| /* |
| * Channel management functions. |
| * |
| * Copyright 2000-2014 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <ctype.h> |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <common/config.h> |
| #include <common/buffer.h> |
| |
| #include <proto/channel.h> |
| |
| |
| /* Schedule up to <bytes> more bytes to be forwarded via the channel without |
| * notifying the owner task. Any data pending in the buffer are scheduled to be |
| * sent as well, within the limit of the number of bytes to forward. This must |
| * be the only method to use to schedule bytes to be forwarded. If the requested |
| * number is too large, it is automatically adjusted. The number of bytes taken |
| * into account is returned. Directly touching ->to_forward will cause lockups |
| * when buf->o goes down to zero if nobody is ready to push the remaining data. |
| */ |
| unsigned long long __channel_forward(struct channel *chn, unsigned long long bytes) |
| { |
| unsigned int budget; |
| unsigned int forwarded; |
| |
| /* This is more of a safety measure as it's not supposed to happen in |
| * regular code paths. |
| */ |
| if (unlikely(chn->to_forward == CHN_INFINITE_FORWARD)) { |
| c_adv(chn, chn->buf->i); |
| return bytes; |
| } |
| |
| /* Bound the transferred size to a 32-bit count since all our values |
| * are 32-bit, and we don't want to reach CHN_INFINITE_FORWARD. |
| */ |
| budget = MIN(bytes, CHN_INFINITE_FORWARD - 1); |
| |
| /* transfer as much as we can of buf->i */ |
| forwarded = MIN(chn->buf->i, budget); |
| c_adv(chn, forwarded); |
| budget -= forwarded; |
| |
| if (!budget) |
| return forwarded; |
| |
| /* Now we must ensure chn->to_forward sats below CHN_INFINITE_FORWARD, |
| * which also implies it won't overflow. It's less operations in 64-bit. |
| */ |
| bytes = (unsigned long long)chn->to_forward + budget; |
| if (bytes >= CHN_INFINITE_FORWARD) |
| bytes = CHN_INFINITE_FORWARD - 1; |
| budget = bytes - chn->to_forward; |
| |
| chn->to_forward += budget; |
| forwarded += budget; |
| return forwarded; |
| } |
| |
| /* writes <len> bytes from message <msg> to the channel's buffer. Returns -1 in |
| * case of success, -2 if the message is larger than the buffer size, or the |
| * number of bytes available otherwise. The send limit is automatically |
| * adjusted to the amount of data written. FIXME-20060521: handle unaligned |
| * data. Note: this function appends data to the buffer's output and possibly |
| * overwrites any pending input data which are assumed not to exist. |
| */ |
| int co_inject(struct channel *chn, const char *msg, int len) |
| { |
| int max; |
| |
| if (len == 0) |
| return -1; |
| |
| if (len < 0 || len > chn->buf->size) { |
| /* we can't write this chunk and will never be able to, because |
| * it is larger than the buffer. This must be reported as an |
| * error. Then we return -2 so that writers that don't care can |
| * ignore it and go on, and others can check for this value. |
| */ |
| return -2; |
| } |
| |
| c_realign_if_empty(chn); |
| max = b_contig_space(chn->buf); |
| if (len > max) |
| return max; |
| |
| memcpy(chn->buf->p, msg, len); |
| chn->buf->o += len; |
| chn->buf->p = c_ptr(chn, len); |
| chn->total += len; |
| return -1; |
| } |
| |
| /* Tries to copy character <c> into the channel's buffer after some length |
| * controls. The chn->o and to_forward pointers are updated. If the channel |
| * input is closed, -2 is returned. If there is not enough room left in the |
| * buffer, -1 is returned. Otherwise the number of bytes copied is returned |
| * (1). Channel flag READ_PARTIAL is updated if some data can be transferred. |
| */ |
| int ci_putchr(struct channel *chn, char c) |
| { |
| if (unlikely(channel_input_closed(chn))) |
| return -2; |
| |
| if (!channel_may_recv(chn)) |
| return -1; |
| |
| *ci_tail(chn) = c; |
| |
| chn->buf->i++; |
| chn->flags |= CF_READ_PARTIAL; |
| |
| if (chn->to_forward >= 1) { |
| if (chn->to_forward != CHN_INFINITE_FORWARD) |
| chn->to_forward--; |
| c_adv(chn, 1); |
| } |
| |
| chn->total++; |
| return 1; |
| } |
| |
| /* Tries to copy block <blk> at once into the channel's buffer after length |
| * controls. The chn->o and to_forward pointers are updated. If the channel |
| * input is closed, -2 is returned. If the block is too large for this buffer, |
| * -3 is returned. If there is not enough room left in the buffer, -1 is |
| * returned. Otherwise the number of bytes copied is returned (0 being a valid |
| * number). Channel flag READ_PARTIAL is updated if some data can be |
| * transferred. |
| */ |
