" parameters, and
the backend's "fullconn" keyword.
maxqueue <maxqueue>
The "maxqueue" parameter specifies the maximal number of connections which
will wait in the queue for this server. If this limit is reached, next
requests will be redispatched to other servers instead of indefinitely
waiting to be served. This will break persistence but may allow people to
quickly re-log in when the server they try to connect to is dying. The
default value is "0" which means the queue is unlimited. See also the
"maxconn" and "minconn" parameters.
minconn <minconn>
When the "minconn" parameter is set, the maxconn limit becomes a dynamic
limit following the backend's load. The server will always accept at least
<minconn> connections, never more than <maxconn>, and the limit will be on
the ramp between both values when the backend has less than <fullconn>
concurrent connections. This makes it possible to limit the load on the
server during normal loads, but push it further for important loads without
overloading the server during exceptionnal loads. See also the "maxconn"
and "maxqueue" parameters, as well as the "fullconn" backend keyword.
port <port>
Using the "port" parameter, it becomes possible to use a different port to
send health-checks. On some servers, it may be desirable to dedicate a port
to a specific component able to perform complex tests which are more suitable
to health-checks than the application. It is common to run a simple script in
inetd for instance. This parameter is ignored if the "check" parameter is not
set. See also the "addr" parameter.
redir <prefix>
The "redir" parameter enables the redirection mode for all GET and HEAD
requests addressing this server. This means that instead of having HAProxy
forward the request to the server, it will send an "HTTP 302" response with
the "Location" header composed of this prefix immediately followed by the
requested URI beginning at the leading '/' of the path component. That means
that no trailing slash should be used after <prefix>. All invalid requests
will be rejected, and all non-GET or HEAD requests will be normally served by
the server. Note that since the response is completely forged, no header
mangling nor cookie insertion is possible in the respose. However, cookies in
requests are still analysed, making this solution completely usable to direct
users to a remote location in case of local disaster. Main use consists in
increasing bandwidth for static servers by having the clients directly
connect to them. Note: never use a relative location here, it would cause a
loop between the client and HAProxy!
Example : server srv1 192.168.1.1:80 redir http://image1.mydomain.com check
rise <count>
The "rise" parameter states that a server will be considered as operational
after <count> consecutive successful health checks. This value defaults to 2
if unspecified. See also the "check", "inter" and "fall" parameters.
slowstart <start_time_in_ms>
The "slowstart" parameter for a server accepts a value in milliseconds which
indicates after how long a server which has just come back up will run at
full speed. Just as with every other time-based parameter, it can be entered
in any other explicit unit among { us, ms, s, m, h, d }. The speed grows
linearly from 0 to 100% during this time. The limitation applies to two
parameters :
- maxconn: the number of connections accepted by the server will grow from 1
to 100% of the usual dynamic limit defined by (minconn,maxconn,fullconn).
- weight: when the backend uses a dynamic weighted algorithm, the weight
grows linearly from 1 to 100%. In this case, the weight is updated at every
health-check. For this reason, it is important that the "inter" parameter
is smaller than the "slowstart", in order to maximize the number of steps.
The slowstart never applies when haproxy starts, otherwise it would cause
trouble to running servers. It only applies when a server has been previously
seen as failed.
source <addr>[:<port>] [usesrc { <addr2>[:<port2>] | client | clientip } ]
The "source" parameter sets the source address which will be used when
connecting to the server. It follows the exact same parameters and principle
as the backend "source" keyword, except that it only applies to the server
referencing it. Please consult the "source" keyword for details.
weight <weight>
The "weight" parameter is used to adjust the server's weight relative to
other servers. All servers will receive a load proportional to their weight
relative to the sum of all weights, so the higher the weight, the higher the
load. The default weight is 1, and the maximal value is 255. If this
parameter is used to distribute the load according to server's capacity, it
is recommended to start with values which can both grow and shrink, for
instance between 10 and 100 to leave enough room above and below for later
adjustments.
2.5) HTTP header manipulation
-----------------------------
In HTTP mode, it is possible to rewrite, add or delete some of the request and
response headers based on regular expressions. It is also possible to block a
request or a response if a particular header matches a regular expression,
which is enough to stop most elementary protocol attacks, and to protect
against information leak from the internal network. But there is a limitation
to this : since HAProxy's HTTP engine does not support keep-alive, only headers
passed during the first request of a TCP session will be seen. All subsequent
headers will be considered data only and not analyzed. Furthermore, HAProxy
never touches data contents, it stops analysis at the end of headers.
This section covers common usage of the following keywords, described in detail
in section 2.2.1 :
- reqadd <string>
- reqallow <search>
- reqiallow <search>
- reqdel <search>
- reqidel <search>
- reqdeny <search>
- reqideny <search>
- reqpass <search>
- reqipass <search>
- reqrep <search> <replace>
- reqirep <search> <replace>
- reqtarpit <search>
- reqitarpit <search>
- rspadd <string>
- rspdel <search>
- rspidel <search>
- rspdeny <search>
- rspideny <search>
- rsprep <search> <replace>
- rspirep <search> <replace>
With all these keywords, the same conventions are used. The <search> parameter
is a POSIX extended regular expression (regex) which supports grouping through
parenthesis (without the backslash). Spaces and other delimiters must be
prefixed with a backslash ('\') to avoid confusion with a field delimiter.
Other characters may be prefixed with a backslash to change their meaning :
\t for a tab
\r for a carriage return (CR)
\n for a new line (LF)
\ to mark a space and differentiate it from a delimiter
\# to mark a sharp and differentiate it from a comment
\\ to use a backslash in a regex
\\\\ to use a backslash in the text (*2 for regex, *2 for haproxy)
\xXX to write the ASCII hex code XX as in the C language
The <replace> parameter contains the string to be used to replace the largest
portion of text matching the regex. It can make use of the special characters
above, and can reference a substring which is delimited by parenthesis in the
regex, by writing a backslash ('\') immediately followed by one digit from 0 to
9 indicating the group position (0 designating the entire line). This practice
is very common to users of the "sed" program.
The <string> parameter represents the string which will systematically be added
after the last header line. It can also use special character sequences above.
Notes related to these keywords :
---------------------------------
- these keywords are not always convenient to allow/deny based on header
contents. It is strongly recommended to use ACLs with the "block" keyword
instead, resulting in far more flexible and manageable rules.
- lines are always considered as a whole. It is not possible to reference
a header name only or a value only. This is important because of the way
headers are written (notably the number of spaces after the colon).
- the first line is always considered as a header, which makes it possible to
rewrite or filter HTTP requests URIs or response codes, but in turn makes
it harder to distinguish between headers and request line. The regex prefix
^[^\ \t]*[\ \t] matches any HTTP method followed by a space, and the prefix
^[^ \t:]*: matches any header name followed by a colon.
- for performances reasons, the number of characters added to a request or to
a response is limited at build time to values between 1 and 4 kB. This
should normally be far more than enough for most usages. If it is too short
on occasional usages, it is possible to gain some space by removing some
useless headers before adding new ones.
- keywords beginning with "reqi" and "rspi" are the same as their couterpart
without the 'i' letter except that they ignore case when matching patterns.
- when a request passes through a frontend then a backend, all req* rules
from the frontend will be evaluated, then all req* rules from the backend
will be evaluated. The reverse path is applied to responses.
- req* statements are applied after "block" statements, so that "block" is
always the first one, but before "use_backend" in order to permit rewriting
before switching.
2.6) Logging
------------
[to do]
/*
* Local variables:
* fill-column: 79
* End:
*/