| /* |
| * HTTP compression. |
| * |
| * Copyright 2012 Exceliance, David Du Colombier <dducolombier@exceliance.fr> |
| * William Lallemand <wlallemand@exceliance.fr> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <stdio.h> |
| |
| #if defined(USE_SLZ) |
| #include <slz.h> |
| #elif defined(USE_ZLIB) |
| /* Note: the crappy zlib and openssl libs both define the "free_func" type. |
| * That's a very clever idea to use such a generic name in general purpose |
| * libraries, really... The zlib one is easier to redefine than openssl's, |
| * so let's only fix this one. |
| */ |
| #define free_func zlib_free_func |
| #include <zlib.h> |
| #undef free_func |
| #endif /* USE_ZLIB */ |
| |
| #include <common/cfgparse.h> |
| #include <common/compat.h> |
| #include <common/memory.h> |
| #include <common/hathreads.h> |
| |
| #include <types/global.h> |
| #include <types/compression.h> |
| |
| #include <proto/acl.h> |
| #include <proto/compression.h> |
| #include <proto/freq_ctr.h> |
| #include <proto/proto_http.h> |
| #include <proto/stream.h> |
| |
| |
| #if defined(USE_SLZ) || defined(USE_ZLIB) |
| __decl_hathreads(static HA_SPINLOCK_T comp_pool_lock); |
| #endif |
| |
| #ifdef USE_ZLIB |
| |
| static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size); |
| static void free_zlib(void *opaque, void *ptr); |
| |
| /* zlib allocation */ |
| static struct pool_head *zlib_pool_deflate_state = NULL; |
| static struct pool_head *zlib_pool_window = NULL; |
| static struct pool_head *zlib_pool_prev = NULL; |
| static struct pool_head *zlib_pool_head = NULL; |
| static struct pool_head *zlib_pool_pending_buf = NULL; |
| |
| long zlib_used_memory = 0; |
| |
| static int global_tune_zlibmemlevel = 8; /* zlib memlevel */ |
| static int global_tune_zlibwindowsize = MAX_WBITS; /* zlib window size */ |
| |
| #endif |
| |
| unsigned int compress_min_idle = 0; |
| |
| static int identity_init(struct comp_ctx **comp_ctx, int level); |
| static int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out); |
| static int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out); |
| static int identity_finish(struct comp_ctx *comp_ctx, struct buffer *out); |
| static int identity_end(struct comp_ctx **comp_ctx); |
| |
| #if defined(USE_SLZ) |
| |
| static int rfc1950_init(struct comp_ctx **comp_ctx, int level); |
| static int rfc1951_init(struct comp_ctx **comp_ctx, int level); |
| static int rfc1952_init(struct comp_ctx **comp_ctx, int level); |
| static int rfc195x_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out); |
| static int rfc195x_flush(struct comp_ctx *comp_ctx, struct buffer *out); |
| static int rfc195x_finish(struct comp_ctx *comp_ctx, struct buffer *out); |
| static int rfc195x_end(struct comp_ctx **comp_ctx); |
| |
| #elif defined(USE_ZLIB) |
| |
| static int gzip_init(struct comp_ctx **comp_ctx, int level); |
| static int raw_def_init(struct comp_ctx **comp_ctx, int level); |
| static int deflate_init(struct comp_ctx **comp_ctx, int level); |
| static int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out); |
| static int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out); |
| static int deflate_finish(struct comp_ctx *comp_ctx, struct buffer *out); |
| static int deflate_end(struct comp_ctx **comp_ctx); |
| |
| #endif /* USE_ZLIB */ |
| |
| |
| const struct comp_algo comp_algos[] = |
| { |
| { "identity", 8, "identity", 8, identity_init, identity_add_data, identity_flush, identity_finish, identity_end }, |
| #if defined(USE_SLZ) |
| { "deflate", 7, "deflate", 7, rfc1950_init, rfc195x_add_data, rfc195x_flush, rfc195x_finish, rfc195x_end }, |