| int ci_putblk(struct channel *chn, const char *blk, int len) |
| { |
| int max; |
| |
| if (unlikely(channel_input_closed(chn))) |
| return -2; |
| |
| if (len < 0) |
| return -3; |
| |
| max = channel_recv_limit(chn); |
| if (unlikely(len > max - buffer_len(chn->buf))) { |
| /* we can't write this chunk right now because the buffer is |
| * almost full or because the block is too large. Return the |
| * available space or -2 if impossible. |
| */ |
| if (len > max) |
| return -3; |
| |
| return -1; |
| } |
| |
| if (unlikely(len == 0)) |
| return 0; |
| |
| /* OK so the data fits in the buffer in one or two blocks */ |
| max = b_contig_space(chn->buf); |
| memcpy(ci_tail(chn), blk, MIN(len, max)); |
| if (len > max) |
| memcpy(chn->buf->data, blk + max, len - max); |
| |
| chn->buf->i += len; |
| chn->total += len; |
| if (chn->to_forward) { |
| unsigned long fwd = len; |
| if (chn->to_forward != CHN_INFINITE_FORWARD) { |
| if (fwd > chn->to_forward) |
| fwd = chn->to_forward; |
| chn->to_forward -= fwd; |
| } |
| c_adv(chn, fwd); |
| } |
| |
| /* notify that some data was read from the SI into the buffer */ |
| chn->flags |= CF_READ_PARTIAL; |
| return len; |
| } |
| |
| /* Tries to copy the whole buffer <buf> into the channel's buffer after length |
| * controls. It will only succeed if the target buffer is empty, in which case |
| * it will simply swap the buffers. The buffer not attached to the channel is |
| * returned so that the caller can store it locally. The chn->buf->o and |
| * to_forward pointers are updated. If the output buffer is a dummy buffer or |
| * if it still contains data <buf> is returned, indicating that nothing could |
| * be done. Channel flag READ_PARTIAL is updated if some data can be transferred. |
| * The chunk's length is updated with the number of bytes sent. On errors, NULL |
| * is returned. Note that only buf->i is considered. |
| */ |
| struct buffer *ci_swpbuf(struct channel *chn, struct buffer *buf) |
| { |
| struct buffer *old; |
| |
| if (unlikely(channel_input_closed(chn))) |
| return NULL; |
| |
| if (!chn->buf->size || !buffer_empty(chn->buf)) |
| return buf; |
| |
| old = chn->buf; |
| chn->buf = buf; |
| |
| if (!buf->i) |
| return old; |
| |
| chn->total += buf->i; |
| |
| if (chn->to_forward) { |
| unsigned long fwd = buf->i; |
| if (chn->to_forward != CHN_INFINITE_FORWARD) { |
| if (fwd > chn->to_forward) |
| fwd = chn->to_forward; |
| chn->to_forward -= fwd; |
| } |
| c_adv(chn, fwd); |
| } |
| |
| /* notify that some data was read from the SI into the buffer */ |
| chn->flags |= CF_READ_PARTIAL; |
| return old; |
| } |
| |
| /* Gets one text line out of a channel's buffer from a stream interface. |
| * Return values : |
| * >0 : number of bytes read. Includes the \n if present before len or end. |
| * =0 : no '\n' before end found. <str> is left undefined. |
| * <0 : no more bytes readable because output is shut. |
| * The channel status is not changed. The caller must call co_skip() to |
| * update it. The '\n' is waited for as long as neither the buffer nor the |
| * output are full. If either of them is full, the string may be returned |
| * as is, without the '\n'. |
| */ |
| int co_getline(const struct channel *chn, char *str, int len) |
| { |
| int ret, max; |
| char *p; |
| |
| ret = 0; |
| max = len; |
| |
| /* closed or empty + imminent close = -1; empty = 0 */ |
| if (unlikely((chn->flags & CF_SHUTW) || channel_is_empty(chn))) { |
| if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) |
| ret = -1; |
| goto out; |
| } |
| |
| p = b_head(chn->buf); |
| |
| if (max > chn->buf->o) { |
| max = chn->buf->o; |
| str[max-1] = 0; |
| } |
| while (max) { |
| *str++ = *p; |
| ret++; |
| max--; |
| |
| if (*p == '\n') |
| break; |
| p = buffer_wrap_add(chn->buf, p + 1); |
| } |
| if (ret > 0 && ret < len && |
| (ret < chn->buf->o || channel_may_recv(chn)) && |
| *(str-1) != '\n' && |
| !(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) |
| ret = 0; |
| out: |
| if (max) |
| *str = 0; |
| return ret; |
| } |
| |
| /* Gets one full block of data at once from a channel's buffer, optionally from |
| * a specific offset. Return values : |
| * >0 : number of bytes read, equal to requested size. |
| * =0 : not enough data available. <blk> is left undefined. |
| * <0 : no more bytes readable because output is shut. |
| * The channel status is not changed. The caller must call co_skip() to |
| * update it. |
| */ |
| int co_getblk(const struct channel *chn, char *blk, int len, int offset) |
| { |
| if (chn->flags & CF_SHUTW) |
| return -1; |
| |
| if (len + offset > co_data(chn)) { |
