| /* |
| * Sample management functions. |
| * |
| * Copyright 2009-2010 EXCELIANCE, Emeric Brun <ebrun@exceliance.fr> |
| * Copyright (C) 2012 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <ctype.h> |
| #include <string.h> |
| #include <arpa/inet.h> |
| #include <stdio.h> |
| |
| #include <haproxy/api.h> |
| |
| #include <haproxy/auth.h> |
| #include <haproxy/buf.h> |
| #include <haproxy/chunk.h> |
| #include <haproxy/global.h> |
| #include <haproxy/hash.h> |
| #include <haproxy/http.h> |
| #include <haproxy/log.h> |
| #include <haproxy/net_helper.h> |
| #include <haproxy/protobuf.h> |
| #include <haproxy/proxy.h> |
| #include <haproxy/regex.h> |
| #include <haproxy/sample.h> |
| #include <haproxy/tools.h> |
| #include <haproxy/uri_auth-t.h> |
| #include <haproxy/vars.h> |
| #include <haproxy/base64.h> |
| |
| #include <haproxy/arg.h> |
| #include <haproxy/sink.h> |
| #include <haproxy/stick_table.h> |
| |
| #include <import/sha1.h> |
| #include <import/xxhash.h> |
| |
| /* sample type names */ |
| const char *smp_to_type[SMP_TYPES] = { |
| [SMP_T_ANY] = "any", |
| [SMP_T_BOOL] = "bool", |
| [SMP_T_SINT] = "sint", |
| [SMP_T_ADDR] = "addr", |
| [SMP_T_IPV4] = "ipv4", |
| [SMP_T_IPV6] = "ipv6", |
| [SMP_T_STR] = "str", |
| [SMP_T_BIN] = "bin", |
| [SMP_T_METH] = "meth", |
| }; |
| |
| /* static sample used in sample_process() when <p> is NULL */ |
| static THREAD_LOCAL struct sample temp_smp; |
| |
| /* list head of all known sample fetch keywords */ |
| static struct sample_fetch_kw_list sample_fetches = { |
| .list = LIST_HEAD_INIT(sample_fetches.list) |
| }; |
| |
| /* list head of all known sample format conversion keywords */ |
| static struct sample_conv_kw_list sample_convs = { |
| .list = LIST_HEAD_INIT(sample_convs.list) |
| }; |
| |
| const unsigned int fetch_cap[SMP_SRC_ENTRIES] = { |
| [SMP_SRC_INTRN] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT | |
| SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | |
| SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | |
| SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | |
| SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL), |
| |
| [SMP_SRC_LISTN] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT | |
| SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | |
| SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | |
| SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | |
| SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL_FE_LOG_END | SMP_VAL___________), |
| |
| [SMP_SRC_FTEND] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT | |
| SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | |
| SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | |
| SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | |
| SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL_FE_LOG_END | SMP_VAL___________), |
| |
| [SMP_SRC_L4CLI] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT | |
| SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | |
| SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | |
| SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | |
| SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL), |
| |
| [SMP_SRC_L5CLI] = (SMP_VAL___________ | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT | |
| SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | |
| SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | |
| SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | |
| SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL_FE_LOG_END | SMP_VAL___________), |
| |
| [SMP_SRC_TRACK] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT | |
| SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | |
| SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | |
| SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | |
| SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL_FE_LOG_END | SMP_VAL___________), |
| |
| [SMP_SRC_L6REQ] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT | |
| SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | |
| SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | |
| SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________), |
| |
| [SMP_SRC_HRQHV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT | |
| SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | |
| SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | |
| SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________), |
| |
| [SMP_SRC_HRQHP] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT | |
| SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | |
| SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | |
| SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | |
| SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL_FE_LOG_END | SMP_VAL___________), |
| |
| [SMP_SRC_HRQBO] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | |
| SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | |
| SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________), |
| |
| [SMP_SRC_BKEND] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | |
| SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | |
| SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL), |
| |
| [SMP_SRC_SERVR] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | |
| SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL), |
| |
| [SMP_SRC_L4SRV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT | |
| SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL), |
| |
| [SMP_SRC_L5SRV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT | |
| SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL), |
| |
| [SMP_SRC_L6RES] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT | |
| SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL___________ | SMP_VAL_BE_CHK_RUL), |
| |
| [SMP_SRC_HRSHV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT | |
| SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL___________ | SMP_VAL_BE_CHK_RUL), |
| |
| [SMP_SRC_HRSHP] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT | |
| SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL), |
| |
| [SMP_SRC_HRSBO] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | |
| SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | |
| SMP_VAL___________ | SMP_VAL_BE_CHK_RUL), |
| |
| [SMP_SRC_RQFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL_FE_LOG_END | SMP_VAL___________), |
| |
| [SMP_SRC_RSFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL_FE_LOG_END | SMP_VAL___________), |
| |
| [SMP_SRC_TXFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL_FE_LOG_END | SMP_VAL___________), |
| |
| [SMP_SRC_SSFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | |
| SMP_VAL_FE_LOG_END | SMP_VAL___________), |
| }; |
| |
| static const char *fetch_src_names[SMP_SRC_ENTRIES] = { |
| [SMP_SRC_INTRN] = "internal state", |
| [SMP_SRC_LISTN] = "listener", |
| [SMP_SRC_FTEND] = "frontend", |
| [SMP_SRC_L4CLI] = "client address", |
| [SMP_SRC_L5CLI] = "client-side connection", |
| [SMP_SRC_TRACK] = "track counters", |
| [SMP_SRC_L6REQ] = "request buffer", |
| [SMP_SRC_HRQHV] = "HTTP request headers", |
| [SMP_SRC_HRQHP] = "HTTP request", |
| [SMP_SRC_HRQBO] = "HTTP request body", |
| [SMP_SRC_BKEND] = "backend", |
| [SMP_SRC_SERVR] = "server", |
| [SMP_SRC_L4SRV] = "server address", |
| [SMP_SRC_L5SRV] = "server-side connection", |
| [SMP_SRC_L6RES] = "response buffer", |
| [SMP_SRC_HRSHV] = "HTTP response headers", |
| [SMP_SRC_HRSHP] = "HTTP response", |
| [SMP_SRC_HRSBO] = "HTTP response body", |
| [SMP_SRC_RQFIN] = "request buffer statistics", |
| [SMP_SRC_RSFIN] = "response buffer statistics", |
| [SMP_SRC_TXFIN] = "transaction statistics", |
| [SMP_SRC_SSFIN] = "session statistics", |
| }; |
| |
| static const char *fetch_ckp_names[SMP_CKP_ENTRIES] = { |
| [SMP_CKP_FE_CON_ACC] = "frontend tcp-request connection rule", |
| [SMP_CKP_FE_SES_ACC] = "frontend tcp-request session rule", |
| [SMP_CKP_FE_REQ_CNT] = "frontend tcp-request content rule", |
| [SMP_CKP_FE_HRQ_HDR] = "frontend http-request header rule", |
| [SMP_CKP_FE_HRQ_BDY] = "frontend http-request body rule", |
| [SMP_CKP_FE_SET_BCK] = "frontend use-backend rule", |
| [SMP_CKP_BE_REQ_CNT] = "backend tcp-request content rule", |
| [SMP_CKP_BE_HRQ_HDR] = "backend http-request header rule", |
| [SMP_CKP_BE_HRQ_BDY] = "backend http-request body rule", |
| [SMP_CKP_BE_SET_SRV] = "backend use-server, balance or stick-match rule", |
| [SMP_CKP_BE_SRV_CON] = "server source selection", |
| [SMP_CKP_BE_RES_CNT] = "backend tcp-response content rule", |
| [SMP_CKP_BE_HRS_HDR] = "backend http-response header rule", |
| [SMP_CKP_BE_HRS_BDY] = "backend http-response body rule", |
| [SMP_CKP_BE_STO_RUL] = "backend stick-store rule", |
| [SMP_CKP_FE_RES_CNT] = "frontend tcp-response content rule", |
| [SMP_CKP_FE_HRS_HDR] = "frontend http-response header rule", |
| [SMP_CKP_FE_HRS_BDY] = "frontend http-response body rule", |
| [SMP_CKP_FE_LOG_END] = "logs", |
| [SMP_CKP_BE_CHK_RUL] = "backend tcp-check rule", |
| }; |
| |
| /* This function returns the type of the data returned by the sample_expr. |
| * It assumes that the <expr> and all of its converters are properly |
| * initialized. |
| */ |
| inline |
| int smp_expr_output_type(struct sample_expr *expr) |
| { |
| struct sample_conv_expr *smp_expr; |
| |
| if (!LIST_ISEMPTY(&expr->conv_exprs)) { |
| smp_expr = LIST_PREV(&expr->conv_exprs, struct sample_conv_expr *, list); |
| return smp_expr->conv->out_type; |
| } |
| return expr->fetch->out_type; |
| } |
| |
| |
| /* fill the trash with a comma-delimited list of source names for the <use> bit |
| * field which must be composed of a non-null set of SMP_USE_* flags. The return |
| * value is the pointer to the string in the trash buffer. |
| */ |
| const char *sample_src_names(unsigned int use) |
| { |
| int bit; |
| |
| trash.data = 0; |
| trash.area[0] = '\0'; |
| for (bit = 0; bit < SMP_SRC_ENTRIES; bit++) { |
| if (!(use & ~((1 << bit) - 1))) |
| break; /* no more bits */ |
| |
| if (!(use & (1 << bit))) |
| continue; /* bit not set */ |
| |
| trash.data += snprintf(trash.area + trash.data, |
| trash.size - trash.data, "%s%s", |
| (use & ((1 << bit) - 1)) ? "," : "", |
| fetch_src_names[bit]); |
| } |
| return trash.area; |
| } |
| |
| /* return a pointer to the correct sample checkpoint name, or "unknown" when |
| * the flags are invalid. Only the lowest bit is used, higher bits are ignored |
| * if set. |
| */ |
| const char *sample_ckp_names(unsigned int use) |
| { |
| int bit; |
| |
| for (bit = 0; bit < SMP_CKP_ENTRIES; bit++) |
| if (use & (1 << bit)) |
| return fetch_ckp_names[bit]; |
| return "unknown sample check place, please report this bug"; |
| } |
| |
| /* |
| * Registers the sample fetch keyword list <kwl> as a list of valid keywords |
| * for next parsing sessions. The fetch keywords capabilities are also computed |
| * from their ->use field. |
| */ |
| void sample_register_fetches(struct sample_fetch_kw_list *kwl) |
| { |
| struct sample_fetch *sf; |
| int bit; |
| |
| for (sf = kwl->kw; sf->kw != NULL; sf++) { |
| for (bit = 0; bit < SMP_SRC_ENTRIES; bit++) |
| if (sf->use & (1 << bit)) |
| sf->val |= fetch_cap[bit]; |
| } |
| LIST_ADDQ(&sample_fetches.list, &kwl->list); |
| } |
| |
| /* |
| * Registers the sample format coverstion keyword list <pckl> as a list of valid keywords for next |
| * parsing sessions. |
| */ |
| void sample_register_convs(struct sample_conv_kw_list *pckl) |
| { |
| LIST_ADDQ(&sample_convs.list, &pckl->list); |
| } |
| |
| /* |
| * Returns the pointer on sample fetch keyword structure identified by |
| * string of <len> in buffer <kw>. |
| * |
| */ |
| struct sample_fetch *find_sample_fetch(const char *kw, int len) |
| { |
| int index; |
| struct sample_fetch_kw_list *kwl; |
| |
| list_for_each_entry(kwl, &sample_fetches.list, list) { |
| for (index = 0; kwl->kw[index].kw != NULL; index++) { |
| if (strncmp(kwl->kw[index].kw, kw, len) == 0 && |
| kwl->kw[index].kw[len] == '\0') |
| return &kwl->kw[index]; |
| } |
| } |
| return NULL; |
| } |
| |
| /* This function browses the list of available sample fetches. <current> is |
| * the last used sample fetch. If it is the first call, it must set to NULL. |
| * <idx> is the index of the next sample fetch entry. It is used as private |
| * value. It is useless to initiate it. |
| * |
| * It returns always the new fetch_sample entry, and NULL when the end of |
| * the list is reached. |
| */ |
| struct sample_fetch *sample_fetch_getnext(struct sample_fetch *current, int *idx) |
| { |
| struct sample_fetch_kw_list *kwl; |
| struct sample_fetch *base; |
| |
| if (!current) { |
| /* Get first kwl entry. */ |
| kwl = LIST_NEXT(&sample_fetches.list, struct sample_fetch_kw_list *, list); |
| (*idx) = 0; |
| } else { |
| /* Get kwl corresponding to the curret entry. */ |
| base = current + 1 - (*idx); |
| kwl = container_of(base, struct sample_fetch_kw_list, kw); |
| } |
| |
| while (1) { |
| |
| /* Check if kwl is the last entry. */ |
| if (&kwl->list == &sample_fetches.list) |
| return NULL; |
| |
| /* idx contain the next keyword. If it is available, return it. */ |
| if (kwl->kw[*idx].kw) { |
| (*idx)++; |
| return &kwl->kw[(*idx)-1]; |
| } |
| |
| /* get next entry in the main list, and return NULL if the end is reached. */ |
| kwl = LIST_NEXT(&kwl->list, struct sample_fetch_kw_list *, list); |
| |
| /* Set index to 0, ans do one other loop. */ |
| (*idx) = 0; |
| } |
| } |
| |
| /* This function browses the list of available converters. <current> is |
| * the last used converter. If it is the first call, it must set to NULL. |
| * <idx> is the index of the next converter entry. It is used as private |
| * value. It is useless to initiate it. |
| * |
| * It returns always the next sample_conv entry, and NULL when the end of |
| * the list is reached. |
| */ |
| struct sample_conv *sample_conv_getnext(struct sample_conv *current, int *idx) |
| { |
| struct sample_conv_kw_list *kwl; |
| struct sample_conv *base; |
| |
| if (!current) { |
| /* Get first kwl entry. */ |
| kwl = LIST_NEXT(&sample_convs.list, struct sample_conv_kw_list *, list); |
| (*idx) = 0; |
| } else { |
| /* Get kwl corresponding to the curret entry. */ |