| { "raw-deflate", 11, "deflate", 7, rfc1951_init, rfc195x_add_data, rfc195x_flush, rfc195x_finish, rfc195x_end }, |
| { "gzip", 4, "gzip", 4, rfc1952_init, rfc195x_add_data, rfc195x_flush, rfc195x_finish, rfc195x_end }, |
| #elif defined(USE_ZLIB) |
| { "deflate", 7, "deflate", 7, deflate_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end }, |
| { "raw-deflate", 11, "deflate", 7, raw_def_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end }, |
| { "gzip", 4, "gzip", 4, gzip_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end }, |
| #endif /* USE_ZLIB */ |
| { NULL, 0, NULL, 0, NULL , NULL, NULL, NULL, NULL } |
| }; |
| |
| /* |
| * Add a content-type in the configuration |
| */ |
| int comp_append_type(struct comp *comp, const char *type) |
| { |
| struct comp_type *comp_type; |
| |
| comp_type = calloc(1, sizeof(*comp_type)); |
| comp_type->name_len = strlen(type); |
| comp_type->name = strdup(type); |
| comp_type->next = comp->types; |
| comp->types = comp_type; |
| return 0; |
| } |
| |
| /* |
| * Add an algorithm in the configuration |
| */ |
| int comp_append_algo(struct comp *comp, const char *algo) |
| { |
| struct comp_algo *comp_algo; |
| int i; |
| |
| for (i = 0; comp_algos[i].cfg_name; i++) { |
| if (!strcmp(algo, comp_algos[i].cfg_name)) { |
| comp_algo = calloc(1, sizeof(*comp_algo)); |
| memmove(comp_algo, &comp_algos[i], sizeof(struct comp_algo)); |
| comp_algo->next = comp->algos; |
| comp->algos = comp_algo; |
| return 0; |
| } |
| } |
| return -1; |
| } |
| |
| #if defined(USE_ZLIB) || defined(USE_SLZ) |
| static struct pool_head *pool_comp_ctx = NULL; |
| /* |
| * Alloc the comp_ctx |
| */ |
| static inline int init_comp_ctx(struct comp_ctx **comp_ctx) |
| { |
| #ifdef USE_ZLIB |
| z_stream *strm; |
| |
| if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < sizeof(struct comp_ctx)) |
| return -1; |
| #endif |
| |
| if (unlikely(pool_comp_ctx == NULL)) { |
| HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock); |
| if (unlikely(pool_comp_ctx == NULL)) |
| pool_comp_ctx = create_pool("comp_ctx", sizeof(struct comp_ctx), MEM_F_SHARED); |
| HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock); |
| } |
| |
| *comp_ctx = pool_alloc(pool_comp_ctx); |
| if (*comp_ctx == NULL) |
| return -1; |
| #if defined(USE_SLZ) |
| (*comp_ctx)->direct_ptr = NULL; |
| (*comp_ctx)->direct_len = 0; |
| (*comp_ctx)->queued = NULL; |
| #elif defined(USE_ZLIB) |
| HA_ATOMIC_ADD(&zlib_used_memory, sizeof(struct comp_ctx)); |
| |
| strm = &(*comp_ctx)->strm; |
| strm->zalloc = alloc_zlib; |
| strm->zfree = free_zlib; |
| strm->opaque = *comp_ctx; |
| #endif |
| return 0; |
| } |
| |
| /* |
| * Dealloc the comp_ctx |
| */ |
| static inline int deinit_comp_ctx(struct comp_ctx **comp_ctx) |
| { |
| if (!*comp_ctx) |
| return 0; |
| |
| pool_free(pool_comp_ctx, *comp_ctx); |
| *comp_ctx = NULL; |
| |
| #ifdef USE_ZLIB |
| HA_ATOMIC_SUB(&zlib_used_memory, sizeof(struct comp_ctx)); |
| #endif |
| return 0; |
| } |
| #endif |
| |
| |
| /**************************** |
| **** Identity algorithm **** |
| ****************************/ |
| |
| /* |
| * Init the identity algorithm |
| */ |
| static int identity_init(struct comp_ctx **comp_ctx, int level) |
| { |
| return 0; |
| } |
| |
| /* |
| * Process data |
| * Return size of consumed data or -1 on error |
| */ |
| static int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out) |
| { |
| char *out_data = b_tail(out); |
| int out_len = b_room(out); |
| |
| if (out_len < in_len) |
| return -1; |
| |
| memcpy(out_data, in_data, in_len); |
| |
| b_add(out, in_len); |
| |
| return in_len; |
| } |
| |
| static int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out) |