| if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) |
| return -1; |
| return 0; |
| } |
| |
| return b_getblk(chn->buf, blk, len, offset); |
| } |
| |
| /* Gets one or two blocks of data at once from a channel's output buffer. |
| * Return values : |
| * >0 : number of blocks filled (1 or 2). blk1 is always filled before blk2. |
| * =0 : not enough data available. <blk*> are left undefined. |
| * <0 : no more bytes readable because output is shut. |
| * The channel status is not changed. The caller must call co_skip() to |
| * update it. Unused buffers are left in an undefined state. |
| */ |
| int co_getblk_nc(const struct channel *chn, const char **blk1, size_t *len1, const char **blk2, size_t *len2) |
| { |
| if (unlikely(chn->buf->o == 0)) { |
| if (chn->flags & CF_SHUTW) |
| return -1; |
| return 0; |
| } |
| |
| return b_getblk_nc(chn->buf, blk1, len1, blk2, len2, 0, chn->buf->o); |
| } |
| |
| /* Gets one text line out of a channel's output buffer from a stream interface. |
| * Return values : |
| * >0 : number of blocks returned (1 or 2). blk1 is always filled before blk2. |
| * =0 : not enough data available. |
| * <0 : no more bytes readable because output is shut. |
| * The '\n' is waited for as long as neither the buffer nor the output are |
| * full. If either of them is full, the string may be returned as is, without |
| * the '\n'. Unused buffers are left in an undefined state. |
| */ |
| int co_getline_nc(const struct channel *chn, |
| const char **blk1, size_t *len1, |
| const char **blk2, size_t *len2) |
| { |
| int retcode; |
| int l; |
| |
| retcode = co_getblk_nc(chn, blk1, len1, blk2, len2); |
| if (unlikely(retcode <= 0)) |
| return retcode; |
| |
| for (l = 0; l < *len1 && (*blk1)[l] != '\n'; l++); |
| if (l < *len1 && (*blk1)[l] == '\n') { |
| *len1 = l + 1; |
| return 1; |
| } |
| |
| if (retcode >= 2) { |
| for (l = 0; l < *len2 && (*blk2)[l] != '\n'; l++); |
| if (l < *len2 && (*blk2)[l] == '\n') { |
| *len2 = l + 1; |
| return 2; |
| } |
| } |
| |
| if (chn->flags & CF_SHUTW) { |
| /* If we have found no LF and the buffer is shut, then |
| * the resulting string is made of the concatenation of |
| * the pending blocks (1 or 2). |
| */ |
| return retcode; |
| } |
| |
| /* No LF yet and not shut yet */ |
| return 0; |
| } |
| |
| /* Gets one full block of data at once from a channel's input buffer. |
| * This function can return the data slitted in one or two blocks. |
| * Return values : |
| * >0 : number of blocks returned (1 or 2). blk1 is always filled before blk2. |
| * =0 : not enough data available. |
| * <0 : no more bytes readable because input is shut. |
| */ |
| int ci_getblk_nc(const struct channel *chn, |
| char **blk1, size_t *len1, |
| char **blk2, size_t *len2) |
| { |
| if (unlikely(chn->buf->i == 0)) { |
| if (chn->flags & CF_SHUTR) |
| return -1; |
| return 0; |
| } |
| |
| if (unlikely(chn->buf->p + chn->buf->i > chn->buf->data + chn->buf->size)) { |
| *blk1 = chn->buf->p; |
| *len1 = chn->buf->data + chn->buf->size - chn->buf->p; |
| *blk2 = chn->buf->data; |
| *len2 = chn->buf->i - *len1; |
| return 2; |
| } |
| |
| *blk1 = chn->buf->p; |
| *len1 = chn->buf->i; |
| return 1; |
| } |
| |
| /* Gets one text line out of a channel's input buffer from a stream interface. |
| * Return values : |
| * >0 : number of blocks returned (1 or 2). blk1 is always filled before blk2. |
| * =0 : not enough data available. |
| * <0 : no more bytes readable because output is shut. |
| * The '\n' is waited for as long as neither the buffer nor the input are |
| * full. If either of them is full, the string may be returned as is, without |
| * the '\n'. Unused buffers are left in an undefined state. |
| */ |
| int ci_getline_nc(const struct channel *chn, |
| char **blk1, size_t *len1, |
| char **blk2, size_t *len2) |
| { |
| int retcode; |
| int l; |
| |
| retcode = ci_getblk_nc(chn, blk1, len1, blk2, len2); |
| if (unlikely(retcode <= 0)) |
| return retcode; |
| |
| for (l = 0; l < *len1 && (*blk1)[l] != '\n'; l++); |
| if (l < *len1 && (*blk1)[l] == '\n') { |
| *len1 = l + 1; |
| return 1; |
| } |
| |
| if (retcode >= 2) { |
| for (l = 0; l < *len2 && (*blk2)[l] != '\n'; l++); |
| if (l < *len2 && (*blk2)[l] == '\n') { |
| *len2 = l + 1; |
| return 2; |
| } |
| } |
| |
| if (chn->flags & CF_SHUTW) { |
| /* If we have found no LF and the buffer is shut, then |
| * the resulting string is made of the concatenation of |
| * the pending blocks (1 or 2). |
| */ |
| return retcode; |
| } |
| |
| /* No LF yet and not shut yet */ |
| return 0; |
| } |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |