blob: 73a2ba6eb379296d6cbf19df9d8f03ee13381315 [file] [log] [blame]
/*
* AF_INET/AF_INET6 SOCK_STREAM protocol layer (tcp)
*
* Copyright 2000-2008 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/un.h>
#include <netinet/tcp.h>
#include <common/cfgparse.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/debug.h>
#include <common/errors.h>
#include <common/memory.h>
#include <common/mini-clist.h>
#include <common/standard.h>
#include <common/time.h>
#include <common/version.h>
#include <types/global.h>
#include <types/server.h>
#include <proto/acl.h>
#include <proto/backend.h>
#include <proto/buffers.h>
#include <proto/fd.h>
#include <proto/log.h>
#include <proto/port_range.h>
#include <proto/protocols.h>
#include <proto/proto_tcp.h>
#include <proto/proxy.h>
#include <proto/queue.h>
#include <proto/session.h>
#include <proto/stream_sock.h>
#include <proto/task.h>
#ifdef CONFIG_HAP_CTTPROXY
#include <import/ip_tproxy.h>
#endif
static int tcp_bind_listeners(struct protocol *proto);
/* Note: must not be declared <const> as its list will be overwritten */
static struct protocol proto_tcpv4 = {
.name = "tcpv4",
.sock_domain = AF_INET,
.sock_type = SOCK_STREAM,
.sock_prot = IPPROTO_TCP,
.sock_family = AF_INET,
.sock_addrlen = sizeof(struct sockaddr_in),
.l3_addrlen = 32/8,
.read = &stream_sock_read,
.write = &stream_sock_write,
.bind_all = tcp_bind_listeners,
.unbind_all = unbind_all_listeners,
.enable_all = enable_all_listeners,
.listeners = LIST_HEAD_INIT(proto_tcpv4.listeners),
.nb_listeners = 0,
};
/* Note: must not be declared <const> as its list will be overwritten */
static struct protocol proto_tcpv6 = {
.name = "tcpv6",
.sock_domain = AF_INET6,
.sock_type = SOCK_STREAM,
.sock_prot = IPPROTO_TCP,
.sock_family = AF_INET6,
.sock_addrlen = sizeof(struct sockaddr_in6),
.l3_addrlen = 128/8,
.read = &stream_sock_read,
.write = &stream_sock_write,
.bind_all = tcp_bind_listeners,
.unbind_all = unbind_all_listeners,
.enable_all = enable_all_listeners,
.listeners = LIST_HEAD_INIT(proto_tcpv6.listeners),
.nb_listeners = 0,
};
/* Binds ipv4 address <local> to socket <fd>, unless <flags> is set, in which
* case we try to bind <remote>. <flags> is a 2-bit field consisting of :
* - 0 : ignore remote address (may even be a NULL pointer)
* - 1 : use provided address
* - 2 : use provided port
* - 3 : use both
*
* The function supports multiple foreign binding methods :
* - linux_tproxy: we directly bind to the foreign address
* - cttproxy: we bind to a local address then nat.
* The second one can be used as a fallback for the first one.
* This function returns 0 when everything's OK, 1 if it could not bind, to the
* local address, 2 if it could not bind to the foreign address.
*/
int tcpv4_bind_socket(int fd, int flags, struct sockaddr_in *local, struct sockaddr_in *remote)
{
struct sockaddr_in bind_addr;
int foreign_ok = 0;
int ret;
#ifdef CONFIG_HAP_LINUX_TPROXY
static int ip_transp_working = 1;
if (flags && ip_transp_working) {
if (setsockopt(fd, SOL_IP, IP_TRANSPARENT, (char *) &one, sizeof(one)) == 0
|| setsockopt(fd, SOL_IP, IP_FREEBIND, (char *) &one, sizeof(one)) == 0)
foreign_ok = 1;
else
ip_transp_working = 0;
}
#endif
if (flags) {
memset(&bind_addr, 0, sizeof(bind_addr));
if (flags & 1)
bind_addr.sin_addr = remote->sin_addr;
if (flags & 2)
bind_addr.sin_port = remote->sin_port;
}
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(one));
if (foreign_ok) {
ret = bind(fd, (struct sockaddr *)&bind_addr, sizeof(bind_addr));
if (ret < 0)
return 2;
}
else {
ret = bind(fd, (struct sockaddr *)local, sizeof(*local));
if (ret < 0)
return 1;
}
if (!flags)
return 0;
#ifdef CONFIG_HAP_CTTPROXY
if (!foreign_ok) {
struct in_tproxy itp1, itp2;
memset(&itp1, 0, sizeof(itp1));
itp1.op = TPROXY_ASSIGN;
itp1.v.addr.faddr = bind_addr.sin_addr;
itp1.v.addr.fport = bind_addr.sin_port;
/* set connect flag on socket */
itp2.op = TPROXY_FLAGS;
itp2.v.flags = ITP_CONNECT | ITP_ONCE;
if (setsockopt(fd, SOL_IP, IP_TPROXY, &itp1, sizeof(itp1)) != -1 &&
setsockopt(fd, SOL_IP, IP_TPROXY, &itp2, sizeof(itp2)) != -1) {
foreign_ok = 1;
}
}
#endif
if (!foreign_ok)
/* we could not bind to a foreign address */
return 2;
return 0;
}
/*
* This function initiates a connection to the server assigned to this session
* (s->srv, s->srv_addr). It will assign a server if none is assigned yet.