| base = current + 1 - (*idx); |
| kwl = container_of(base, struct sample_conv_kw_list, kw); |
| } |
| |
| while (1) { |
| /* Check if kwl is the last entry. */ |
| if (&kwl->list == &sample_convs.list) |
| return NULL; |
| |
| /* idx contain the next keyword. If it is available, return it. */ |
| if (kwl->kw[*idx].kw) { |
| (*idx)++; |
| return &kwl->kw[(*idx)-1]; |
| } |
| |
| /* get next entry in the main list, and return NULL if the end is reached. */ |
| kwl = LIST_NEXT(&kwl->list, struct sample_conv_kw_list *, list); |
| |
| /* Set index to 0, ans do one other loop. */ |
| (*idx) = 0; |
| } |
| } |
| |
| /* |
| * Returns the pointer on sample format conversion keyword structure identified by |
| * string of <len> in buffer <kw>. |
| * |
| */ |
| struct sample_conv *find_sample_conv(const char *kw, int len) |
| { |
| int index; |
| struct sample_conv_kw_list *kwl; |
| |
| list_for_each_entry(kwl, &sample_convs.list, list) { |
| for (index = 0; kwl->kw[index].kw != NULL; index++) { |
| if (strncmp(kwl->kw[index].kw, kw, len) == 0 && |
| kwl->kw[index].kw[len] == '\0') |
| return &kwl->kw[index]; |
| } |
| } |
| return NULL; |
| } |
| |
| /******************************************************************/ |
| /* Sample casts functions */ |
| /******************************************************************/ |
| |
| static int c_ip2int(struct sample *smp) |
| { |
| smp->data.u.sint = ntohl(smp->data.u.ipv4.s_addr); |
| smp->data.type = SMP_T_SINT; |
| return 1; |
| } |
| |
| static int c_ip2str(struct sample *smp) |
| { |
| struct buffer *trash = get_trash_chunk(); |
| |
| if (!inet_ntop(AF_INET, (void *)&smp->data.u.ipv4, trash->area, trash->size)) |
| return 0; |
| |
| trash->data = strlen(trash->area); |
| smp->data.u.str = *trash; |
| smp->data.type = SMP_T_STR; |
| smp->flags &= ~SMP_F_CONST; |
| |
| return 1; |
| } |
| |
| static int c_ip2ipv6(struct sample *smp) |
| { |
| v4tov6(&smp->data.u.ipv6, &smp->data.u.ipv4); |
| smp->data.type = SMP_T_IPV6; |
| return 1; |
| } |
| |
| static int c_ipv62ip(struct sample *smp) |
| { |
| if (!v6tov4(&smp->data.u.ipv4, &smp->data.u.ipv6)) |
| return 0; |
| smp->data.type = SMP_T_IPV4; |
| return 1; |
| } |
| |
| static int c_ipv62str(struct sample *smp) |
| { |
| struct buffer *trash = get_trash_chunk(); |
| |
| if (!inet_ntop(AF_INET6, (void *)&smp->data.u.ipv6, trash->area, trash->size)) |
| return 0; |
| |
| trash->data = strlen(trash->area); |
| smp->data.u.str = *trash; |
| smp->data.type = SMP_T_STR; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| |
| /* |
| static int c_ipv62ip(struct sample *smp) |
| { |
| return v6tov4(&smp->data.u.ipv4, &smp->data.u.ipv6); |
| } |
| */ |
| |
| static int c_int2ip(struct sample *smp) |
| { |
| smp->data.u.ipv4.s_addr = htonl((unsigned int)smp->data.u.sint); |
| smp->data.type = SMP_T_IPV4; |
| return 1; |
| } |
| |
| static int c_int2ipv6(struct sample *smp) |
| { |
| smp->data.u.ipv4.s_addr = htonl((unsigned int)smp->data.u.sint); |
| v4tov6(&smp->data.u.ipv6, &smp->data.u.ipv4); |
| smp->data.type = SMP_T_IPV6; |
| return 1; |
| } |
| |
| static int c_str2addr(struct sample *smp) |
| { |
| if (!buf2ip(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv4)) { |
| if (!buf2ip6(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv6)) |
| return 0; |
| smp->data.type = SMP_T_IPV6; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| smp->data.type = SMP_T_IPV4; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| |
| static int c_str2ip(struct sample *smp) |
| { |
| if (!buf2ip(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv4)) |
| return 0; |
| smp->data.type = SMP_T_IPV4; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| |
| static int c_str2ipv6(struct sample *smp) |
| { |
| if (!buf2ip6(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv6)) |
| return 0; |
| smp->data.type = SMP_T_IPV6; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| |
| /* |
| * The NULL char always enforces the end of string if it is met. |
| * Data is never changed, so we can ignore the CONST case |
| */ |
| static int c_bin2str(struct sample *smp) |
| { |
| int i; |
| |
| for (i = 0; i < smp->data.u.str.data; i++) { |
| if (!smp->data.u.str.area[i]) { |
| smp->data.u.str.data = i; |
| break; |
| } |
| } |
| smp->data.type = SMP_T_STR; |
| return 1; |
| } |
| |
| static int c_int2str(struct sample *smp) |
| { |
| struct buffer *trash = get_trash_chunk(); |
| char *pos; |
| |
| pos = lltoa_r(smp->data.u.sint, trash->area, trash->size); |
| if (!pos) |
| return 0; |
| |
| trash->size = trash->size - (pos - trash->area); |
| trash->area = pos; |
| trash->data = strlen(pos); |
| smp->data.u.str = *trash; |
| smp->data.type = SMP_T_STR; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| |
| /* This function unconditionally duplicates data and removes the "const" flag. |
| * For strings and binary blocks, it also provides a known allocated size with |
| * a length that is capped to the size, and ensures a trailing zero is always |
| * appended for strings. This is necessary for some operations which may |
| * require to extend the length. It returns 0 if it fails, 1 on success. |
| */ |
| int smp_dup(struct sample *smp) |
| { |
| struct buffer *trash; |
| |
| switch (smp->data.type) { |
| case SMP_T_BOOL: |
| case SMP_T_SINT: |
| case SMP_T_ADDR: |
| case SMP_T_IPV4: |
| case SMP_T_IPV6: |
| /* These type are not const. */ |
| break; |
| |
| case SMP_T_METH: |
| if (smp->data.u.meth.meth != HTTP_METH_OTHER) |
| break; |
| /* Fall through */ |
| |
| case SMP_T_STR: |
| trash = get_trash_chunk(); |
| trash->data = smp->data.type == SMP_T_STR ? |
| smp->data.u.str.data : smp->data.u.meth.str.data; |
| if (trash->data > trash->size - 1) |
| trash->data = trash->size - 1; |
| |
| memcpy(trash->area, smp->data.type == SMP_T_STR ? |
| smp->data.u.str.area : smp->data.u.meth.str.area, |
| trash->data); |
| trash->area[trash->data] = 0; |
| smp->data.u.str = *trash; |
| break; |
| |
| case SMP_T_BIN: |
| trash = get_trash_chunk(); |
| trash->data = smp->data.u.str.data; |
| if (trash->data > trash->size) |
| trash->data = trash->size; |
| |
| memcpy(trash->area, smp->data.u.str.area, trash->data); |
| smp->data.u.str = *trash; |
| break; |
| |
| default: |
| /* Other cases are unexpected. */ |
| return 0; |
| } |
| |
| /* remove const flag */ |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| |
| int c_none(struct sample *smp) |
| { |
| return 1; |
| } |
| |
| static int c_str2int(struct sample *smp) |
| { |
| const char *str; |
| const char *end; |
| |
| if (smp->data.u.str.data == 0) |
| return 0; |
| |
| str = smp->data.u.str.area; |
| end = smp->data.u.str.area + smp->data.u.str.data; |
| |
| smp->data.u.sint = read_int64(&str, end); |
| smp->data.type = SMP_T_SINT; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| |
| static int c_str2meth(struct sample *smp) |
| { |
| enum http_meth_t meth; |
| int len; |
| |
| meth = find_http_meth(smp->data.u.str.area, smp->data.u.str.data); |
| if (meth == HTTP_METH_OTHER) { |
| len = smp->data.u.str.data; |
| smp->data.u.meth.str.area = smp->data.u.str.area; |
| smp->data.u.meth.str.data = len; |
| } |
| else |
| smp->flags &= ~SMP_F_CONST; |
| smp->data.u.meth.meth = meth; |
| smp->data.type = SMP_T_METH; |
| return 1; |
| } |
| |
| static int c_meth2str(struct sample *smp) |
| { |
| int len; |
| enum http_meth_t meth; |
| |
| if (smp->data.u.meth.meth == HTTP_METH_OTHER) { |
| /* The method is unknown. Copy the original pointer. */ |
| len = smp->data.u.meth.str.data; |
| smp->data.u.str.area = smp->data.u.meth.str.area; |
| smp->data.u.str.data = len; |
| smp->data.type = SMP_T_STR; |
| } |
| else if (smp->data.u.meth.meth < HTTP_METH_OTHER) { |
| /* The method is known, copy the pointer containing the string. */ |
| meth = smp->data.u.meth.meth; |
| smp->data.u.str.area = http_known_methods[meth].ptr; |
| smp->data.u.str.data = http_known_methods[meth].len; |
| smp->flags |= SMP_F_CONST; |
| smp->data.type = SMP_T_STR; |
| } |
| else { |
| /* Unknown method */ |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int c_addr2bin(struct sample *smp) |
| { |
| struct buffer *chk = get_trash_chunk(); |
| |
| if (smp->data.type == SMP_T_IPV4) { |
| chk->data = 4; |
| memcpy(chk->area, &smp->data.u.ipv4, chk->data); |
| } |
| else if (smp->data.type == SMP_T_IPV6) { |
| chk->data = 16; |
| memcpy(chk->area, &smp->data.u.ipv6, chk->data); |
| } |
| else |
| return 0; |
| |
| smp->data.u.str = *chk; |
| smp->data.type = SMP_T_BIN; |
| return 1; |
| } |
| |
| static int c_int2bin(struct sample *smp) |
| { |
| struct buffer *chk = get_trash_chunk(); |
| |
| *(unsigned long long int *) chk->area = my_htonll(smp->data.u.sint); |
| chk->data = 8; |
| |
| smp->data.u.str = *chk; |
| smp->data.type = SMP_T_BIN; |
| return 1; |
| } |
| |
| |
| /*****************************************************************/ |
| /* Sample casts matrix: */ |
| /* sample_casts[from type][to type] */ |
| /* NULL pointer used for impossible sample casts */ |
| /*****************************************************************/ |
| |
| sample_cast_fct sample_casts[SMP_TYPES][SMP_TYPES] = { |
| /* to: ANY BOOL SINT ADDR IPV4 IPV6 STR BIN METH */ |
| /* from: ANY */ { c_none, c_none, c_none, c_none, c_none, c_none, c_none, c_none, c_none, }, |
| /* BOOL */ { c_none, c_none, c_none, NULL, NULL, NULL, c_int2str, NULL, NULL, }, |
| /* SINT */ { c_none, c_none, c_none, c_int2ip, c_int2ip, c_int2ipv6, c_int2str, c_int2bin, NULL, }, |
| /* ADDR */ { c_none, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, |
| /* IPV4 */ { c_none, NULL, c_ip2int, c_none, c_none, c_ip2ipv6, c_ip2str, c_addr2bin, NULL, }, |
| /* IPV6 */ { c_none, NULL, NULL, c_none, c_ipv62ip,c_none, c_ipv62str, c_addr2bin, NULL, }, |
| /* STR */ { c_none, c_str2int, c_str2int, c_str2addr, c_str2ip, c_str2ipv6, c_none, c_none, c_str2meth, }, |
| /* BIN */ { c_none, NULL, NULL, NULL, NULL, NULL, c_bin2str, c_none, c_str2meth, }, |
| /* METH */ { c_none, NULL, NULL, NULL, NULL, NULL, c_meth2str, c_meth2str, c_none, } |
| }; |
| |
| /* |
| * Parse a sample expression configuration: |
| * fetch keyword followed by format conversion keywords. |
| * Returns a pointer on allocated sample expression structure. |
| * The caller must have set al->ctx. |
| * If <endptr> is non-nul, it will be set to the first unparsed character |
| * (which may be the final '\0') on success. If it is nul, the expression |
| * must be properly terminated by a '\0' otherwise an error is reported. |
| */ |
| struct sample_expr *sample_parse_expr(char **str, int *idx, const char *file, int line, char **err_msg, struct arg_list *al, char **endptr) |
| { |
| const char *begw; /* beginning of word */ |
| const char *endw; /* end of word */ |
| const char *endt; /* end of term */ |
| struct sample_expr *expr; |
| struct sample_fetch *fetch; |
| struct sample_conv *conv; |
| unsigned long prev_type; |
| char *fkw = NULL; |
| char *ckw = NULL; |
| int err_arg; |
| |
| begw = str[*idx]; |
| for (endw = begw; is_idchar(*endw); endw++) |
| ; |
| |
| if (endw == begw) { |
| memprintf(err_msg, "missing fetch method"); |
| goto out_error; |
| } |
| |
| /* keep a copy of the current fetch keyword for error reporting */ |
| fkw = my_strndup(begw, endw - begw); |
| |
| fetch = find_sample_fetch(begw, endw - begw); |
| if (!fetch) { |
| memprintf(err_msg, "unknown fetch method '%s'", fkw); |
| goto out_error; |
| } |
| |
| /* At this point, we have : |
| * - begw : beginning of the keyword |
| * - endw : end of the keyword, first character not part of keyword |
| */ |
| |
| if (fetch->out_type >= SMP_TYPES) { |
| memprintf(err_msg, "returns type of fetch method '%s' is unknown", fkw); |
| goto out_error; |
| } |
| prev_type = fetch->out_type; |
| |
| expr = calloc(1, sizeof(*expr)); |
| if (!expr) |
| goto out_error; |
| |
| LIST_INIT(&(expr->conv_exprs)); |
| expr->fetch = fetch; |
| expr->arg_p = empty_arg_list; |
| |
| /* Note that we call the argument parser even with an empty string, |
| * this allows it to automatically create entries for mandatory |
| * implicit arguments (eg: local proxy name). |
| */ |
| al->kw = expr->fetch->kw; |
| al->conv = NULL; |
| if (make_arg_list(endw, -1, fetch->arg_mask, &expr->arg_p, err_msg, &endt, &err_arg, al) < 0) { |
| memprintf(err_msg, "fetch method '%s' : %s", fkw, *err_msg); |
| goto out_error; |
| } |
| |
| /* now endt is our first char not part of the arg list, typically the |
| * comma after the sample fetch name or after the closing parenthesis, |
| * or the NUL char. |
| */ |
| |
| if (!expr->arg_p) { |
| expr->arg_p = empty_arg_list; |
| } |
| else if (fetch->val_args && !fetch->val_args(expr->arg_p, err_msg)) { |
| memprintf(err_msg, "invalid args in fetch method '%s' : %s", fkw, *err_msg); |
| goto out_error; |
| } |
| |
| /* Now process the converters if any. We have two supported syntaxes |
| * for the converters, which can be combined : |
| * - comma-delimited list of converters just after the keyword and args ; |
| * - one converter per keyword |
| * The combination allows to have each keyword being a comma-delimited |
| * series of converters. |
| * |
| * We want to process the former first, then the latter. For this we start |
| * from the beginning of the supposed place in the exiting conv chain, which |
| * starts at the last comma (endt). |
| */ |
| |
| while (1) { |
| struct sample_conv_expr *conv_expr; |
| int err_arg; |
| int argcnt; |
| |
| if (*endt && *endt != ',') { |
| if (endptr) { |
| /* end found, let's stop here */ |
| break; |
| } |
| if (ckw) |
| memprintf(err_msg, "missing comma after converter '%s'", ckw); |
| else |
| memprintf(err_msg, "missing comma after fetch keyword '%s'", fkw); |
| goto out_error; |
| } |
| |
| /* FIXME: how long should we support such idiocies ? Maybe we |
| * should already warn ? |
| */ |
| while (*endt == ',') /* then trailing commas */ |
| endt++; |
| |
| begw = endt; /* start of converter */ |
| |
| if (!*begw) { |
| /* none ? skip to next string */ |
| (*idx)++; |
| begw = str[*idx]; |
| if (!begw || !*begw) |
| break; |
| } |
| |
| for (endw = begw; is_idchar(*endw); endw++) |
| ; |
| |
| free(ckw); |
