blob: 21070e1cff6d3ab9d90949f349e561c2f5f821d5 [file] [log] [blame]
/*
* Sample management functions.
*
* Copyright 2009-2010 EXCELIANCE, Emeric Brun <ebrun@exceliance.fr>
* Copyright (C) 2012 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <string.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <import/sha1.h>
#include <import/xxhash.h>
#include <haproxy/api.h>
#include <haproxy/arg.h>
#include <haproxy/auth.h>
#include <haproxy/base64.h>
#include <haproxy/buf.h>
#include <haproxy/chunk.h>
#include <haproxy/errors.h>
#include <haproxy/fix.h>
#include <haproxy/global.h>
#include <haproxy/hash.h>
#include <haproxy/http.h>
#include <haproxy/istbuf.h>
#include <haproxy/mqtt.h>
#include <haproxy/net_helper.h>
#include <haproxy/protobuf.h>
#include <haproxy/proxy.h>
#include <haproxy/regex.h>
#include <haproxy/sample.h>
#include <haproxy/sink.h>
#include <haproxy/stick_table.h>
#include <haproxy/tools.h>
#include <haproxy/uri_auth-t.h>
#include <haproxy/vars.h>
/* sample type names */
const char *smp_to_type[SMP_TYPES] = {
[SMP_T_ANY] = "any",
[SMP_T_BOOL] = "bool",
[SMP_T_SINT] = "sint",
[SMP_T_ADDR] = "addr",
[SMP_T_IPV4] = "ipv4",
[SMP_T_IPV6] = "ipv6",
[SMP_T_STR] = "str",
[SMP_T_BIN] = "bin",
[SMP_T_METH] = "meth",
};
/* static sample used in sample_process() when <p> is NULL */
static THREAD_LOCAL struct sample temp_smp;
/* list head of all known sample fetch keywords */
static struct sample_fetch_kw_list sample_fetches = {
.list = LIST_HEAD_INIT(sample_fetches.list)
};
/* list head of all known sample format conversion keywords */
static struct sample_conv_kw_list sample_convs = {
.list = LIST_HEAD_INIT(sample_convs.list)
};
const unsigned int fetch_cap[SMP_SRC_ENTRIES] = {
[SMP_SRC_INTRN] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL),
[SMP_SRC_LISTN] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL___________),
[SMP_SRC_FTEND] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL___________),
[SMP_SRC_L4CLI] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL),
[SMP_SRC_L5CLI] = (SMP_VAL___________ | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL___________),
[SMP_SRC_TRACK] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL___________),
[SMP_SRC_L6REQ] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________),
[SMP_SRC_HRQHV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________),
[SMP_SRC_HRQHP] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL___________),
[SMP_SRC_HRQBO] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________),
[SMP_SRC_BKEND] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL),
[SMP_SRC_SERVR] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL),
[SMP_SRC_L4SRV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL),
[SMP_SRC_L5SRV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL),
[SMP_SRC_L6RES] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL___________ | SMP_VAL_BE_CHK_RUL),
[SMP_SRC_HRSHV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL___________ | SMP_VAL_BE_CHK_RUL),
[SMP_SRC_HRSHP] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL),
[SMP_SRC_HRSBO] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL___________ | SMP_VAL_BE_CHK_RUL),
[SMP_SRC_RQFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL_FE_LOG_END | SMP_VAL___________),
[SMP_SRC_RSFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL_FE_LOG_END | SMP_VAL___________),
[SMP_SRC_TXFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL_FE_LOG_END | SMP_VAL___________),
[SMP_SRC_SSFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL_FE_LOG_END | SMP_VAL___________),
};
static const char *fetch_src_names[SMP_SRC_ENTRIES] = {
[SMP_SRC_INTRN] = "internal state",
[SMP_SRC_LISTN] = "listener",
[SMP_SRC_FTEND] = "frontend",
[SMP_SRC_L4CLI] = "client address",
[SMP_SRC_L5CLI] = "client-side connection",
[SMP_SRC_TRACK] = "track counters",
[SMP_SRC_L6REQ] = "request buffer",
[SMP_SRC_HRQHV] = "HTTP request headers",
[SMP_SRC_HRQHP] = "HTTP request",
[SMP_SRC_HRQBO] = "HTTP request body",
[SMP_SRC_BKEND] = "backend",
[SMP_SRC_SERVR] = "server",
[SMP_SRC_L4SRV] = "server address",
[SMP_SRC_L5SRV] = "server-side connection",
[SMP_SRC_L6RES] = "response buffer",
[SMP_SRC_HRSHV] = "HTTP response headers",
[SMP_SRC_HRSHP] = "HTTP response",
[SMP_SRC_HRSBO] = "HTTP response body",
[SMP_SRC_RQFIN] = "request buffer statistics",
[SMP_SRC_RSFIN] = "response buffer statistics",
[SMP_SRC_TXFIN] = "transaction statistics",
[SMP_SRC_SSFIN] = "session statistics",
};
static const char *fetch_ckp_names[SMP_CKP_ENTRIES] = {
[SMP_CKP_FE_CON_ACC] = "frontend tcp-request connection rule",
[SMP_CKP_FE_SES_ACC] = "frontend tcp-request session rule",
[SMP_CKP_FE_REQ_CNT] = "frontend tcp-request content rule",
[SMP_CKP_FE_HRQ_HDR] = "frontend http-request header rule",
[SMP_CKP_FE_HRQ_BDY] = "frontend http-request body rule",
[SMP_CKP_FE_SET_BCK] = "frontend use-backend rule",
[SMP_CKP_BE_REQ_CNT] = "backend tcp-request content rule",
[SMP_CKP_BE_HRQ_HDR] = "backend http-request header rule",
[SMP_CKP_BE_HRQ_BDY] = "backend http-request body rule",
[SMP_CKP_BE_SET_SRV] = "backend use-server, balance or stick-match rule",
[SMP_CKP_BE_SRV_CON] = "server source selection",
[SMP_CKP_BE_RES_CNT] = "backend tcp-response content rule",
[SMP_CKP_BE_HRS_HDR] = "backend http-response header rule",
[SMP_CKP_BE_HRS_BDY] = "backend http-response body rule",
[SMP_CKP_BE_STO_RUL] = "backend stick-store rule",
[SMP_CKP_FE_RES_CNT] = "frontend tcp-response content rule",
[SMP_CKP_FE_HRS_HDR] = "frontend http-response header rule",
[SMP_CKP_FE_HRS_BDY] = "frontend http-response body rule",
[SMP_CKP_FE_LOG_END] = "logs",
[SMP_CKP_BE_CHK_RUL] = "backend tcp-check rule",
};
/* This function returns the type of the data returned by the sample_expr.
* It assumes that the <expr> and all of its converters are properly
* initialized.
*/
inline
int smp_expr_output_type(struct sample_expr *expr)
{
struct sample_conv_expr *smp_expr;
if (!LIST_ISEMPTY(&expr->conv_exprs)) {
smp_expr = LIST_PREV(&expr->conv_exprs, struct sample_conv_expr *, list);
return smp_expr->conv->out_type;
}
return expr->fetch->out_type;
}
/* fill the trash with a comma-delimited list of source names for the <use> bit
* field which must be composed of a non-null set of SMP_USE_* flags. The return
* value is the pointer to the string in the trash buffer.
*/
const char *sample_src_names(unsigned int use)
{
int bit;
trash.data = 0;
trash.area[0] = '\0';
for (bit = 0; bit < SMP_SRC_ENTRIES; bit++) {
if (!(use & ~((1 << bit) - 1)))
break; /* no more bits */
if (!(use & (1 << bit)))
continue; /* bit not set */
trash.data += snprintf(trash.area + trash.data,
trash.size - trash.data, "%s%s",
(use & ((1 << bit) - 1)) ? "," : "",
fetch_src_names[bit]);
}
return trash.area;
}
/* return a pointer to the correct sample checkpoint name, or "unknown" when
* the flags are invalid. Only the lowest bit is used, higher bits are ignored
* if set.
*/
const char *sample_ckp_names(unsigned int use)
{
int bit;
for (bit = 0; bit < SMP_CKP_ENTRIES; bit++)
if (use & (1 << bit))
return fetch_ckp_names[bit];
return "unknown sample check place, please report this bug";
}
/*
* Registers the sample fetch keyword list <kwl> as a list of valid keywords
* for next parsing sessions. The fetch keywords capabilities are also computed
* from their ->use field.
*/
void sample_register_fetches(struct sample_fetch_kw_list *kwl)
{
struct sample_fetch *sf;
int bit;
for (sf = kwl->kw; sf->kw != NULL; sf++) {
for (bit = 0; bit < SMP_SRC_ENTRIES; bit++)
if (sf->use & (1 << bit))
sf->val |= fetch_cap[bit];
}
LIST_ADDQ(&sample_fetches.list, &kwl->list);
}
/*
* Registers the sample format coverstion keyword list <pckl> as a list of valid keywords for next
* parsing sessions.
*/
void sample_register_convs(struct sample_conv_kw_list *pckl)
{
LIST_ADDQ(&sample_convs.list, &pckl->list);
}
/*
* Returns the pointer on sample fetch keyword structure identified by
* string of <len> in buffer <kw>.
*
*/
struct sample_fetch *find_sample_fetch(const char *kw, int len)
{
int index;
struct sample_fetch_kw_list *kwl;
list_for_each_entry(kwl, &sample_fetches.list, list) {
for (index = 0; kwl->kw[index].kw != NULL; index++) {
if (strncmp(kwl->kw[index].kw, kw, len) == 0 &&
kwl->kw[index].kw[len] == '\0')
return &kwl->kw[index];
}
}
return NULL;
}
/* This function browses the list of available sample fetches. <current> is
* the last used sample fetch. If it is the first call, it must set to NULL.
* <idx> is the index of the next sample fetch entry. It is used as private
* value. It is useless to initiate it.
*
* It returns always the new fetch_sample entry, and NULL when the end of
* the list is reached.
*/
struct sample_fetch *sample_fetch_getnext(struct sample_fetch *current, int *idx)
{
struct sample_fetch_kw_list *kwl;
struct sample_fetch *base;
if (!current) {
/* Get first kwl entry. */
kwl = LIST_NEXT(&sample_fetches.list, struct sample_fetch_kw_list *, list);
(*idx) = 0;
} else {
/* Get kwl corresponding to the curret entry. */
base = current + 1 - (*idx);
kwl = container_of(base, struct sample_fetch_kw_list, kw);
}
while (1) {
/* Check if kwl is the last entry. */
if (&kwl->list == &sample_fetches.list)
return NULL;
/* idx contain the next keyword. If it is available, return it. */
if (kwl->kw[*idx].kw) {
(*idx)++;
return &kwl->kw[(*idx)-1];
}
/* get next entry in the main list, and return NULL if the end is reached. */
kwl = LIST_NEXT(&kwl->list, struct sample_fetch_kw_list *, list);
/* Set index to 0, ans do one other loop. */
(*idx) = 0;
}
}
/* This function browses the list of available converters. <current> is
* the last used converter. If it is the first call, it must set to NULL.
* <idx> is the index of the next converter entry. It is used as private
* value. It is useless to initiate it.
*
* It returns always the next sample_conv entry, and NULL when the end of
* the list is reached.
*/
struct sample_conv *sample_conv_getnext(struct sample_conv *current, int *idx)
{
struct sample_conv_kw_list *kwl;
struct sample_conv *base;
if (!current) {
/* Get first kwl entry. */
kwl = LIST_NEXT(&sample_convs.list, struct sample_conv_kw_list *, list);
(*idx) = 0;
} else {
/* Get kwl corresponding to the curret entry. */
base = current + 1 - (*idx);
kwl = container_of(base, struct sample_conv_kw_list, kw);
}
while (1) {
/* Check if kwl is the last entry. */
if (&kwl->list == &sample_convs.list)
return NULL;
/* idx contain the next keyword. If it is available, return it. */
if (kwl->kw[*idx].kw) {
(*idx)++;
return &kwl->kw[(*idx)-1];
}
/* get next entry in the main list, and return NULL if the end is reached. */
kwl = LIST_NEXT(&kwl->list, struct sample_conv_kw_list *, list);
/* Set index to 0, ans do one other loop. */
(*idx) = 0;
}
}
/*
* Returns the pointer on sample format conversion keyword structure identified by
* string of <len> in buffer <kw>.
*
*/
struct sample_conv *find_sample_conv(const char *kw, int len)
{
int index;
struct sample_conv_kw_list *kwl;
list_for_each_entry(kwl, &sample_convs.list, list) {
for (index = 0; kwl->kw[index].kw != NULL; index++) {
if (strncmp(kwl->kw[index].kw, kw, len) == 0 &&
kwl->kw[index].kw[len] == '\0')
return &kwl->kw[index];
}
}
return NULL;
}
/******************************************************************/
/* Sample casts functions */
/******************************************************************/
static int c_ip2int(struct sample *smp)
{
smp->data.u.sint = ntohl(smp->data.u.ipv4.s_addr);
smp->data.type = SMP_T_SINT;
return 1;
}
static int c_ip2str(struct sample *smp)
{
struct buffer *trash = get_trash_chunk();
if (!inet_ntop(AF_INET, (void *)&smp->data.u.ipv4, trash->area, trash->size))
return 0;
trash->data = strlen(trash->area);
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int c_ip2ipv6(struct sample *smp)
{
v4tov6(&smp->data.u.ipv6, &smp->data.u.ipv4);
smp->data.type = SMP_T_IPV6;
return 1;
}
static int c_ipv62ip(struct sample *smp)
{
if (!v6tov4(&smp->data.u.ipv4, &smp->data.u.ipv6))
return 0;
smp->data.type = SMP_T_IPV4;
return 1;
}
static int c_ipv62str(struct sample *smp)
{
struct buffer *trash = get_trash_chunk();
if (!inet_ntop(AF_INET6, (void *)&smp->data.u.ipv6, trash->area, trash->size))
return 0;
trash->data = strlen(trash->area);
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
smp->flags &= ~SMP_F_CONST;
return 1;
}
/*
static int c_ipv62ip(struct sample *smp)
{
return v6tov4(&smp->data.u.ipv4, &smp->data.u.ipv6);
}
*/
static int c_int2ip(struct sample *smp)
{
smp->data.u.ipv4.s_addr = htonl((unsigned int)smp->data.u.sint);
smp->data.type = SMP_T_IPV4;
return 1;
}
static int c_int2ipv6(struct sample *smp)
{
smp->data.u.ipv4.s_addr = htonl((unsigned int)smp->data.u.sint);
v4tov6(&smp->data.u.ipv6, &smp->data.u.ipv4);
smp->data.type = SMP_T_IPV6;
return 1;
}
static int c_str2addr(struct sample *smp)
{
if (!buf2ip(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv4)) {
if (!buf2ip6(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv6))
return 0;
smp->data.type = SMP_T_IPV6;
smp->flags &= ~SMP_F_CONST;
return 1;
}
smp->data.type = SMP_T_IPV4;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int c_str2ip(struct sample *smp)
{
if (!buf2ip(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv4))
return 0;
smp->data.type = SMP_T_IPV4;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int c_str2ipv6(struct sample *smp)
{
if (!buf2ip6(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv6))
return 0;
smp->data.type = SMP_T_IPV6;
smp->flags &= ~SMP_F_CONST;
return 1;
}
/*
* The NULL char always enforces the end of string if it is met.
* Data is never changed, so we can ignore the CONST case
*/
static int c_bin2str(struct sample *smp)
{
int i;
for (i = 0; i < smp->data.u.str.data; i++) {
if (!smp->data.u.str.area[i]) {
smp->data.u.str.data = i;
break;
}
}
smp->data.type = SMP_T_STR;
return 1;
}
static int c_int2str(struct sample *smp)
{
struct buffer *trash = get_trash_chunk();
char *pos;
pos = lltoa_r(smp->data.u.sint, trash->area, trash->size);
if (!pos)
return 0;
trash->size = trash->size - (pos - trash->area);
trash->area = pos;
trash->data = strlen(pos);
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
smp->flags &= ~SMP_F_CONST;
return 1;
}
/* This function unconditionally duplicates data and removes the "const" flag.
* For strings and binary blocks, it also provides a known allocated size with
* a length that is capped to the size, and ensures a trailing zero is always
* appended for strings. This is necessary for some operations which may
* require to extend the length. It returns 0 if it fails, 1 on success.
*/
int smp_dup(struct sample *smp)
{
struct buffer *trash;
switch (smp->data.type) {
case SMP_T_BOOL:
case SMP_T_SINT:
case SMP_T_ADDR:
case SMP_T_IPV4:
case SMP_T_IPV6:
/* These type are not const. */
break;
case SMP_T_METH:
if (smp->data.u.meth.meth != HTTP_METH_OTHER)
break;
/* Fall through */
case SMP_T_STR:
trash = get_trash_chunk();
trash->data = smp->data.type == SMP_T_STR ?
smp->data.u.str.data : smp->data.u.meth.str.data;
if (trash->data > trash->size - 1)
trash->data = trash->size - 1;
memcpy(trash->area, smp->data.type == SMP_T_STR ?
smp->data.u.str.area : smp->data.u.meth.str.area,
trash->data);
trash->area[trash->data] = 0;
smp->data.u.str = *trash;
break;
case SMP_T_BIN:
trash = get_trash_chunk();
trash->data = smp->data.u.str.data;
if (trash->data > trash->size)
trash->data = trash->size;
memcpy(trash->area, smp->data.u.str.area, trash->data);
smp->data.u.str = *trash;
break;
default:
/* Other cases are unexpected. */
return 0;
}
/* remove const flag */
smp->flags &= ~SMP_F_CONST;
return 1;
}
int c_none(struct sample *smp)
{
return 1;
}
static int c_str2int(struct sample *smp)
{
const char *str;
const char *end;
if (smp->data.u.str.data == 0)
return 0;
str = smp->data.u.str.area;
end = smp->data.u.str.area + smp->data.u.str.data;
smp->data.u.sint = read_int64(&str, end);
smp->data.type = SMP_T_SINT;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int c_str2meth(struct sample *smp)
{
enum http_meth_t meth;
int len;
meth = find_http_meth(smp->data.u.str.area, smp->data.u.str.data);
if (meth == HTTP_METH_OTHER) {
len = smp->data.u.str.data;
smp->data.u.meth.str.area = smp->data.u.str.area;
smp->data.u.meth.str.data = len;
}
else
smp->flags &= ~SMP_F_CONST;
smp->data.u.meth.meth = meth;
smp->data.type = SMP_T_METH;
return 1;
}
static int c_meth2str(struct sample *smp)
{
int len;
enum http_meth_t meth;
if (smp->data.u.meth.meth == HTTP_METH_OTHER) {
/* The method is unknown. Copy the original pointer. */
len = smp->data.u.meth.str.data;
smp->data.u.str.area = smp->data.u.meth.str.area;
smp->data.u.str.data = len;
smp->data.type = SMP_T_STR;
}
else if (smp->data.u.meth.meth < HTTP_METH_OTHER) {
/* The method is known, copy the pointer containing the string. */
meth = smp->data.u.meth.meth;
smp->data.u.str.area = http_known_methods[meth].ptr;
smp->data.u.str.data = http_known_methods[meth].len;
smp->flags |= SMP_F_CONST;
smp->data.type = SMP_T_STR;
}
else {
/* Unknown method */
return 0;
}
return 1;
}
static int c_addr2bin(struct sample *smp)
{
struct buffer *chk = get_trash_chunk();
if (smp->data.type == SMP_T_IPV4) {
chk->data = 4;
memcpy(chk->area, &smp->data.u.ipv4, chk->data);
}
else if (smp->data.type == SMP_T_IPV6) {
chk->data = 16;
memcpy(chk->area, &smp->data.u.ipv6, chk->data);
}
else
return 0;
smp->data.u.str = *chk;
smp->data.type = SMP_T_BIN;
return 1;
}
static int c_int2bin(struct sample *smp)
{
struct buffer *chk = get_trash_chunk();
*(unsigned long long int *) chk->area = my_htonll(smp->data.u.sint);
chk->data = 8;
smp->data.u.str = *chk;
smp->data.type = SMP_T_BIN;
return 1;
}
/*****************************************************************/
/* Sample casts matrix: */
/* sample_casts[from type][to type] */
/* NULL pointer used for impossible sample casts */
/*****************************************************************/
sample_cast_fct sample_casts[SMP_TYPES][SMP_TYPES] = {
/* to: ANY BOOL SINT ADDR IPV4 IPV6 STR BIN METH */
/* from: ANY */ { c_none, c_none, c_none, c_none, c_none, c_none, c_none, c_none, c_none, },
/* BOOL */ { c_none, c_none, c_none, NULL, NULL, NULL, c_int2str, NULL, NULL, },
/* SINT */ { c_none, c_none, c_none, c_int2ip, c_int2ip, c_int2ipv6, c_int2str, c_int2bin, NULL, },
/* ADDR */ { c_none, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, },
/* IPV4 */ { c_none, NULL, c_ip2int, c_none, c_none, c_ip2ipv6, c_ip2str, c_addr2bin, NULL, },
/* IPV6 */ { c_none, NULL, NULL, c_none, c_ipv62ip,c_none, c_ipv62str, c_addr2bin, NULL, },
/* STR */ { c_none, c_str2int, c_str2int, c_str2addr, c_str2ip, c_str2ipv6, c_none, c_none, c_str2meth, },
/* BIN */ { c_none, NULL, NULL, NULL, NULL, NULL, c_bin2str, c_none, c_str2meth, },
/* METH */ { c_none, NULL, NULL, NULL, NULL, NULL, c_meth2str, c_meth2str, c_none, }
};
/*
* Parse a sample expression configuration:
* fetch keyword followed by format conversion keywords.
* Returns a pointer on allocated sample expression structure.
* The caller must have set al->ctx.
* If <endptr> is non-nul, it will be set to the first unparsed character
* (which may be the final '\0') on success. If it is nul, the expression
* must be properly terminated by a '\0' otherwise an error is reported.
*/
struct sample_expr *sample_parse_expr(char **str, int *idx, const char *file, int line, char **err_msg, struct arg_list *al, char **endptr)
{
const char *begw; /* beginning of word */
const char *endw; /* end of word */
const char *endt; /* end of term */
struct sample_expr *expr;
struct sample_fetch *fetch;
struct sample_conv *conv;
unsigned long prev_type;
char *fkw = NULL;
char *ckw = NULL;
int err_arg;
begw = str[*idx];
for (endw = begw; is_idchar(*endw); endw++)
;
if (endw == begw) {
memprintf(err_msg, "missing fetch method");
goto out_error;
}
/* keep a copy of the current fetch keyword for error reporting */
fkw = my_strndup(begw, endw - begw);
fetch = find_sample_fetch(begw, endw - begw);
if (!fetch) {
memprintf(err_msg, "unknown fetch method '%s'", fkw);
goto out_error;
}
/* At this point, we have :
* - begw : beginning of the keyword
* - endw : end of the keyword, first character not part of keyword
*/
if (fetch->out_type >= SMP_TYPES) {
memprintf(err_msg, "returns type of fetch method '%s' is unknown", fkw);
goto out_error;
}
prev_type = fetch->out_type;
expr = calloc(1, sizeof(*expr));
if (!expr)
goto out_error;
LIST_INIT(&(expr->conv_exprs));
expr->fetch = fetch;
expr->arg_p = empty_arg_list;
/* Note that we call the argument parser even with an empty string,
* this allows it to automatically create entries for mandatory
* implicit arguments (eg: local proxy name).
*/
al->kw = expr->fetch->kw;
al->conv = NULL;
if (make_arg_list(endw, -1, fetch->arg_mask, &expr->arg_p, err_msg, &endt, &err_arg, al) < 0) {
memprintf(err_msg, "fetch method '%s' : %s", fkw, *err_msg);
goto out_error;
}
/* now endt is our first char not part of the arg list, typically the
* comma after the sample fetch name or after the closing parenthesis,
* or the NUL char.
*/
if (!expr->arg_p) {
expr->arg_p = empty_arg_list;
}
else if (fetch->val_args && !fetch->val_args(expr->arg_p, err_msg)) {
memprintf(err_msg, "invalid args in fetch method '%s' : %s", fkw, *err_msg);
goto out_error;
}
/* Now process the converters if any. We have two supported syntaxes
* for the converters, which can be combined :
* - comma-delimited list of converters just after the keyword and args ;
* - one converter per keyword
* The combination allows to have each keyword being a comma-delimited
* series of converters.
*
* We want to process the former first, then the latter. For this we start
* from the beginning of the supposed place in the exiting conv chain, which
* starts at the last comma (endt).
*/
while (1) {
struct sample_conv_expr *conv_expr;
int err_arg;
int argcnt;
if (*endt && *endt != ',') {
if (endptr) {
/* end found, let's stop here */
break;
}
if (ckw)
memprintf(err_msg, "missing comma after converter '%s'", ckw);
else
memprintf(err_msg, "missing comma after fetch keyword '%s'", fkw);
goto out_error;
}
/* FIXME: how long should we support such idiocies ? Maybe we
* should already warn ?
*/
while (*endt == ',') /* then trailing commas */
endt++;
begw = endt; /* start of converter */
if (!*begw) {
/* none ? skip to next string */
(*idx)++;
begw = str[*idx];
if (!begw || !*begw)
break;
}
for (endw = begw; is_idchar(*endw); endw++)
;
free(ckw);
ckw = my_strndup(begw, endw - begw);
conv = find_sample_conv(begw, endw - begw);
if (!conv) {
/* we found an isolated keyword that we don't know, it's not ours */
if (begw == str[*idx]) {
endt = begw;
break;
}
memprintf(err_msg, "unknown converter '%s'", ckw);
goto out_error;
}
if (conv->in_type >= SMP_TYPES || conv->out_type >= SMP_TYPES) {
memprintf(err_msg, "returns type of converter '%s' is unknown", ckw);
goto out_error;
}
/* If impossible type conversion */
if (!sample_casts[prev_type][conv->in_type]) {
memprintf(err_msg, "converter '%s' cannot be applied", ckw);
goto out_error;
}
prev_type = conv->out_type;
conv_expr = calloc(1, sizeof(*conv_expr));
if (!conv_expr)
goto out_error;
LIST_ADDQ(&(expr->conv_exprs), &(conv_expr->list));
conv_expr->conv = conv;
al->kw = expr->fetch->kw;
al->conv = conv_expr->conv->kw;
argcnt = make_arg_list(endw, -1, conv->arg_mask, &conv_expr->arg_p, err_msg, &endt, &err_arg, al);
if (argcnt < 0) {
memprintf(err_msg, "invalid arg %d in converter '%s' : %s", err_arg+1, ckw, *err_msg);
goto out_error;
}
if (argcnt && !conv->arg_mask) {
memprintf(err_msg, "converter '%s' does not support any args", ckw);
goto out_error;
}
if (!conv_expr->arg_p)
conv_expr->arg_p = empty_arg_list;
if (conv->val_args && !conv->val_args(conv_expr->arg_p, conv, file, line, err_msg)) {
memprintf(err_msg, "invalid args in converter '%s' : %s", ckw, *err_msg);
goto out_error;
}
}
if (endptr) {
/* end found, let's stop here */
*endptr = (char *)endt;
}
out:
free(fkw);
free(ckw);
return expr;
out_error:
/* TODO: prune_sample_expr(expr); */
expr = NULL;
goto out;
}
/*
* Process a fetch + format conversion of defined by the sample expression <expr>
* on request or response considering the <opt> parameter.
* Returns a pointer on a typed sample structure containing the result or NULL if
* sample is not found or when format conversion failed.
* If <p> is not null, function returns results in structure pointed by <p>.
* If <p> is null, functions returns a pointer on a static sample structure.
*
* Note: the fetch functions are required to properly set the return type. The
* conversion functions must do so too. However the cast functions do not need
* to since they're made to cast multiple types according to what is required.
*
* The caller may indicate in <opt> if it considers the result final or not.
* The caller needs to check the SMP_F_MAY_CHANGE flag in p->flags to verify
* if the result is stable or not, according to the following table :
*
* return MAY_CHANGE FINAL Meaning for the sample
* NULL 0 * Not present and will never be (eg: header)
* NULL 1 0 Not present yet, could change (eg: POST param)
* NULL 1 1 Not present yet, will not change anymore
* smp 0 * Present and will not change (eg: header)
* smp 1 0 Present, may change (eg: request length)
* smp 1 1 Present, last known value (eg: request length)
*/
struct sample *sample_process(struct proxy *px, struct session *sess,
struct stream *strm, unsigned int opt,
struct sample_expr *expr, struct sample *p)
{
struct sample_conv_expr *conv_expr;
if (p == NULL) {
p = &temp_smp;
memset(p, 0, sizeof(*p));
}
smp_set_owner(p, px, sess, strm, opt);
if (!expr->fetch->process(expr->arg_p, p, expr->fetch->kw, expr->fetch->private))
return NULL;
list_for_each_entry(conv_expr, &expr->conv_exprs, list) {
/* we want to ensure that p->type can be casted into
* conv_expr->conv->in_type. We have 3 possibilities :
* - NULL => not castable.
* - c_none => nothing to do (let's optimize it)
* - other => apply cast and prepare to fail
*/
if (!sample_casts[p->data.type][conv_expr->conv->in_type])
return NULL;
if (sample_casts[p->data.type][conv_expr->conv->in_type] != c_none &&
!sample_casts[p->data.type][conv_expr->conv->in_type](p))
return NULL;
/* OK cast succeeded */
if (!conv_expr->conv->process(conv_expr->arg_p, p, conv_expr->conv->private))
return NULL;
}
return p;
}
/*
* Resolve all remaining arguments in proxy <p>. Returns the number of
* errors or 0 if everything is fine.
*/
int smp_resolve_args(struct proxy *p)
{
struct arg_list *cur, *bak;
const char *ctx, *where;
const char *conv_ctx, *conv_pre, *conv_pos;
struct userlist *ul;
struct my_regex *reg;
struct arg *arg;
int cfgerr = 0;
int rflags;
list_for_each_entry_safe(cur, bak, &p->conf.args.list, list) {
struct proxy *px;
struct server *srv;
struct stktable *t;
char *pname, *sname, *stktname;
char *err;
arg = cur->arg;
/* prepare output messages */
conv_pre = conv_pos = conv_ctx = "";
if (cur->conv) {
conv_ctx = cur->conv;
conv_pre = "conversion keyword '";
conv_pos = "' for ";
}
where = "in";
ctx = "sample fetch keyword";
switch (cur->ctx) {
case ARGC_STK: where = "in stick rule in"; break;
case ARGC_TRK: where = "in tracking rule in"; break;
case ARGC_LOG: where = "in log-format string in"; break;
case ARGC_LOGSD: where = "in log-format-sd string in"; break;
case ARGC_HRQ: where = "in http-request header format string in"; break;
case ARGC_HRS: where = "in http-response header format string in"; break;
case ARGC_UIF: where = "in unique-id-format string in"; break;
case ARGC_RDR: where = "in redirect format string in"; break;
case ARGC_CAP: where = "in capture rule in"; break;
case ARGC_ACL: ctx = "ACL keyword"; break;
case ARGC_SRV: where = "in server directive in"; break;
case ARGC_SPOE: where = "in spoe-message directive in"; break;
case ARGC_HERR: where = "in http-error directive in"; break;
case ARGC_OT: where = "in ot-scope directive in"; break;
}
/* set a few default settings */
px = p;
pname = p->id;
switch (arg->type) {
case ARGT_SRV:
if (!arg->data.str.data) {
ha_alert("parsing [%s:%d] : missing server name in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
cur->file, cur->line,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
continue;
}
/* we support two formats : "bck/srv" and "srv" */
sname = strrchr(arg->data.str.area, '/');
if (sname) {
*sname++ = '\0';
pname = arg->data.str.area;
px = proxy_be_by_name(pname);
if (!px) {
ha_alert("parsing [%s:%d] : unable to find proxy '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
cur->file, cur->line, pname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
}
else
sname = arg->data.str.area;
srv = findserver(px, sname);
if (!srv) {
ha_alert("parsing [%s:%d] : unable to find server '%s' in proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
cur->file, cur->line, sname, pname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
chunk_destroy(&arg->data.str);
arg->unresolved = 0;
arg->data.srv = srv;
break;
case ARGT_FE:
if (arg->data.str.data) {
pname = arg->data.str.area;
px = proxy_fe_by_name(pname);
}
if (!px) {
ha_alert("parsing [%s:%d] : unable to find frontend '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
cur->file, cur->line, pname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
if (!(px->cap & PR_CAP_FE)) {
ha_alert("parsing [%s:%d] : proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s', has not frontend capability.\n",
cur->file, cur->line, pname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
chunk_destroy(&arg->data.str);
arg->unresolved = 0;
arg->data.prx = px;
break;
case ARGT_BE:
if (arg->data.str.data) {
pname = arg->data.str.area;
px = proxy_be_by_name(pname);
}
if (!px) {
ha_alert("parsing [%s:%d] : unable to find backend '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
cur->file, cur->line, pname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
if (!(px->cap & PR_CAP_BE)) {
ha_alert("parsing [%s:%d] : proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s', has not backend capability.\n",
cur->file, cur->line, pname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
chunk_destroy(&arg->data.str);
arg->unresolved = 0;
arg->data.prx = px;
break;
case ARGT_TAB:
if (arg->data.str.data)
stktname = arg->data.str.area;
else
stktname = px->id;
t = stktable_find_by_name(stktname);
if (!t) {
ha_alert("parsing [%s:%d] : unable to find table '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
cur->file, cur->line, stktname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
if (!t->size) {
ha_alert("parsing [%s:%d] : no table in proxy '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
cur->file, cur->line, stktname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
if (t->proxy && (p->bind_proc & ~t->proxy->bind_proc)) {
ha_alert("parsing [%s:%d] : stick-table '%s' not present on all processes covered by proxy '%s'.\n",
cur->file, cur->line, t->proxy->id, p->id);
cfgerr++;
break;
}
if (!in_proxies_list(t->proxies_list, p)) {
p->next_stkt_ref = t->proxies_list;
t->proxies_list = p;
}
chunk_destroy(&arg->data.str);
arg->unresolved = 0;
arg->data.t = t;
break;
case ARGT_USR:
if (!arg->data.str.data) {
ha_alert("parsing [%s:%d] : missing userlist name in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
cur->file, cur->line,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
if (p->uri_auth && p->uri_auth->userlist &&
strcmp(p->uri_auth->userlist->name, arg->data.str.area) == 0)
ul = p->uri_auth->userlist;
else
ul = auth_find_userlist(arg->data.str.area);
if (!ul) {
ha_alert("parsing [%s:%d] : unable to find userlist '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
cur->file, cur->line,
arg->data.str.area,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
chunk_destroy(&arg->data.str);
arg->unresolved = 0;
arg->data.usr = ul;
break;
case ARGT_REG:
if (!arg->data.str.data) {
ha_alert("parsing [%s:%d] : missing regex in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
cur->file, cur->line,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
continue;
}
rflags = 0;
rflags |= (arg->type_flags & ARGF_REG_ICASE) ? REG_ICASE : 0;
err = NULL;
if (!(reg = regex_comp(arg->data.str.area, !(rflags & REG_ICASE), 1 /* capture substr */, &err))) {
ha_alert("parsing [%s:%d] : error in regex '%s' in arg %d of %s%s%s%s '%s' %s proxy '%s' : %s.\n",
cur->file, cur->line,
arg->data.str.area,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id, err);
cfgerr++;
continue;
}
chunk_destroy(&arg->data.str);
arg->unresolved = 0;
arg->data.reg = reg;
break;
}
LIST_DEL(&cur->list);
free(cur);
} /* end of args processing */
return cfgerr;
}
/*
* Process a fetch + format conversion as defined by the sample expression
* <expr> on request or response considering the <opt> parameter. The output is
* not explicitly set to <smp_type>, but shall be compatible with it as
* specified by 'sample_casts' table. If a stable sample can be fetched, or an
* unstable one when <opt> contains SMP_OPT_FINAL, the sample is converted and
* returned without the SMP_F_MAY_CHANGE flag. If an unstable sample is found
* and <opt> does not contain SMP_OPT_FINAL, then the sample is returned as-is
* with its SMP_F_MAY_CHANGE flag so that the caller can check it and decide to
* take actions (eg: wait longer). If a sample could not be found or could not
* be converted, NULL is returned. The caller MUST NOT use the sample if the
* SMP_F_MAY_CHANGE flag is present, as it is used only as a hint that there is
* still hope to get it after waiting longer, and is not converted to string.
* The possible output combinations are the following :
*
* return MAY_CHANGE FINAL Meaning for the sample
* NULL * * Not present and will never be (eg: header)
* smp 0 * Final value converted (eg: header)
* smp 1 0 Not present yet, may appear later (eg: header)
* smp 1 1 never happens (either flag is cleared on output)
*/
struct sample *sample_fetch_as_type(struct proxy *px, struct session *sess,
struct stream *strm, unsigned int opt,
struct sample_expr *expr, int smp_type)
{
struct sample *smp = &temp_smp;
memset(smp, 0, sizeof(*smp));
if (!sample_process(px, sess, strm, opt, expr, smp)) {
if ((smp->flags & SMP_F_MAY_CHANGE) && !(opt & SMP_OPT_FINAL))
return smp;
return NULL;
}
if (!sample_casts[smp->data.type][smp_type])
return NULL;
if (!sample_casts[smp->data.type][smp_type](smp))
return NULL;
smp->flags &= ~SMP_F_MAY_CHANGE;
return smp;
}
static void release_sample_arg(struct arg *p)
{
struct arg *p_back = p;
if (!p)
return;
while (p->type != ARGT_STOP) {
if (p->type == ARGT_STR || p->unresolved) {
chunk_destroy(&p->data.str);
p->unresolved = 0;
}
else if (p->type == ARGT_REG) {
regex_free(p->data.reg);
p->data.reg = NULL;
}
p++;
}
if (p_back != empty_arg_list)
free(p_back);
}
void release_sample_expr(struct sample_expr *expr)
{
struct sample_conv_expr *conv_expr, *conv_exprb;
if (!expr)
return;
list_for_each_entry_safe(conv_expr, conv_exprb, &expr->conv_exprs, list) {
LIST_DEL(&conv_expr->list);
release_sample_arg(conv_expr->arg_p);
free(conv_expr);
}
release_sample_arg(expr->arg_p);
free(expr);
}
/*****************************************************************/
/* Sample format convert functions */
/* These functions set the data type on return. */
/*****************************************************************/
static int sample_conv_debug(const struct arg *arg_p, struct sample *smp, void *private)
{
int i;
struct sample tmp;
struct buffer *buf;
struct sink *sink;
struct ist line;
char *pfx;
buf = alloc_trash_chunk();
if (!buf)
goto end;
sink = (struct sink *)arg_p[1].data.ptr;
BUG_ON(!sink);
pfx = arg_p[0].data.str.area;
BUG_ON(!pfx);
chunk_printf(buf, "[debug] %s: type=%s ", pfx, smp_to_type[smp->data.type]);
if (!sample_casts[smp->data.type][SMP_T_STR])
goto nocast;
/* Copy sample fetch. This puts the sample as const, the
* cast will copy data if a transformation is required.
*/
memcpy(&tmp, smp, sizeof(struct sample));
tmp.flags = SMP_F_CONST;
if (!sample_casts[smp->data.type][SMP_T_STR](&tmp))
goto nocast;
/* Display the displayable chars*. */
b_putchr(buf, '<');
for (i = 0; i < tmp.data.u.str.data; i++) {
if (isprint((unsigned char)tmp.data.u.str.area[i]))
b_putchr(buf, tmp.data.u.str.area[i]);
else
b_putchr(buf, '.');
}
b_putchr(buf, '>');
done:
line = ist2(buf->area, buf->data);
sink_write(sink, &line, 1, 0, 0, NULL);
end:
free_trash_chunk(buf);
return 1;
nocast:
chunk_appendf(buf, "(undisplayable)");
goto done;
}
// This function checks the "debug" converter's arguments.
static int smp_check_debug(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
const char *name = "buf0";
struct sink *sink = NULL;
if (args[0].type != ARGT_STR) {
/* optional prefix */
args[0].data.str.area = "";
args[0].data.str.data = 0;
}
if (args[1].type == ARGT_STR)
name = args[1].data.str.area;
sink = sink_find(name);
if (!sink) {
memprintf(err, "No such sink '%s'", name);
return 0;
}
chunk_destroy(&args[1].data.str);
args[1].type = ARGT_PTR;
args[1].data.ptr = sink;
return 1;
}
static int sample_conv_base642bin(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
int bin_len;
trash->data = 0;
bin_len = base64dec(smp->data.u.str.area, smp->data.u.str.data,
trash->area, trash->size);
if (bin_len < 0)
return 0;
trash->data = bin_len;
smp->data.u.str = *trash;
smp->data.type = SMP_T_BIN;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int sample_conv_bin2base64(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
int b64_len;
trash->data = 0;
b64_len = a2base64(smp->data.u.str.area, smp->data.u.str.data,
trash->area, trash->size);
if (b64_len < 0)
return 0;
trash->data = b64_len;
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int sample_conv_sha1(const struct arg *arg_p, struct sample *smp, void *private)
{
blk_SHA_CTX ctx;
struct buffer *trash = get_trash_chunk();
memset(&ctx, 0, sizeof(ctx));
blk_SHA1_Init(&ctx);
blk_SHA1_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data);
blk_SHA1_Final((unsigned char *) trash->area, &ctx);
trash->data = 20;
smp->data.u.str = *trash;
smp->data.type = SMP_T_BIN;
smp->flags &= ~SMP_F_CONST;
return 1;
}
#ifdef USE_OPENSSL
static int smp_check_sha2(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
if (args[0].type == ARGT_STOP)
return 1;
if (args[0].type != ARGT_SINT) {
memprintf(err, "Invalid type '%s'", arg_type_names[args[0].type]);
return 0;
}
switch (args[0].data.sint) {
case 224:
case 256:
case 384:
case 512:
/* this is okay */
return 1;
default:
memprintf(err, "Unsupported number of bits: '%lld'", args[0].data.sint);
return 0;
}
}
static int sample_conv_sha2(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
int bits = 256;
if (arg_p && arg_p->data.sint)
bits = arg_p->data.sint;
switch (bits) {
case 224: {
SHA256_CTX ctx;
memset(&ctx, 0, sizeof(ctx));
SHA224_Init(&ctx);
SHA224_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data);
SHA224_Final((unsigned char *) trash->area, &ctx);
trash->data = SHA224_DIGEST_LENGTH;
break;
}
case 256: {
SHA256_CTX ctx;
memset(&ctx, 0, sizeof(ctx));
SHA256_Init(&ctx);
SHA256_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data);
SHA256_Final((unsigned char *) trash->area, &ctx);
trash->data = SHA256_DIGEST_LENGTH;
break;
}
case 384: {
SHA512_CTX ctx;
memset(&ctx, 0, sizeof(ctx));
SHA384_Init(&ctx);
SHA384_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data);
SHA384_Final((unsigned char *) trash->area, &ctx);
trash->data = SHA384_DIGEST_LENGTH;
break;
}
case 512: {
SHA512_CTX ctx;
memset(&ctx, 0, sizeof(ctx));
SHA512_Init(&ctx);
SHA512_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data);
SHA512_Final((unsigned char *) trash->area, &ctx);
trash->data = SHA512_DIGEST_LENGTH;
break;
}
default:
return 0;
}
smp->data.u.str = *trash;
smp->data.type = SMP_T_BIN;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static inline int sample_conv_var2smp_str(const struct arg *arg, struct sample *smp)
{
switch (arg->type) {
case ARGT_STR:
smp->data.type = SMP_T_STR;
smp->data.u.str = arg->data.str;
return 1;
case ARGT_VAR:
if (!vars_get_by_desc(&arg->data.var, smp))
return 0;
if (!sample_casts[smp->data.type][SMP_T_STR])
return 0;
if (!sample_casts[smp->data.type][SMP_T_STR](smp))
return 0;
return 1;
default:
return 0;
}
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1000100fL)
static int check_aes_gcm(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
switch(args[0].data.sint) {
case 128:
case 192:
case 256:
break;
default:
memprintf(err, "key size must be 128, 192 or 256 (bits).");
return 0;
}
/* Try to decode a variable. */
vars_check_arg(&args[1], NULL);
vars_check_arg(&args[2], NULL);
vars_check_arg(&args[3], NULL);
return 1;
}
/* Arguments: AES size in bits, nonce, key, tag. The last three arguments are base64 encoded */
static int sample_conv_aes_gcm_dec(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample nonce, key, aead_tag;
struct buffer *smp_trash, *smp_trash_alloc;
EVP_CIPHER_CTX *ctx;
int dec_size, ret;
smp_set_owner(&nonce, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_str(&arg_p[1], &nonce))
return 0;
smp_set_owner(&key, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_str(&arg_p[2], &key))
return 0;
smp_set_owner(&aead_tag, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_str(&arg_p[3], &aead_tag))
return 0;
smp_trash = get_trash_chunk();
smp_trash_alloc = alloc_trash_chunk();
if (!smp_trash_alloc)
return 0;
ctx = EVP_CIPHER_CTX_new();
if (!ctx)
goto err;
dec_size = base64dec(nonce.data.u.str.area, nonce.data.u.str.data, smp_trash->area, smp_trash->size);
if (dec_size < 0)
goto err;
smp_trash->data = dec_size;
/* Set cipher type and mode */
switch(arg_p[0].data.sint) {
case 128:
EVP_DecryptInit_ex(ctx, EVP_aes_128_gcm(), NULL, NULL, NULL);
break;
case 192:
EVP_DecryptInit_ex(ctx, EVP_aes_192_gcm(), NULL, NULL, NULL);
break;
case 256:
EVP_DecryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL);
break;
}
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, smp_trash->data, NULL);
/* Initialise IV */
if(!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, (unsigned char *) smp_trash->area))
goto err;
dec_size = base64dec(key.data.u.str.area, key.data.u.str.data, smp_trash->area, smp_trash->size);
if (dec_size < 0)
goto err;
smp_trash->data = dec_size;
/* Initialise key */
if (!EVP_DecryptInit_ex(ctx, NULL, NULL, (unsigned char *) smp_trash->area, NULL))
goto err;
if (!EVP_DecryptUpdate(ctx, (unsigned char *) smp_trash->area, (int *) &smp_trash->data,
(unsigned char *) smp->data.u.str.area, (int) smp->data.u.str.data))
goto err;
dec_size = base64dec(aead_tag.data.u.str.area, aead_tag.data.u.str.data, smp_trash_alloc->area, smp_trash_alloc->size);
if (dec_size < 0)
goto err;
smp_trash_alloc->data = dec_size;
dec_size = smp_trash->data;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, smp_trash_alloc->data, (void *) smp_trash_alloc->area);
ret = EVP_DecryptFinal_ex(ctx, (unsigned char *) smp_trash->area + smp_trash->data, (int *) &smp_trash->data);
if (ret <= 0)
goto err;
smp->data.u.str.data = dec_size + smp_trash->data;
smp->data.u.str.area = smp_trash->area;
smp->data.type = SMP_T_BIN;
smp->flags &= ~SMP_F_CONST;
free_trash_chunk(smp_trash_alloc);
return 1;
err:
free_trash_chunk(smp_trash_alloc);
return 0;
}
#endif /* HA_OPENSSL_VERSION_NUMBER */
static int check_crypto_digest(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area);
if (evp)
return 1;
memprintf(err, "algorithm must be a valid OpenSSL message digest name.");
return 0;
}
static int sample_conv_crypto_digest(const struct arg *args, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
unsigned char *md = (unsigned char*) trash->area;
unsigned int md_len = trash->size;
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area);
if (!ctx)
return 0;
if (!EVP_DigestInit_ex(ctx, evp, NULL) ||
!EVP_DigestUpdate(ctx, smp->data.u.str.area, smp->data.u.str.data) ||
!EVP_DigestFinal_ex(ctx, md, &md_len)) {
EVP_MD_CTX_free(ctx);
return 0;
}
EVP_MD_CTX_free(ctx);
trash->data = md_len;
smp->data.u.str = *trash;
smp->data.type = SMP_T_BIN;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int check_crypto_hmac(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
if (!check_crypto_digest(args, conv, file, line, err))
return 0;
vars_check_arg(&args[1], NULL);
return 1;
}
static int sample_conv_crypto_hmac(const struct arg *args, struct sample *smp, void *private)
{
struct sample key;
struct buffer *trash, *key_trash;
unsigned char *md;
unsigned int md_len;
const EVP_MD *evp = EVP_get_digestbyname(args[0].data.str.area);
int dec_size;
smp_set_owner(&key, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_str(&args[1], &key))
return 0;
trash = get_trash_chunk();
key_trash = alloc_trash_chunk();
if (!key_trash)
return 0;
dec_size = base64dec(key.data.u.str.area, key.data.u.str.data, key_trash->area, key_trash->size);
if (dec_size < 0)
goto err;
md = (unsigned char*) trash->area;
md_len = trash->size;
if (!HMAC(evp, key_trash->area, dec_size, (const unsigned char*) smp->data.u.str.area, smp->data.u.str.data, md, &md_len))
goto err;
free_trash_chunk(key_trash);
trash->data = md_len;
smp->data.u.str = *trash;
smp->data.type = SMP_T_BIN;
smp->flags &= ~SMP_F_CONST;
return 1;
err:
free_trash_chunk(key_trash);
return 0;
}
#endif /* USE_OPENSSL */
static int sample_conv_bin2hex(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
unsigned char c;
int ptr = 0;
trash->data = 0;
while (ptr < smp->data.u.str.data && trash->data <= trash->size - 2) {
c = smp->data.u.str.area[ptr++];
trash->area[trash->data++] = hextab[(c >> 4) & 0xF];
trash->area[trash->data++] = hextab[c & 0xF];
}
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int sample_conv_hex2int(const struct arg *arg_p, struct sample *smp, void *private)
{
long long int n = 0;
int i, c;
for (i = 0; i < smp->data.u.str.data; i++) {
if ((c = hex2i(smp->data.u.str.area[i])) < 0)
return 0;
n = (n << 4) + c;
}
smp->data.u.sint = n;
smp->data.type = SMP_T_SINT;
smp->flags &= ~SMP_F_CONST;
return 1;
}
/* hashes the binary input into a 32-bit unsigned int */
static int sample_conv_djb2(const struct arg *arg_p, struct sample *smp, void *private)
{
smp->data.u.sint = hash_djb2(smp->data.u.str.area,
smp->data.u.str.data);
if (arg_p && arg_p->data.sint)
smp->data.u.sint = full_hash(smp->data.u.sint);
smp->data.type = SMP_T_SINT;
return 1;
}
static int sample_conv_length(const struct arg *arg_p, struct sample *smp, void *private)
{
int i = smp->data.u.str.data;
smp->data.u.sint = i;
smp->data.type = SMP_T_SINT;
return 1;
}
static int sample_conv_str2lower(const struct arg *arg_p, struct sample *smp, void *private)
{
int i;
if (!smp_make_rw(smp))
return 0;
for (i = 0; i < smp->data.u.str.data; i++) {
if ((smp->data.u.str.area[i] >= 'A') && (smp->data.u.str.area[i] <= 'Z'))
smp->data.u.str.area[i] += 'a' - 'A';
}
return 1;
}
static int sample_conv_str2upper(const struct arg *arg_p, struct sample *smp, void *private)
{
int i;
if (!smp_make_rw(smp))
return 0;
for (i = 0; i < smp->data.u.str.data; i++) {
if ((smp->data.u.str.area[i] >= 'a') && (smp->data.u.str.area[i] <= 'z'))
smp->data.u.str.area[i] += 'A' - 'a';
}
return 1;
}
/* takes the IPv4 mask in args[0] and an optional IPv6 mask in args[1] */
static int sample_conv_ipmask(const struct arg *args, struct sample *smp, void *private)
{
/* Attempt to convert to IPv4 to apply the correct mask. */
c_ipv62ip(smp);
if (smp->data.type == SMP_T_IPV4) {
smp->data.u.ipv4.s_addr &= args[0].data.ipv4.s_addr;
smp->data.type = SMP_T_IPV4;
}
else if (smp->data.type == SMP_T_IPV6) {
/* IPv6 cannot be converted without an IPv6 mask. */
if (args[1].type != ARGT_IPV6)
return 0;
write_u64(&smp->data.u.ipv6.s6_addr[0],
read_u64(&smp->data.u.ipv6.s6_addr[0]) & read_u64(&args[1].data.ipv6.s6_addr[0]));
write_u64(&smp->data.u.ipv6.s6_addr[8],
read_u64(&smp->data.u.ipv6.s6_addr[8]) & read_u64(&args[1].data.ipv6.s6_addr[8]));
smp->data.type = SMP_T_IPV6;
}
return 1;
}
/* takes an UINT value on input supposed to represent the time since EPOCH,
* adds an optional offset found in args[1] and emits a string representing
* the local time in the format specified in args[1] using strftime().
*/
static int sample_conv_ltime(const struct arg *args, struct sample *smp, void *private)
{
struct buffer *temp;
/* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */
time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL;
struct tm *tm;
/* add offset */
if (args[1].type == ARGT_SINT)
curr_date += args[1].data.sint;
tm = localtime(&curr_date);
if (!tm)
return 0;
temp = get_trash_chunk();
temp->data = strftime(temp->area, temp->size, args[0].data.str.area,
tm);
smp->data.u.str = *temp;
smp->data.type = SMP_T_STR;
return 1;
}
/* hashes the binary input into a 32-bit unsigned int */
static int sample_conv_sdbm(const struct arg *arg_p, struct sample *smp, void *private)
{
smp->data.u.sint = hash_sdbm(smp->data.u.str.area,
smp->data.u.str.data);
if (arg_p && arg_p->data.sint)
smp->data.u.sint = full_hash(smp->data.u.sint);
smp->data.type = SMP_T_SINT;
return 1;
}
/* takes an UINT value on input supposed to represent the time since EPOCH,
* adds an optional offset found in args[1] and emits a string representing
* the UTC date in the format specified in args[1] using strftime().
*/
static int sample_conv_utime(const struct arg *args, struct sample *smp, void *private)
{
struct buffer *temp;
/* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */
time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL;
struct tm *tm;
/* add offset */
if (args[1].type == ARGT_SINT)
curr_date += args[1].data.sint;
tm = gmtime(&curr_date);
if (!tm)
return 0;
temp = get_trash_chunk();
temp->data = strftime(temp->area, temp->size, args[0].data.str.area,
tm);
smp->data.u.str = *temp;
smp->data.type = SMP_T_STR;
return 1;
}
/* hashes the binary input into a 32-bit unsigned int */
static int sample_conv_wt6(const struct arg *arg_p, struct sample *smp, void *private)
{
smp->data.u.sint = hash_wt6(smp->data.u.str.area,
smp->data.u.str.data);
if (arg_p && arg_p->data.sint)
smp->data.u.sint = full_hash(smp->data.u.sint);
smp->data.type = SMP_T_SINT;
return 1;
}
/* hashes the binary input into a 32-bit unsigned int using xxh.
* The seed of the hash defaults to 0 but can be changd in argument 1.
*/
static int sample_conv_xxh32(const struct arg *arg_p, struct sample *smp, void *private)
{
unsigned int seed;
if (arg_p && arg_p->data.sint)
seed = arg_p->data.sint;
else
seed = 0;
smp->data.u.sint = XXH32(smp->data.u.str.area, smp->data.u.str.data,
seed);
smp->data.type = SMP_T_SINT;
return 1;
}
/* hashes the binary input into a 64-bit unsigned int using xxh.
* In fact, the function returns a 64 bit unsigned, but the sample
* storage of haproxy only proposes 64-bits signed, so the value is
* cast as signed. This cast doesn't impact the hash repartition.
* The seed of the hash defaults to 0 but can be changd in argument 1.
*/
static int sample_conv_xxh64(const struct arg *arg_p, struct sample *smp, void *private)
{
unsigned long long int seed;
if (arg_p && arg_p->data.sint)
seed = (unsigned long long int)arg_p->data.sint;
else
seed = 0;
smp->data.u.sint = (long long int)XXH64(smp->data.u.str.area,
smp->data.u.str.data, seed);
smp->data.type = SMP_T_SINT;
return 1;
}
static int sample_conv_xxh3(const struct arg *arg_p, struct sample *smp, void *private)
{
unsigned long long int seed;
if (arg_p && arg_p->data.sint)
seed = (unsigned long long int)arg_p->data.sint;
else
seed = 0;
smp->data.u.sint = (long long int)XXH3(smp->data.u.str.area,
smp->data.u.str.data, seed);
smp->data.type = SMP_T_SINT;
return 1;
}
/* hashes the binary input into a 32-bit unsigned int */
static int sample_conv_crc32(const struct arg *arg_p, struct sample *smp, void *private)
{
smp->data.u.sint = hash_crc32(smp->data.u.str.area,
smp->data.u.str.data);
if (arg_p && arg_p->data.sint)
smp->data.u.sint = full_hash(smp->data.u.sint);
smp->data.type = SMP_T_SINT;
return 1;
}
/* hashes the binary input into crc32c (RFC4960, Appendix B [8].) */
static int sample_conv_crc32c(const struct arg *arg_p, struct sample *smp, void *private)
{
smp->data.u.sint = hash_crc32c(smp->data.u.str.area,
smp->data.u.str.data);
if (arg_p && arg_p->data.sint)
smp->data.u.sint = full_hash(smp->data.u.sint);
smp->data.type = SMP_T_SINT;
return 1;
}
/* This function escape special json characters. The returned string can be
* safely set between two '"' and used as json string. The json string is
* defined like this:
*
* any Unicode character except '"' or '\' or control character
* \", \\, \/, \b, \f, \n, \r, \t, \u + four-hex-digits
*
* The enum input_type contain all the allowed mode for decoding the input
* string.
*/
enum input_type {
IT_ASCII = 0,
IT_UTF8,
IT_UTF8S,
IT_UTF8P,
IT_UTF8PS,
};
static int sample_conv_json_check(struct arg *arg, struct sample_conv *conv,
const char *file, int line, char **err)
{
enum input_type type;
if (!arg) {
memprintf(err, "Unexpected empty arg list");
return 0;
}
if (arg->type != ARGT_STR) {
memprintf(err, "Unexpected arg type");
return 0;
}
if (strcmp(arg->data.str.area, "") == 0)
type = IT_ASCII;
else if (strcmp(arg->data.str.area, "ascii") == 0)
type = IT_ASCII;
else if (strcmp(arg->data.str.area, "utf8") == 0)
type = IT_UTF8;
else if (strcmp(arg->data.str.area, "utf8s") == 0)
type = IT_UTF8S;
else if (strcmp(arg->data.str.area, "utf8p") == 0)
type = IT_UTF8P;
else if (strcmp(arg->data.str.area, "utf8ps") == 0)
type = IT_UTF8PS;
else {
memprintf(err, "Unexpected input code type. "
"Allowed value are 'ascii', 'utf8', 'utf8s', 'utf8p' and 'utf8ps'");
return 0;
}
chunk_destroy(&arg->data.str);
arg->type = ARGT_SINT;
arg->data.sint = type;
return 1;
}
static int sample_conv_json(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *temp;
char _str[7]; /* \u + 4 hex digit + null char for sprintf. */
const char *str;
int len;
enum input_type input_type = IT_ASCII;
unsigned int c;
unsigned int ret;
char *p;
if (arg_p)
input_type = arg_p->data.sint;
temp = get_trash_chunk();
temp->data = 0;
p = smp->data.u.str.area;
while (p < smp->data.u.str.area + smp->data.u.str.data) {
if (input_type == IT_ASCII) {
/* Read input as ASCII. */
c = *(unsigned char *)p;
p++;
}
else {
/* Read input as UTF8. */
ret = utf8_next(p,
smp->data.u.str.data - ( p - smp->data.u.str.area),
&c);
p += utf8_return_length(ret);
if (input_type == IT_UTF8 && utf8_return_code(ret) != UTF8_CODE_OK)
return 0;
if (input_type == IT_UTF8S && utf8_return_code(ret) != UTF8_CODE_OK)
continue;
if (input_type == IT_UTF8P && utf8_return_code(ret) & (UTF8_CODE_INVRANGE|UTF8_CODE_BADSEQ))
return 0;
if (input_type == IT_UTF8PS && utf8_return_code(ret) & (UTF8_CODE_INVRANGE|UTF8_CODE_BADSEQ))
continue;
/* Check too big values. */
if ((unsigned int)c > 0xffff) {
if (input_type == IT_UTF8 || input_type == IT_UTF8P)
return 0;
continue;
}
}
/* Convert character. */
if (c == '"') {
len = 2;
str = "\\\"";
}
else if (c == '\\') {
len = 2;
str = "\\\\";
}
else if (c == '/') {
len = 2;
str = "\\/";
}
else if (c == '\b') {
len = 2;
str = "\\b";
}
else if (c == '\f') {
len = 2;
str = "\\f";
}
else if (c == '\r') {
len = 2;
str = "\\r";
}
else if (c == '\n') {
len = 2;
str = "\\n";
}
else if (c == '\t') {
len = 2;
str = "\\t";
}
else if (c > 0xff || !isprint((unsigned char)c)) {
/* isprint generate a segfault if c is too big. The man says that
* c must have the value of an unsigned char or EOF.
*/
len = 6;
_str[0] = '\\';
_str[1] = 'u';
snprintf(&_str[2], 5, "%04x", (unsigned short)c);
str = _str;
}
else {
len = 1;
_str[0] = c;
str = _str;
}
/* Check length */
if (temp->data + len > temp->size)
return 0;
/* Copy string. */
memcpy(temp->area + temp->data, str, len);
temp->data += len;
}
smp->flags &= ~SMP_F_CONST;
smp->data.u.str = *temp;
smp->data.type = SMP_T_STR;
return 1;
}
/* This sample function is designed to extract some bytes from an input buffer.
* First arg is the offset.
* Optional second arg is the length to truncate */
static int sample_conv_bytes(const struct arg *arg_p, struct sample *smp, void *private)
{
if (smp->data.u.str.data <= arg_p[0].data.sint) {
smp->data.u.str.data = 0;
return 1;
}
if (smp->data.u.str.size)
smp->data.u.str.size -= arg_p[0].data.sint;
smp->data.u.str.data -= arg_p[0].data.sint;
smp->data.u.str.area += arg_p[0].data.sint;
if ((arg_p[1].type == ARGT_SINT) && (arg_p[1].data.sint < smp->data.u.str.data))
smp->data.u.str.data = arg_p[1].data.sint;
return 1;
}
static int sample_conv_field_check(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
struct arg *arg = args;
if (!arg) {
memprintf(err, "Unexpected empty arg list");
return 0;
}
if (arg->type != ARGT_SINT) {
memprintf(err, "Unexpected arg type");
return 0;
}
if (!arg->data.sint) {
memprintf(err, "Unexpected value 0 for index");
return 0;
}
arg++;
if (arg->type != ARGT_STR) {
memprintf(err, "Unexpected arg type");
return 0;
}
if (!arg->data.str.data) {
memprintf(err, "Empty separators list");
return 0;
}
return 1;
}
/* This sample function is designed to a return selected part of a string (field).
* First arg is the index of the field (start at 1)
* Second arg is a char list of separators (type string)
*/
static int sample_conv_field(const struct arg *arg_p, struct sample *smp, void *private)
{
int field;
char *start, *end;
int i;
int count = (arg_p[2].type == ARGT_SINT) ? arg_p[2].data.sint : 1;
if (!arg_p[0].data.sint)
return 0;
if (arg_p[0].data.sint < 0) {
field = -1;
end = start = smp->data.u.str.area + smp->data.u.str.data;
while (start > smp->data.u.str.area) {
for (i = 0 ; i < arg_p[1].data.str.data; i++) {
if (*(start-1) == arg_p[1].data.str.area[i]) {
if (field == arg_p[0].data.sint) {
if (count == 1)
goto found;
else if (count > 1)
count--;
} else {
end = start-1;
field--;
}
break;
}
}
start--;
}
} else {
field = 1;
end = start = smp->data.u.str.area;
while (end - smp->data.u.str.area < smp->data.u.str.data) {
for (i = 0 ; i < arg_p[1].data.str.data; i++) {
if (*end == arg_p[1].data.str.area[i]) {
if (field == arg_p[0].data.sint) {
if (count == 1)
goto found;
else if (count > 1)
count--;
} else {
start = end+1;
field++;
}
break;
}
}
end++;
}
}
/* Field not found */
if (field != arg_p[0].data.sint) {
smp->data.u.str.data = 0;
return 0;
}
found:
smp->data.u.str.data = end - start;
/* If ret string is len 0, no need to
change pointers or to update size */
if (!smp->data.u.str.data)
return 1;
smp->data.u.str.area = start;
/* Compute remaining size if needed
Note: smp->data.u.str.size cannot be set to 0 */
if (smp->data.u.str.size)
smp->data.u.str.size -= start - smp->data.u.str.area;
return 1;
}
/* This sample function is designed to return a word from a string.
* First arg is the index of the word (start at 1)
* Second arg is a char list of words separators (type string)
*/
static int sample_conv_word(const struct arg *arg_p, struct sample *smp, void *private)
{
int word;
char *start, *end;
int i, issep, inword;
int count = (arg_p[2].type == ARGT_SINT) ? arg_p[2].data.sint : 1;
if (!arg_p[0].data.sint)
return 0;
word = 0;
inword = 0;
if (arg_p[0].data.sint < 0) {
end = start = smp->data.u.str.area + smp->data.u.str.data;
while (start > smp->data.u.str.area) {
issep = 0;
for (i = 0 ; i < arg_p[1].data.str.data; i++) {
if (*(start-1) == arg_p[1].data.str.area[i]) {
issep = 1;
break;
}
}
if (!inword) {
if (!issep) {
if (word != arg_p[0].data.sint) {
word--;
end = start;
}
inword = 1;
}
}
else if (issep) {
if (word == arg_p[0].data.sint) {
if (count == 1)
goto found;
else if (count > 1)
count--;
}
inword = 0;
}
start--;
}
} else {
end = start = smp->data.u.str.area;
while (end - smp->data.u.str.area < smp->data.u.str.data) {
issep = 0;
for (i = 0 ; i < arg_p[1].data.str.data; i++) {
if (*end == arg_p[1].data.str.area[i]) {
issep = 1;
break;
}
}
if (!inword) {
if (!issep) {
if (word != arg_p[0].data.sint) {
word++;
start = end;
}
inword = 1;
}
}
else if (issep) {
if (word == arg_p[0].data.sint) {
if (count == 1)
goto found;
else if (count > 1)
count--;
}
inword = 0;
}
end++;
}
}
/* Field not found */
if (word != arg_p[0].data.sint) {
smp->data.u.str.data = 0;
return 1;
}
found:
smp->data.u.str.data = end - start;
/* If ret string is len 0, no need to
change pointers or to update size */
if (!smp->data.u.str.data)
return 1;
smp->data.u.str.area = start;
/* Compute remaining size if needed
Note: smp->data.u.str.size cannot be set to 0 */
if (smp->data.u.str.size)
smp->data.u.str.size -= start - smp->data.u.str.area;
return 1;
}
static int sample_conv_regsub_check(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
struct arg *arg = args;
char *p;
int len;
/* arg0 is a regex, it uses type_flag for ICASE and global match */
arg[0].type_flags = 0;
if (arg[2].type != ARGT_STR)
return 1;
p = arg[2].data.str.area;
len = arg[2].data.str.data;
while (len) {
if (*p == 'i') {
arg[0].type_flags |= ARGF_REG_ICASE;
}
else if (*p == 'g') {
arg[0].type_flags |= ARGF_REG_GLOB;
}
else {
memprintf(err, "invalid regex flag '%c', only 'i' and 'g' are supported", *p);
return 0;
}
p++;
len--;
}
return 1;
}
/* This sample function is designed to do the equivalent of s/match/replace/ on
* the input string. It applies a regex and restarts from the last matched
* location until nothing matches anymore. First arg is the regex to apply to
* the input string, second arg is the replacement expression.
*/
static int sample_conv_regsub(const struct arg *arg_p, struct sample *smp, void *private)
{
char *start, *end;
struct my_regex *reg = arg_p[0].data.reg;
regmatch_t pmatch[MAX_MATCH];
struct buffer *trash = get_trash_chunk();
struct buffer *output;
int flag, max;
int found;
start = smp->data.u.str.area;
end = start + smp->data.u.str.data;
flag = 0;
while (1) {
/* check for last round which is used to copy remaining parts
* when not running in global replacement mode.
*/
found = 0;
if ((arg_p[0].type_flags & ARGF_REG_GLOB) || !(flag & REG_NOTBOL)) {
/* Note: we can have start == end on empty strings or at the end */
found = regex_exec_match2(reg, start, end - start, MAX_MATCH, pmatch, flag);
}
if (!found)
pmatch[0].rm_so = end - start;
/* copy the heading non-matching part (which may also be the tail if nothing matches) */
max = trash->size - trash->data;
if (max && pmatch[0].rm_so > 0) {
if (max > pmatch[0].rm_so)
max = pmatch[0].rm_so;
memcpy(trash->area + trash->data, start, max);
trash->data += max;
}
if (!found)
break;
output = alloc_trash_chunk();
if (!output)
break;
output->data = exp_replace(output->area, output->size, start, arg_p[1].data.str.area, pmatch);
/* replace the matching part */
max = output->size - output->data;
if (max) {
if (max > output->data)
max = output->data;
memcpy(trash->area + trash->data,
output->area, max);
trash->data += max;
}
free_trash_chunk(output);
/* stop here if we're done with this string */
if (start >= end)
break;
/* We have a special case for matches of length 0 (eg: "x*y*").
* These ones are considered to match in front of a character,
* so we have to copy that character and skip to the next one.
*/
if (!pmatch[0].rm_eo) {
if (trash->data < trash->size)
trash->area[trash->data++] = start[pmatch[0].rm_eo];
pmatch[0].rm_eo++;
}
start += pmatch[0].rm_eo;
flag |= REG_NOTBOL;
}
smp->data.u.str = *trash;
return 1;
}
/* This function check an operator entry. It expects a string.
* The string can be an integer or a variable name.
*/
static int check_operator(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
const char *str;
const char *end;
long long int i;
/* Try to decode a variable. */
if (vars_check_arg(&args[0], NULL))
return 1;
/* Try to convert an integer */
str = args[0].data.str.area;
end = str + strlen(str);
i = read_int64(&str, end);
if (*str != '\0') {
memprintf(err, "expects an integer or a variable name");
return 0;
}
chunk_destroy(&args[0].data.str);
args[0].type = ARGT_SINT;
args[0].data.sint = i;
return 1;
}
/* This function returns a sample struct filled with an arg content.
* If the arg contain an integer, the integer is returned in the
* sample. If the arg contains a variable descriptor, it returns the
* variable value.
*
* This function returns 0 if an error occurs, otherwise it returns 1.
*/
static inline int sample_conv_var2smp(const struct arg *arg, struct sample *smp)
{
switch (arg->type) {
case ARGT_SINT:
smp->data.type = SMP_T_SINT;
smp->data.u.sint = arg->data.sint;
return 1;
case ARGT_VAR:
if (!vars_get_by_desc(&arg->data.var, smp))
return 0;
if (!sample_casts[smp->data.type][SMP_T_SINT])
return 0;
if (!sample_casts[smp->data.type][SMP_T_SINT](smp))
return 0;
return 1;
default:
return 0;
}
}
/* Takes a SINT on input, applies a binary twos complement and returns the SINT
* result.
*/
static int sample_conv_binary_cpl(const struct arg *arg_p, struct sample *smp, void *private)
{
smp->data.u.sint = ~smp->data.u.sint;
return 1;
}
/* Takes a SINT on input, applies a binary "and" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
*/
static int sample_conv_binary_and(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample tmp;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp(arg_p, &tmp))
return 0;
smp->data.u.sint &= tmp.data.u.sint;
return 1;
}
/* Takes a SINT on input, applies a binary "or" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
*/
static int sample_conv_binary_or(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample tmp;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp(arg_p, &tmp))
return 0;
smp->data.u.sint |= tmp.data.u.sint;
return 1;
}
/* Takes a SINT on input, applies a binary "xor" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
*/
static int sample_conv_binary_xor(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample tmp;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp(arg_p, &tmp))
return 0;
smp->data.u.sint ^= tmp.data.u.sint;
return 1;
}
static inline long long int arith_add(long long int a, long long int b)
{
/* Prevent overflow and makes capped calculus.
* We must ensure that the check calculus doesn't
* exceed the signed 64 bits limits.
*
* +----------+----------+
* | a<0 | a>=0 |
* +------+----------+----------+
* | b<0 | MIN-a>b | no check |
* +------+----------+----------+
* | b>=0 | no check | MAX-a<b |
* +------+----------+----------+
*/
if ((a ^ b) >= 0) {
/* signs are different. */
if (a < 0) {
if (LLONG_MIN - a > b)
return LLONG_MIN;
}
if (LLONG_MAX - a < b)
return LLONG_MAX;
}
return a + b;
}
/* Takes a SINT on input, applies an arithmetic "add" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
*/
static int sample_conv_arith_add(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample tmp;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp(arg_p, &tmp))
return 0;
smp->data.u.sint = arith_add(smp->data.u.sint, tmp.data.u.sint);
return 1;
}
/* Takes a SINT on input, applies an arithmetic "sub" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
*/
static int sample_conv_arith_sub(const struct arg *arg_p,
struct sample *smp, void *private)
{
struct sample tmp;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp(arg_p, &tmp))
return 0;
/* We cannot represent -LLONG_MIN because abs(LLONG_MIN) is greater
* than abs(LLONG_MAX). So, the following code use LLONG_MAX in place
* of -LLONG_MIN and correct the result.
*/
if (tmp.data.u.sint == LLONG_MIN) {
smp->data.u.sint = arith_add(smp->data.u.sint, LLONG_MAX);
if (smp->data.u.sint < LLONG_MAX)
smp->data.u.sint++;
return 1;
}
/* standard subtraction: we use the "add" function and negate
* the second operand.
*/
smp->data.u.sint = arith_add(smp->data.u.sint, -tmp.data.u.sint);
return 1;
}
/* Takes a SINT on input, applies an arithmetic "mul" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
* If the result makes an overflow, then the largest possible quantity is
* returned.
*/
static int sample_conv_arith_mul(const struct arg *arg_p,
struct sample *smp, void *private)
{
struct sample tmp;
long long int c;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp(arg_p, &tmp))
return 0;
/* prevent divide by 0 during the check */
if (!smp->data.u.sint || !tmp.data.u.sint) {
smp->data.u.sint = 0;
return 1;
}
/* The multiply between LLONG_MIN and -1 returns a
* "floating point exception".
*/
if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) {
smp->data.u.sint = LLONG_MAX;
return 1;
}
/* execute standard multiplication. */
c = smp->data.u.sint * tmp.data.u.sint;
/* check for overflow and makes capped multiply. */
if (smp->data.u.sint != c / tmp.data.u.sint) {
if ((smp->data.u.sint < 0) == (tmp.data.u.sint < 0)) {
smp->data.u.sint = LLONG_MAX;
return 1;
}
smp->data.u.sint = LLONG_MIN;
return 1;
}
smp->data.u.sint = c;
return 1;
}
/* Takes a SINT on input, applies an arithmetic "div" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
* If arg_p makes the result overflow, then the largest possible quantity is
* returned.
*/
static int sample_conv_arith_div(const struct arg *arg_p,
struct sample *smp, void *private)
{
struct sample tmp;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp(arg_p, &tmp))
return 0;
if (tmp.data.u.sint) {
/* The divide between LLONG_MIN and -1 returns a
* "floating point exception".
*/
if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) {
smp->data.u.sint = LLONG_MAX;
return 1;
}
smp->data.u.sint /= tmp.data.u.sint;
return 1;
}
smp->data.u.sint = LLONG_MAX;
return 1;
}
/* Takes a SINT on input, applies an arithmetic "mod" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
* If arg_p makes the result overflow, then 0 is returned.
*/
static int sample_conv_arith_mod(const struct arg *arg_p,
struct sample *smp, void *private)
{
struct sample tmp;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp(arg_p, &tmp))
return 0;
if (tmp.data.u.sint) {
/* The divide between LLONG_MIN and -1 returns a
* "floating point exception".
*/
if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) {
smp->data.u.sint = 0;
return 1;
}
smp->data.u.sint %= tmp.data.u.sint;
return 1;
}
smp->data.u.sint = 0;
return 1;
}
/* Takes an SINT on input, applies an arithmetic "neg" and returns the SINT
* result.
*/
static int sample_conv_arith_neg(const struct arg *arg_p,
struct sample *smp, void *private)
{
if (smp->data.u.sint == LLONG_MIN)
smp->data.u.sint = LLONG_MAX;
else
smp->data.u.sint = -smp->data.u.sint;
return 1;
}
/* Takes a SINT on input, returns true is the value is non-null, otherwise
* false. The output is a BOOL.
*/
static int sample_conv_arith_bool(const struct arg *arg_p,
struct sample *smp, void *private)
{
smp->data.u.sint = !!smp->data.u.sint;
smp->data.type = SMP_T_BOOL;
return 1;
}
/* Takes a SINT on input, returns false is the value is non-null, otherwise
* truee. The output is a BOOL.
*/
static int sample_conv_arith_not(const struct arg *arg_p,
struct sample *smp, void *private)
{
smp->data.u.sint = !smp->data.u.sint;
smp->data.type = SMP_T_BOOL;
return 1;
}
/* Takes a SINT on input, returns true is the value is odd, otherwise false.
* The output is a BOOL.
*/
static int sample_conv_arith_odd(const struct arg *arg_p,
struct sample *smp, void *private)
{
smp->data.u.sint = smp->data.u.sint & 1;
smp->data.type = SMP_T_BOOL;
return 1;
}
/* Takes a SINT on input, returns true is the value is even, otherwise false.
* The output is a BOOL.
*/
static int sample_conv_arith_even(const struct arg *arg_p,
struct sample *smp, void *private)
{
smp->data.u.sint = !(smp->data.u.sint & 1);
smp->data.type = SMP_T_BOOL;
return 1;
}
/* appends an optional const string, an optional variable contents and another
* optional const string to an existing string.
*/
static int sample_conv_concat(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *trash;
struct sample tmp;
int max;
trash = get_trash_chunk();
trash->data = smp->data.u.str.data;
if (trash->data > trash->size - 1)
trash->data = trash->size - 1;
memcpy(trash->area, smp->data.u.str.area, trash->data);
trash->area[trash->data] = 0;
/* append first string */
max = arg_p[0].data.str.data;
if (max > trash->size - 1 - trash->data)
max = trash->size - 1 - trash->data;
if (max) {
memcpy(trash->area + trash->data, arg_p[0].data.str.area, max);
trash->data += max;
trash->area[trash->data] = 0;
}
/* append second string (variable) if it's found and we can turn it
* into a string.
*/
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (arg_p[1].type == ARGT_VAR && vars_get_by_desc(&arg_p[1].data.var, &tmp) &&
(sample_casts[tmp.data.type][SMP_T_STR] == c_none ||
sample_casts[tmp.data.type][SMP_T_STR](&tmp))) {
max = tmp.data.u.str.data;
if (max > trash->size - 1 - trash->data)
max = trash->size - 1 - trash->data;
if (max) {
memcpy(trash->area + trash->data, tmp.data.u.str.area,
max);
trash->data += max;
trash->area[trash->data] = 0;
}
}
/* append third string */
max = arg_p[2].data.str.data;
if (max > trash->size - 1 - trash->data)
max = trash->size - 1 - trash->data;
if (max) {
memcpy(trash->area + trash->data, arg_p[2].data.str.area, max);
trash->data += max;
trash->area[trash->data] = 0;
}
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
return 1;
}
/* This function checks the "concat" converter's arguments and extracts the
* variable name and its scope.
*/
static int smp_check_concat(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
/* Try to decode a variable. */
if (args[1].data.str.data > 0 && !vars_check_arg(&args[1], NULL)) {
memprintf(err, "failed to register variable name '%s'",
args[1].data.str.area);
return 0;
}
return 1;
}
/* Compares string with a variable containing a string. Return value
* is compatible with strcmp(3)'s return value.
*/
static int sample_conv_strcmp(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample tmp;
int max, result;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (arg_p[0].type != ARGT_VAR)
return 0;
if (!vars_get_by_desc(&arg_p[0].data.var, &tmp))
return 0;
if (!sample_casts[tmp.data.type][SMP_T_STR](&tmp))
return 0;
max = MIN(smp->data.u.str.data, tmp.data.u.str.data);
result = strncmp(smp->data.u.str.area, tmp.data.u.str.area, max);
if (result == 0) {
if (smp->data.u.str.data != tmp.data.u.str.data) {
if (smp->data.u.str.data < tmp.data.u.str.data) {
result = -1;
}
else {
result = 1;
}
}
}
smp->data.u.sint = result;
smp->data.type = SMP_T_SINT;
return 1;
}
#ifdef USE_OPENSSL
/* Compares bytestring with a variable containing a bytestring. Return value
* is `true` if both bytestrings are bytewise identical and `false` otherwise.
*
* Comparison will be performed in constant time if both bytestrings are of
* the same length. If the lengths differ execution time will not be constant.
*/
static int sample_conv_secure_memcmp(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample tmp;
int result;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (arg_p[0].type != ARGT_VAR)
return 0;
if (!vars_get_by_desc(&arg_p[0].data.var, &tmp))
return 0;
if (!sample_casts[tmp.data.type][SMP_T_BIN](&tmp))
return 0;
if (smp->data.u.str.data != tmp.data.u.str.data) {
smp->data.u.sint = 0;
smp->data.type = SMP_T_BOOL;
return 1;
}
/* The following comparison is performed in constant time. */
result = CRYPTO_memcmp(smp->data.u.str.area, tmp.data.u.str.area, smp->data.u.str.data);
smp->data.u.sint = result == 0;
smp->data.type = SMP_T_BOOL;
return 1;
}
#endif
/* Takes a boolean as input. Returns the first argument if that boolean is true and
* the second argument otherwise.
*/
static int sample_conv_iif(const struct arg *arg_p, struct sample *smp, void *private)
{
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
if (smp->data.u.sint) {
smp->data.u.str.data = arg_p[0].data.str.data;
smp->data.u.str.area = arg_p[0].data.str.area;
}
else {
smp->data.u.str.data = arg_p[1].data.str.data;
smp->data.u.str.area = arg_p[1].data.str.area;
}
return 1;
}
#define GRPC_MSG_COMPRESS_FLAG_SZ 1 /* 1 byte */
#define GRPC_MSG_LENGTH_SZ 4 /* 4 bytes */
#define GRPC_MSG_HEADER_SZ (GRPC_MSG_COMPRESS_FLAG_SZ + GRPC_MSG_LENGTH_SZ)
/*
* Extract the field value of an input binary sample. Takes a mandatory argument:
* the protocol buffers field identifier (dotted notation) internally represented
* as an array of unsigned integers and its size.
* Return 1 if the field was found, 0 if not.
*/
static int sample_conv_ungrpc(const struct arg *arg_p, struct sample *smp, void *private)
{
unsigned char *pos;
size_t grpc_left;
pos = (unsigned char *)smp->data.u.str.area;
grpc_left = smp->data.u.str.data;
while (grpc_left > GRPC_MSG_HEADER_SZ) {
size_t grpc_msg_len, left;
grpc_msg_len = left = ntohl(*(uint32_t *)(pos + GRPC_MSG_COMPRESS_FLAG_SZ));
pos += GRPC_MSG_HEADER_SZ;
grpc_left -= GRPC_MSG_HEADER_SZ;
if (grpc_left < left)
return 0;
if (protobuf_field_lookup(arg_p, smp, &pos, &left))
return 1;
grpc_left -= grpc_msg_len;
}
return 0;
}
static int sample_conv_protobuf(const struct arg *arg_p, struct sample *smp, void *private)
{
unsigned char *pos;
size_t left;
pos = (unsigned char *)smp->data.u.str.area;
left = smp->data.u.str.data;
return protobuf_field_lookup(arg_p, smp, &pos, &left);
}
static int sample_conv_protobuf_check(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
if (!args[1].type) {
args[1].type = ARGT_SINT;
args[1].data.sint = PBUF_T_BINARY;
}
else {
int pbuf_type;
pbuf_type = protobuf_type(args[1].data.str.area);
if (pbuf_type == -1) {
memprintf(err, "Wrong protocol buffer type '%s'", args[1].data.str.area);
return 0;
}
chunk_destroy(&args[1].data.str);
args[1].type = ARGT_SINT;
args[1].data.sint = pbuf_type;
}
return 1;
}
/*
* Extract the tag value of an input binary sample. Takes a mandatory argument:
* the FIX protocol tag identifier.
* Return 1 if the tag was found, 0 if not.
*/
static int sample_conv_fix_tag_value(const struct arg *arg_p, struct sample *smp, void *private)
{
struct ist value;
smp->flags &= ~SMP_F_MAY_CHANGE;
value = fix_tag_value(ist2(smp->data.u.str.area, smp->data.u.str.data),
arg_p[0].data.sint);
if (!istlen(value)) {
if (!isttest(value)) {
/* value != IST_NULL, need more data */
smp->flags |= SMP_F_MAY_CHANGE;
}
return 0;
}
smp->data.u.str = ist2buf(value);
smp->flags |= SMP_F_CONST;
return 1;
}
/* This function checks the "fix_tag_value" converter configuration.
* It expects a "known" (by HAProxy) tag name or ID.
* Tag string names are converted to their ID counterpart because this is the
* format they are sent over the wire.
*/
static int sample_conv_fix_value_check(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
struct ist str;
unsigned int tag;
str = ist2(args[0].data.str.area, args[0].data.str.data);
tag = fix_tagid(str);
if (!tag) {
memprintf(err, "Unknown FIX tag name '%s'", args[0].data.str.area);
return 0;
}
chunk_destroy(&args[0].data.str);
args[0].type = ARGT_SINT;
args[0].data.sint = tag;
return 1;
}
/*
* Checks that a buffer contains a valid FIX message
*
* Return 1 if the check could be run, 0 if not.
* The result of the analyse itself is stored in <smp> as a boolean
*/
static int sample_conv_fix_is_valid(const struct arg *arg_p, struct sample *smp, void *private)
{
struct ist msg;
msg = ist2(smp->data.u.str.area, smp->data.u.str.data);
smp->flags &= ~SMP_F_MAY_CHANGE;
switch (fix_validate_message(msg)) {
case FIX_VALID_MESSAGE:
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 1;
return 1;
case FIX_NEED_MORE_DATA:
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
case FIX_INVALID_MESSAGE:
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 0;
return 1;
}
return 0;
}
/*
* Extract the field value of an input binary sample containing an MQTT packet.
* Takes 2 mandatory arguments:
* - packet type
* - field name
*
* return 1 if the field was found, 0 if not.
*/
static int sample_conv_mqtt_field_value(const struct arg *arg_p, struct sample *smp, void *private)
{
struct ist pkt, value;
int type, fieldname_id;
pkt = ist2(smp->data.u.str.area, smp->data.u.str.data);
type = arg_p[0].data.sint;
fieldname_id = arg_p[1].data.sint;
smp->flags &= ~SMP_F_MAY_CHANGE;
value = mqtt_field_value(pkt, type, fieldname_id);
if (!istlen(value)) {
if (isttest(value)) {
/* value != IST_NULL, need more data */
smp->flags |= SMP_F_MAY_CHANGE;
}
return 0;
}
smp->data.u.str = ist2buf(value);
smp->flags |= SMP_F_CONST;
return 1;
}
/*
* this function checks the "mqtt_field_value" converter configuration.
* It expects a known packet type name or ID and a field name, in this order
*
* Args[0] will be turned into a MQTT_CPT_* value for direct matching when parsing
* a packet.
*/
static int sample_conv_mqtt_field_value_check(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
int type, fieldname_id;
/* check the MQTT packet type is valid */
type = mqtt_typeid(ist2(args[0].data.str.area, args[0].data.str.data));
if (type == MQTT_CPT_INVALID) {
memprintf(err, "Unknown MQTT type '%s'", args[0].data.str.area);
return 0;
}
/* check the field name belongs to the MQTT packet type */
fieldname_id = mqtt_check_type_fieldname(type, ist2(args[1].data.str.area, args[1].data.str.data));
if (fieldname_id == MQTT_FN_INVALID) {
memprintf(err, "Unknown MQTT field name '%s' for packet type '%s'", args[1].data.str.area,
args[0].data.str.area);
return 0;
}
/* save numeric counterparts of type and field name */
chunk_destroy(&args[0].data.str);
chunk_destroy(&args[1].data.str);
args[0].type = ARGT_SINT;
args[0].data.sint = type;
args[1].type = ARGT_SINT;
args[1].data.sint = fieldname_id;
return 1;
}
/*
* Checks that <smp> contains a valid MQTT message
*
* The function returns 1 if the check was run to its end, 0 otherwise.
* The result of the analyse itself is stored in <smp> as a boolean.
*/
static int sample_conv_mqtt_is_valid(const struct arg *arg_p, struct sample *smp, void *private)
{
struct ist msg;
msg = ist2(smp->data.u.str.area, smp->data.u.str.data);
smp->flags &= ~SMP_F_MAY_CHANGE;
switch (mqtt_validate_message(msg, NULL)) {
case FIX_VALID_MESSAGE:
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 1;
return 1;
case FIX_NEED_MORE_DATA:
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
case FIX_INVALID_MESSAGE:
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 0;
return 1;
}
return 0;
}
/* This function checks the "strcmp" converter's arguments and extracts the
* variable name and its scope.
*/
static int smp_check_strcmp(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
/* Try to decode a variable. */
if (vars_check_arg(&args[0], NULL))
return 1;
memprintf(err, "failed to register variable name '%s'",
args[0].data.str.area);
return 0;
}
#ifdef USE_OPENSSL
/* This function checks the "secure_memcmp" converter's arguments and extracts the
* variable name and its scope.
*/
static int smp_check_secure_memcmp(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
/* Try to decode a variable. */
if (vars_check_arg(&args[0], NULL))
return 1;
memprintf(err, "failed to register variable name '%s'",
args[0].data.str.area);
return 0;
}
#endif
/**/
static int sample_conv_htonl(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *tmp;
uint32_t n;
n = htonl((uint32_t)smp->data.u.sint);
tmp = get_trash_chunk();
memcpy(b_head(tmp), &n, 4);
b_add(tmp, 4);
smp->data.u.str = *tmp;
smp->data.type = SMP_T_BIN;
return 1;
}
/**/
static int sample_conv_cut_crlf(const struct arg *arg_p, struct sample *smp, void *private)
{
char *p;
size_t l;
p = smp->data.u.str.area;
for (l = 0; l < smp->data.u.str.data; l++) {
if (*(p+l) == '\r' || *(p+l) == '\n')
break;
}
smp->data.u.str.data = l;
return 1;
}
/**/
static int sample_conv_ltrim(const struct arg *arg_p, struct sample *smp, void *private)
{
char *delimiters, *p;
size_t dlen, l;
delimiters = arg_p[0].data.str.area;
dlen = arg_p[0].data.str.data;
l = smp->data.u.str.data;
p = smp->data.u.str.area;
while (l && memchr(delimiters, *p, dlen) != NULL) {
p++;
l--;
}
smp->data.u.str.area = p;
smp->data.u.str.data = l;
return 1;
}
/**/
static int sample_conv_rtrim(const struct arg *arg_p, struct sample *smp, void *private)
{
char *delimiters, *p;
size_t dlen, l;
delimiters = arg_p[0].data.str.area;
dlen = arg_p[0].data.str.data;
l = smp->data.u.str.data;
p = smp->data.u.str.area + l - 1;
while (l && memchr(delimiters, *p, dlen) != NULL) {
p--;
l--;
}
smp->data.u.str.data = l;
return 1;
}
/************************************************************************/
/* All supported sample fetch functions must be declared here */
/************************************************************************/
/* force TRUE to be returned at the fetch level */
static int
smp_fetch_true(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp_make_rw(smp))
return 0;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 1;
return 1;
}
/* force FALSE to be returned at the fetch level */
static int
smp_fetch_false(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 0;
return 1;
}
/* retrieve environment variable $1 as a string */
static int
smp_fetch_env(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
char *env;
if (!args || args[0].type != ARGT_STR)
return 0;
env = getenv(args[0].data.str.area);
if (!env)
return 0;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
smp->data.u.str.area = env;
smp->data.u.str.data = strlen(env);
return 1;
}
/* Validates the data unit argument passed to "date" fetch. Argument 1 support an
* optional string representing the unit of the result: "s" for seconds, "ms" for
* milliseconds and "us" for microseconds.
* Returns 0 on error and non-zero if OK.
*/
int smp_check_date_unit(struct arg *args, char **err)
{
if (args[1].type == ARGT_STR) {
long long int unit;
if (strcmp(args[1].data.str.area, "s") == 0) {
unit = TIME_UNIT_S;
}
else if (strcmp(args[1].data.str.area, "ms") == 0) {
unit = TIME_UNIT_MS;
}
else if (strcmp(args[1].data.str.area, "us") == 0) {
unit = TIME_UNIT_US;
}
else {
memprintf(err, "expects 's', 'ms' or 'us', got '%s'",
args[1].data.str.area);
return 0;
}
chunk_destroy(&args[1].data.str);
args[1].type = ARGT_SINT;
args[1].data.sint = unit;
}
else if (args[1].type != ARGT_STOP) {
memprintf(err, "Unexpected arg type");
return 0;
}
return 1;
}
/* retrieve the current local date in epoch time, converts it to milliseconds
* or microseconds if asked to in optional args[1] unit param, and applies an
* optional args[0] offset.
*/
static int
smp_fetch_date(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.u.sint = date.tv_sec;
/* report in milliseconds */
if (args && args[1].type == ARGT_SINT && args[1].data.sint == TIME_UNIT_MS) {
smp->data.u.sint *= 1000;
smp->data.u.sint += date.tv_usec / 1000;
}
/* report in microseconds */
else if (args && args[1].type == ARGT_SINT && args[1].data.sint == TIME_UNIT_US) {
smp->data.u.sint *= 1000000;
smp->data.u.sint += date.tv_usec;
}
/* add offset */
if (args && args[0].type == ARGT_SINT)
smp->data.u.sint += args[0].data.sint;
smp->data.type = SMP_T_SINT;
smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE;
return 1;
}
/* retrieve the current microsecond part of the date */
static int
smp_fetch_date_us(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.u.sint = date.tv_usec;
smp->data.type = SMP_T_SINT;
smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE;
return 1;
}
/* returns the hostname */
static int
smp_fetch_hostname(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
smp->data.u.str.area = hostname;
smp->data.u.str.data = strlen(hostname);
return 1;
}
/* returns the number of processes */
static int
smp_fetch_nbproc(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = global.nbproc;
return 1;
}
/* returns the number of the current process (between 1 and nbproc */
static int
smp_fetch_proc(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = relative_pid;
return 1;
}
/* returns the number of the current thread (between 1 and nbthread */
static int
smp_fetch_thread(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = tid;
return 1;
}
/* generate a random 32-bit integer for whatever purpose, with an optional
* range specified in argument.
*/
static int
smp_fetch_rand(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.u.sint = ha_random32();
/* reduce if needed. Don't do a modulo, use all bits! */
if (args && args[0].type == ARGT_SINT)
smp->data.u.sint = ((u64)smp->data.u.sint * (u64)args[0].data.sint) >> 32;
smp->data.type = SMP_T_SINT;
smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE;
return 1;
}
/* returns true if the current process is stopping */
static int
smp_fetch_stopping(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = stopping;
return 1;
}
/* returns the number of calls of the current stream's process_stream() */
static int
smp_fetch_cpu_calls(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->strm->task->calls;
return 1;
}
/* returns the average number of nanoseconds spent processing the stream per call */
static int
smp_fetch_cpu_ns_avg(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->strm->task->calls ? smp->strm->task->cpu_time / smp->strm->task->calls : 0;
return 1;
}
/* returns the total number of nanoseconds spent processing the stream */
static int
smp_fetch_cpu_ns_tot(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->strm->task->cpu_time;
return 1;
}
/* returns the average number of nanoseconds per call spent waiting for other tasks to be processed */
static int
smp_fetch_lat_ns_avg(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->strm->task->calls ? smp->strm->task->lat_time / smp->strm->task->calls : 0;
return 1;
}
/* returns the total number of nanoseconds per call spent waiting for other tasks to be processed */
static int
smp_fetch_lat_ns_tot(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->strm->task->lat_time;
return 1;
}
static int smp_fetch_const_str(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags |= SMP_F_CONST;
smp->data.type = SMP_T_STR;
smp->data.u.str.area = args[0].data.str.area;
smp->data.u.str.data = args[0].data.str.data;
return 1;
}
static int smp_check_const_bool(struct arg *args, char **err)
{
if (strcasecmp(args[0].data.str.area, "true") == 0 ||
strcasecmp(args[0].data.str.area, "1") == 0) {
chunk_destroy(&args[0].data.str);
args[0].type = ARGT_SINT;
args[0].data.sint = 1;
return 1;
}
if (strcasecmp(args[0].data.str.area, "false") == 0 ||
strcasecmp(args[0].data.str.area, "0") == 0) {
chunk_destroy(&args[0].data.str);
args[0].type = ARGT_SINT;
args[0].data.sint = 0;
return 1;
}
memprintf(err, "Expects 'true', 'false', '0' or '1'");
return 0;
}
static int smp_fetch_const_bool(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = args[0].data.sint;
return 1;
}
static int smp_fetch_const_int(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = args[0].data.sint;
return 1;
}
static int smp_fetch_const_ipv4(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_IPV4;
smp->data.u.ipv4 = args[0].data.ipv4;
return 1;
}
static int smp_fetch_const_ipv6(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_IPV6;
smp->data.u.ipv6 = args[0].data.ipv6;
return 1;
}
static int smp_check_const_bin(struct arg *args, char **err)
{
char *binstr = NULL;
int binstrlen;
if (!parse_binary(args[0].data.str.area, &binstr, &binstrlen, err))
return 0;
chunk_destroy(&args[0].data.str);
args[0].type = ARGT_STR;
args[0].data.str.area = binstr;
args[0].data.str.data = binstrlen;
return 1;
}
static int smp_fetch_const_bin(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags |= SMP_F_CONST;
smp->data.type = SMP_T_BIN;
smp->data.u.str.area = args[0].data.str.area;
smp->data.u.str.data = args[0].data.str.data;
return 1;
}
static int smp_check_const_meth(struct arg *args, char **err)
{
enum http_meth_t meth;
int i;
meth = find_http_meth(args[0].data.str.area, args[0].data.str.data);
if (meth != HTTP_METH_OTHER) {
chunk_destroy(&args[0].data.str);
args[0].type = ARGT_SINT;
args[0].data.sint = meth;
} else {
/* Check method avalaibility. A method is a token defined as :
* tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." /
* "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA
* token = 1*tchar
*/
for (i = 0; i < args[0].data.str.data; i++) {
if (!HTTP_IS_TOKEN(args[0].data.str.area[i])) {
memprintf(err, "expects valid method.");
return 0;
}
}
}
return 1;
}
static int smp_fetch_const_meth(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_METH;
if (args[0].type == ARGT_SINT) {
smp->flags &= ~SMP_F_CONST;
smp->data.u.meth.meth = args[0].data.sint;
smp->data.u.meth.str.area = "";
smp->data.u.meth.str.data = 0;
} else {
smp->flags |= SMP_F_CONST;
smp->data.u.meth.meth = HTTP_METH_OTHER;
smp->data.u.meth.str.area = args[0].data.str.area;
smp->data.u.meth.str.data = args[0].data.str.data;
}
return 1;
}
// This function checks the "uuid" sample's arguments.
// Function won't get called when no parameter is specified (maybe a bug?)
static int smp_check_uuid(struct arg *args, char **err)
{
if (!args[0].type) {
args[0].type = ARGT_SINT;
args[0].data.sint = 4;
}
else if (args[0].data.sint != 4) {
memprintf(err, "Unsupported UUID version: '%lld'", args[0].data.sint);
return 0;
}
return 1;
}
// Generate a RFC4122 UUID (default is v4 = fully random)
static int smp_fetch_uuid(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (args[0].data.sint == 4 || !args[0].type) {
ha_generate_uuid(&trash);
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_VOL_TEST | SMP_F_MAY_CHANGE;
smp->data.u.str = trash;
return 1;
}
// more implementations of other uuid formats possible here
return 0;
}
/* Note: must not be declared <const> as its list will be overwritten.
* Note: fetches that may return multiple types must be declared as the lowest
* common denominator, the type that can be casted into all other ones. For
* instance IPv4/IPv6 must be declared IPv4.
*/
static struct sample_fetch_kw_list smp_kws = {ILH, {
{ "always_false", smp_fetch_false, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN },
{ "always_true", smp_fetch_true, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN },
{ "env", smp_fetch_env, ARG1(1,STR), NULL, SMP_T_STR, SMP_USE_INTRN },
{ "date", smp_fetch_date, ARG2(0,SINT,STR), smp_check_date_unit, SMP_T_SINT, SMP_USE_INTRN },
{ "date_us", smp_fetch_date_us, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "hostname", smp_fetch_hostname, 0, NULL, SMP_T_STR, SMP_USE_INTRN },
{ "nbproc", smp_fetch_nbproc,0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "proc", smp_fetch_proc, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "thread", smp_fetch_thread, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "rand", smp_fetch_rand, ARG1(0,SINT), NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "stopping", smp_fetch_stopping, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN },
{ "stopping", smp_fetch_stopping, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN },
{ "uuid", smp_fetch_uuid, ARG1(0, SINT), smp_check_uuid, SMP_T_STR, SMP_USE_INTRN },
{ "cpu_calls", smp_fetch_cpu_calls, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "cpu_ns_avg", smp_fetch_cpu_ns_avg, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "cpu_ns_tot", smp_fetch_cpu_ns_tot, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "lat_ns_avg", smp_fetch_lat_ns_avg, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "lat_ns_tot", smp_fetch_lat_ns_tot, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "str", smp_fetch_const_str, ARG1(1,STR), NULL , SMP_T_STR, SMP_USE_INTRN },
{ "bool", smp_fetch_const_bool, ARG1(1,STR), smp_check_const_bool, SMP_T_BOOL, SMP_USE_INTRN },
{ "int", smp_fetch_const_int, ARG1(1,SINT), NULL , SMP_T_SINT, SMP_USE_INTRN },
{ "ipv4", smp_fetch_const_ipv4, ARG1(1,IPV4), NULL , SMP_T_IPV4, SMP_USE_INTRN },
{ "ipv6", smp_fetch_const_ipv6, ARG1(1,IPV6), NULL , SMP_T_IPV6, SMP_USE_INTRN },
{ "bin", smp_fetch_const_bin, ARG1(1,STR), smp_check_const_bin , SMP_T_BIN, SMP_USE_INTRN },
{ "meth", smp_fetch_const_meth, ARG1(1,STR), smp_check_const_meth, SMP_T_METH, SMP_USE_INTRN },
{ /* END */ },
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
/* Note: must not be declared <const> as its list will be overwritten */
static struct sample_conv_kw_list sample_conv_kws = {ILH, {
{ "debug", sample_conv_debug, ARG2(0,STR,STR), smp_check_debug, SMP_T_ANY, SMP_T_ANY },
{ "b64dec", sample_conv_base642bin,0, NULL, SMP_T_STR, SMP_T_BIN },
{ "base64", sample_conv_bin2base64,0, NULL, SMP_T_BIN, SMP_T_STR },
{ "upper", sample_conv_str2upper, 0, NULL, SMP_T_STR, SMP_T_STR },
{ "lower", sample_conv_str2lower, 0, NULL, SMP_T_STR, SMP_T_STR },
{ "length", sample_conv_length, 0, NULL, SMP_T_STR, SMP_T_SINT },
{ "hex", sample_conv_bin2hex, 0, NULL, SMP_T_BIN, SMP_T_STR },
{ "hex2i", sample_conv_hex2int, 0, NULL, SMP_T_STR, SMP_T_SINT },
{ "ipmask", sample_conv_ipmask, ARG2(1,MSK4,MSK6), NULL, SMP_T_ADDR, SMP_T_IPV4 },
{ "ltime", sample_conv_ltime, ARG2(1,STR,SINT), NULL, SMP_T_SINT, SMP_T_STR },
{ "utime", sample_conv_utime, ARG2(1,STR,SINT), NULL, SMP_T_SINT, SMP_T_STR },
{ "crc32", sample_conv_crc32, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "crc32c", sample_conv_crc32c, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "djb2", sample_conv_djb2, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "sdbm", sample_conv_sdbm, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "wt6", sample_conv_wt6, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "xxh3", sample_conv_xxh3, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "xxh32", sample_conv_xxh32, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "xxh64", sample_conv_xxh64, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "json", sample_conv_json, ARG1(1,STR), sample_conv_json_check, SMP_T_STR, SMP_T_STR },
{ "bytes", sample_conv_bytes, ARG2(1,SINT,SINT), NULL, SMP_T_BIN, SMP_T_BIN },
{ "field", sample_conv_field, ARG3(2,SINT,STR,SINT), sample_conv_field_check, SMP_T_STR, SMP_T_STR },
{ "word", sample_conv_word, ARG3(2,SINT,STR,SINT), sample_conv_field_check, SMP_T_STR, SMP_T_STR },
{ "regsub", sample_conv_regsub, ARG3(2,REG,STR,STR), sample_conv_regsub_check, SMP_T_STR, SMP_T_STR },
{ "sha1", sample_conv_sha1, 0, NULL, SMP_T_BIN, SMP_T_BIN },
#ifdef USE_OPENSSL
{ "sha2", sample_conv_sha2, ARG1(0, SINT), smp_check_sha2, SMP_T_BIN, SMP_T_BIN },
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1000100fL)
{ "aes_gcm_dec", sample_conv_aes_gcm_dec, ARG4(4,SINT,STR,STR,STR), check_aes_gcm, SMP_T_BIN, SMP_T_BIN },
#endif
{ "digest", sample_conv_crypto_digest, ARG1(1,STR), check_crypto_digest, SMP_T_BIN, SMP_T_BIN },
{ "hmac", sample_conv_crypto_hmac, ARG2(2,STR,STR), check_crypto_hmac, SMP_T_BIN, SMP_T_BIN },
#endif
{ "concat", sample_conv_concat, ARG3(1,STR,STR,STR), smp_check_concat, SMP_T_STR, SMP_T_STR },
{ "strcmp", sample_conv_strcmp, ARG1(1,STR), smp_check_strcmp, SMP_T_STR, SMP_T_SINT },
#ifdef USE_OPENSSL
{ "secure_memcmp", sample_conv_secure_memcmp, ARG1(1,STR), smp_check_secure_memcmp, SMP_T_BIN, SMP_T_BOOL },
#endif
/* gRPC converters. */
{ "ungrpc", sample_conv_ungrpc, ARG2(1,PBUF_FNUM,STR), sample_conv_protobuf_check, SMP_T_BIN, SMP_T_BIN },
{ "protobuf", sample_conv_protobuf, ARG2(1,PBUF_FNUM,STR), sample_conv_protobuf_check, SMP_T_BIN, SMP_T_BIN },
/* FIX converters */
{ "fix_is_valid", sample_conv_fix_is_valid, 0, NULL, SMP_T_BIN, SMP_T_BOOL },
{ "fix_tag_value", sample_conv_fix_tag_value, ARG1(1,STR), sample_conv_fix_value_check, SMP_T_BIN, SMP_T_BIN },
/* MQTT converters */
{ "mqtt_is_valid", sample_conv_mqtt_is_valid, 0, NULL, SMP_T_BIN, SMP_T_BOOL },
{ "mqtt_field_value", sample_conv_mqtt_field_value, ARG2(2,STR,STR), sample_conv_mqtt_field_value_check, SMP_T_BIN, SMP_T_STR },
{ "iif", sample_conv_iif, ARG2(2, STR, STR), NULL, SMP_T_BOOL, SMP_T_STR },
{ "and", sample_conv_binary_and, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "or", sample_conv_binary_or, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "xor", sample_conv_binary_xor, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "cpl", sample_conv_binary_cpl, 0, NULL, SMP_T_SINT, SMP_T_SINT },
{ "bool", sample_conv_arith_bool, 0, NULL, SMP_T_SINT, SMP_T_BOOL },
{ "not", sample_conv_arith_not, 0, NULL, SMP_T_SINT, SMP_T_BOOL },
{ "odd", sample_conv_arith_odd, 0, NULL, SMP_T_SINT, SMP_T_BOOL },
{ "even", sample_conv_arith_even, 0, NULL, SMP_T_SINT, SMP_T_BOOL },
{ "add", sample_conv_arith_add, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "sub", sample_conv_arith_sub, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "mul", sample_conv_arith_mul, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "div", sample_conv_arith_div, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "mod", sample_conv_arith_mod, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "neg", sample_conv_arith_neg, 0, NULL, SMP_T_SINT, SMP_T_SINT },
{ "htonl", sample_conv_htonl, 0, NULL, SMP_T_SINT, SMP_T_BIN },
{ "cut_crlf", sample_conv_cut_crlf, 0, NULL, SMP_T_STR, SMP_T_STR },
{ "ltrim", sample_conv_ltrim, ARG1(1,STR), NULL, SMP_T_STR, SMP_T_STR },
{ "rtrim", sample_conv_rtrim, ARG1(1,STR), NULL, SMP_T_STR, SMP_T_STR },
{ NULL, NULL, 0, 0, 0 },
}};
INITCALL1(STG_REGISTER, sample_register_convs, &sample_conv_kws);