* It can return one of :
* - SN_ERR_NONE if everything's OK
* - SN_ERR_SRVTO if there are no more servers
* - SN_ERR_SRVCL if the connection was refused by the server
* - SN_ERR_PRXCOND if the connection has been limited by the proxy (maxconn)
* - SN_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...)
* - SN_ERR_INTERNAL for any other purely internal errors
* Additionnally, in the case of SN_ERR_RESOURCE, an emergency log will be emitted.
*/
int tcpv4_connect_server(struct stream_interface *si,
struct proxy *be, struct server *srv,
struct sockaddr *srv_addr, struct sockaddr *cli_addr)
{
int fd;
if ((fd = si->fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) == -1) {
qfprintf(stderr, "Cannot get a server socket.\n");
if (errno == ENFILE)
send_log(be, LOG_EMERG,
"Proxy %s reached system FD limit at %d. Please check system tunables.\n",
be->id, maxfd);
else if (errno == EMFILE)
send_log(be, LOG_EMERG,
"Proxy %s reached process FD limit at %d. Please check 'ulimit-n' and restart.\n",
be->id, maxfd);
else if (errno == ENOBUFS || errno == ENOMEM)
send_log(be, LOG_EMERG,
"Proxy %s reached system memory limit at %d sockets. Please check system tunables.\n",
be->id, maxfd);
/* this is a resource error */
return SN_ERR_RESOURCE;
}
if (fd >= global.maxsock) {
/* do not log anything there, it's a normal condition when this option
* is used to serialize connections to a server !
*/
Alert("socket(): not enough free sockets. Raise -n argument. Giving up.\n");
close(fd);
return SN_ERR_PRXCOND; /* it is a configuration limit */
}
if ((fcntl(fd, F_SETFL, O_NONBLOCK)==-1) ||
(setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one)) == -1)) {
qfprintf(stderr,"Cannot set client socket to non blocking mode.\n");
close(fd);
return SN_ERR_INTERNAL;
}
if (be->options & PR_O_TCP_SRV_KA)
setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(one));
if (be->options & PR_O_TCP_NOLING)
setsockopt(fd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger));
/* allow specific binding :
* - server-specific at first
* - proxy-specific next
*/
if (srv != NULL && srv->state & SRV_BIND_SRC) {
struct sockaddr_in *remote = NULL;
int ret, flags = 0;
#if defined(CONFIG_HAP_CTTPROXY) || defined(CONFIG_HAP_LINUX_TPROXY)
switch (srv->state & SRV_TPROXY_MASK) {
case SRV_TPROXY_ADDR:
remote = (struct sockaddr_in *)&srv->tproxy_addr;
flags = 3;
break;
case SRV_TPROXY_CLI:
if (cli_addr)
flags |= 2;
/* fall through */
case SRV_TPROXY_CIP:
/* FIXME: what can we do if the client connects in IPv6 ? */
if (cli_addr)
flags |= 1;
remote = (struct sockaddr_in *)cli_addr;
break;
}
#endif
#ifdef SO_BINDTODEVICE
/* Note: this might fail if not CAP_NET_RAW */
if (srv->iface_name)
setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, srv->iface_name, srv->iface_len + 1);
#endif
if (srv->sport_range) {
int attempts = 10; /* should be more than enough to find a spare port */
struct sockaddr_in src;
ret = 1;
src = srv->source_addr;
do {
/* note: in case of retry, we may have to release a previously
* allocated port, hence this loop's construct.
*/
port_range_release_port(fdtab[fd].port_range, fdtab[fd].local_port);
fdtab[fd].port_range = NULL;
if (!attempts)
break;
attempts--;
fdtab[fd].local_port = port_range_alloc_port(srv->sport_range);
if (!fdtab[fd].local_port)
break;
fdtab[fd].port_range = srv->sport_range;
src.sin_port = htons(fdtab[fd].local_port);
ret = tcpv4_bind_socket(fd, flags, &src, remote);
} while (ret != 0); /* binding NOK */
}
else {
ret = tcpv4_bind_socket(fd, flags, &srv->source_addr, remote);
}
if (ret) {
port_range_release_port(fdtab[fd].port_range, fdtab[fd].local_port);
fdtab[fd].port_range = NULL;
close(fd);
if (ret == 1) {
Alert("Cannot bind to source address before connect() for server %s/%s. Aborting.\n",
be->id, srv->id);
send_log(be, LOG_EMERG,
"Cannot bind to source address before connect() for server %s/%s.\n",
be->id, srv->id);
} else {
Alert("Cannot bind to tproxy source address before connect() for server %s/%s. Aborting.\n",
be->id, srv->id);
send_log(be, LOG_EMERG,
"Cannot bind to tproxy source address before connect() for server %s/%s.\n",
be->id, srv->id);
}
return SN_ERR_RESOURCE;
}
}
else if (be->options & PR_O_BIND_SRC) {
struct sockaddr_in *remote = NULL;
int ret, flags = 0;
#if defined(CONFIG_HAP_CTTPROXY) || defined(CONFIG_HAP_LINUX_TPROXY)
switch (be->options & PR_O_TPXY_MASK) {
case PR_O_TPXY_ADDR:
remote = (struct sockaddr_in *)&be->tproxy_addr;
flags = 3;
break;
case PR_O_TPXY_CLI:
if (cli_addr)
flags |= 2;
/* fall through */
case PR_O_TPXY_CIP:
/* FIXME: what can we do if the client connects in IPv6 ? */
if (cli_addr)
flags |= 1;
remote = (struct sockaddr_in *)cli_addr;
break;
}
#endif
#ifdef SO_BINDTODEVICE
/* Note: this might fail if not CAP_NET_RAW */
if (be->iface_name)
setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, be->iface_name, be->iface_len + 1);
#endif
ret = tcpv4_bind_socket(fd, flags, &be->source_addr, remote);
if (ret) {
close(fd);
if (ret == 1) {
Alert("Cannot bind to source address before connect() for proxy %s. Aborting.\n",
be->id);
send_log(be, LOG_EMERG,
"Cannot bind to source address before connect() for proxy %s.\n",
be->id);
} else {
Alert("Cannot bind to tproxy source address before connect() for proxy %s. Aborting.\n",
be->id);
send_log(be, LOG_EMERG,
"Cannot bind to tproxy source address before connect() for proxy %s.\n",
be->id);
}
return SN_ERR_RESOURCE;
}
}
#if defined(TCP_QUICKACK)
/* disabling tcp quick ack now allows the first request to leave the
* machine with the first ACK. We only do this if there are pending
* data in the buffer.
*/
if ((be->options2 & PR_O2_SMARTCON) && si->ob->send_max)
setsockopt(fd, IPPROTO_TCP, TCP_QUICKACK, (char *) &zero, sizeof(zero));
#endif
if ((connect(fd, (struct sockaddr *)srv_addr, sizeof(struct sockaddr_in)) == -1) &&
(errno != EINPROGRESS) && (errno != EALREADY) && (errno != EISCONN)) {
if (errno == EAGAIN || errno == EADDRINUSE) {
char *msg;
if (errno == EAGAIN) /* no free ports left, try again later */
msg = "no free ports";
else
msg = "local address already in use";
qfprintf(stderr,"Cannot connect: %s.\n",msg);
port_range_release_port(fdtab[fd].port_range, fdtab[fd].local_port);
fdtab[fd].port_range = NULL;
close(fd);
send_log(be, LOG_EMERG,
"Connect() failed for server %s/%s: %s.\n",
be->id, srv->id, msg);
return SN_ERR_RESOURCE;
} else if (errno == ETIMEDOUT) {
//qfprintf(stderr,"Connect(): ETIMEDOUT");
port_range_release_port(fdtab[fd].port_range, fdtab[fd].local_port);
fdtab[fd].port_range = NULL;
close(fd);
return SN_ERR_SRVTO;
} else {
// (errno == ECONNREFUSED || errno == ENETUNREACH || errno == EACCES || errno == EPERM)
//qfprintf(stderr,"Connect(): %d", errno);
port_range_release_port(fdtab[fd].port_range, fdtab[fd].local_port);
fdtab[fd].port_range = NULL;
close(fd);
return SN_ERR_SRVCL;
}
}
fdtab[fd].owner = si;
fdtab[fd].state = FD_STCONN; /* connection in progress */
fdtab[fd].flags = FD_FL_TCP | FD_FL_TCP_NODELAY;
fdtab[fd].cb[DIR_RD].f = &stream_sock_read;
fdtab[fd].cb[DIR_RD].b = si->ib;
fdtab[fd].cb[DIR_WR].f = &stream_sock_write;
fdtab[fd].cb[DIR_WR].b = si->ob;
fdtab[fd].peeraddr = (struct sockaddr *)srv_addr;
fdtab[fd].peerlen = sizeof(struct sockaddr_in);
fd_insert(fd);
EV_FD_SET(fd, DIR_WR); /* for connect status */
si->state = SI_ST_CON;
si->flags |= SI_FL_CAP_SPLTCP; /* TCP supports splicing */
si->exp = tick_add_ifset(now_ms, be->timeout.connect);
return SN_ERR_NONE; /* connection is OK */
}
/* This function tries to bind a TCPv4/v6 listener. It may return a warning or
* an error message in <err> if the message is at most <errlen> bytes long
* (including '\0'). The return value is composed from ERR_ABORT, ERR_WARN,
* ERR_ALERT, ERR_RETRYABLE and ERR_FATAL. ERR_NONE indicates that everything
* was alright and that no message was returned. ERR_RETRYABLE means that an
* error occurred but that it may vanish after a retry (eg: port in use), and
* ERR_FATAL indicates a non-fixable error.ERR_WARN and ERR_ALERT do not alter
* the meaning of the error, but just indicate that a message is present which
* should be displayed with the respective level. Last, ERR_ABORT indicates
* that it's pointless to try to start other listeners. No error message is
* returned if errlen is NULL.
*/
int tcp_bind_listener(struct listener *listener, char *errmsg, int errlen)
{
__label__ tcp_return, tcp_close_return;
int fd, err;
const char *msg = NULL;
/* ensure we never return garbage */
if (errmsg && errlen)
*errmsg = 0;
if (listener->state != LI_ASSIGNED)
return ERR_NONE; /* already bound */
err = ERR_NONE;
if ((fd = socket(listener->addr.ss_family, SOCK_STREAM, IPPROTO_TCP)) == -1) {
err |= ERR_RETRYABLE | ERR_ALERT;
msg = "cannot create listening socket";
goto tcp_return;
}
if (fd >= global.maxsock) {
err |= ERR_FATAL | ERR_ABORT | ERR_ALERT;
msg = "not enough free sockets (raise '-n' parameter)";
goto tcp_close_return;
}
if (fcntl(fd, F_SETFL, O_NONBLOCK) == -1) {
err |= ERR_FATAL | ERR_ALERT;
msg = "cannot make socket non-blocking";
goto tcp_close_return;
}
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *) &one, sizeof(one)) == -1) {
/* not fatal but should be reported */
msg = "cannot do so_reuseaddr";
err |= ERR_ALERT;
}
if (listener->options & LI_O_NOLINGER)
setsockopt(fd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger));
#ifdef SO_REUSEPORT
/* OpenBSD supports this. As it's present in old libc versions of Linux,
* it might return an error that we will silently ignore.
*/
setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, (char *) &one, sizeof(one));
#endif
#ifdef CONFIG_HAP_LINUX_TPROXY
if ((listener->options & LI_O_FOREIGN)
&& (setsockopt(fd, SOL_IP, IP_TRANSPARENT, (char *) &one, sizeof(one)) == -1)
&& (setsockopt(fd, SOL_IP, IP_FREEBIND, (char *) &one, sizeof(one)) == -1)) {
msg = "cannot make listening socket transparent";
err |= ERR_ALERT;
}
#endif
#ifdef SO_BINDTODEVICE
/* Note: this might fail if not CAP_NET_RAW */
if (listener->interface) {
if (setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE,
listener->interface, strlen(listener->interface) + 1) == -1) {
msg = "cannot bind listener to device";
err |= ERR_WARN;
}
}
#endif
#if defined(TCP_MAXSEG)
if (listener->maxseg) {
if (setsockopt(fd, IPPROTO_TCP, TCP_MAXSEG,
&listener->maxseg, sizeof(listener->maxseg)) == -1) {
msg = "cannot set MSS";
err |= ERR_WARN;
}
}
#endif
if (bind(fd, (struct sockaddr *)&listener->addr, listener->proto->sock_addrlen) == -1) {
err |= ERR_RETRYABLE | ERR_ALERT;
msg = "cannot bind socket";
goto tcp_close_return;
}
if (listen(fd, listener->backlog ? listener->backlog : listener->maxconn) == -1) {
err |= ERR_RETRYABLE | ERR_ALERT;
msg = "cannot listen to socket";
goto tcp_close_return;
}
#if defined(TCP_QUICKACK)
if (listener->options & LI_O_NOQUICKACK)
setsockopt(fd, IPPROTO_TCP, TCP_QUICKACK, (char *) &zero, sizeof(zero));
#endif
/* the socket is ready */
listener->fd = fd;
listener->state = LI_LISTEN;
/* the function for the accept() event */
fd_insert(fd);
fdtab[fd].cb[DIR_RD].f = listener->accept;
fdtab[fd].cb[DIR_WR].f = NULL; /* never called */
fdtab[fd].cb[DIR_RD].b = fdtab[fd].cb[DIR_WR].b = NULL;
fdtab[fd].owner = listener; /* reference the listener instead of a task */
fdtab[fd].state = FD_STLISTEN;
fdtab[fd].flags = FD_FL_TCP;
if (listener->options & LI_O_NOLINGER)
fdtab[fd].flags |= FD_FL_TCP_NOLING;
fdtab[fd].peeraddr = NULL;
fdtab[fd].peerlen = 0;
tcp_return:
if (msg && errlen)
strlcpy2(errmsg, msg, errlen);
return err;
tcp_close_return:
close(fd);
goto tcp_return;
}
/* This function creates all TCP sockets bound to the protocol entry <proto>.