| ckw = my_strndup(begw, endw - begw); |
| |
| conv = find_sample_conv(begw, endw - begw); |
| if (!conv) { |
| /* we found an isolated keyword that we don't know, it's not ours */ |
| if (begw == str[*idx]) { |
| endt = begw; |
| break; |
| } |
| memprintf(err_msg, "unknown converter '%s'", ckw); |
| goto out_error; |
| } |
| |
| if (conv->in_type >= SMP_TYPES || conv->out_type >= SMP_TYPES) { |
| memprintf(err_msg, "returns type of converter '%s' is unknown", ckw); |
| goto out_error; |
| } |
| |
| /* If impossible type conversion */ |
| if (!sample_casts[prev_type][conv->in_type]) { |
| memprintf(err_msg, "converter '%s' cannot be applied", ckw); |
| goto out_error; |
| } |
| |
| prev_type = conv->out_type; |
| conv_expr = calloc(1, sizeof(*conv_expr)); |
| if (!conv_expr) |
| goto out_error; |
| |
| LIST_ADDQ(&(expr->conv_exprs), &(conv_expr->list)); |
| conv_expr->conv = conv; |
| |
| al->kw = expr->fetch->kw; |
| al->conv = conv_expr->conv->kw; |
| argcnt = make_arg_list(endw, -1, conv->arg_mask, &conv_expr->arg_p, err_msg, &endt, &err_arg, al); |
| if (argcnt < 0) { |
| memprintf(err_msg, "invalid arg %d in converter '%s' : %s", err_arg+1, ckw, *err_msg); |
| goto out_error; |
| } |
| |
| if (argcnt && !conv->arg_mask) { |
| memprintf(err_msg, "converter '%s' does not support any args", ckw); |
| goto out_error; |
| } |
| |
| if (!conv_expr->arg_p) |
| conv_expr->arg_p = empty_arg_list; |
| |
| if (conv->val_args && !conv->val_args(conv_expr->arg_p, conv, file, line, err_msg)) { |
| memprintf(err_msg, "invalid args in converter '%s' : %s", ckw, *err_msg); |
| goto out_error; |
| } |
| } |
| |
| if (endptr) { |
| /* end found, let's stop here */ |
| *endptr = (char *)endt; |
| } |
| |
| out: |
| free(fkw); |
| free(ckw); |
| return expr; |
| |
| out_error: |
| /* TODO: prune_sample_expr(expr); */ |
| expr = NULL; |
| goto out; |
| } |
| |
| /* |
| * Process a fetch + format conversion of defined by the sample expression <expr> |
| * on request or response considering the <opt> parameter. |
| * Returns a pointer on a typed sample structure containing the result or NULL if |
| * sample is not found or when format conversion failed. |
| * If <p> is not null, function returns results in structure pointed by <p>. |
| * If <p> is null, functions returns a pointer on a static sample structure. |
| * |
| * Note: the fetch functions are required to properly set the return type. The |
| * conversion functions must do so too. However the cast functions do not need |
| * to since they're made to cast mutiple types according to what is required. |
| * |
| * The caller may indicate in <opt> if it considers the result final or not. |
| * The caller needs to check the SMP_F_MAY_CHANGE flag in p->flags to verify |
| * if the result is stable or not, according to the following table : |
| * |
| * return MAY_CHANGE FINAL Meaning for the sample |
| * NULL 0 * Not present and will never be (eg: header) |
| * NULL 1 0 Not present yet, could change (eg: POST param) |
| * NULL 1 1 Not present yet, will not change anymore |
| * smp 0 * Present and will not change (eg: header) |
| * smp 1 0 Present, may change (eg: request length) |
| * smp 1 1 Present, last known value (eg: request length) |
| */ |
| struct sample *sample_process(struct proxy *px, struct session *sess, |
| struct stream *strm, unsigned int opt, |
| struct sample_expr *expr, struct sample *p) |
| { |
| struct sample_conv_expr *conv_expr; |
| |
| if (p == NULL) { |
| p = &temp_smp; |
| memset(p, 0, sizeof(*p)); |
| } |
| |
| smp_set_owner(p, px, sess, strm, opt); |
| if (!expr->fetch->process(expr->arg_p, p, expr->fetch->kw, expr->fetch->private)) |
| return NULL; |
| |
| list_for_each_entry(conv_expr, &expr->conv_exprs, list) { |
| /* we want to ensure that p->type can be casted into |
| * conv_expr->conv->in_type. We have 3 possibilities : |
| * - NULL => not castable. |
| * - c_none => nothing to do (let's optimize it) |
| * - other => apply cast and prepare to fail |
| */ |
| if (!sample_casts[p->data.type][conv_expr->conv->in_type]) |
| return NULL; |
| |
| if (sample_casts[p->data.type][conv_expr->conv->in_type] != c_none && |
| !sample_casts[p->data.type][conv_expr->conv->in_type](p)) |
| return NULL; |
| |
| /* OK cast succeeded */ |
| |
| if (!conv_expr->conv->process(conv_expr->arg_p, p, conv_expr->conv->private)) |
| return NULL; |
| } |
| return p; |
| } |
| |
| /* |
| * Resolve all remaining arguments in proxy <p>. Returns the number of |
| * errors or 0 if everything is fine. |
| */ |
| int smp_resolve_args(struct proxy *p) |
| { |
| struct arg_list *cur, *bak; |
| const char *ctx, *where; |
| const char *conv_ctx, *conv_pre, *conv_pos; |
| struct userlist *ul; |
| struct my_regex *reg; |
| struct arg *arg; |
| int cfgerr = 0; |
| int rflags; |
| |
| list_for_each_entry_safe(cur, bak, &p->conf.args.list, list) { |
| struct proxy *px; |
| struct server *srv; |
| struct stktable *t; |
| char *pname, *sname, *stktname; |
| char *err; |
| |
| arg = cur->arg; |
| |
| /* prepare output messages */ |
| conv_pre = conv_pos = conv_ctx = ""; |
| if (cur->conv) { |
| conv_ctx = cur->conv; |
| conv_pre = "conversion keyword '"; |
| conv_pos = "' for "; |
| } |
| |
| where = "in"; |
| ctx = "sample fetch keyword"; |
| switch (cur->ctx) { |
| case ARGC_STK: where = "in stick rule in"; break; |
| case ARGC_TRK: where = "in tracking rule in"; break; |
| case ARGC_LOG: where = "in log-format string in"; break; |
| case ARGC_LOGSD: where = "in log-format-sd string in"; break; |
| case ARGC_HRQ: where = "in http-request header format string in"; break; |
| case ARGC_HRS: where = "in http-response header format string in"; break; |
| case ARGC_UIF: where = "in unique-id-format string in"; break; |
| case ARGC_RDR: where = "in redirect format string in"; break; |
| case ARGC_CAP: where = "in capture rule in"; break; |
| case ARGC_ACL: ctx = "ACL keyword"; break; |
| case ARGC_SRV: where = "in server directive in"; break; |
| case ARGC_SPOE: where = "in spoe-message directive in"; break; |
| case ARGC_HERR: where = "in http-error directive in"; break; |
| } |
| |
| /* set a few default settings */ |
| px = p; |
| pname = p->id; |
| |
| switch (arg->type) { |
| case ARGT_SRV: |
| if (!arg->data.str.data) { |
| ha_alert("parsing [%s:%d] : missing server name in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", |
| cur->file, cur->line, |
| cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); |
| cfgerr++; |
| continue; |
| } |
| |
| /* we support two formats : "bck/srv" and "srv" */ |
| sname = strrchr(arg->data.str.area, '/'); |
| |
| if (sname) { |
| *sname++ = '\0'; |
| pname = arg->data.str.area; |
| |
| px = proxy_be_by_name(pname); |
| if (!px) { |
| ha_alert("parsing [%s:%d] : unable to find proxy '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", |
| cur->file, cur->line, pname, |
| cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); |
| cfgerr++; |
| break; |
| } |
| } |
| else |
| sname = arg->data.str.area; |
| |
| srv = findserver(px, sname); |
| if (!srv) { |
| ha_alert("parsing [%s:%d] : unable to find server '%s' in proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", |
| cur->file, cur->line, sname, pname, |
| cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); |
| cfgerr++; |
| break; |
| } |
| |
| free(arg->data.str.area); |
| arg->data.str.area = NULL; |
| arg->unresolved = 0; |
| arg->data.srv = srv; |
| break; |
| |
| case ARGT_FE: |
| if (arg->data.str.data) { |
| pname = arg->data.str.area; |
| px = proxy_fe_by_name(pname); |
| } |
| |
| if (!px) { |
| ha_alert("parsing [%s:%d] : unable to find frontend '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", |
| cur->file, cur->line, pname, |
| cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); |
| cfgerr++; |
| break; |
| } |
| |
| if (!(px->cap & PR_CAP_FE)) { |
| ha_alert("parsing [%s:%d] : proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s', has not frontend capability.\n", |
| cur->file, cur->line, pname, |
| cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); |
| cfgerr++; |
| break; |
| } |
| |
| free(arg->data.str.area); |
| arg->data.str.area = NULL; |
| arg->unresolved = 0; |
| arg->data.prx = px; |
| break; |
| |
| case ARGT_BE: |
| if (arg->data.str.data) { |
| pname = arg->data.str.area; |
| px = proxy_be_by_name(pname); |
| } |
| |
| if (!px) { |
| ha_alert("parsing [%s:%d] : unable to find backend '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", |
| cur->file, cur->line, pname, |
| cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); |
| cfgerr++; |
| break; |
| } |
| |
| if (!(px->cap & PR_CAP_BE)) { |
| ha_alert("parsing [%s:%d] : proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s', has not backend capability.\n", |
| cur->file, cur->line, pname, |
| cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); |
| cfgerr++; |
| break; |
| } |
| |
| free(arg->data.str.area); |
| arg->data.str.area = NULL; |
| arg->unresolved = 0; |
| arg->data.prx = px; |
| break; |
| |
| case ARGT_TAB: |
| if (arg->data.str.data) |
| stktname = arg->data.str.area; |
| else |
| stktname = px->id; |
| |
| t = stktable_find_by_name(stktname); |
| if (!t) { |
| ha_alert("parsing [%s:%d] : unable to find table '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", |
| cur->file, cur->line, stktname, |
| cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); |
| cfgerr++; |
| break; |
| } |
| |
| if (!t->size) { |
| ha_alert("parsing [%s:%d] : no table in proxy '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", |
| cur->file, cur->line, stktname, |
| cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); |
| cfgerr++; |
| break; |
| } |
| |
| if (t->proxy && (p->bind_proc & ~t->proxy->bind_proc)) { |
| ha_alert("parsing [%s:%d] : stick-table '%s' not present on all processes covered by proxy '%s'.\n", |
| cur->file, cur->line, t->proxy->id, p->id); |
| cfgerr++; |
| break; |
| } |
| |
| if (!in_proxies_list(t->proxies_list, p)) { |
| p->next_stkt_ref = t->proxies_list; |
| t->proxies_list = p; |
| } |
| |
| free(arg->data.str.area); |
| arg->data.str.area = NULL; |
| arg->unresolved = 0; |
| arg->data.t = t; |
| break; |
| |
| case ARGT_USR: |
| if (!arg->data.str.data) { |
| ha_alert("parsing [%s:%d] : missing userlist name in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", |
| cur->file, cur->line, |
| cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); |
| cfgerr++; |
| break; |
| } |
| |
| if (p->uri_auth && p->uri_auth->userlist && |
| !strcmp(p->uri_auth->userlist->name, arg->data.str.area)) |
| ul = p->uri_auth->userlist; |
| else |
| ul = auth_find_userlist(arg->data.str.area); |
| |
| if (!ul) { |
| ha_alert("parsing [%s:%d] : unable to find userlist '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", |
| cur->file, cur->line, |
| arg->data.str.area, |
| cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); |
| cfgerr++; |
| break; |
| } |
| |
| free(arg->data.str.area); |
| arg->data.str.area = NULL; |
| arg->unresolved = 0; |
| arg->data.usr = ul; |
| break; |
| |
| case ARGT_REG: |
| if (!arg->data.str.data) { |
| ha_alert("parsing [%s:%d] : missing regex in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", |
| cur->file, cur->line, |
| cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); |
| cfgerr++; |
| continue; |
| } |
| |
| rflags = 0; |
| rflags |= (arg->type_flags & ARGF_REG_ICASE) ? REG_ICASE : 0; |
| err = NULL; |
| |
| if (!(reg = regex_comp(arg->data.str.area, !(rflags & REG_ICASE), 1 /* capture substr */, &err))) { |
| ha_alert("parsing [%s:%d] : error in regex '%s' in arg %d of %s%s%s%s '%s' %s proxy '%s' : %s.\n", |
| cur->file, cur->line, |
| arg->data.str.area, |
| cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id, err); |
| cfgerr++; |
| continue; |
| } |
| |
| free(arg->data.str.area); |
| arg->data.str.area = NULL; |
| arg->unresolved = 0; |
| arg->data.reg = reg; |
| break; |
| |
| |
| } |
| |
| LIST_DEL(&cur->list); |
| free(cur); |
| } /* end of args processing */ |
| |
| return cfgerr; |
| } |
| |
| /* |
| * Process a fetch + format conversion as defined by the sample expression |
| * <expr> on request or response considering the <opt> parameter. The output is |
| * not explicitly set to <smp_type>, but shall be compatible with it as |
| * specified by 'sample_casts' table. If a stable sample can be fetched, or an |
| * unstable one when <opt> contains SMP_OPT_FINAL, the sample is converted and |
| * returned without the SMP_F_MAY_CHANGE flag. If an unstable sample is found |
| * and <opt> does not contain SMP_OPT_FINAL, then the sample is returned as-is |
| * with its SMP_F_MAY_CHANGE flag so that the caller can check it and decide to |
| * take actions (eg: wait longer). If a sample could not be found or could not |
| * be converted, NULL is returned. The caller MUST NOT use the sample if the |
| * SMP_F_MAY_CHANGE flag is present, as it is used only as a hint that there is |
| * still hope to get it after waiting longer, and is not converted to string. |
| * The possible output combinations are the following : |
| * |
| * return MAY_CHANGE FINAL Meaning for the sample |
| * NULL * * Not present and will never be (eg: header) |
| * smp 0 * Final value converted (eg: header) |
| * smp 1 0 Not present yet, may appear later (eg: header) |
| * smp 1 1 never happens (either flag is cleared on output) |
| */ |
| struct sample *sample_fetch_as_type(struct proxy *px, struct session *sess, |
| struct stream *strm, unsigned int opt, |
| struct sample_expr *expr, int smp_type) |
| { |
| struct sample *smp = &temp_smp; |
| |
| memset(smp, 0, sizeof(*smp)); |
| |
| if (!sample_process(px, sess, strm, opt, expr, smp)) { |
| if ((smp->flags & SMP_F_MAY_CHANGE) && !(opt & SMP_OPT_FINAL)) |
| return smp; |
| return NULL; |
| } |
| |
| if (!sample_casts[smp->data.type][smp_type]) |
| return NULL; |
| |
| if (!sample_casts[smp->data.type][smp_type](smp)) |
| return NULL; |
| |
| smp->flags &= ~SMP_F_MAY_CHANGE; |
| return smp; |
| } |
| |
| static void release_sample_arg(struct arg *p) |
| { |
| struct arg *p_back = p; |
| |
| if (!p) |
| return; |
| |
| while (p->type != ARGT_STOP) { |
| if (p->type == ARGT_STR || p->unresolved) { |
| free(p->data.str.area); |
| p->data.str.area = NULL; |
| p->unresolved = 0; |
| } |
| else if (p->type == ARGT_REG) { |
| regex_free(p->data.reg); |
| p->data.reg = NULL; |
| } |
| p++; |
| } |
| |
| if (p_back != empty_arg_list) |
| free(p_back); |
| } |
| |
| void release_sample_expr(struct sample_expr *expr) |
| { |
| struct sample_conv_expr *conv_expr, *conv_exprb; |
| |
| if (!expr) |
| return; |
| |
| list_for_each_entry_safe(conv_expr, conv_exprb, &expr->conv_exprs, list) |
| release_sample_arg(conv_expr->arg_p); |
| release_sample_arg(expr->arg_p); |
| free(expr); |
| } |
| |
| /*****************************************************************/ |
| /* Sample format convert functions */ |
| /* These functions set the data type on return. */ |
| /*****************************************************************/ |
| |
| static int sample_conv_debug(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| int i; |
| struct sample tmp; |
| struct buffer *buf; |
| struct sink *sink; |
| struct ist line; |
| char *pfx; |
| |
| buf = alloc_trash_chunk(); |
| if (!buf) |
| goto end; |
| |
| sink = (struct sink *)arg_p[1].data.str.area; |
| BUG_ON(!sink); |
| |
| pfx = arg_p[0].data.str.area; |
| BUG_ON(!pfx); |
| |
| chunk_printf(buf, "[debug] %s: type=%s ", pfx, smp_to_type[smp->data.type]); |
| if (!sample_casts[smp->data.type][SMP_T_STR]) |
| goto nocast; |
| |
| /* Copy sample fetch. This puts the sample as const, the |
| * cast will copy data if a transformation is required. |
| */ |
| memcpy(&tmp, smp, sizeof(struct sample)); |
| tmp.flags = SMP_F_CONST; |
| |
| if (!sample_casts[smp->data.type][SMP_T_STR](&tmp)) |
| goto nocast; |
| |
| /* Display the displayable chars*. */ |
| b_putchr(buf, '<'); |
| for (i = 0; i < tmp.data.u.str.data; i++) { |
| if (isprint((unsigned char)tmp.data.u.str.area[i])) |
| b_putchr(buf, tmp.data.u.str.area[i]); |
| else |
| b_putchr(buf, '.'); |
| } |
| b_putchr(buf, '>'); |
| |
| done: |
| line = ist2(buf->area, buf->data); |
| sink_write(sink, &line, 1, 0, 0, NULL, NULL, NULL); |
| end: |
| free_trash_chunk(buf); |
| return 1; |
| nocast: |
| chunk_appendf(buf, "(undisplayable)"); |
| goto done; |
| } |
| |
| // This function checks the "debug" converter's arguments. |
| static int smp_check_debug(struct arg *args, struct sample_conv *conv, |
| const char *file, int line, char **err) |
| { |
| const char *name = "buf0"; |
| struct sink *sink = NULL; |
| |
| if (args[0].type != ARGT_STR) { |
| /* optional prefix */ |
| args[0].data.str.area = ""; |
| args[0].data.str.data = 0; |
| } |
| |
| if (args[1].type == ARGT_STR) |
| name = args[1].data.str.area; |
| |
| sink = sink_find(name); |
| if (!sink) { |
| memprintf(err, "No such sink '%s'", name); |
| return 0; |
| } |
| |
| args[1].data.str.area = (char *)sink; |
| args[1].data.str.data = 0; // that's not a string anymore |
| return 1; |
| } |
| |
| static int sample_conv_base642bin(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| struct buffer *trash = get_trash_chunk(); |
| int bin_len; |
| |
| trash->data = 0; |
| bin_len = base64dec(smp->data.u.str.area, smp->data.u.str.data, |
| trash->area, trash->size); |
| if (bin_len < 0) |
| return 0; |
| |
| trash->data = bin_len; |
| smp->data.u.str = *trash; |
| smp->data.type = SMP_T_BIN; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| |
| static int sample_conv_bin2base64(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| struct buffer *trash = get_trash_chunk(); |
| int b64_len; |
| |
| trash->data = 0; |
| b64_len = a2base64(smp->data.u.str.area, smp->data.u.str.data, |
| trash->area, trash->size); |
| if (b64_len < 0) |
| return 0; |
| |
| trash->data = b64_len; |
| smp->data.u.str = *trash; |
| smp->data.type = SMP_T_STR; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| |
| static int sample_conv_sha1(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| blk_SHA_CTX ctx; |
| struct buffer *trash = get_trash_chunk(); |
| |
| memset(&ctx, 0, sizeof(ctx)); |
| |
| blk_SHA1_Init(&ctx); |
| blk_SHA1_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data); |
| blk_SHA1_Final((unsigned char *) trash->area, &ctx); |
| |
| trash->data = 20; |
| smp->data.u.str = *trash; |
| smp->data.type = SMP_T_BIN; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| |
| #ifdef USE_OPENSSL |
| static int smp_check_sha2(struct arg *args, struct sample_conv *conv, |
| const char *file, int line, char **err) |
| { |
| if (args[0].type == ARGT_STOP) |
| return 1; |
| if (args[0].type != ARGT_SINT) { |
| memprintf(err, "Invalid type '%s'", arg_type_names[args[0].type]); |
| return 0; |
| } |
| |
| switch (args[0].data.sint) { |
| case 224: |
| case 256: |
| case 384: |
| case 512: |
| /* this is okay */ |
| return 1; |
| default: |
| memprintf(err, "Unsupported number of bits: '%lld'", args[0].data.sint); |
| return 0; |
| } |
| } |
| |
| static int sample_conv_sha2(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| struct buffer *trash = get_trash_chunk(); |
| int bits = 256; |
| if (arg_p && arg_p->data.sint) |
| bits = arg_p->data.sint; |
| |
| switch (bits) { |
| case 224: { |
| SHA256_CTX ctx; |
| |
| memset(&ctx, 0, sizeof(ctx)); |
| |
| SHA224_Init(&ctx); |
| SHA224_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data); |
| SHA224_Final((unsigned char *) trash->area, &ctx); |
| trash->data = SHA224_DIGEST_LENGTH; |
| break; |
| } |
| case 256: { |
| SHA256_CTX ctx; |
| |
| memset(&ctx, 0, sizeof(ctx)); |
| |
| SHA256_Init(&ctx); |
| SHA256_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data); |
| SHA256_Final((unsigned char *) trash->area, &ctx); |
| trash->data = SHA256_DIGEST_LENGTH; |
| break; |
| } |
| case 384: { |
| SHA512_CTX ctx; |
| |
| memset(&ctx, 0, sizeof(ctx)); |
| |
| SHA384_Init(&ctx); |
| SHA384_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data); |
| SHA384_Final((unsigned char *) trash->area, &ctx); |
| trash->data = SHA384_DIGEST_LENGTH; |
| break; |
| } |
| case 512: { |
| SHA512_CTX ctx; |
| |
| memset(&ctx, 0, sizeof(ctx)); |
| |
| SHA512_Init(&ctx); |
| SHA512_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data); |
| SHA512_Final((unsigned char *) trash->area, &ctx); |
| trash->data = SHA512_DIGEST_LENGTH; |
| break; |
| } |
| default: |
| return 0; |
| } |
| |
| smp->data.u.str = *trash; |
| smp->data.type = SMP_T_BIN; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| |
| static inline int sample_conv_var2smp_str(const struct arg *arg, struct sample *smp) |
| { |
| switch (arg->type) { |
| case ARGT_STR: |
| smp->data.type = SMP_T_STR; |
| smp->data.u.str = arg->data.str; |
| return 1; |
| case ARGT_VAR: |
| if (!vars_get_by_desc(&arg->data.var, smp)) |
| return 0; |
| if (!sample_casts[smp->data.type][SMP_T_STR]) |
| return 0; |
| if (!sample_casts[smp->data.type][SMP_T_STR](smp)) |
| return 0; |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000100fL) |
| static int check_aes_gcm(struct arg *args, struct sample_conv *conv, |
| const char *file, int line, char **err) |
| { |
| switch(args[0].data.sint) { |
| case 128: |
| case 192: |
| case 256: |
| break; |
| default: |
| memprintf(err, "key size must be 128, 192 or 256 (bits)."); |
| return 0; |
| } |
| /* Try to decode a variable. */ |
| vars_check_arg(&args[1], NULL); |
| vars_check_arg(&args[2], NULL); |
| vars_check_arg(&args[3], NULL); |
| return 1; |
| } |
| |
| /* Arguments: AES size in bits, nonce, key, tag. The last three arguments are base64 encoded */ |
| static int sample_conv_aes_gcm_dec(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| struct sample nonce, key, aead_tag; |
| struct buffer *smp_trash, *smp_trash_alloc; |
| EVP_CIPHER_CTX *ctx; |
| int dec_size, ret; |
| |
| smp_set_owner(&nonce, smp->px, smp->sess, smp->strm, smp->opt); |
| if (!sample_conv_var2smp_str(&arg_p[1], &nonce)) |
| return 0; |
| |
| smp_set_owner(&key, smp->px, smp->sess, smp->strm, smp->opt); |
| if (!sample_conv_var2smp_str(&arg_p[2], &key)) |
| return 0; |
| |
| smp_set_owner(&aead_tag, smp->px, smp->sess, smp->strm, smp->opt); |
| if (!sample_conv_var2smp_str(&arg_p[3], &aead_tag)) |
| return 0; |
| |
| smp_trash = get_trash_chunk(); |
| smp_trash_alloc = alloc_trash_chunk(); |
| if (!smp_trash_alloc) |
| return 0; |
| |
| ctx = EVP_CIPHER_CTX_new(); |
| |
| if (!ctx) |
| goto err; |
| |
| dec_size = base64dec(nonce.data.u.str.area, nonce.data.u.str.data, smp_trash->area, smp_trash->size); |
| if (dec_size < 0) |
| goto err; |
| smp_trash->data = dec_size; |
| |
| /* Set cipher type and mode */ |
| switch(arg_p[0].data.sint) { |
| case 128: |
| EVP_DecryptInit_ex(ctx, EVP_aes_128_gcm(), NULL, NULL, NULL); |
| break; |
| case 192: |
| EVP_DecryptInit_ex(ctx, EVP_aes_192_gcm(), NULL, NULL, NULL); |
| break; |
| case 256: |
| EVP_DecryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL); |
| break; |
| } |
| |
| EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, smp_trash->data, NULL); |
| |
| /* Initialise IV */ |
| if(!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, (unsigned char *) smp_trash->area)) |
| goto err; |
| |
| dec_size = base64dec(key.data.u.str.area, key.data.u.str.data, smp_trash->area, smp_trash->size); |
| if (dec_size < 0) |
| goto err; |
| smp_trash->data = dec_size; |
| |
| /* Initialise key */ |
| if (!EVP_DecryptInit_ex(ctx, NULL, NULL, (unsigned char *) smp_trash->area, NULL)) |
| goto err; |
| |
| if (!EVP_DecryptUpdate(ctx, (unsigned char *) smp_trash->area, (int *) &smp_trash->data, |
| (unsigned char *) smp->data.u.str.area, (int) smp->data.u.str.data)) |
| goto err; |
| |
| dec_size = base64dec(aead_tag.data.u.str.area, aead_tag.data.u.str.data, smp_trash_alloc->area, smp_trash_alloc->size); |
| if (dec_size < 0) |
| goto err; |
| smp_trash_alloc->data = dec_size; |
| dec_size = smp_trash->data; |
| |
| EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, smp_trash_alloc->data, (void *) smp_trash_alloc->area); |
| ret = EVP_DecryptFinal_ex(ctx, (unsigned char *) smp_trash->area + smp_trash->data, (int *) &smp_trash->data); |
| |
| if (ret <= 0) |
| goto err; |
| |
| smp->data.u.str.data = dec_size + smp_trash->data; |
| smp->data.u.str.area = smp_trash->area; |
| smp->data.type = SMP_T_BIN; |
| smp->flags &= ~SMP_F_CONST; |
| free_trash_chunk(smp_trash_alloc); |
| return 1; |
| |
| err: |
| free_trash_chunk(smp_trash_alloc); |
| return 0; |
| } |
| #endif /* HA_OPENSSL_VERSION_NUMBER */ |
| |
| static int check_crypto_digest(struct arg *args, struct sample_conv *conv, |
| const char *file, int line, char **err) |
| { |
| const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area); |
| |
| if (evp) |
| return 1; |
| |
| memprintf(err, "algorithm must be a valid OpenSSL message digest name."); |
| return 0; |
| } |
| |
| static int sample_conv_crypto_digest(const struct arg *args, struct sample *smp, void *private) |
| { |
| struct buffer *trash = get_trash_chunk(); |
| unsigned char *md = (unsigned char*) trash->area; |
| unsigned int md_len = trash->size; |
| EVP_MD_CTX *ctx = EVP_MD_CTX_new(); |
| const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area); |
| |
| if (!ctx) |
| return 0; |
| |
| if (!EVP_DigestInit_ex(ctx, evp, NULL) || |
| !EVP_DigestUpdate(ctx, smp->data.u.str.area, smp->data.u.str.data) || |
| !EVP_DigestFinal_ex(ctx, md, &md_len)) { |
| EVP_MD_CTX_free(ctx); |
| return 0; |
| } |
| |
| EVP_MD_CTX_free(ctx); |
| |
| trash->data = md_len; |
| smp->data.u.str = *trash; |
| smp->data.type = SMP_T_BIN; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| |
| static int check_crypto_hmac(struct arg *args, struct sample_conv *conv, |
| const char *file, int line, char **err) |
| { |
| if (!check_crypto_digest(args, conv, file, line, err)) |
| return 0; |
| |
| vars_check_arg(&args[1], NULL); |
| return 1; |
| } |
| |
| static int sample_conv_crypto_hmac(const struct arg *args, struct sample *smp, void *private) |
| { |
| struct sample key; |
| struct buffer *trash, *key_trash; |
| unsigned char *md; |
| unsigned int md_len; |
| const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area); |
| int dec_size; |
| |
| smp_set_owner(&key, smp->px, smp->sess, smp->strm, smp->opt); |
| if (!sample_conv_var2smp_str(&args[1], &key)) |
| return 0; |
| |
| trash = get_trash_chunk(); |
| key_trash = alloc_trash_chunk(); |
| if (!key_trash) |
| return 0; |
| |
| dec_size = base64dec(key.data.u.str.area, key.data.u.str.data, key_trash->area, key_trash->size); |
| if (dec_size < 0) |
| goto err; |
| |
| md = (unsigned char*) trash->area; |
| md_len = trash->size; |
| if (!HMAC(evp, key_trash->area, dec_size, (const unsigned char*) smp->data.u.str.area, smp->data.u.str.data, md, &md_len)) |
| goto err; |
| |
| free_trash_chunk(key_trash); |
| |
| trash->data = md_len; |
| smp->data.u.str = *trash; |
| smp->data.type = SMP_T_BIN; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| |
| err: |
| free_trash_chunk(key_trash); |
| return 0; |
| } |
| |
| #endif /* USE_OPENSSL */ |
| |
| static int sample_conv_bin2hex(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| struct buffer *trash = get_trash_chunk(); |
| unsigned char c; |
| int ptr = 0; |
| |
| trash->data = 0; |
| while (ptr < smp->data.u.str.data && trash->data <= trash->size - 2) { |
| c = smp->data.u.str.area[ptr++]; |
| trash->area[trash->data++] = hextab[(c >> 4) & 0xF]; |
| trash->area[trash->data++] = hextab[c & 0xF]; |
| } |
| smp->data.u.str = *trash; |
| smp->data.type = SMP_T_STR; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| |
| static int sample_conv_hex2int(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| long long int n = 0; |
| int i, c; |
| |
| for (i = 0; i < smp->data.u.str.data; i++) { |
| if ((c = hex2i(smp->data.u.str.area[i])) < 0) |
| return 0; |
| n = (n << 4) + c; |
| } |
| |
| smp->data.u.sint = n; |
| smp->data.type = SMP_T_SINT; |
| smp->flags &= ~SMP_F_CONST; |
| return 1; |
| } |
| |
| /* hashes the binary input into a 32-bit unsigned int */ |
| static int sample_conv_djb2(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| smp->data.u.sint = hash_djb2(smp->data.u.str.area, |
| smp->data.u.str.data); |
| if (arg_p && arg_p->data.sint) |
| smp->data.u.sint = full_hash(smp->data.u.sint); |
| smp->data.type = SMP_T_SINT; |
| return 1; |
| } |
| |
| static int sample_conv_length(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| int i = smp->data.u.str.data; |
| smp->data.u.sint = i; |
| smp->data.type = SMP_T_SINT; |
| return 1; |
| } |
| |
| |
| static int sample_conv_str2lower(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| int i; |
| |
| if (!smp_make_rw(smp)) |
| return 0; |
| |
| for (i = 0; i < smp->data.u.str.data; i++) { |
| if ((smp->data.u.str.area[i] >= 'A') && (smp->data.u.str.area[i] <= 'Z')) |
| smp->data.u.str.area[i] += 'a' - 'A'; |
| } |
| return 1; |
| } |
| |
| static int sample_conv_str2upper(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| int i; |
| |
| if (!smp_make_rw(smp)) |
| return 0; |
| |
| for (i = 0; i < smp->data.u.str.data; i++) { |
| if ((smp->data.u.str.area[i] >= 'a') && (smp->data.u.str.area[i] <= 'z')) |
| smp->data.u.str.area[i] += 'A' - 'a'; |
| } |
| return 1; |
| } |
| |
| /* takes the IPv4 mask in args[0] and an optional IPv6 mask in args[1] */ |
| static int sample_conv_ipmask(const struct arg *args, struct sample *smp, void *private) |
| { |
| /* Attempt to convert to IPv4 to apply the correct mask. */ |
| c_ipv62ip(smp); |
| |
| if (smp->data.type == SMP_T_IPV4) { |
| smp->data.u.ipv4.s_addr &= args[0].data.ipv4.s_addr; |
| smp->data.type = SMP_T_IPV4; |
| } |
| else if (smp->data.type == SMP_T_IPV6) { |
| /* IPv6 cannot be converted without an IPv6 mask. */ |
| if (args[1].type != ARGT_IPV6) |
| return 0; |
| |
| write_u64(&smp->data.u.ipv6.s6_addr[0], |
| read_u64(&smp->data.u.ipv6.s6_addr[0]) & read_u64(&args[1].data.ipv6.s6_addr[0])); |
| write_u64(&smp->data.u.ipv6.s6_addr[8], |
| read_u64(&smp->data.u.ipv6.s6_addr[8]) & read_u64(&args[1].data.ipv6.s6_addr[8])); |
| smp->data.type = SMP_T_IPV6; |
| } |
| |
| return 1; |
| } |
| |
| /* takes an UINT value on input supposed to represent the time since EPOCH, |
| * adds an optional offset found in args[1] and emits a string representing |
| * the local time in the format specified in args[1] using strftime(). |
| */ |
| static int sample_conv_ltime(const struct arg *args, struct sample *smp, void *private) |
| { |
| struct buffer *temp; |
| /* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */ |
| time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL; |
| struct tm *tm; |
| |
| /* add offset */ |
| if (args[1].type == ARGT_SINT) |
| curr_date += args[1].data.sint; |
| |
| tm = localtime(&curr_date); |
| if (!tm) |
| return 0; |
| temp = get_trash_chunk(); |
| temp->data = strftime(temp->area, temp->size, args[0].data.str.area, |
| tm); |
| smp->data.u.str = *temp; |
| smp->data.type = SMP_T_STR; |
| return 1; |
| } |
| |
| /* hashes the binary input into a 32-bit unsigned int */ |
| static int sample_conv_sdbm(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| smp->data.u.sint = hash_sdbm(smp->data.u.str.area, |
| smp->data.u.str.data); |
| if (arg_p && arg_p->data.sint) |
| smp->data.u.sint = full_hash(smp->data.u.sint); |
| smp->data.type = SMP_T_SINT; |
| return 1; |
| } |
| |
| /* takes an UINT value on input supposed to represent the time since EPOCH, |
| * adds an optional offset found in args[1] and emits a string representing |
| * the UTC date in the format specified in args[1] using strftime(). |
| */ |
| static int sample_conv_utime(const struct arg *args, struct sample *smp, void *private) |
| { |
| struct buffer *temp; |
| /* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */ |
| time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL; |
| struct tm *tm; |
| |
| /* add offset */ |
| if (args[1].type == ARGT_SINT) |
| curr_date += args[1].data.sint; |
| |
| tm = gmtime(&curr_date); |
| if (!tm) |
| return 0; |
| temp = get_trash_chunk(); |
| temp->data = strftime(temp->area, temp->size, args[0].data.str.area, |
| tm); |
| smp->data.u.str = *temp; |
| smp->data.type = SMP_T_STR; |
| return 1; |
| } |
| |
| /* hashes the binary input into a 32-bit unsigned int */ |
| static int sample_conv_wt6(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| smp->data.u.sint = hash_wt6(smp->data.u.str.area, |
| smp->data.u.str.data); |
| if (arg_p && arg_p->data.sint) |
| smp->data.u.sint = full_hash(smp->data.u.sint); |
| smp->data.type = SMP_T_SINT; |
| return 1; |
| } |
| |
| /* hashes the binary input into a 32-bit unsigned int using xxh. |
| * The seed of the hash defaults to 0 but can be changd in argument 1. |
| */ |
| static int sample_conv_xxh32(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| unsigned int seed; |
| |
| if (arg_p && arg_p->data.sint) |
| seed = arg_p->data.sint; |
| else |
| seed = 0; |
| smp->data.u.sint = XXH32(smp->data.u.str.area, smp->data.u.str.data, |
| seed); |
| smp->data.type = SMP_T_SINT; |
| return 1; |
| } |
| |
| /* hashes the binary input into a 64-bit unsigned int using xxh. |
| * In fact, the function returns a 64 bit unsigned, but the sample |
| * storage of haproxy only proposes 64-bits signed, so the value is |
| * cast as signed. This cast doesn't impact the hash repartition. |
| * The seed of the hash defaults to 0 but can be changd in argument 1. |
| */ |
| static int sample_conv_xxh64(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| unsigned long long int seed; |
| |
| if (arg_p && arg_p->data.sint) |
| seed = (unsigned long long int)arg_p->data.sint; |
| else |
| seed = 0; |
| smp->data.u.sint = (long long int)XXH64(smp->data.u.str.area, |
| smp->data.u.str.data, seed); |
| smp->data.type = SMP_T_SINT; |
| return 1; |
| } |
| |
| /* hashes the binary input into a 32-bit unsigned int */ |
| static int sample_conv_crc32(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| smp->data.u.sint = hash_crc32(smp->data.u.str.area, |
| smp->data.u.str.data); |
| if (arg_p && arg_p->data.sint) |
| smp->data.u.sint = full_hash(smp->data.u.sint); |
| smp->data.type = SMP_T_SINT; |
| return 1; |
| } |
| |
| /* hashes the binary input into crc32c (RFC4960, Appendix B [8].) */ |
| static int sample_conv_crc32c(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| smp->data.u.sint = hash_crc32c(smp->data.u.str.area, |
| smp->data.u.str.data); |
| if (arg_p && arg_p->data.sint) |
| smp->data.u.sint = full_hash(smp->data.u.sint); |
| smp->data.type = SMP_T_SINT; |
| return 1; |
| } |
| |
| /* This function escape special json characters. The returned string can be |
| * safely set between two '"' and used as json string. The json string is |
| * defined like this: |
| * |
| * any Unicode character except '"' or '\' or control character |
| * \", \\, \/, \b, \f, \n, \r, \t, \u + four-hex-digits |
| * |
| * The enum input_type contain all the allowed mode for decoding the input |
| * string. |
| */ |
| enum input_type { |
| IT_ASCII = 0, |
| IT_UTF8, |
| IT_UTF8S, |
| IT_UTF8P, |
| IT_UTF8PS, |
| }; |
| static int sample_conv_json_check(struct arg *arg, struct sample_conv *conv, |
| const char *file, int line, char **err) |
| { |
| if (!arg) { |
| memprintf(err, "Unexpected empty arg list"); |
| return 0; |
| } |
| |
| if (arg->type != ARGT_STR) { |
| memprintf(err, "Unexpected arg type"); |
| return 0; |
| } |
| |
| if (strcmp(arg->data.str.area, "") == 0) { |
| arg->type = ARGT_SINT; |
| arg->data.sint = IT_ASCII; |
| return 1; |
| } |
| |
| else if (strcmp(arg->data.str.area, "ascii") == 0) { |
| arg->type = ARGT_SINT; |
| arg->data.sint = IT_ASCII; |
| return 1; |
| } |
| |
| else if (strcmp(arg->data.str.area, "utf8") == 0) { |
| arg->type = ARGT_SINT; |
| arg->data.sint = IT_UTF8; |
| return 1; |
| } |
| |
| else if (strcmp(arg->data.str.area, "utf8s") == 0) { |
| arg->type = ARGT_SINT; |
| arg->data.sint = IT_UTF8S; |
| return 1; |
| } |
| |
| else if (strcmp(arg->data.str.area, "utf8p") == 0) { |
| arg->type = ARGT_SINT; |
| arg->data.sint = IT_UTF8P; |
| return 1; |
| } |
| |
| else if (strcmp(arg->data.str.area, "utf8ps") == 0) { |
| arg->type = ARGT_SINT; |
| arg->data.sint = IT_UTF8PS; |
| return 1; |
| } |
| |
| memprintf(err, "Unexpected input code type. " |
| "Allowed value are 'ascii', 'utf8', 'utf8s', 'utf8p' and 'utf8ps'"); |
| return 0; |
| } |
| |
| static int sample_conv_json(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| struct buffer *temp; |
| char _str[7]; /* \u + 4 hex digit + null char for sprintf. */ |
| const char *str; |
| int len; |
| enum input_type input_type = IT_ASCII; |
| unsigned int c; |
| unsigned int ret; |
| char *p; |
| |
| if (arg_p) |
| input_type = arg_p->data.sint; |
| |
| temp = get_trash_chunk(); |
| temp->data = 0; |
| |
| p = smp->data.u.str.area; |
| while (p < smp->data.u.str.area + smp->data.u.str.data) { |
| |
| if (input_type == IT_ASCII) { |
| /* Read input as ASCII. */ |
| c = *(unsigned char *)p; |
| p++; |
| } |
| else { |
| /* Read input as UTF8. */ |
| ret = utf8_next(p, |
| smp->data.u.str.data - ( p - smp->data.u.str.area), |
| &c); |
| p += utf8_return_length(ret); |
| |
| if (input_type == IT_UTF8 && utf8_return_code(ret) != UTF8_CODE_OK) |
| return 0; |
| if (input_type == IT_UTF8S && utf8_return_code(ret) != UTF8_CODE_OK) |
| continue; |
| if (input_type == IT_UTF8P && utf8_return_code(ret) & (UTF8_CODE_INVRANGE|UTF8_CODE_BADSEQ)) |
| return 0; |
| if (input_type == IT_UTF8PS && utf8_return_code(ret) & (UTF8_CODE_INVRANGE|UTF8_CODE_BADSEQ)) |
| continue; |
| |
| /* Check too big values. */ |
| if ((unsigned int)c > 0xffff) { |
| if (input_type == IT_UTF8 || input_type == IT_UTF8P) |
| return 0; |
| continue; |
| } |
| } |
| |
| /* Convert character. */ |
| if (c == '"') { |
| len = 2; |
| str = "\\\""; |
| } |
| else if (c == '\\') { |
| len = 2; |
| str = "\\\\"; |
| } |
| else if (c == '/') { |
| len = 2; |
| str = "\\/"; |
| } |
| else if (c == '\b') { |
| len = 2; |
| str = "\\b"; |
| } |
| else if (c == '\f') { |
| len = 2; |
| str = "\\f"; |
| } |
| else if (c == '\r') { |
| len = 2; |
| str = "\\r"; |
| } |
| else if (c == '\n') { |
| len = 2; |
| str = "\\n"; |
| } |
| else if (c == '\t') { |
| len = 2; |
| str = "\\t"; |
| } |
| else if (c > 0xff || !isprint((unsigned char)c)) { |
| /* isprint generate a segfault if c is too big. The man says that |
| * c must have the value of an unsigned char or EOF. |
| */ |
| len = 6; |
| _str[0] = '\\'; |
| _str[1] = 'u'; |
| snprintf(&_str[2], 5, "%04x", (unsigned short)c); |
| str = _str; |
| } |
| else { |
| len = 1; |
| _str[0] = c; |
| str = _str; |
| } |
| |
| /* Check length */ |
| if (temp->data + len > temp->size) |
| return 0; |
| |
| /* Copy string. */ |
| memcpy(temp->area + temp->data, str, len); |
| temp->data += len; |
| } |
| |
| smp->flags &= ~SMP_F_CONST; |
| smp->data.u.str = *temp; |
| smp->data.type = SMP_T_STR; |
| |
| return 1; |
| } |
| |
| /* This sample function is designed to extract some bytes from an input buffer. |
| * First arg is the offset. |
| * Optional second arg is the length to truncate */ |
| static int sample_conv_bytes(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| if (smp->data.u.str.data <= arg_p[0].data.sint) { |
| smp->data.u.str.data = 0; |
| return 1; |
| } |
| |
| if (smp->data.u.str.size) |
| smp->data.u.str.size -= arg_p[0].data.sint; |
| smp->data.u.str.data -= arg_p[0].data.sint; |
| smp->data.u.str.area += arg_p[0].data.sint; |
| |
| if ((arg_p[1].type == ARGT_SINT) && (arg_p[1].data.sint < smp->data.u.str.data)) |
| smp->data.u.str.data = arg_p[1].data.sint; |
| |
| return 1; |
| } |
| |
| static int sample_conv_field_check(struct arg *args, struct sample_conv *conv, |
| const char *file, int line, char **err) |
| { |
| struct arg *arg = args; |
| |
| if (!arg) { |
| memprintf(err, "Unexpected empty arg list"); |
| return 0; |
| } |
| |
| if (arg->type != ARGT_SINT) { |
| memprintf(err, "Unexpected arg type"); |
| return 0; |
| } |
| |
| if (!arg->data.sint) { |
| memprintf(err, "Unexpected value 0 for index"); |
| return 0; |
| } |
| |
| arg++; |
| |
| if (arg->type != ARGT_STR) { |
| memprintf(err, "Unexpected arg type"); |
| return 0; |
| } |
| |
| if (!arg->data.str.data) { |
| memprintf(err, "Empty separators list"); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* This sample function is designed to a return selected part of a string (field). |
| * First arg is the index of the field (start at 1) |
| * Second arg is a char list of separators (type string) |
| */ |
| static int sample_conv_field(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| int field; |
| char *start, *end; |
| int i; |
| int count = (arg_p[2].type == ARGT_SINT) ? arg_p[2].data.sint : 1; |
| |
| if (!arg_p[0].data.sint) |
| return 0; |
| |
| if (arg_p[0].data.sint < 0) { |
| field = -1; |
| end = start = smp->data.u.str.area + smp->data.u.str.data; |
| while (start > smp->data.u.str.area) { |
| for (i = 0 ; i < arg_p[1].data.str.data; i++) { |
| if (*(start-1) == arg_p[1].data.str.area[i]) { |
| if (field == arg_p[0].data.sint) { |
| if (count == 1) |
| goto found; |
| else if (count > 1) |
| count--; |
| } else { |
| end = start-1; |
| field--; |
| } |
| break; |
| } |
| } |
| start--; |
| } |
| } else { |
| field = 1; |
| end = start = smp->data.u.str.area; |
| while (end - smp->data.u.str.area < smp->data.u.str.data) { |
| for (i = 0 ; i < arg_p[1].data.str.data; i++) { |
| if (*end == arg_p[1].data.str.area[i]) { |
| if (field == arg_p[0].data.sint) { |
| if (count == 1) |
| goto found; |
| else if (count > 1) |
| count--; |
| } else { |
| start = end+1; |
| field++; |
| } |
| break; |
| } |
| } |
| end++; |
| } |
| } |
| |
| /* Field not found */ |
| if (field != arg_p[0].data.sint) { |
| smp->data.u.str.data = 0; |
| return 0; |
| } |
| found: |
| smp->data.u.str.data = end - start; |
| /* If ret string is len 0, no need to |
| change pointers or to update size */ |
| if (!smp->data.u.str.data) |
| return 1; |
| |
| smp->data.u.str.area = start; |
| |
| /* Compute remaining size if needed |
| Note: smp->data.u.str.size cannot be set to 0 */ |
| if (smp->data.u.str.size) |
| smp->data.u.str.size -= start - smp->data.u.str.area; |
| |
| return 1; |
| } |
| |
| /* This sample function is designed to return a word from a string. |
| * First arg is the index of the word (start at 1) |
| * Second arg is a char list of words separators (type string) |
| */ |
| static int sample_conv_word(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| int word; |
| char *start, *end; |
| int i, issep, inword; |
| int count = (arg_p[2].type == ARGT_SINT) ? arg_p[2].data.sint : 1; |
| |
| if (!arg_p[0].data.sint) |
| return 0; |
| |
| word = 0; |
| inword = 0; |
| if (arg_p[0].data.sint < 0) { |
| end = start = smp->data.u.str.area + smp->data.u.str.data; |
| while (start > smp->data.u.str.area) { |
| issep = 0; |
| for (i = 0 ; i < arg_p[1].data.str.data; i++) { |
| if (*(start-1) == arg_p[1].data.str.area[i]) { |
| issep = 1; |
| break; |
| } |
| } |
| if (!inword) { |
| if (!issep) { |
| if (word != arg_p[0].data.sint) { |
| word--; |
| end = start; |
| } |
| inword = 1; |
| } |
| } |
| else if (issep) { |
| if (word == arg_p[0].data.sint) { |
| if (count == 1) |
| goto found; |
| else if (count > 1) |
| count--; |
| } |
| inword = 0; |
| } |
| start--; |
| } |
| } else { |
| end = start = smp->data.u.str.area; |
| while (end - smp->data.u.str.area < smp->data.u.str.data) { |
| issep = 0; |
| for (i = 0 ; i < arg_p[1].data.str.data; i++) { |
| if (*end == arg_p[1].data.str.area[i]) { |
| issep = 1; |
| break; |
| } |
| } |
| if (!inword) { |
| if (!issep) { |
| if (word != arg_p[0].data.sint) { |
| word++; |
| start = end; |
| } |
| inword = 1; |
| } |
| } |
| else if (issep) { |
| if (word == arg_p[0].data.sint) { |
| if (count == 1) |
| goto found; |
| else if (count > 1) |
| count--; |
| } |
| inword = 0; |
| } |
| end++; |
| } |
| } |
| |
| /* Field not found */ |
| if (word != arg_p[0].data.sint) { |
| smp->data.u.str.data = 0; |
| return 1; |
| } |
| found: |
| smp->data.u.str.data = end - start; |
| /* If ret string is len 0, no need to |
| change pointers or to update size */ |
| if (!smp->data.u.str.data) |
| return 1; |
| |
| smp->data.u.str.area = start; |
| |
| /* Compute remaining size if needed |
| Note: smp->data.u.str.size cannot be set to 0 */ |
| if (smp->data.u.str.size) |
| smp->data.u.str.size -= start - smp->data.u.str.area; |
| |
| return 1; |
| } |
| |
| static int sample_conv_regsub_check(struct arg *args, struct sample_conv *conv, |
| const char *file, int line, char **err) |
| { |
| struct arg *arg = args; |
| char *p; |
| int len; |
| |
| /* arg0 is a regex, it uses type_flag for ICASE and global match */ |
| arg[0].type_flags = 0; |
| |
| if (arg[2].type != ARGT_STR) |
| return 1; |
| |
| p = arg[2].data.str.area; |
| len = arg[2].data.str.data; |
| while (len) { |
| if (*p == 'i') { |
| arg[0].type_flags |= ARGF_REG_ICASE; |
| } |
| else if (*p == 'g') { |
| arg[0].type_flags |= ARGF_REG_GLOB; |
| } |
| else { |
| memprintf(err, "invalid regex flag '%c', only 'i' and 'g' are supported", *p); |
| return 0; |
| } |
| p++; |
| len--; |
| } |
| return 1; |
| } |
| |
| /* This sample function is designed to do the equivalent of s/match/replace/ on |
| * the input string. It applies a regex and restarts from the last matched |
| * location until nothing matches anymore. First arg is the regex to apply to |
| * the input string, second arg is the replacement expression. |
| */ |
| static int sample_conv_regsub(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| char *start, *end; |
| struct my_regex *reg = arg_p[0].data.reg; |
| regmatch_t pmatch[MAX_MATCH]; |
| struct buffer *trash = get_trash_chunk(); |
| struct buffer *output; |
| int flag, max; |
| int found; |
| |
| start = smp->data.u.str.area; |
| end = start + smp->data.u.str.data; |
| |
| flag = 0; |
| while (1) { |
| /* check for last round which is used to copy remaining parts |
| * when not running in global replacement mode. |
| */ |
| found = 0; |
| if ((arg_p[0].type_flags & ARGF_REG_GLOB) || !(flag & REG_NOTBOL)) { |
| /* Note: we can have start == end on empty strings or at the end */ |
| found = regex_exec_match2(reg, start, end - start, MAX_MATCH, pmatch, flag); |
| } |
| |
| if (!found) |
| pmatch[0].rm_so = end - start; |
| |
| /* copy the heading non-matching part (which may also be the tail if nothing matches) */ |
| max = trash->size - trash->data; |
| if (max && pmatch[0].rm_so > 0) { |
| if (max > pmatch[0].rm_so) |
| max = pmatch[0].rm_so; |
| memcpy(trash->area + trash->data, start, max); |
| trash->data += max; |
| } |
| |
| if (!found) |
| break; |
| |
| output = alloc_trash_chunk(); |
| if (!output) |
| break; |
| |
| output->data = exp_replace(output->area, output->size, start, arg_p[1].data.str.area, pmatch); |
| |
| /* replace the matching part */ |
| max = output->size - output->data; |
| if (max) { |
| if (max > output->data) |
| max = output->data; |
| memcpy(trash->area + trash->data, |
| output->area, max); |
| trash->data += max; |
| } |
| |
| free_trash_chunk(output); |
| |
| /* stop here if we're done with this string */ |
| if (start >= end) |
| break; |
| |
| /* We have a special case for matches of length 0 (eg: "x*y*"). |
| * These ones are considered to match in front of a character, |
| * so we have to copy that character and skip to the next one. |
| */ |
| if (!pmatch[0].rm_eo) { |
| if (trash->data < trash->size) |
| trash->area[trash->data++] = start[pmatch[0].rm_eo]; |
| pmatch[0].rm_eo++; |
| } |
| |
| start += pmatch[0].rm_eo; |
| flag |= REG_NOTBOL; |
| } |
| |
| smp->data.u.str = *trash; |
| return 1; |
| } |
| |
| /* This function check an operator entry. It expects a string. |
| * The string can be an integer or a variable name. |
| */ |
| static int check_operator(struct arg *args, struct sample_conv *conv, |
| const char *file, int line, char **err) |
| { |
| const char *str; |
| const char *end; |
| |
| /* Try to decode a variable. */ |
| if (vars_check_arg(&args[0], NULL)) |
| return 1; |
| |
| /* Try to convert an integer */ |
| str = args[0].data.str.area; |
| end = str + strlen(str); |
| args[0].data.sint = read_int64(&str, end); |
| if (*str != '\0') { |
| memprintf(err, "expects an integer or a variable name"); |
| return 0; |
| } |
| args[0].type = ARGT_SINT; |
| return 1; |
| } |
| |
| /* This function returns a sample struct filled with an arg content. |
| * If the arg contain an integer, the integer is returned in the |
| * sample. If the arg contains a variable descriptor, it returns the |
| * variable value. |
| * |
| * This function returns 0 if an error occurs, otherwise it returns 1. |
| */ |
| static inline int sample_conv_var2smp(const struct arg *arg, struct sample *smp) |
| { |
| switch (arg->type) { |
| case ARGT_SINT: |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = arg->data.sint; |
| return 1; |
| case ARGT_VAR: |
| if (!vars_get_by_desc(&arg->data.var, smp)) |
| return 0; |
| if (!sample_casts[smp->data.type][SMP_T_SINT]) |
| return 0; |
| if (!sample_casts[smp->data.type][SMP_T_SINT](smp)) |
| return 0; |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| /* Takes a SINT on input, applies a binary twos complement and returns the SINT |
| * result. |
| */ |
| static int sample_conv_binary_cpl(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| smp->data.u.sint = ~smp->data.u.sint; |
| return 1; |
| } |
| |
| /* Takes a SINT on input, applies a binary "and" with the SINT directly in |
| * arg_p or in the variable described in arg_p, and returns the SINT result. |
| */ |
| static int sample_conv_binary_and(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| struct sample tmp; |
| |
| smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); |
| if (!sample_conv_var2smp(arg_p, &tmp)) |
| return 0; |
| smp->data.u.sint &= tmp.data.u.sint; |
| return 1; |
| } |
| |
| /* Takes a SINT on input, applies a binary "or" with the SINT directly in |
| * arg_p or in the variable described in arg_p, and returns the SINT result. |
| */ |
| static int sample_conv_binary_or(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| struct sample tmp; |
| |
| smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); |
| if (!sample_conv_var2smp(arg_p, &tmp)) |
| return 0; |
| smp->data.u.sint |= tmp.data.u.sint; |
| return 1; |
| } |
| |
| /* Takes a SINT on input, applies a binary "xor" with the SINT directly in |
| * arg_p or in the variable described in arg_p, and returns the SINT result. |
| */ |
| static int sample_conv_binary_xor(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| struct sample tmp; |
| |
| smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); |
| if (!sample_conv_var2smp(arg_p, &tmp)) |
| return 0; |
| smp->data.u.sint ^= tmp.data.u.sint; |
| return 1; |
| } |
| |
| static inline long long int arith_add(long long int a, long long int b) |
| { |
| /* Prevent overflow and makes capped calculus. |
| * We must ensure that the check calculus doesn't |
| * exceed the signed 64 bits limits. |
| * |
| * +----------+----------+ |
| * | a<0 | a>=0 | |
| * +------+----------+----------+ |
| * | b<0 | MIN-a>b | no check | |
| * +------+----------+----------+ |
| * | b>=0 | no check | MAX-a<b | |
| * +------+----------+----------+ |
| */ |
| if ((a ^ b) >= 0) { |
| /* signs are differents. */ |
| if (a < 0) { |
| if (LLONG_MIN - a > b) |
| return LLONG_MIN; |
| } |
| if (LLONG_MAX - a < b) |
| return LLONG_MAX; |
| } |
| return a + b; |
| } |
| |
| /* Takes a SINT on input, applies an arithmetic "add" with the SINT directly in |
| * arg_p or in the variable described in arg_p, and returns the SINT result. |
| */ |
| static int sample_conv_arith_add(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| struct sample tmp; |
| |
| smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); |
| if (!sample_conv_var2smp(arg_p, &tmp)) |
| return 0; |
| smp->data.u.sint = arith_add(smp->data.u.sint, tmp.data.u.sint); |
| return 1; |
| } |
| |
| /* Takes a SINT on input, applies an arithmetic "sub" with the SINT directly in |
| * arg_p or in the variable described in arg_p, and returns the SINT result. |
| */ |
| static int sample_conv_arith_sub(const struct arg *arg_p, |
| struct sample *smp, void *private) |
| { |
| struct sample tmp; |
| |
| smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); |
| if (!sample_conv_var2smp(arg_p, &tmp)) |
| return 0; |
| |
| /* We cannot represent -LLONG_MIN because abs(LLONG_MIN) is greater |
| * than abs(LLONG_MAX). So, the following code use LLONG_MAX in place |
| * of -LLONG_MIN and correct the result. |
| */ |
| if (tmp.data.u.sint == LLONG_MIN) { |
| smp->data.u.sint = arith_add(smp->data.u.sint, LLONG_MAX); |
| if (smp->data.u.sint < LLONG_MAX) |
| smp->data.u.sint++; |
| return 1; |
| } |
| |
| /* standard subtraction: we use the "add" function and negate |
| * the second operand. |
| */ |
| smp->data.u.sint = arith_add(smp->data.u.sint, -tmp.data.u.sint); |
| return 1; |
| } |
| |
| /* Takes a SINT on input, applies an arithmetic "mul" with the SINT directly in |
| * arg_p or in the variable described in arg_p, and returns the SINT result. |
| * If the result makes an overflow, then the largest possible quantity is |
| * returned. |
| */ |
| static int sample_conv_arith_mul(const struct arg *arg_p, |
| struct sample *smp, void *private) |
| { |
| struct sample tmp; |
| long long int c; |
| |
| smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); |
| if (!sample_conv_var2smp(arg_p, &tmp)) |
| return 0; |
| |
| /* prevent divide by 0 during the check */ |
| if (!smp->data.u.sint || !tmp.data.u.sint) { |
| smp->data.u.sint = 0; |
| return 1; |
| } |
| |
| /* The multiply between LLONG_MIN and -1 returns a |
| * "floting point exception". |
| */ |
| if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) { |
| smp->data.u.sint = LLONG_MAX; |
| return 1; |
| } |
| |
| /* execute standard multiplication. */ |
| c = smp->data.u.sint * tmp.data.u.sint; |
| |
| /* check for overflow and makes capped multiply. */ |
| if (smp->data.u.sint != c / tmp.data.u.sint) { |
| if ((smp->data.u.sint < 0) == (tmp.data.u.sint < 0)) { |
| smp->data.u.sint = LLONG_MAX; |
| return 1; |
| } |
| smp->data.u.sint = LLONG_MIN; |
| return 1; |
| } |
| smp->data.u.sint = c; |
| return 1; |
| } |
| |
| /* Takes a SINT on input, applies an arithmetic "div" with the SINT directly in |
| * arg_p or in the variable described in arg_p, and returns the SINT result. |
| * If arg_p makes the result overflow, then the largest possible quantity is |
| * returned. |
| */ |
| static int sample_conv_arith_div(const struct arg *arg_p, |
| struct sample *smp, void *private) |
| { |
| struct sample tmp; |
| |
| smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); |
| if (!sample_conv_var2smp(arg_p, &tmp)) |
| return 0; |
| |
| if (tmp.data.u.sint) { |
| /* The divide between LLONG_MIN and -1 returns a |
| * "floting point exception". |
| */ |
| if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) { |
| smp->data.u.sint = LLONG_MAX; |
| return 1; |
| } |
| smp->data.u.sint /= tmp.data.u.sint; |
| return 1; |
| } |
| smp->data.u.sint = LLONG_MAX; |
| return 1; |
| } |
| |
| /* Takes a SINT on input, applies an arithmetic "mod" with the SINT directly in |
| * arg_p or in the variable described in arg_p, and returns the SINT result. |
| * If arg_p makes the result overflow, then 0 is returned. |
| */ |
| static int sample_conv_arith_mod(const struct arg *arg_p, |
| struct sample *smp, void *private) |
| { |
| struct sample tmp; |
| |
| smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); |
| if (!sample_conv_var2smp(arg_p, &tmp)) |
| return 0; |
| |
| if (tmp.data.u.sint) { |
| /* The divide between LLONG_MIN and -1 returns a |
| * "floting point exception". |
| */ |
| if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) { |
| smp->data.u.sint = 0; |
| return 1; |
| } |
| smp->data.u.sint %= tmp.data.u.sint; |
| return 1; |
| } |
| smp->data.u.sint = 0; |
| return 1; |
| } |
| |
| /* Takes an SINT on input, applies an arithmetic "neg" and returns the SINT |
| * result. |
| */ |
| static int sample_conv_arith_neg(const struct arg *arg_p, |
| struct sample *smp, void *private) |
| { |
| if (smp->data.u.sint == LLONG_MIN) |
| smp->data.u.sint = LLONG_MAX; |
| else |
| smp->data.u.sint = -smp->data.u.sint; |
| return 1; |
| } |
| |
| /* Takes a SINT on input, returns true is the value is non-null, otherwise |
| * false. The output is a BOOL. |
| */ |
| static int sample_conv_arith_bool(const struct arg *arg_p, |
| struct sample *smp, void *private) |
| { |
| smp->data.u.sint = !!smp->data.u.sint; |
| smp->data.type = SMP_T_BOOL; |
| return 1; |
| } |
| |
| /* Takes a SINT on input, returns false is the value is non-null, otherwise |
| * truee. The output is a BOOL. |
| */ |
| static int sample_conv_arith_not(const struct arg *arg_p, |
| struct sample *smp, void *private) |
| { |
| smp->data.u.sint = !smp->data.u.sint; |
| smp->data.type = SMP_T_BOOL; |
| return 1; |
| } |
| |
| /* Takes a SINT on input, returns true is the value is odd, otherwise false. |
| * The output is a BOOL. |
| */ |
| static int sample_conv_arith_odd(const struct arg *arg_p, |
| struct sample *smp, void *private) |
| { |
| smp->data.u.sint = smp->data.u.sint & 1; |
| smp->data.type = SMP_T_BOOL; |
| return 1; |
| } |
| |
| /* Takes a SINT on input, returns true is the value is even, otherwise false. |
| * The output is a BOOL. |
| */ |
| static int sample_conv_arith_even(const struct arg *arg_p, |
| struct sample *smp, void *private) |
| { |
| smp->data.u.sint = !(smp->data.u.sint & 1); |
| smp->data.type = SMP_T_BOOL; |
| return 1; |
| } |
| |
| /* appends an optional const string, an optional variable contents and another |
| * optional const string to an existing string. |
| */ |
| static int sample_conv_concat(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| struct buffer *trash; |
| struct sample tmp; |
| int max; |
| |
| trash = get_trash_chunk(); |
| trash->data = smp->data.u.str.data; |
| if (trash->data > trash->size - 1) |
| trash->data = trash->size - 1; |
| |
| memcpy(trash->area, smp->data.u.str.area, trash->data); |
| trash->area[trash->data] = 0; |
| |
| /* append first string */ |
| max = arg_p[0].data.str.data; |
| if (max > trash->size - 1 - trash->data) |
| max = trash->size - 1 - trash->data; |
| |
| if (max) { |
| memcpy(trash->area + trash->data, arg_p[0].data.str.area, max); |
| trash->data += max; |
| trash->area[trash->data] = 0; |
| } |
| |
| /* append second string (variable) if it's found and we can turn it |
| * into a string. |
| */ |
| smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); |
| if (arg_p[1].type == ARGT_VAR && vars_get_by_desc(&arg_p[1].data.var, &tmp) && |
| (sample_casts[tmp.data.type][SMP_T_STR] == c_none || |
| sample_casts[tmp.data.type][SMP_T_STR](&tmp))) { |
| |
| max = tmp.data.u.str.data; |
| if (max > trash->size - 1 - trash->data) |
| max = trash->size - 1 - trash->data; |
| |
| if (max) { |
| memcpy(trash->area + trash->data, tmp.data.u.str.area, |
| max); |
| trash->data += max; |
| trash->area[trash->data] = 0; |
| } |
| } |
| |
| /* append third string */ |
| max = arg_p[2].data.str.data; |
| if (max > trash->size - 1 - trash->data) |
| max = trash->size - 1 - trash->data; |
| |
| if (max) { |
| memcpy(trash->area + trash->data, arg_p[2].data.str.area, max); |
| trash->data += max; |
| trash->area[trash->data] = 0; |
| } |
| |
| smp->data.u.str = *trash; |
| smp->data.type = SMP_T_STR; |
| return 1; |
| } |
| |
| /* This function checks the "concat" converter's arguments and extracts the |
| * variable name and its scope. |
| */ |
| static int smp_check_concat(struct arg *args, struct sample_conv *conv, |
| const char *file, int line, char **err) |
| { |
| /* Try to decode a variable. */ |
| if (args[1].data.str.data > 0 && !vars_check_arg(&args[1], NULL)) { |
| memprintf(err, "failed to register variable name '%s'", |
| args[1].data.str.area); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* Compares string with a variable containing a string. Return value |
| * is compatible with strcmp(3)'s return value. |
| */ |
| static int sample_conv_strcmp(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| struct sample tmp; |
| int max, result; |
| |
| smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); |
| if (arg_p[0].type != ARGT_VAR) |
| return 0; |
| if (!vars_get_by_desc(&arg_p[0].data.var, &tmp)) |
| return 0; |
| if (!sample_casts[tmp.data.type][SMP_T_STR](&tmp)) |
| return 0; |
| |
| max = MIN(smp->data.u.str.data, tmp.data.u.str.data); |
| result = strncmp(smp->data.u.str.area, tmp.data.u.str.area, max); |
| if (result == 0) { |
| if (smp->data.u.str.data != tmp.data.u.str.data) { |
| if (smp->data.u.str.data < tmp.data.u.str.data) { |
| result = -1; |
| } |
| else { |
| result = 1; |
| } |
| } |
| } |
| |
| smp->data.u.sint = result; |
| smp->data.type = SMP_T_SINT; |
| return 1; |
| } |
| |
| #ifdef USE_OPENSSL |
| /* Compares bytestring with a variable containing a bytestring. Return value |
| * is `true` if both bytestrings are bytewise identical and `false` otherwise. |
| * |
| * Comparison will be performed in constant time if both bytestrings are of |
| * the same length. If the lengths differ execution time will not be constant. |
| */ |
| static int sample_conv_secure_memcmp(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| struct sample tmp; |
| int result; |
| |
| smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); |
| if (arg_p[0].type != ARGT_VAR) |
| return 0; |
| if (!vars_get_by_desc(&arg_p[0].data.var, &tmp)) |
| return 0; |
| if (!sample_casts[tmp.data.type][SMP_T_BIN](&tmp)) |
| return 0; |
| |
| if (smp->data.u.str.data != tmp.data.u.str.data) { |
| smp->data.u.sint = 0; |
| smp->data.type = SMP_T_BOOL; |
| return 1; |
| } |
| |
| /* The following comparison is performed in constant time. */ |
| result = CRYPTO_memcmp(smp->data.u.str.area, tmp.data.u.str.area, smp->data.u.str.data); |
| |
| smp->data.u.sint = result == 0; |
| smp->data.type = SMP_T_BOOL; |
| return 1; |
| } |
| #endif |
| |
| #define GRPC_MSG_COMPRESS_FLAG_SZ 1 /* 1 byte */ |
| #define GRPC_MSG_LENGTH_SZ 4 /* 4 bytes */ |
| #define GRPC_MSG_HEADER_SZ (GRPC_MSG_COMPRESS_FLAG_SZ + GRPC_MSG_LENGTH_SZ) |
| |
| /* |
| * Extract the field value of an input binary sample. Takes a mandatory argument: |
| * the protocol buffers field identifier (dotted notation) internally represented |
| * as an array of unsigned integers and its size. |
| * Return 1 if the field was found, 0 if not. |
| */ |
| static int sample_conv_ungrpc(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| unsigned char *pos; |
| size_t grpc_left; |
| |
| pos = (unsigned char *)smp->data.u.str.area; |
| grpc_left = smp->data.u.str.data; |
| |
| while (grpc_left > GRPC_MSG_HEADER_SZ) { |
| size_t grpc_msg_len, left; |
| |
| grpc_msg_len = left = ntohl(*(uint32_t *)(pos + GRPC_MSG_COMPRESS_FLAG_SZ)); |
| |
| pos += GRPC_MSG_HEADER_SZ; |
| grpc_left -= GRPC_MSG_HEADER_SZ; |
| |
| if (grpc_left < left) |
| return 0; |
| |
| if (protobuf_field_lookup(arg_p, smp, &pos, &left)) |
| return 1; |
| |
| grpc_left -= grpc_msg_len; |
| } |
| |
| return 0; |
| } |
| |
| static int sample_conv_protobuf(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| unsigned char *pos; |
| size_t left; |
| |
| pos = (unsigned char *)smp->data.u.str.area; |
| left = smp->data.u.str.data; |
| |
| return protobuf_field_lookup(arg_p, smp, &pos, &left); |
| } |
| |
| static int sample_conv_protobuf_check(struct arg *args, struct sample_conv *conv, |
| const char *file, int line, char **err) |
| { |
| if (!args[1].type) { |
| args[1].type = ARGT_SINT; |
| args[1].data.sint = PBUF_T_BINARY; |
| } |
| else { |
| int pbuf_type; |
| |
| pbuf_type = protobuf_type(args[1].data.str.area); |
| if (pbuf_type == -1) { |
| memprintf(err, "Wrong protocol buffer type '%s'", args[1].data.str.area); |
| return 0; |
| } |
| |
| args[1].type = ARGT_SINT; |
| args[1].data.sint = pbuf_type; |
| } |
| |
| return 1; |
| } |
| |
| /* This function checks the "strcmp" converter's arguments and extracts the |
| * variable name and its scope. |
| */ |
| static int smp_check_strcmp(struct arg *args, struct sample_conv *conv, |
| const char *file, int line, char **err) |
| { |
| /* Try to decode a variable. */ |
| if (vars_check_arg(&args[0], NULL)) |
| return 1; |
| |
| memprintf(err, "failed to register variable name '%s'", |
| args[0].data.str.area); |
| return 0; |
| } |
| |
| #ifdef USE_OPENSSL |
| /* This function checks the "secure_memcmp" converter's arguments and extracts the |
| * variable name and its scope. |
| */ |
| static int smp_check_secure_memcmp(struct arg *args, struct sample_conv *conv, |
| const char *file, int line, char **err) |
| { |
| /* Try to decode a variable. */ |
| if (vars_check_arg(&args[0], NULL)) |
| return 1; |
| |
| memprintf(err, "failed to register variable name '%s'", |
| args[0].data.str.area); |
| return 0; |
| } |
| #endif |
| |
| /**/ |
| static int sample_conv_htonl(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| struct buffer *tmp; |
| uint32_t n; |
| |
| n = htonl((uint32_t)smp->data.u.sint); |
| tmp = get_trash_chunk(); |
| |
| memcpy(b_head(tmp), &n, 4); |
| b_add(tmp, 4); |
| |
| smp->data.u.str = *tmp; |
| smp->data.type = SMP_T_BIN; |
| return 1; |
| } |
| |
| /**/ |
| static int sample_conv_cut_crlf(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| char *p; |
| size_t l; |
| |
| p = smp->data.u.str.area; |
| for (l = 0; l < smp->data.u.str.data; l++) { |
| if (*(p+l) == '\r' || *(p+l) == '\n') |
| break; |
| } |
| smp->data.u.str.data = l; |
| return 1; |
| } |
| |
| /**/ |
| static int sample_conv_ltrim(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| char *delimiters, *p; |
| size_t dlen, l; |
| |
| delimiters = arg_p[0].data.str.area; |
| dlen = arg_p[0].data.str.data; |
| |
| l = smp->data.u.str.data; |
| p = smp->data.u.str.area; |
| while (l && memchr(delimiters, *p, dlen) != NULL) { |
| p++; |
| l--; |
| } |
| |
| smp->data.u.str.area = p; |
| smp->data.u.str.data = l; |
| return 1; |
| } |
| |
| /**/ |
| static int sample_conv_rtrim(const struct arg *arg_p, struct sample *smp, void *private) |
| { |
| char *delimiters, *p; |
| size_t dlen, l; |
| |
| delimiters = arg_p[0].data.str.area; |
| dlen = arg_p[0].data.str.data; |
| |
| l = smp->data.u.str.data; |
| p = smp->data.u.str.area + l - 1; |
| while (l && memchr(delimiters, *p, dlen) != NULL) { |
| p--; |
| l--; |
| } |
| |
| smp->data.u.str.data = l; |
| return 1; |
| } |
| |
| /************************************************************************/ |
| /* All supported sample fetch functions must be declared here */ |
| /************************************************************************/ |
| |
| /* force TRUE to be returned at the fetch level */ |
| static int |
| smp_fetch_true(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| if (!smp_make_rw(smp)) |
| return 0; |
| |
| smp->data.type = SMP_T_BOOL; |
| smp->data.u.sint = 1; |
| return 1; |
| } |
| |
| /* force FALSE to be returned at the fetch level */ |
| static int |
| smp_fetch_false(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->data.type = SMP_T_BOOL; |
| smp->data.u.sint = 0; |
| return 1; |
| } |
| |
| /* retrieve environment variable $1 as a string */ |
| static int |
| smp_fetch_env(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| char *env; |
| |
| if (!args || args[0].type != ARGT_STR) |
| return 0; |
| |
| env = getenv(args[0].data.str.area); |
| if (!env) |
| return 0; |
| |
| smp->data.type = SMP_T_STR; |
| smp->flags = SMP_F_CONST; |
| smp->data.u.str.area = env; |
| smp->data.u.str.data = strlen(env); |
| return 1; |
| } |
| |
| /* Validates the data unit argument passed to "date" fetch. Argument 1 support an |
| * optional string representing the unit of the result: "s" for seconds, "ms" for |
| * milliseconds and "us" for microseconds. |
| * Returns 0 on error and non-zero if OK. |
| */ |
| int smp_check_date_unit(struct arg *args, char **err) |
| { |
| if (args[1].type == ARGT_STR) { |
| if (strcmp(args[1].data.str.area, "s") == 0) { |
| args[1].data.sint = TIME_UNIT_S; |
| } |
| else if (strcmp(args[1].data.str.area, "ms") == 0) { |
| args[1].data.sint = TIME_UNIT_MS; |
| } |
| else if (strcmp(args[1].data.str.area, "us") == 0) { |
| args[1].data.sint = TIME_UNIT_US; |
| } |
| else { |
| memprintf(err, "expects 's', 'ms' or 'us', got '%s'", |
| args[1].data.str.area); |
| return 0; |
| } |
| free(args[1].data.str.area); |
| args[1].data.str.area = NULL; |
| args[1].type = ARGT_SINT; |
| } |
| else if (args[1].type != ARGT_STOP) { |
| memprintf(err, "Unexpected arg type"); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* retrieve the current local date in epoch time, converts it to milliseconds |
| * or microseconds if asked to in optional args[1] unit param, and applies an |
| * optional args[0] offset. |
| */ |
| static int |
| smp_fetch_date(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->data.u.sint = date.tv_sec; |
| |
| /* report in milliseconds */ |
| if (args && args[1].type == ARGT_SINT && args[1].data.sint == TIME_UNIT_MS) { |
| smp->data.u.sint *= 1000; |
| smp->data.u.sint += date.tv_usec / 1000; |
| } |
| /* report in microseconds */ |
| else if (args && args[1].type == ARGT_SINT && args[1].data.sint == TIME_UNIT_US) { |
| smp->data.u.sint *= 1000000; |
| smp->data.u.sint += date.tv_usec; |
| } |
| |
| /* add offset */ |
| if (args && args[0].type == ARGT_SINT) |
| smp->data.u.sint += args[0].data.sint; |
| |
| smp->data.type = SMP_T_SINT; |
| smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE; |
| return 1; |
| } |
| |
| /* retrieve the current microsecond part of the date */ |
| static int |
| smp_fetch_date_us(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->data.u.sint = date.tv_usec; |
| smp->data.type = SMP_T_SINT; |
| smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE; |
| return 1; |
| } |
| |
| |
| /* returns the hostname */ |
| static int |
| smp_fetch_hostname(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->data.type = SMP_T_STR; |
| smp->flags = SMP_F_CONST; |
| smp->data.u.str.area = hostname; |
| smp->data.u.str.data = strlen(hostname); |
| return 1; |
| } |
| |
| /* returns the number of processes */ |
| static int |
| smp_fetch_nbproc(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = global.nbproc; |
| return 1; |
| } |
| |
| /* returns the number of the current process (between 1 and nbproc */ |
| static int |
| smp_fetch_proc(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = relative_pid; |
| return 1; |
| } |
| |
| /* returns the number of the current thread (between 1 and nbthread */ |
| static int |
| smp_fetch_thread(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = tid; |
| return 1; |
| } |
| |
| /* generate a random 32-bit integer for whatever purpose, with an optional |
| * range specified in argument. |
| */ |
| static int |
| smp_fetch_rand(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->data.u.sint = ha_random32(); |
| |
| /* reduce if needed. Don't do a modulo, use all bits! */ |
| if (args && args[0].type == ARGT_SINT) |
| smp->data.u.sint = ((u64)smp->data.u.sint * (u64)args[0].data.sint) >> 32; |
| |
| smp->data.type = SMP_T_SINT; |
| smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE; |
| return 1; |
| } |
| |
| /* returns true if the current process is stopping */ |
| static int |
| smp_fetch_stopping(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->data.type = SMP_T_BOOL; |
| smp->data.u.sint = stopping; |
| return 1; |
| } |
| |
| /* returns the number of calls of the current stream's process_stream() */ |
| static int |
| smp_fetch_cpu_calls(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| if (!smp->strm) |
| return 0; |
| |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = smp->strm->task->calls; |
| return 1; |
| } |
| |
| /* returns the average number of nanoseconds spent processing the stream per call */ |
| static int |
| smp_fetch_cpu_ns_avg(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| if (!smp->strm) |
| return 0; |
| |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = smp->strm->task->calls ? smp->strm->task->cpu_time / smp->strm->task->calls : 0; |
| return 1; |
| } |
| |
| /* returns the total number of nanoseconds spent processing the stream */ |
| static int |
| smp_fetch_cpu_ns_tot(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| if (!smp->strm) |
| return 0; |
| |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = smp->strm->task->cpu_time; |
| return 1; |
| } |
| |
| /* returns the average number of nanoseconds per call spent waiting for other tasks to be processed */ |
| static int |
| smp_fetch_lat_ns_avg(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| if (!smp->strm) |
| return 0; |
| |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = smp->strm->task->calls ? smp->strm->task->lat_time / smp->strm->task->calls : 0; |
| return 1; |
| } |
| |
| /* returns the total number of nanoseconds per call spent waiting for other tasks to be processed */ |
| static int |
| smp_fetch_lat_ns_tot(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| if (!smp->strm) |
| return 0; |
| |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = smp->strm->task->lat_time; |
| return 1; |
| } |
| |
| static int smp_fetch_const_str(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags |= SMP_F_CONST; |
| smp->data.type = SMP_T_STR; |
| smp->data.u.str.area = args[0].data.str.area; |
| smp->data.u.str.data = args[0].data.str.data; |
| return 1; |
| } |
| |
| static int smp_check_const_bool(struct arg *args, char **err) |
| { |
| if (strcasecmp(args[0].data.str.area, "true") == 0 || |
| strcasecmp(args[0].data.str.area, "1") == 0) { |
| args[0].type = ARGT_SINT; |
| args[0].data.sint = 1; |
| return 1; |
| } |
| if (strcasecmp(args[0].data.str.area, "false") == 0 || |
| strcasecmp(args[0].data.str.area, "0") == 0) { |
| args[0].type = ARGT_SINT; |
| args[0].data.sint = 0; |
| return 1; |
| } |
| memprintf(err, "Expects 'true', 'false', '0' or '1'"); |
| return 0; |
| } |
| |
| static int smp_fetch_const_bool(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->data.type = SMP_T_BOOL; |
| smp->data.u.sint = args[0].data.sint; |
| return 1; |
| } |
| |
| static int smp_fetch_const_int(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->data.type = SMP_T_SINT; |
| smp->data.u.sint = args[0].data.sint; |
| return 1; |
| } |
| |
| static int smp_fetch_const_ipv4(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->data.type = SMP_T_IPV4; |
| smp->data.u.ipv4 = args[0].data.ipv4; |
| return 1; |
| } |
| |
| static int smp_fetch_const_ipv6(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->data.type = SMP_T_IPV6; |
| smp->data.u.ipv6 = args[0].data.ipv6; |
| return 1; |
| } |
| |
| static int smp_check_const_bin(struct arg *args, char **err) |
| { |
| char *binstr = NULL; |
| int binstrlen; |
| |
| if (!parse_binary(args[0].data.str.area, &binstr, &binstrlen, err)) |
| return 0; |
| args[0].type = ARGT_STR; |
| args[0].data.str.area = binstr; |
| args[0].data.str.data = binstrlen; |
| return 1; |
| } |
| |
| static int smp_fetch_const_bin(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->flags |= SMP_F_CONST; |
| smp->data.type = SMP_T_BIN; |
| smp->data.u.str.area = args[0].data.str.area; |
| smp->data.u.str.data = args[0].data.str.data; |
| return 1; |
| } |
| |
| static int smp_check_const_meth(struct arg *args, char **err) |
| { |
| enum http_meth_t meth; |
| int i; |
| |
| meth = find_http_meth(args[0].data.str.area, args[0].data.str.data); |
| if (meth != HTTP_METH_OTHER) { |
| args[0].type = ARGT_SINT; |
| args[0].data.sint = meth; |
| } else { |
| /* Check method avalaibility. A methos is a token defined as : |
| * tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." / |
| * "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA |
| * token = 1*tchar |
| */ |
| for (i = 0; i < args[0].data.str.data; i++) { |
| if (!HTTP_IS_TOKEN(args[0].data.str.area[i])) { |
| memprintf(err, "expects valid method."); |
| return 0; |
| } |
| } |
| } |
| return 1; |
| } |
| |
| static int smp_fetch_const_meth(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| smp->data.type = SMP_T_METH; |
| if (args[0].type == ARGT_SINT) { |
| smp->flags &= ~SMP_F_CONST; |
| smp->data.u.meth.meth = args[0].data.sint; |
| smp->data.u.meth.str.area = ""; |
| smp->data.u.meth.str.data = 0; |
| } else { |
| smp->flags |= SMP_F_CONST; |
| smp->data.u.meth.meth = HTTP_METH_OTHER; |
| smp->data.u.meth.str.area = args[0].data.str.area; |
| smp->data.u.meth.str.data = args[0].data.str.data; |
| } |
| return 1; |
| } |
| |
| // This function checks the "uuid" sample's arguments. |
| // Function won't get called when no parameter is specified (maybe a bug?) |
| static int smp_check_uuid(struct arg *args, char **err) |
| { |
| if (!args[0].type) { |
| args[0].type = ARGT_SINT; |
| args[0].data.sint = 4; |
| } |
| else if (args[0].data.sint != 4) { |
| memprintf(err, "Unsupported UUID version: '%lld'", args[0].data.sint); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| // Generate a RFC4122 UUID (default is v4 = fully random) |
| static int smp_fetch_uuid(const struct arg *args, struct sample *smp, const char *kw, void *private) |
| { |
| if (args[0].data.sint == 4 || !args[0].type) { |
| ha_generate_uuid(&trash); |
| smp->data.type = SMP_T_STR; |
| smp->flags = SMP_F_VOL_TEST | SMP_F_MAY_CHANGE; |
| smp->data.u.str = trash; |
| return 1; |
| } |
| |
| // more implementations of other uuid formats possible here |
| return 0; |
| } |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Note: fetches that may return multiple types must be declared as the lowest |
| * common denominator, the type that can be casted into all other ones. For |
| * instance IPv4/IPv6 must be declared IPv4. |
| */ |
| static struct sample_fetch_kw_list smp_kws = {ILH, { |
| { "always_false", smp_fetch_false, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN }, |
| { "always_true", smp_fetch_true, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN }, |
| { "env", smp_fetch_env, ARG1(1,STR), NULL, SMP_T_STR, SMP_USE_INTRN }, |
| { "date", smp_fetch_date, ARG2(0,SINT,STR), smp_check_date_unit, SMP_T_SINT, SMP_USE_INTRN }, |
| { "date_us", smp_fetch_date_us, 0, NULL, SMP_T_SINT, SMP_USE_INTRN }, |
| { "hostname", smp_fetch_hostname, 0, NULL, SMP_T_STR, SMP_USE_INTRN }, |
| { "nbproc", smp_fetch_nbproc,0, NULL, SMP_T_SINT, SMP_USE_INTRN }, |
| { "proc", smp_fetch_proc, 0, NULL, SMP_T_SINT, SMP_USE_INTRN }, |
| { "thread", smp_fetch_thread, 0, NULL, SMP_T_SINT, SMP_USE_INTRN }, |
| { "rand", smp_fetch_rand, ARG1(0,SINT), NULL, SMP_T_SINT, SMP_USE_INTRN }, |
| { "stopping", smp_fetch_stopping, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN }, |
| { "stopping", smp_fetch_stopping, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN }, |
| { "uuid", smp_fetch_uuid, ARG1(0, SINT), smp_check_uuid, SMP_T_STR, SMP_USE_INTRN }, |
| |
| { "cpu_calls", smp_fetch_cpu_calls, 0, NULL, SMP_T_SINT, SMP_USE_INTRN }, |
| { "cpu_ns_avg", smp_fetch_cpu_ns_avg, 0, NULL, SMP_T_SINT, SMP_USE_INTRN }, |
| { "cpu_ns_tot", smp_fetch_cpu_ns_tot, 0, NULL, SMP_T_SINT, SMP_USE_INTRN }, |
| { "lat_ns_avg", smp_fetch_lat_ns_avg, 0, NULL, SMP_T_SINT, SMP_USE_INTRN }, |
| { "lat_ns_tot", smp_fetch_lat_ns_tot, 0, NULL, SMP_T_SINT, SMP_USE_INTRN }, |
| |
| { "str", smp_fetch_const_str, ARG1(1,STR), NULL , SMP_T_STR, SMP_USE_INTRN }, |
| { "bool", smp_fetch_const_bool, ARG1(1,STR), smp_check_const_bool, SMP_T_BOOL, SMP_USE_INTRN }, |
| { "int", smp_fetch_const_int, ARG1(1,SINT), NULL , SMP_T_SINT, SMP_USE_INTRN }, |
| { "ipv4", smp_fetch_const_ipv4, ARG1(1,IPV4), NULL , SMP_T_IPV4, SMP_USE_INTRN }, |
| { "ipv6", smp_fetch_const_ipv6, ARG1(1,IPV6), NULL , SMP_T_IPV6, SMP_USE_INTRN }, |
| { "bin", smp_fetch_const_bin, ARG1(1,STR), smp_check_const_bin , SMP_T_BIN, SMP_USE_INTRN }, |
| { "meth", smp_fetch_const_meth, ARG1(1,STR), smp_check_const_meth, SMP_T_METH, SMP_USE_INTRN }, |
| |
| { /* END */ }, |
| }}; |
| |
| INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws); |
| |
| /* Note: must not be declared <const> as its list will be overwritten */ |
| static struct sample_conv_kw_list sample_conv_kws = {ILH, { |
| { "debug", sample_conv_debug, ARG2(0,STR,STR), smp_check_debug, SMP_T_ANY, SMP_T_ANY }, |
| { "b64dec", sample_conv_base642bin,0, NULL, SMP_T_STR, SMP_T_BIN }, |
| { "base64", sample_conv_bin2base64,0, NULL, SMP_T_BIN, SMP_T_STR }, |
| { "upper", sample_conv_str2upper, 0, NULL, SMP_T_STR, SMP_T_STR }, |
| { "lower", sample_conv_str2lower, 0, NULL, SMP_T_STR, SMP_T_STR }, |
| { "length", sample_conv_length, 0, NULL, SMP_T_STR, SMP_T_SINT }, |
| { "hex", sample_conv_bin2hex, 0, NULL, SMP_T_BIN, SMP_T_STR }, |
| { "hex2i", sample_conv_hex2int, 0, NULL, SMP_T_STR, SMP_T_SINT }, |
| { "ipmask", sample_conv_ipmask, ARG2(1,MSK4,MSK6), NULL, SMP_T_ADDR, SMP_T_IPV4 }, |
| { "ltime", sample_conv_ltime, ARG2(1,STR,SINT), NULL, SMP_T_SINT, SMP_T_STR }, |
| { "utime", sample_conv_utime, ARG2(1,STR,SINT), NULL, SMP_T_SINT, SMP_T_STR }, |
| { "crc32", sample_conv_crc32, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT }, |
| { "crc32c", sample_conv_crc32c, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT }, |
| { "djb2", sample_conv_djb2, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT }, |
| { "sdbm", sample_conv_sdbm, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT }, |
| { "wt6", sample_conv_wt6, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT }, |
| { "xxh32", sample_conv_xxh32, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT }, |
| { "xxh64", sample_conv_xxh64, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT }, |
| { "json", sample_conv_json, ARG1(1,STR), sample_conv_json_check, SMP_T_STR, SMP_T_STR }, |
| { "bytes", sample_conv_bytes, ARG2(1,SINT,SINT), NULL, SMP_T_BIN, SMP_T_BIN }, |
| { "field", sample_conv_field, ARG3(2,SINT,STR,SINT), sample_conv_field_check, SMP_T_STR, SMP_T_STR }, |
| { "word", sample_conv_word, ARG3(2,SINT,STR,SINT), sample_conv_field_check, SMP_T_STR, SMP_T_STR }, |
| { "regsub", sample_conv_regsub, ARG3(2,REG,STR,STR), sample_conv_regsub_check, SMP_T_STR, SMP_T_STR }, |
| { "sha1", sample_conv_sha1, 0, NULL, SMP_T_BIN, SMP_T_BIN }, |
| #ifdef USE_OPENSSL |
| { "sha2", sample_conv_sha2, ARG1(0, SINT), smp_check_sha2, SMP_T_BIN, SMP_T_BIN }, |
| #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000100fL) |
| { "aes_gcm_dec", sample_conv_aes_gcm_dec, ARG4(4,SINT,STR,STR,STR), check_aes_gcm, SMP_T_BIN, SMP_T_BIN }, |
| #endif |
| { "digest", sample_conv_crypto_digest, ARG1(1,STR), check_crypto_digest, SMP_T_BIN, SMP_T_BIN }, |
| { "hmac", sample_conv_crypto_hmac, ARG2(2,STR,STR), check_crypto_hmac, SMP_T_BIN, SMP_T_BIN }, |
| #endif |
| { "concat", sample_conv_concat, ARG3(1,STR,STR,STR), smp_check_concat, SMP_T_STR, SMP_T_STR }, |
| { "strcmp", sample_conv_strcmp, ARG1(1,STR), smp_check_strcmp, SMP_T_STR, SMP_T_SINT }, |
| #ifdef USE_OPENSSL |
| { "secure_memcmp", sample_conv_secure_memcmp, ARG1(1,STR), smp_check_secure_memcmp, SMP_T_BIN, SMP_T_BOOL }, |
| #endif |
| |
| /* gRPC converters. */ |
| { "ungrpc", sample_conv_ungrpc, ARG2(1,PBUF_FNUM,STR), sample_conv_protobuf_check, SMP_T_BIN, SMP_T_BIN }, |
| { "protobuf", sample_conv_protobuf, ARG2(1,PBUF_FNUM,STR), sample_conv_protobuf_check, SMP_T_BIN, SMP_T_BIN }, |
| |
| { "and", sample_conv_binary_and, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, |
| { "or", sample_conv_binary_or, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, |
| { "xor", sample_conv_binary_xor, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, |
| { "cpl", sample_conv_binary_cpl, 0, NULL, SMP_T_SINT, SMP_T_SINT }, |
| { "bool", sample_conv_arith_bool, 0, NULL, SMP_T_SINT, SMP_T_BOOL }, |
| { "not", sample_conv_arith_not, 0, NULL, SMP_T_SINT, SMP_T_BOOL }, |
| { "odd", sample_conv_arith_odd, 0, NULL, SMP_T_SINT, SMP_T_BOOL }, |
| { "even", sample_conv_arith_even, 0, NULL, SMP_T_SINT, SMP_T_BOOL }, |
| { "add", sample_conv_arith_add, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, |
| { "sub", sample_conv_arith_sub, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, |
| { "mul", sample_conv_arith_mul, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, |
| { "div", sample_conv_arith_div, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, |
| { "mod", sample_conv_arith_mod, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, |
| { "neg", sample_conv_arith_neg, 0, NULL, SMP_T_SINT, SMP_T_SINT }, |
| |
| { "htonl", sample_conv_htonl, 0, NULL, SMP_T_SINT, SMP_T_BIN }, |
| { "cut_crlf", sample_conv_cut_crlf, 0, NULL, SMP_T_STR, SMP_T_STR }, |
| { "ltrim", sample_conv_ltrim, ARG1(1,STR), NULL, SMP_T_STR, SMP_T_STR }, |
| { "rtrim", sample_conv_rtrim, ARG1(1,STR), NULL, SMP_T_STR, SMP_T_STR }, |
| { NULL, NULL, 0, 0, 0 }, |
| }}; |
| |
| INITCALL1(STG_REGISTER, sample_register_convs, &sample_conv_kws); |