| { |
| return 0; |
| } |
| |
| static int identity_finish(struct comp_ctx *comp_ctx, struct buffer *out) |
| { |
| return 0; |
| } |
| |
| /* |
| * Deinit the algorithm |
| */ |
| static int identity_end(struct comp_ctx **comp_ctx) |
| { |
| return 0; |
| } |
| |
| |
| #ifdef USE_SLZ |
| |
| /* SLZ's gzip format (RFC1952). Returns < 0 on error. */ |
| static int rfc1952_init(struct comp_ctx **comp_ctx, int level) |
| { |
| if (init_comp_ctx(comp_ctx) < 0) |
| return -1; |
| |
| (*comp_ctx)->cur_lvl = !!level; |
| return slz_rfc1952_init(&(*comp_ctx)->strm, !!level); |
| } |
| |
| /* SLZ's raw deflate format (RFC1951). Returns < 0 on error. */ |
| static int rfc1951_init(struct comp_ctx **comp_ctx, int level) |
| { |
| if (init_comp_ctx(comp_ctx) < 0) |
| return -1; |
| |
| (*comp_ctx)->cur_lvl = !!level; |
| return slz_rfc1951_init(&(*comp_ctx)->strm, !!level); |
| } |
| |
| /* SLZ's zlib format (RFC1950). Returns < 0 on error. */ |
| static int rfc1950_init(struct comp_ctx **comp_ctx, int level) |
| { |
| if (init_comp_ctx(comp_ctx) < 0) |
| return -1; |
| |
| (*comp_ctx)->cur_lvl = !!level; |
| return slz_rfc1950_init(&(*comp_ctx)->strm, !!level); |
| } |
| |
| /* Return the size of consumed data or -1. The output buffer is unused at this |
| * point, we only keep a reference to the input data or a copy of them if the |
| * reference is already used. |
| */ |
| static int rfc195x_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out) |
| { |
| static THREAD_LOCAL struct buffer *tmpbuf = &buf_empty; |
| |
| if (in_len <= 0) |
| return 0; |
| |
| if (comp_ctx->direct_ptr && !comp_ctx->queued) { |
| /* data already being pointed to, we're in front of fragmented |
| * data and need a buffer now. We reuse the same buffer, as it's |
| * not used out of the scope of a series of add_data()*, end(). |
| */ |
| if (unlikely(!tmpbuf->size)) { |
| /* this is the first time we need the compression buffer */ |
| if (b_alloc(&tmpbuf) == NULL) |
| return -1; /* no memory */ |
| } |
| b_reset(tmpbuf); |
| memcpy(b_tail(tmpbuf), comp_ctx->direct_ptr, comp_ctx->direct_len); |
| b_add(tmpbuf, comp_ctx->direct_len); |
| comp_ctx->direct_ptr = NULL; |
| comp_ctx->direct_len = 0; |
| comp_ctx->queued = tmpbuf; |
| /* fall through buffer copy */ |
| } |
| |
| if (comp_ctx->queued) { |
| /* data already pending */ |
| memcpy(b_tail(comp_ctx->queued), in_data, in_len); |
| b_add(comp_ctx->queued, in_len); |
| return in_len; |
| } |
| |
| comp_ctx->direct_ptr = in_data; |
| comp_ctx->direct_len = in_len; |
| return in_len; |
| } |
| |
| /* Compresses the data accumulated using add_data(), and optionally sends the |
| * format-specific trailer if <finish> is non-null. <out> is expected to have a |
| * large enough free non-wrapping space as verified by http_comp_buffer_init(). |
| * The number of bytes emitted is reported. |
| */ |
| static int rfc195x_flush_or_finish(struct comp_ctx *comp_ctx, struct buffer *out, int finish) |
| { |
| struct slz_stream *strm = &comp_ctx->strm; |
| const char *in_ptr; |
| int in_len; |
| int out_len; |
| |
| in_ptr = comp_ctx->direct_ptr; |
| in_len = comp_ctx->direct_len; |
| |
| if (comp_ctx->queued) { |
| in_ptr = comp_ctx->queued->p; |
| in_len = comp_ctx->queued->i; |
| } |
| |
| out_len = out->i; |
| |
| if (in_ptr) |
| b_add(out, slz_encode(strm, b_tail(out), in_ptr, in_len, !finish)); |
| |
| if (finish) |
| b_add(out, slz_finish(strm, b_tail(out))); |
| |
| out_len = out->i - out_len; |
| |
| /* very important, we must wipe the data we've just flushed */ |
| comp_ctx->direct_len = 0; |
| comp_ctx->direct_ptr = NULL; |
| comp_ctx->queued = NULL; |
| |
| /* Verify compression rate limiting and CPU usage */ |
| if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) || /* rate */ |
| (idle_pct < compress_min_idle)) { /* idle */ |
| if (comp_ctx->cur_lvl > 0) |
| strm->level = --comp_ctx->cur_lvl; |
| } |
| else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel && comp_ctx->cur_lvl < 1) { |
| strm->level = ++comp_ctx->cur_lvl; |
| } |
| |
| /* and that's all */ |
| return out_len; |
| } |
| |
| static int rfc195x_flush(struct comp_ctx *comp_ctx, struct buffer *out) |
| { |
| return rfc195x_flush_or_finish(comp_ctx, out, 0); |
| } |
| |
| static int rfc195x_finish(struct comp_ctx *comp_ctx, struct buffer *out) |
| { |
| return rfc195x_flush_or_finish(comp_ctx, out, 1); |
| } |
| |
| /* we just need to free the comp_ctx here, nothing was allocated */ |
| static int rfc195x_end(struct comp_ctx **comp_ctx) |
| { |
| deinit_comp_ctx(comp_ctx); |
| return 0; |
| } |
| |
| #elif defined(USE_ZLIB) /* ! USE_SLZ */ |
| |
| /* |
| * This is a tricky allocation function using the zlib. |
| * This is based on the allocation order in deflateInit2. |
| */ |
| static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size) |
| { |
| struct comp_ctx *ctx = opaque; |
| static THREAD_LOCAL char round = 0; /* order in deflateInit2 */ |
| void *buf = NULL; |
| struct pool_head *pool = NULL; |
| |
| if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < (long)(items * size)) |
| goto end; |
| |
| switch (round) { |
| case 0: |
| if (zlib_pool_deflate_state == NULL) { |
| HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock); |
| if (zlib_pool_deflate_state == NULL) |
| zlib_pool_deflate_state = create_pool("zlib_state", size * items, MEM_F_SHARED); |
| HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock); |
| } |
| pool = zlib_pool_deflate_state; |
| ctx->zlib_deflate_state = buf = pool_alloc(pool); |
| break; |
| |
| case 1: |
| if (zlib_pool_window == NULL) { |
| HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock); |
| if (zlib_pool_window == NULL) |
| zlib_pool_window = create_pool("zlib_window", size * items, MEM_F_SHARED); |
| HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock); |
| } |
| pool = zlib_pool_window; |
| ctx->zlib_window = buf = pool_alloc(pool); |
| break; |
| |
| case 2: |
| if (zlib_pool_prev == NULL) { |
| HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock); |
| if (zlib_pool_prev == NULL) |
| zlib_pool_prev = create_pool("zlib_prev", size * items, MEM_F_SHARED); |
| HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock); |
| } |
| pool = zlib_pool_prev; |
| ctx->zlib_prev = buf = pool_alloc(pool); |
| break; |
| |
| case 3: |
| if (zlib_pool_head == NULL) { |
| HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock); |
| if (zlib_pool_head == NULL) |
| zlib_pool_head = create_pool("zlib_head", size * items, MEM_F_SHARED); |
| HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock); |
| } |
| pool = zlib_pool_head; |
| ctx->zlib_head = buf = pool_alloc(pool); |
| break; |
| |
| case 4: |
| if (zlib_pool_pending_buf == NULL) { |
| HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock); |
| if (zlib_pool_pending_buf == NULL) |
| zlib_pool_pending_buf = create_pool("zlib_pending_buf", size * items, MEM_F_SHARED); |
| HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock); |
| } |
| pool = zlib_pool_pending_buf; |
| ctx->zlib_pending_buf = buf = pool_alloc(pool); |
| break; |
| } |
| if (buf != NULL) |
| HA_ATOMIC_ADD(&zlib_used_memory, pool->size); |
| |
| end: |
| |
| /* deflateInit2() first allocates and checks the deflate_state, then if |
| * it succeeds, it allocates all other 4 areas at ones and checks them |
| * at the end. So we want to correctly count the rounds depending on when |
| * zlib is supposed to abort. |
| */ |
| if (buf || round) |
| round = (round + 1) % 5; |
| return buf; |
| } |
| |
| static void free_zlib(void *opaque, void *ptr) |
| { |
| struct comp_ctx *ctx = opaque; |
| struct pool_head *pool = NULL; |
| |
| if (ptr == ctx->zlib_window) |
| pool = zlib_pool_window; |
| else if (ptr == ctx->zlib_deflate_state) |
| pool = zlib_pool_deflate_state; |
| else if (ptr == ctx->zlib_prev) |
| pool = zlib_pool_prev; |
| else if (ptr == ctx->zlib_head) |
| pool = zlib_pool_head; |
| else if (ptr == ctx->zlib_pending_buf) |
| pool = zlib_pool_pending_buf; |
| |
| pool_free(pool, ptr); |
| HA_ATOMIC_SUB(&zlib_used_memory, pool->size); |
| } |
| |
| /************************** |
| **** gzip algorithm **** |
| ***************************/ |
| static int gzip_init(struct comp_ctx **comp_ctx, int level) |
| { |
| z_stream *strm; |
| |
| if (init_comp_ctx(comp_ctx) < 0) |
| return -1; |
| |
| strm = &(*comp_ctx)->strm; |
| |
| if (deflateInit2(strm, level, Z_DEFLATED, global_tune_zlibwindowsize + 16, global_tune_zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) { |
| deinit_comp_ctx(comp_ctx); |
| return -1; |
| } |
| |
| (*comp_ctx)->cur_lvl = level; |
| |
| return 0; |
| } |
| |
| /* Raw deflate algorithm */ |
| static int raw_def_init(struct comp_ctx **comp_ctx, int level) |
| { |
| z_stream *strm; |
| |
| if (init_comp_ctx(comp_ctx) < 0) |
| return -1; |
| |
| strm = &(*comp_ctx)->strm; |
| |
| if (deflateInit2(strm, level, Z_DEFLATED, -global_tune_zlibwindowsize, global_tune_zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) { |
| deinit_comp_ctx(comp_ctx); |
| return -1; |
| } |
| |
| (*comp_ctx)->cur_lvl = level; |
| return 0; |
| } |
| |
| /************************** |
| **** Deflate algorithm **** |
| ***************************/ |
| |
| static int deflate_init(struct comp_ctx **comp_ctx, int level) |
| { |
| z_stream *strm; |
| |
| if (init_comp_ctx(comp_ctx) < 0) |
| return -1; |
| |
| strm = &(*comp_ctx)->strm; |
| |
| if (deflateInit2(strm, level, Z_DEFLATED, global_tune_zlibwindowsize, global_tune_zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) { |
| deinit_comp_ctx(comp_ctx); |
| return -1; |
| } |
| |
| (*comp_ctx)->cur_lvl = level; |
| |
| return 0; |
| } |
| |
| /* Return the size of consumed data or -1 */ |
| static int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out) |
| { |
| int ret; |
| z_stream *strm = &comp_ctx->strm; |
| char *out_data = b_tail(out); |
| int out_len = b_room(out); |
| |
| if (in_len <= 0) |
| return 0; |
| |
| |
| if (out_len <= 0) |
| return -1; |
| |
| strm->next_in = (unsigned char *)in_data; |
| strm->avail_in = in_len; |
| strm->next_out = (unsigned char *)out_data; |
| strm->avail_out = out_len; |
| |
| ret = deflate(strm, Z_NO_FLUSH); |
| if (ret != Z_OK) |
| return -1; |
| |
| /* deflate update the available data out */ |
| b_add(out, out_len - strm->avail_out); |
| |
| return in_len - strm->avail_in; |
| } |
| |
| static int deflate_flush_or_finish(struct comp_ctx *comp_ctx, struct buffer *out, int flag) |
| { |
| int ret; |
| int out_len = 0; |
| z_stream *strm = &comp_ctx->strm; |
| |
| strm->next_in = NULL; |
| strm->avail_in = 0; |
| strm->next_out = (unsigned char *)b_tail(out); |
| strm->avail_out = b_room(out); |
| |
| ret = deflate(strm, flag); |
| if (ret != Z_OK && ret != Z_STREAM_END) |
| return -1; |
| |
| out_len = b_room(out) - strm->avail_out; |
| b_add(out, out_len); |
| |
| /* compression limit */ |
| if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) || /* rate */ |
| (idle_pct < compress_min_idle)) { /* idle */ |
| /* decrease level */ |
| if (comp_ctx->cur_lvl > 0) { |
| comp_ctx->cur_lvl--; |
| deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY); |
| } |
| |
| } else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel) { |
| /* increase level */ |
| comp_ctx->cur_lvl++ ; |
| deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY); |
| } |
| |
| return out_len; |
| } |
| |
| static int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out) |
| { |
| return deflate_flush_or_finish(comp_ctx, out, Z_SYNC_FLUSH); |
| } |
| |
| static int deflate_finish(struct comp_ctx *comp_ctx, struct buffer *out) |
| { |
| return deflate_flush_or_finish(comp_ctx, out, Z_FINISH); |
| } |
| |
| static int deflate_end(struct comp_ctx **comp_ctx) |
| { |
| z_stream *strm = &(*comp_ctx)->strm; |
| int ret; |
| |
| ret = deflateEnd(strm); |
| |
| deinit_comp_ctx(comp_ctx); |
| |
| return ret; |
| } |
| |
| /* config parser for global "tune.zlibmemlevel" */ |
| static int zlib_parse_global_memlevel(char **args, int section_type, struct proxy *curpx, |
| struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| if (too_many_args(1, args, err, NULL)) |
| return -1; |
| |
| if (*(args[1]) == 0) { |
| memprintf(err, "'%s' expects a numeric value between 1 and 9.", args[0]); |
| return -1; |
| } |
| |
| global_tune_zlibmemlevel = atoi(args[1]); |
| if (global_tune_zlibmemlevel < 1 || global_tune_zlibmemlevel > 9) { |
| memprintf(err, "'%s' expects a numeric value between 1 and 9.", args[0]); |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| /* config parser for global "tune.zlibwindowsize" */ |
| static int zlib_parse_global_windowsize(char **args, int section_type, struct proxy *curpx, |
| struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| if (too_many_args(1, args, err, NULL)) |
| return -1; |
| |
| if (*(args[1]) == 0) { |
| memprintf(err, "'%s' expects a numeric value between 8 and 15.", args[0]); |
| return -1; |
| } |
| |
| global_tune_zlibwindowsize = atoi(args[1]); |
| if (global_tune_zlibwindowsize < 8 || global_tune_zlibwindowsize > 15) { |
| memprintf(err, "'%s' expects a numeric value between 8 and 15.", args[0]); |
| return -1; |
| } |
| return 0; |
| } |
| |
| #endif /* USE_ZLIB */ |
| |
| |
| /* config keyword parsers */ |
| static struct cfg_kw_list cfg_kws = {ILH, { |
| #ifdef USE_ZLIB |
| { CFG_GLOBAL, "tune.zlib.memlevel", zlib_parse_global_memlevel }, |
| { CFG_GLOBAL, "tune.zlib.windowsize", zlib_parse_global_windowsize }, |
| #endif |
| { 0, NULL, NULL } |
| }}; |
| |
| __attribute__((constructor)) |
| static void __comp_fetch_init(void) |
| { |
| char *ptr = NULL; |
| int i; |
| |
| #ifdef USE_SLZ |
| slz_make_crc_table(); |
| slz_prepare_dist_table(); |
| #endif |
| #if defined(USE_ZLIB) && defined(DEFAULT_MAXZLIBMEM) |
| global.tune.maxzlibmem = DEFAULT_MAXZLIBMEM * 1024U * 1024U, |
| #endif |
| #ifdef USE_ZLIB |
| HA_SPIN_INIT(&comp_pool_lock); |
| memprintf(&ptr, "Built with zlib version : " ZLIB_VERSION); |
| memprintf(&ptr, "%s\nRunning on zlib version : %s", ptr, zlibVersion()); |
| #elif defined(USE_SLZ) |
| memprintf(&ptr, "Built with libslz for stateless compression."); |
| #else |
| memprintf(&ptr, "Built without compression support (neither USE_ZLIB nor USE_SLZ are set)."); |
| #endif |
| memprintf(&ptr, "%s\nCompression algorithms supported :", ptr); |
| |
| for (i = 0; comp_algos[i].cfg_name; i++) |
| memprintf(&ptr, "%s%s %s(\"%s\")", ptr, (i == 0 ? "" : ","), comp_algos[i].cfg_name, comp_algos[i].ua_name); |
| |
| if (i == 0) |
| memprintf(&ptr, "%s none", ptr); |
| |
| hap_register_build_opts(ptr, 1); |
| cfg_register_keywords(&cfg_kws); |
| } |