* It is intended to be used as the protocol's bind_all() function.
* The sockets will be registered but not added to any fd_set, in order not to
* loose them across the fork(). A call to enable_all_listeners() is needed
* to complete initialization. The return value is composed from ERR_*.
*/
static int tcp_bind_listeners(struct protocol *proto)
{
struct listener *listener;
int err = ERR_NONE;
list_for_each_entry(listener, &proto->listeners, proto_list) {
err |= tcp_bind_listener(listener, NULL, 0);
if ((err & ERR_CODE) == ERR_ABORT)
break;
}
return err;
}
/* Add listener to the list of tcpv4 listeners. The listener's state
* is automatically updated from LI_INIT to LI_ASSIGNED. The number of
* listeners is updated. This is the function to use to add a new listener.
*/
void tcpv4_add_listener(struct listener *listener)
{
if (listener->state != LI_INIT)
return;
listener->state = LI_ASSIGNED;
listener->proto = &proto_tcpv4;
LIST_ADDQ(&proto_tcpv4.listeners, &listener->proto_list);
proto_tcpv4.nb_listeners++;
}
/* Add listener to the list of tcpv4 listeners. The listener's state
* is automatically updated from LI_INIT to LI_ASSIGNED. The number of
* listeners is updated. This is the function to use to add a new listener.
*/
void tcpv6_add_listener(struct listener *listener)
{
if (listener->state != LI_INIT)
return;
listener->state = LI_ASSIGNED;
listener->proto = &proto_tcpv6;
LIST_ADDQ(&proto_tcpv6.listeners, &listener->proto_list);
proto_tcpv6.nb_listeners++;
}
/* This function performs the TCP request analysis on the current request. It
* returns 1 if the processing can continue on next analysers, or zero if it
* needs more data, encounters an error, or wants to immediately abort the
* request. It relies on buffers flags, and updates s->req->analysers. Its
* behaviour is rather simple:
* - the analyser should check for errors and timeouts, and react as expected.
* It does not have to close anything upon error, the caller will. Note that
* the caller also knows how to report errors and timeouts.
* - if the analyser does not have enough data, it must return 0 without calling
* other ones. It should also probably do a buffer_write_dis() to ensure
* that unprocessed data will not be forwarded. But that probably depends on
* the protocol.
* - if an analyser has enough data, it just has to pass on to the next
* analyser without using buffer_write_dis() (enabled by default).
* - if an analyser thinks it has no added value anymore staying here, it must
* reset its bit from the analysers flags in order not to be called anymore.
*
* In the future, analysers should be able to indicate that they want to be
* called after XXX bytes have been received (or transfered), and the min of
* all's wishes will be used to ring back (unless a special condition occurs).
*/
int tcp_inspect_request(struct session *s, struct buffer *req, int an_bit)
{
struct tcp_rule *rule;
int partial;
DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->l,
req->analysers);
/* We don't know whether we have enough data, so must proceed
* this way :
* - iterate through all rules in their declaration order
* - if one rule returns MISS, it means the inspect delay is
* not over yet, then return immediately, otherwise consider
* it as a non-match.
* - if one rule returns OK, then return OK
* - if one rule returns KO, then return KO
*/
if (req->flags & BF_SHUTR || !s->fe->tcp_req.inspect_delay || tick_is_expired(req->analyse_exp, now_ms))
partial = 0;
else
partial = ACL_PARTIAL;
list_for_each_entry(rule, &s->fe->tcp_req.inspect_rules, list) {
int ret = ACL_PAT_PASS;
if (rule->cond) {
ret = acl_exec_cond(rule->cond, s->fe, s, &s->txn, ACL_DIR_REQ | partial);
if (ret == ACL_PAT_MISS) {
buffer_write_dis(req);
/* just set the request timeout once at the beginning of the request */
if (!tick_isset(req->analyse_exp) && s->fe->tcp_req.inspect_delay)
req->analyse_exp = tick_add_ifset(now_ms, s->fe->tcp_req.inspect_delay);
return 0;
}
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
/* we have a matching rule. */
if (rule->action == TCP_ACT_REJECT) {
buffer_abort(req);
buffer_abort(s->rep);
req->analysers = 0;
s->fe->failed_req++;
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_PRXCOND;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_R;
return 0;
}
/* otherwise accept */
break;
}
}
/* if we get there, it means we have no rule which matches, or
* we have an explicit accept, so we apply the default accept.
*/
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
return 1;
}
/* Apply RDP cookie persistence to the current session. For this, the function
* tries to extract an RDP cookie from the request buffer, and look for the
* matching server in the list. If the server is found, it is assigned to the
* session. This always returns 1, and the analyser removes itself from the
* list. Nothing is performed if a server was already assigned.
*/
int tcp_persist_rdp_cookie(struct session *s, struct buffer *req, int an_bit)
{
struct proxy *px = s->be;
int ret;
struct acl_expr expr;
struct acl_test test;
struct server *srv = px->srv;
struct sockaddr_in addr;
char *p;
DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->l,
req->analysers);
if (s->flags & SN_ASSIGNED)
goto no_cookie;
memset(&expr, 0, sizeof(expr));
memset(&test, 0, sizeof(test));
expr.arg.str = s->be->rdp_cookie_name;
expr.arg_len = s->be->rdp_cookie_len;
ret = acl_fetch_rdp_cookie(px, s, NULL, ACL_DIR_REQ, &expr, &test);
if (ret == 0 || (test.flags & ACL_TEST_F_MAY_CHANGE) || test.len == 0)
goto no_cookie;
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
/* Considering an rdp cookie detected using acl, test.ptr ended with <cr><lf> and should return */
addr.sin_addr.s_addr = strtoul(test.ptr, &p, 10);
if (*p != '.')
goto no_cookie;
p++;
addr.sin_port = (unsigned short)strtoul(p, &p, 10);
if (*p != '.')
goto no_cookie;
while (srv) {
if (memcmp(&addr, &(srv->addr), sizeof(addr)) == 0) {
if ((srv->state & SRV_RUNNING) || (px->options & PR_O_PERSIST)) {
/* we found the server and it is usable */
s->flags |= SN_DIRECT | SN_ASSIGNED;
s->srv = srv;
break;
}
}
srv = srv->next;
}
no_cookie:
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
return 1;
}
/* This function should be called to parse a line starting with the "tcp-request"
* keyword.
*/
static int tcp_parse_tcp_req(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, char *err, int errlen)
{
const char *ptr = NULL;
unsigned int val;
int retlen;
if (!*args[1]) {
snprintf(err, errlen, "missing argument for '%s' in %s '%s'",
args[0], proxy_type_str(proxy), curpx->id);
return -1;
}
if (!strcmp(args[1], "inspect-delay")) {
if (curpx == defpx) {
snprintf(err, errlen, "%s %s is not allowed in 'defaults' sections",
args[0], args[1]);
return -1;
}
if (!(curpx->cap & PR_CAP_FE)) {
snprintf(err, errlen, "%s %s will be ignored because %s '%s' has no %s capability",
args[0], args[1], proxy_type_str(proxy), curpx->id,
"frontend");
return 1;
}
if (!*args[2] || (ptr = parse_time_err(args[2], &val, TIME_UNIT_MS))) {
retlen = snprintf(err, errlen,
"'%s %s' expects a positive delay in milliseconds, in %s '%s'",
args[0], args[1], proxy_type_str(proxy), curpx->id);
if (ptr && retlen < errlen)
retlen += snprintf(err+retlen, errlen - retlen,
" (unexpected character '%c')", *ptr);
return -1;
}
if (curpx->tcp_req.inspect_delay) {
snprintf(err, errlen, "ignoring %s %s (was already defined) in %s '%s'",
args[0], args[1], proxy_type_str(proxy), curpx->id);
return 1;
}
curpx->tcp_req.inspect_delay = val;
return 0;
}
if (!strcmp(args[1], "content")) {
int action;
int warn = 0;
int pol = ACL_COND_NONE;
struct acl_cond *cond;
struct tcp_rule *rule;
if (curpx == defpx) {
snprintf(err, errlen, "%s %s is not allowed in 'defaults' sections",
args[0], args[1]);
return -1;
}
if (!strcmp(args[2], "accept"))
action = TCP_ACT_ACCEPT;
else if (!strcmp(args[2], "reject"))
action = TCP_ACT_REJECT;
else {
retlen = snprintf(err, errlen,
"'%s %s' expects 'accept' or 'reject', in %s '%s' (was '%s')",
args[0], args[1], proxy_type_str(curpx), curpx->id, args[2]);
return -1;
}
pol = ACL_COND_NONE;
cond = NULL;
if (!*args[3])
pol = ACL_COND_NONE;
else if (!strcmp(args[3], "if"))
pol = ACL_COND_IF;
else if (!strcmp(args[3], "unless"))
pol = ACL_COND_UNLESS;
else {
retlen = snprintf(err, errlen,
"'%s %s %s' only accepts 'if' or 'unless', in %s '%s' (was '%s')",
args[0], args[1], args[2], proxy_type_str(curpx), curpx->id, args[3]);
return -1;
}
/* Note: we consider "if TRUE" when there is no condition */
if (pol != ACL_COND_NONE &&
(cond = parse_acl_cond((const char **)args+4, &curpx->acl, pol)) == NULL) {
retlen = snprintf(err, errlen,
"error detected in %s '%s' while parsing '%s' condition",
proxy_type_str(curpx), curpx->id, args[3]);
return -1;
}
// FIXME: how to set this ?
// cond->line = linenum;
if (cond)
curpx->acl_requires |= cond->requires;
if (cond && (cond->requires & ACL_USE_RTR_ANY)) {
struct acl *acl;
const char *name;
acl = cond_find_require(cond, ACL_USE_RTR_ANY);
name = acl ? acl->name : "(unknown)";
retlen = snprintf(err, errlen,
"acl '%s' involves some response-only criteria which will be ignored.",
name);
warn++;
}
rule = (struct tcp_rule *)calloc(1, sizeof(*rule));
rule->cond = cond;
rule->action = action;
LIST_INIT(&rule->list);
LIST_ADDQ(&curpx->tcp_req.inspect_rules, &rule->list);
return warn;
}
snprintf(err, errlen, "unknown argument '%s' after '%s' in %s '%s'",
args[1], args[0], proxy_type_str(proxy), curpx->id);
return -1;
}
/* return the number of bytes in the request buffer */
static int
acl_fetch_req_len(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
if (!l4 || !l4->req)
return 0;
test->i = l4->req->l;
test->flags = ACL_TEST_F_VOLATILE | ACL_TEST_F_MAY_CHANGE;
return 1;
}
/* Return the version of the SSL protocol in the request. It supports both
* SSLv3 (TLSv1) header format for any message, and SSLv2 header format for
* the hello message. The SSLv3 format is described in RFC 2246 p49, and the
* SSLv2 format is described here, and completed p67 of RFC 2246 :
* http://wp.netscape.com/eng/security/SSL_2.html
*
* Note: this decoder only works with non-wrapping data.
*/
static int
acl_fetch_req_ssl_ver(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
int version, bleft, msg_len;
const unsigned char *data;
if (!l4 || !l4->req)
return 0;
msg_len = 0;
bleft = l4->req->l;
if (!bleft)
goto too_short;
data = (const unsigned char *)l4->req->w;
if ((*data >= 0x14 && *data <= 0x17) || (*data == 0xFF)) {
/* SSLv3 header format */
if (bleft < 5)
goto too_short;
version = (data[1] << 16) + data[2]; /* version: major, minor */
msg_len = (data[3] << 8) + data[4]; /* record length */
/* format introduced with SSLv3 */
if (version < 0x00030000)
goto not_ssl;
/* message length between 1 and 2^14 + 2048 */
if (msg_len < 1 || msg_len > ((1<<14) + 2048))
goto not_ssl;
bleft -= 5; data += 5;
} else {
/* SSLv2 header format, only supported for hello (msg type 1) */
int rlen, plen, cilen, silen, chlen;
if (*data & 0x80) {
if (bleft < 3)
goto too_short;
/* short header format : 15 bits for length */
rlen = ((data[0] & 0x7F) << 8) | data[1];
plen = 0;
bleft -= 2; data += 2;
} else {
if (bleft < 4)
goto too_short;
/* long header format : 14 bits for length + pad length */
rlen = ((data[0] & 0x3F) << 8) | data[1];
plen = data[2];
bleft -= 3; data += 2;
}
if (*data != 0x01)
goto not_ssl;
bleft--; data++;
if (bleft < 8)
goto too_short;
version = (data[0] << 16) + data[1]; /* version: major, minor */
cilen = (data[2] << 8) + data[3]; /* cipher len, multiple of 3 */
silen = (data[4] << 8) + data[5]; /* session_id_len: 0 or 16 */
chlen = (data[6] << 8) + data[7]; /* 16<=challenge length<=32 */
bleft -= 8; data += 8;
if (cilen % 3 != 0)
goto not_ssl;
if (silen && silen != 16)
goto not_ssl;
if (chlen < 16 || chlen > 32)
goto not_ssl;
if (rlen != 9 + cilen + silen + chlen)
goto not_ssl;
/* focus on the remaining data length */
msg_len = cilen + silen + chlen + plen;
}
/* We could recursively check that the buffer ends exactly on an SSL
* fragment boundary and that a possible next segment is still SSL,
* but that's a bit pointless. However, we could still check that
* all the part of the request which fits in a buffer is already
* there.
*/
if (msg_len > l4->req->max_len + l4->req->data - l4->req->w)
msg_len = l4->req->max_len + l4->req->data - l4->req->w;
if (bleft < msg_len)
goto too_short;
/* OK that's enough. We have at least the whole message, and we have
* the protocol version.
*/
test->i = version;
test->flags = ACL_TEST_F_VOLATILE;
return 1;
too_short:
test->flags = ACL_TEST_F_MAY_CHANGE;
not_ssl:
return 0;
}
int
acl_fetch_rdp_cookie(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
int bleft;
const unsigned char *data;
if (!l4 || !l4->req)
return 0;
test->flags = 0;
bleft = l4->req->l;
if (bleft <= 11)
goto too_short;
data = (const unsigned char *)l4->req->w + 11;
bleft -= 11;
if (bleft <= 7)
goto too_short;
if (strncasecmp((const char *)data, "Cookie:", 7) != 0)
goto not_cookie;
data += 7;
bleft -= 7;
while (bleft > 0 && *data == ' ') {
data++;
bleft--;
}
if (expr->arg_len) {
if (bleft <= expr->arg_len)
goto too_short;
if ((data[expr->arg_len] != '=') ||
strncasecmp(expr->arg.str, (const char *)data, expr->arg_len) != 0)
goto not_cookie;
data += expr->arg_len + 1;
bleft -= expr->arg_len + 1;
} else {
while (bleft > 0 && *data != '=') {
if (*data == '\r' || *data == '\n')
goto not_cookie;
data++;
bleft--;
}
if (bleft < 1)
goto too_short;
if (*data != '=')
goto not_cookie;
data++;
bleft--;
}
/* data points to cookie value */
test->ptr = (char *)data;
test->len = 0;
while (bleft > 0 && *data != '\r') {
data++;
bleft--;
}
if (bleft < 2)
goto too_short;
if (data[0] != '\r' || data[1] != '\n')
goto not_cookie;
test->len = (char *)data - test->ptr;
test->flags = ACL_TEST_F_VOLATILE;
return 1;
too_short:
test->flags = ACL_TEST_F_MAY_CHANGE;
not_cookie:
return 0;
}
static int
acl_fetch_rdp_cookie_cnt(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
int ret;
ret = acl_fetch_rdp_cookie(px, l4, l7, dir, expr, test);
test->ptr = NULL;
test->len = 0;
if (test->flags & ACL_TEST_F_MAY_CHANGE)
return 0;
test->flags = ACL_TEST_F_VOLATILE;
test->i = ret;
return 1;
}
static struct cfg_kw_list cfg_kws = {{ },{
{ CFG_LISTEN, "tcp-request", tcp_parse_tcp_req },
{ 0, NULL, NULL },
}};
static struct acl_kw_list acl_kws = {{ },{
{ "req_len", acl_parse_int, acl_fetch_req_len, acl_match_int, ACL_USE_L4REQ_VOLATILE },
{ "req_ssl_ver", acl_parse_dotted_ver, acl_fetch_req_ssl_ver, acl_match_int, ACL_USE_L4REQ_VOLATILE },
{ "req_rdp_cookie", acl_parse_str, acl_fetch_rdp_cookie, acl_match_str, ACL_USE_L4REQ_VOLATILE },
{ "req_rdp_cookie_cnt", acl_parse_int, acl_fetch_rdp_cookie_cnt, acl_match_int, ACL_USE_L4REQ_VOLATILE },
{ NULL, NULL, NULL, NULL },
}};
__attribute__((constructor))
static void __tcp_protocol_init(void)
{
protocol_register(&proto_tcpv4);
protocol_register(&proto_tcpv6);
cfg_register_keywords(&cfg_kws);
acl_register_keywords(&acl_kws);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/