blob: 60435002c405ab9b13033ff240839b0df9e73748 [file] [log] [blame]
/*
* HAProxy : High Availability-enabled HTTP/TCP proxy
* Copyright 2000-2021 Willy Tarreau <willy@haproxy.org>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Please refer to RFC7230 - RFC7235 information about HTTP protocol, and
* RFC6265 for information about cookies usage. More generally, the IETF HTTP
* Working Group's web site should be consulted for protocol related changes :
*
* http://ftp.ics.uci.edu/pub/ietf/http/
*
* Pending bugs (may be not fixed because never reproduced) :
* - solaris only : sometimes, an HTTP proxy with only a dispatch address causes
* the proxy to terminate (no core) if the client breaks the connection during
* the response. Seen on 1.1.8pre4, but never reproduced. May not be related to
* the snprintf() bug since requests were simple (GET / HTTP/1.0), but may be
* related to missing setsid() (fixed in 1.1.15)
* - a proxy with an invalid config will prevent the startup even if disabled.
*
* ChangeLog has moved to the CHANGELOG file.
*
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <ctype.h>
#include <dirent.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/tcp.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <stdarg.h>
#include <sys/resource.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#include <time.h>
#include <syslog.h>
#include <grp.h>
#ifdef USE_CPU_AFFINITY
#include <sched.h>
#if defined(__FreeBSD__) || defined(__DragonFly__)
#include <sys/param.h>
#ifdef __FreeBSD__
#include <sys/cpuset.h>
#endif
#include <pthread_np.h>
#endif
#ifdef __APPLE__
#include <mach/mach_types.h>
#include <mach/thread_act.h>
#include <mach/thread_policy.h>
#endif
#endif
#if defined(USE_PRCTL)
#include <sys/prctl.h>
#endif
#ifdef DEBUG_FULL
#include <assert.h>
#endif
#if defined(USE_SYSTEMD)
#include <systemd/sd-daemon.h>
#endif
#include <import/sha1.h>
#include <haproxy/acl.h>
#include <haproxy/action.h>
#include <haproxy/activity.h>
#include <haproxy/api.h>
#include <haproxy/arg.h>
#include <haproxy/auth.h>
#include <haproxy/base64.h>
#include <haproxy/capture-t.h>
#include <haproxy/cfgdiag.h>
#include <haproxy/cfgparse.h>
#include <haproxy/chunk.h>
#include <haproxy/cli.h>
#include <haproxy/connection.h>
#ifdef USE_CPU_AFFINITY
#include <haproxy/cpuset.h>
#endif
#include <haproxy/dns.h>
#include <haproxy/dynbuf.h>
#include <haproxy/errors.h>
#include <haproxy/fd.h>
#include <haproxy/filters.h>
#include <haproxy/global.h>
#include <haproxy/hlua.h>
#include <haproxy/http_rules.h>
#include <haproxy/list.h>
#include <haproxy/listener.h>
#include <haproxy/log.h>
#include <haproxy/mworker.h>
#include <haproxy/namespace.h>
#include <haproxy/net_helper.h>
#include <haproxy/openssl-compat.h>
#include <haproxy/pattern.h>
#include <haproxy/peers.h>
#include <haproxy/pool.h>
#include <haproxy/protocol.h>
#include <haproxy/proto_tcp.h>
#include <haproxy/proxy.h>
#include <haproxy/regex.h>
#include <haproxy/sample.h>
#include <haproxy/server.h>
#include <haproxy/session.h>
#include <haproxy/signal.h>
#include <haproxy/sock.h>
#include <haproxy/sock_inet.h>
#include <haproxy/ssl_sock.h>
#include <haproxy/stats-t.h>
#include <haproxy/stream.h>
#include <haproxy/task.h>
#include <haproxy/thread.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
#include <haproxy/uri_auth-t.h>
#include <haproxy/vars.h>
#include <haproxy/version.h>
/* array of init calls for older platforms */
DECLARE_INIT_STAGES;
/* create a read_mostly section to hold variables which are accessed a lot
* but which almost never change. The purpose is to isolate them in their
* own cache lines where they don't risk to be perturbated by write accesses
* to neighbor variables. We need to create an empty aligned variable for
* this. The fact that the variable is of size zero means that it will be
* eliminated at link time if no other variable uses it, but alignment will
* be respected.
*/
empty_t __read_mostly_align HA_SECTION("read_mostly") ALIGNED(64);
#ifdef BUILD_FEATURES
const char *build_features = BUILD_FEATURES;
#else
const char *build_features = "";
#endif
/* list of config files */
static struct list cfg_cfgfiles = LIST_HEAD_INIT(cfg_cfgfiles);
int pid; /* current process id */
int relative_pid = 1; /* process id starting at 1 */
unsigned long pid_bit = 1; /* bit corresponding to the process id */
unsigned long all_proc_mask = 1; /* mask of all processes */
volatile unsigned long sleeping_thread_mask = 0; /* Threads that are about to sleep in poll() */
volatile unsigned long stopping_thread_mask = 0; /* Threads acknowledged stopping */
/* global options */
struct global global = {
.hard_stop_after = TICK_ETERNITY,
.nbproc = 1,
.numa_cpu_mapping = 1,
.nbthread = 0,
.req_count = 0,
.logsrvs = LIST_HEAD_INIT(global.logsrvs),
.maxzlibmem = 0,
.comp_rate_lim = 0,
.ssl_server_verify = SSL_SERVER_VERIFY_REQUIRED,
.unix_bind = {
.ux = {
.uid = -1,
.gid = -1,
.mode = 0,
}
},
.tune = {
.options = GTUNE_LISTENER_MQ,
.bufsize = (BUFSIZE + 2*sizeof(void *) - 1) & -(2*sizeof(void *)),
.maxrewrite = MAXREWRITE,
.reserved_bufs = RESERVED_BUFS,
.pattern_cache = DEFAULT_PAT_LRU_SIZE,
.pool_low_ratio = 20,
.pool_high_ratio = 25,
.max_http_hdr = MAX_HTTP_HDR,
#ifdef USE_OPENSSL
.sslcachesize = SSLCACHESIZE,
#endif
.comp_maxlevel = 1,
#ifdef DEFAULT_IDLE_TIMER
.idle_timer = DEFAULT_IDLE_TIMER,
#else
.idle_timer = 1000, /* 1 second */
#endif
},
#ifdef USE_OPENSSL
#ifdef DEFAULT_MAXSSLCONN
.maxsslconn = DEFAULT_MAXSSLCONN,
#endif
#endif
/* others NULL OK */
};
/*********************************************************************/
int stopping; /* non zero means stopping in progress */
int killed; /* non zero means a hard-stop is triggered */
int jobs = 0; /* number of active jobs (conns, listeners, active tasks, ...) */
int unstoppable_jobs = 0; /* number of active jobs that can't be stopped during a soft stop */
int active_peers = 0; /* number of active peers (connection attempts and connected) */
int connected_peers = 0; /* number of connected peers (verified ones) */
/* Here we store information about the pids of the processes we may pause
* or kill. We will send them a signal every 10 ms until we can bind to all
* our ports. With 200 retries, that's about 2 seconds.
*/
#define MAX_START_RETRIES 200
static int *oldpids = NULL;
static int oldpids_sig; /* use USR1 or TERM */
/* Path to the unix socket we use to retrieve listener sockets from the old process */
static const char *old_unixsocket;
static char *cur_unixsocket = NULL;
int atexit_flag = 0;
int nb_oldpids = 0;
const int zero = 0;
const int one = 1;
const struct linger nolinger = { .l_onoff = 1, .l_linger = 0 };
char hostname[MAX_HOSTNAME_LEN];
char *localpeer = NULL;
static char **old_argv = NULL; /* previous argv but cleaned up */
struct list proc_list = LIST_HEAD_INIT(proc_list);
int master = 0; /* 1 if in master, 0 if in child */
unsigned int rlim_fd_cur_at_boot = 0;
unsigned int rlim_fd_max_at_boot = 0;
/* per-boot randomness */
unsigned char boot_seed[20]; /* per-boot random seed (160 bits initially) */
static void *run_thread_poll_loop(void *data);
/* bitfield of a few warnings to emit just once (WARN_*) */
unsigned int warned = 0;
/* set if experimental features have been used for the current process */
static unsigned int tainted = 0;
unsigned int experimental_directives_allowed = 0;
int check_kw_experimental(struct cfg_keyword *kw, const char *file, int linenum,
char **errmsg)
{
if (kw->flags & KWF_EXPERIMENTAL) {
if (!experimental_directives_allowed) {
memprintf(errmsg, "parsing [%s:%d] : '%s' directive is experimental, must be allowed via a global 'expose-experimental-directives'",
file, linenum, kw->kw);
return 1;
}
mark_tainted(TAINTED_CONFIG_EXP_KW_DECLARED);
}
return 0;
}
/* master CLI configuration (-S flag) */
struct list mworker_cli_conf = LIST_HEAD_INIT(mworker_cli_conf);
/* These are strings to be reported in the output of "haproxy -vv". They may
* either be constants (in which case must_free must be zero) or dynamically
* allocated strings to pass to free() on exit, and in this case must_free
* must be non-zero.
*/
struct list build_opts_list = LIST_HEAD_INIT(build_opts_list);
struct build_opts_str {
struct list list;
const char *str;
int must_free;
};
/*********************************************************************/
/* general purpose functions ***************************************/
/*********************************************************************/
/* used to register some build option strings at boot. Set must_free to
* non-zero if the string must be freed upon exit.
*/
void hap_register_build_opts(const char *str, int must_free)
{
struct build_opts_str *b;
b = calloc(1, sizeof(*b));
if (!b) {
fprintf(stderr, "out of memory\n");
exit(1);
}
b->str = str;
b->must_free = must_free;
LIST_APPEND(&build_opts_list, &b->list);
}
#define VERSION_MAX_ELTS 7
/* This function splits an haproxy version string into an array of integers.
* The syntax of the supported version string is the following:
*
* <a>[.<b>[.<c>[.<d>]]][-{dev,pre,rc}<f>][-*][-<g>]
*
* This validates for example:
* 1.2.1-pre2, 1.2.1, 1.2.10.1, 1.3.16-rc1, 1.4-dev3, 1.5-dev18, 1.5-dev18-43
* 2.4-dev18-f6818d-20
*
* The result is set in a array of <VERSION_MAX_ELTS> elements. Each letter has
* one fixed place in the array. The tags take a numeric value called <e> which
* defaults to 3. "dev" is 1, "rc" and "pre" are 2. Numbers not encountered are
* considered as zero (henxe 1.5 and 1.5.0 are the same).
*
* The resulting values are:
* 1.2.1-pre2 1, 2, 1, 0, 2, 2, 0
* 1.2.1 1, 2, 1, 0, 3, 0, 0
* 1.2.10.1 1, 2, 10, 1, 3, 0, 0
* 1.3.16-rc1 1, 3, 16, 0, 2, 1, 0
* 1.4-dev3 1, 4, 0, 0, 1, 3, 0
* 1.5-dev18 1, 5, 0, 0, 1, 18, 0
* 1.5-dev18-43 1, 5, 0, 0, 1, 18, 43
* 2.4-dev18-f6818d-20 2, 4, 0, 0, 1, 18, 20
*
* The function returns non-zero if the conversion succeeded, or zero if it
* failed.
*/
int split_version(const char *version, unsigned int *value)
{
const char *p, *s;
char *error;
int nelts;
/* Initialize array with zeroes */
for (nelts = 0; nelts < VERSION_MAX_ELTS; nelts++)
value[nelts] = 0;
value[4] = 3;
p = version;
/* If the version number is empty, return false */
if (*p == '\0')
return 0;
/* Convert first number <a> */
value[0] = strtol(p, &error, 10);
p = error + 1;
if (*error == '\0')
return 1;
if (*error == '-')
goto split_version_tag;
if (*error != '.')
return 0;
/* Convert first number <b> */
value[1] = strtol(p, &error, 10);
p = error + 1;
if (*error == '\0')
return 1;
if (*error == '-')
goto split_version_tag;
if (*error != '.')
return 0;
/* Convert first number <c> */
value[2] = strtol(p, &error, 10);
p = error + 1;
if (*error == '\0')
return 1;
if (*error == '-')
goto split_version_tag;
if (*error != '.')
return 0;
/* Convert first number <d> */
value[3] = strtol(p, &error, 10);
p = error + 1;
if (*error == '\0')
return 1;
if (*error != '-')
return 0;
split_version_tag:
/* Check for commit number */
if (*p >= '0' && *p <= '9')
goto split_version_commit;
/* Read tag */
if (strncmp(p, "dev", 3) == 0) { value[4] = 1; p += 3; }
else if (strncmp(p, "rc", 2) == 0) { value[4] = 2; p += 2; }
else if (strncmp(p, "pre", 3) == 0) { value[4] = 2; p += 3; }
else
goto split_version_commit;
/* Convert tag number */
value[5] = strtol(p, &error, 10);
p = error + 1;
if (*error == '\0')
return 1;
if (*error != '-')
return 0;
split_version_commit:
/* Search the last "-" */
s = strrchr(p, '-');
if (s) {
s++;
if (*s == '\0')
return 0;
value[6] = strtol(s, &error, 10);
if (*error != '\0')
value[6] = 0;
return 1;
}
/* convert the version */
value[6] = strtol(p, &error, 10);
if (*error != '\0')
value[6] = 0;
return 1;
}
/* This function compares the current haproxy version with an arbitrary version
* string. It returns:
* -1 : the version in argument is older than the current haproxy version
* 0 : the version in argument is the same as the current haproxy version
* 1 : the version in argument is newer than the current haproxy version
*
* Or some errors:
* -2 : the current haproxy version is not parsable
* -3 : the version in argument is not parsable
*/
int compare_current_version(const char *version)
{
unsigned int loc[VERSION_MAX_ELTS];
unsigned int mod[VERSION_MAX_ELTS];
int i;
/* split versions */
if (!split_version(haproxy_version, loc))
return -2;
if (!split_version(version, mod))
return -3;
/* compare versions */
for (i = 0; i < VERSION_MAX_ELTS; i++) {
if (mod[i] < loc[i])
return -1;
else if (mod[i] > loc[i])
return 1;
}
return 0;
}
static void display_version()
{
struct utsname utsname;
printf("HAProxy version %s %s - https://haproxy.org/\n"
PRODUCT_STATUS "\n", haproxy_version, haproxy_date);
if (strlen(PRODUCT_URL_BUGS) > 0) {
char base_version[20];
int dots = 0;
char *del;
/* only retrieve the base version without distro-specific extensions */
for (del = haproxy_version; *del; del++) {
if (*del == '.')
dots++;
else if (*del < '0' || *del > '9')
break;
}
strlcpy2(base_version, haproxy_version, del - haproxy_version + 1);
if (dots < 2)
printf("Known bugs: https://github.com/haproxy/haproxy/issues?q=is:issue+is:open\n");
else
printf("Known bugs: " PRODUCT_URL_BUGS "\n", base_version);
}
if (uname(&utsname) == 0) {
printf("Running on: %s %s %s %s\n", utsname.sysname, utsname.release, utsname.version, utsname.machine);
}
}
static void display_build_opts()
{
struct build_opts_str *item;
printf("Build options :"
#ifdef BUILD_TARGET
"\n TARGET = " BUILD_TARGET
#endif
#ifdef BUILD_CPU
"\n CPU = " BUILD_CPU
#endif
#ifdef BUILD_CC
"\n CC = " BUILD_CC
#endif
#ifdef BUILD_CFLAGS
"\n CFLAGS = " BUILD_CFLAGS
#endif
#ifdef BUILD_OPTIONS
"\n OPTIONS = " BUILD_OPTIONS
#endif
#ifdef BUILD_DEBUG
"\n DEBUG = " BUILD_DEBUG
#endif
#ifdef BUILD_FEATURES
"\n\nFeature list : " BUILD_FEATURES
#endif
"\n\nDefault settings :"
"\n bufsize = %d, maxrewrite = %d, maxpollevents = %d"
"\n\n",
BUFSIZE, MAXREWRITE, MAX_POLL_EVENTS);
list_for_each_entry(item, &build_opts_list, list) {
puts(item->str);
}
putchar('\n');
list_pollers(stdout);
putchar('\n');
list_mux_proto(stdout);
putchar('\n');
list_services(stdout);
putchar('\n');
list_filters(stdout);
putchar('\n');
}
/*
* This function prints the command line usage and exits
*/
static void usage(char *name)
{
display_version();
fprintf(stderr,
"Usage : %s [-f <cfgfile|cfgdir>]* [ -vdV"
"D ] [ -n <maxconn> ] [ -N <maxpconn> ]\n"
" [ -p <pidfile> ] [ -m <max megs> ] [ -C <dir> ] [-- <cfgfile>*]\n"
" -v displays version ; -vv shows known build options.\n"
" -d enters debug mode ; -db only disables background mode.\n"
" -dM[<byte>] poisons memory with <byte> (defaults to 0x50)\n"
" -V enters verbose mode (disables quiet mode)\n"
" -D goes daemon ; -C changes to <dir> before loading files.\n"
" -W master-worker mode.\n"
#if defined(USE_SYSTEMD)
" -Ws master-worker mode with systemd notify support.\n"
#endif
" -q quiet mode : don't display messages\n"
" -c check mode : only check config files and exit\n"
" -cc check condition : evaluate a condition and exit\n"
" -n sets the maximum total # of connections (uses ulimit -n)\n"
" -m limits the usable amount of memory (in MB)\n"
" -N sets the default, per-proxy maximum # of connections (%d)\n"
" -L set local peer name (default to hostname)\n"
" -p writes pids of all children to this file\n"
#if defined(USE_EPOLL)
" -de disables epoll() usage even when available\n"
#endif
#if defined(USE_KQUEUE)
" -dk disables kqueue() usage even when available\n"
#endif
#if defined(USE_EVPORTS)
" -dv disables event ports usage even when available\n"
#endif
#if defined(USE_POLL)
" -dp disables poll() usage even when available\n"
#endif
#if defined(USE_LINUX_SPLICE)
" -dS disables splice usage (broken on old kernels)\n"
#endif
#if defined(USE_GETADDRINFO)
" -dG disables getaddrinfo() usage\n"
#endif
#if defined(SO_REUSEPORT)
" -dR disables SO_REUSEPORT usage\n"
#endif
" -dr ignores server address resolution failures\n"
" -dV disables SSL verify on servers side\n"
" -dW fails if any warning is emitted\n"
" -dD diagnostic mode : warn about suspicious configuration statements\n"
" -sf/-st [pid ]* finishes/terminates old pids.\n"
" -x <unix_socket> get listening sockets from a unix socket\n"
" -S <bind>[,<bind options>...] new master CLI\n"
"\n",
name, cfg_maxpconn);
exit(1);
}
/*********************************************************************/
/* more specific functions ***************************************/
/*********************************************************************/
/* sends the signal <sig> to all pids found in <oldpids>. Returns the number of
* pids the signal was correctly delivered to.
*/
int tell_old_pids(int sig)
{
int p;
int ret = 0;
for (p = 0; p < nb_oldpids; p++)
if (kill(oldpids[p], sig) == 0)
ret++;
return ret;
}
/*
* remove a pid forom the olpid array and decrease nb_oldpids
* return 1 pid was found otherwise return 0
*/
int delete_oldpid(int pid)
{
int i;
for (i = 0; i < nb_oldpids; i++) {
if (oldpids[i] == pid) {
oldpids[i] = oldpids[nb_oldpids - 1];
oldpids[nb_oldpids - 1] = 0;
nb_oldpids--;
return 1;
}
}
return 0;
}
static void get_cur_unixsocket()
{
/* if -x was used, try to update the stat socket if not available anymore */
if (global.cli_fe) {
struct bind_conf *bind_conf;
/* pass through all stats socket */
list_for_each_entry(bind_conf, &global.cli_fe->conf.bind, by_fe) {
struct listener *l;
list_for_each_entry(l, &bind_conf->listeners, by_bind) {
if (l->rx.addr.ss_family == AF_UNIX &&
(bind_conf->level & ACCESS_FD_LISTENERS)) {
const struct sockaddr_un *un;
un = (struct sockaddr_un *)&l->rx.addr;
/* priority to old_unixsocket */
if (!cur_unixsocket) {
cur_unixsocket = strdup(un->sun_path);
} else {
if (old_unixsocket && strcmp(un->sun_path, old_unixsocket) == 0) {
free(cur_unixsocket);
cur_unixsocket = strdup(old_unixsocket);
return;
}
}
}
}
}
}
if (!cur_unixsocket && old_unixsocket)
cur_unixsocket = strdup(old_unixsocket);
}
/*
* When called, this function reexec haproxy with -sf followed by current
* children PIDs and possibly old children PIDs if they didn't leave yet.
*/
void mworker_reload()
{
char **next_argv = NULL;
int old_argc = 0; /* previous number of argument */
int next_argc = 0;
int i = 0;
char *msg = NULL;
struct rlimit limit;
struct per_thread_deinit_fct *ptdf;
mworker_block_signals();
#if defined(USE_SYSTEMD)
if (global.tune.options & GTUNE_USE_SYSTEMD)
sd_notify(0, "RELOADING=1");
#endif
setenv("HAPROXY_MWORKER_REEXEC", "1", 1);
mworker_proc_list_to_env(); /* put the children description in the env */
/* during the reload we must ensure that every FDs that can't be
* reuse (ie those that are not referenced in the proc_list)
* are closed or they will leak. */
/* close the listeners FD */
mworker_cli_proxy_stop();
if (getenv("HAPROXY_MWORKER_WAIT_ONLY") == NULL) {
/* close the poller FD and the thread waker pipe FD */
list_for_each_entry(ptdf, &per_thread_deinit_list, list)
ptdf->fct();
if (fdtab)
deinit_pollers();
}
#ifdef HAVE_SSL_RAND_KEEP_RANDOM_DEVICES_OPEN
/* close random device FDs */
RAND_keep_random_devices_open(0);
#endif
/* restore the initial FD limits */
limit.rlim_cur = rlim_fd_cur_at_boot;
limit.rlim_max = rlim_fd_max_at_boot;
if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
getrlimit(RLIMIT_NOFILE, &limit);
ha_warning("Failed to restore initial FD limits (cur=%u max=%u), using cur=%u max=%u\n",
rlim_fd_cur_at_boot, rlim_fd_max_at_boot,
(unsigned int)limit.rlim_cur, (unsigned int)limit.rlim_max);
}
/* compute length */
while (old_argv[old_argc])
old_argc++;
/* 1 for haproxy -sf, 2 for -x /socket */
next_argv = calloc(old_argc + 1 + 2 + mworker_child_nb() + 1,
sizeof(*next_argv));
if (next_argv == NULL)
goto alloc_error;
/* copy the program name */
next_argv[next_argc++] = old_argv[0];
/* insert the new options just after argv[0] in case we have a -- */
/* add -sf <PID>* to argv */
if (mworker_child_nb() > 0) {
struct mworker_proc *child;
next_argv[next_argc++] = "-sf";
list_for_each_entry(child, &proc_list, list) {
if (!(child->options & (PROC_O_TYPE_WORKER|PROC_O_TYPE_PROG)) || child->pid <= -1 )
continue;
if ((next_argv[next_argc++] = memprintf(&msg, "%d", child->pid)) == NULL)
goto alloc_error;
msg = NULL;
}
}
/* add the -x option with the stat socket */
if (cur_unixsocket) {
next_argv[next_argc++] = "-x";
next_argv[next_argc++] = (char *)cur_unixsocket;
}
/* copy the previous options */
for (i = 1; i < old_argc; i++)
next_argv[next_argc++] = old_argv[i];
ha_warning("Reexecuting Master process\n");
signal(SIGPROF, SIG_IGN);
execvp(next_argv[0], next_argv);
ha_warning("Failed to reexecute the master process [%d]: %s\n", pid, strerror(errno));
ha_free(&next_argv);
return;
alloc_error:
ha_free(&next_argv);
ha_warning("Failed to reexecute the master process [%d]: Cannot allocate memory\n", pid);
return;
}
static void mworker_loop()
{
#if defined(USE_SYSTEMD)
if (global.tune.options & GTUNE_USE_SYSTEMD)
sd_notifyf(0, "READY=1\nMAINPID=%lu", (unsigned long)getpid());
#endif
/* Busy polling makes no sense in the master :-) */
global.tune.options &= ~GTUNE_BUSY_POLLING;
master = 1;
signal_unregister(SIGTTIN);
signal_unregister(SIGTTOU);
signal_unregister(SIGUSR1);
signal_unregister(SIGHUP);
signal_unregister(SIGQUIT);
signal_register_fct(SIGTERM, mworker_catch_sigterm, SIGTERM);
signal_register_fct(SIGUSR1, mworker_catch_sigterm, SIGUSR1);
signal_register_fct(SIGTTIN, mworker_broadcast_signal, SIGTTIN);
signal_register_fct(SIGTTOU, mworker_broadcast_signal, SIGTTOU);
signal_register_fct(SIGINT, mworker_catch_sigterm, SIGINT);
signal_register_fct(SIGHUP, mworker_catch_sighup, SIGHUP);
signal_register_fct(SIGUSR2, mworker_catch_sighup, SIGUSR2);
signal_register_fct(SIGCHLD, mworker_catch_sigchld, SIGCHLD);
mworker_unblock_signals();
mworker_cleanlisteners();
mworker_cleantasks();
mworker_catch_sigchld(NULL); /* ensure we clean the children in case
some SIGCHLD were lost */
global.nbthread = 1;
relative_pid = 1;
pid_bit = 1;
all_proc_mask = 1;
#ifdef USE_THREAD
tid_bit = 1;
all_threads_mask = 1;
#endif
jobs++; /* this is the "master" job, we want to take care of the
signals even if there is no listener so the poll loop don't
leave */
fork_poller();
run_thread_poll_loop(0);
}
/*
* Reexec the process in failure mode, instead of exiting
*/
void reexec_on_failure()
{
if (!atexit_flag)
return;
setenv("HAPROXY_MWORKER_WAIT_ONLY", "1", 1);
ha_warning("Reexecuting Master process in waitpid mode\n");
mworker_reload();
}
/*
* upon SIGUSR1, let's have a soft stop. Note that soft_stop() broadcasts
* a signal zero to all subscribers. This means that it's as easy as
* subscribing to signal 0 to get informed about an imminent shutdown.
*/
static void sig_soft_stop(struct sig_handler *sh)
{
soft_stop();
signal_unregister_handler(sh);
pool_gc(NULL);
}
/*
* upon SIGTTOU, we pause everything
*/
static void sig_pause(struct sig_handler *sh)
{
if (protocol_pause_all() & ERR_FATAL) {
const char *msg = "Some proxies refused to pause, performing soft stop now.\n";
ha_warning("%s", msg);
send_log(NULL, LOG_WARNING, "%s", msg);
soft_stop();
}
pool_gc(NULL);
}
/*
* upon SIGTTIN, let's have a soft stop.
*/
static void sig_listen(struct sig_handler *sh)
{
if (protocol_resume_all() & ERR_FATAL) {
const char *msg = "Some proxies refused to resume, probably due to a conflict on a listening port. You may want to try again after the conflicting application is stopped, otherwise a restart might be needed to resume safe operations.\n";
ha_warning("%s", msg);
send_log(NULL, LOG_WARNING, "%s", msg);
}
}
/*
* this function dumps every server's state when the process receives SIGHUP.
*/
static void sig_dump_state(struct sig_handler *sh)
{
struct proxy *p = proxies_list;
ha_warning("SIGHUP received, dumping servers states.\n");
while (p) {
struct server *s = p->srv;
send_log(p, LOG_NOTICE, "SIGHUP received, dumping servers states for proxy %s.\n", p->id);
while (s) {
chunk_printf(&trash,
"SIGHUP: Server %s/%s is %s. Conn: %d act, %d pend, %lld tot.",
p->id, s->id,
(s->cur_state != SRV_ST_STOPPED) ? "UP" : "DOWN",
s->cur_sess, s->nbpend, s->counters.cum_sess);
ha_warning("%s\n", trash.area);
send_log(p, LOG_NOTICE, "%s\n", trash.area);
s = s->next;
}
/* FIXME: those info are a bit outdated. We should be able to distinguish between FE and BE. */
if (!p->srv) {
chunk_printf(&trash,
"SIGHUP: Proxy %s has no servers. Conn: act(FE+BE): %d+%d, %d pend (%d unass), tot(FE+BE): %lld+%lld.",
p->id,
p->feconn, p->beconn, p->totpend, p->nbpend, p->fe_counters.cum_conn, p->be_counters.cum_conn);
} else if (p->srv_act == 0) {
chunk_printf(&trash,
"SIGHUP: Proxy %s %s ! Conn: act(FE+BE): %d+%d, %d pend (%d unass), tot(FE+BE): %lld+%lld.",
p->id,
(p->srv_bck) ? "is running on backup servers" : "has no server available",
p->feconn, p->beconn, p->totpend, p->nbpend, p->fe_counters.cum_conn, p->be_counters.cum_conn);
} else {
chunk_printf(&trash,
"SIGHUP: Proxy %s has %d active servers and %d backup servers available."
" Conn: act(FE+BE): %d+%d, %d pend (%d unass), tot(FE+BE): %lld+%lld.",
p->id, p->srv_act, p->srv_bck,
p->feconn, p->beconn, p->totpend, p->nbpend, p->fe_counters.cum_conn, p->be_counters.cum_conn);
}
ha_warning("%s\n", trash.area);
send_log(p, LOG_NOTICE, "%s\n", trash.area);
p = p->next;
}
}
static void dump(struct sig_handler *sh)
{
/* dump memory usage then free everything possible */
dump_pools();
pool_gc(NULL);
}
/*
* This function dup2 the stdio FDs (0,1,2) with <fd>, then closes <fd>
* If <fd> < 0, it opens /dev/null and use it to dup
*
* In the case of chrooting, you have to open /dev/null before the chroot, and
* pass the <fd> to this function
*/
static void stdio_quiet(int fd)
{
if (fd < 0)
fd = open("/dev/null", O_RDWR, 0);
if (fd > -1) {
fclose(stdin);
fclose(stdout);
fclose(stderr);
dup2(fd, 0);
dup2(fd, 1);
dup2(fd, 2);
if (fd > 2)
close(fd);
return;
}
ha_alert("Cannot open /dev/null\n");
exit(EXIT_FAILURE);
}
/* This function checks if cfg_cfgfiles contains directories.
* If it finds one, it adds all the files (and only files) it contains
* in cfg_cfgfiles in place of the directory (and removes the directory).
* It adds the files in lexical order.
* It adds only files with .cfg extension.
* It doesn't add files with name starting with '.'
*/
static void cfgfiles_expand_directories(void)
{
struct wordlist *wl, *wlb;
char *err = NULL;
list_for_each_entry_safe(wl, wlb, &cfg_cfgfiles, list) {
struct stat file_stat;
struct dirent **dir_entries = NULL;
int dir_entries_nb;
int dir_entries_it;
if (stat(wl->s, &file_stat)) {
ha_alert("Cannot open configuration file/directory %s : %s\n",
wl->s,
strerror(errno));
exit(1);
}
if (!S_ISDIR(file_stat.st_mode))
continue;
/* from this point wl->s is a directory */
dir_entries_nb = scandir(wl->s, &dir_entries, NULL, alphasort);
if (dir_entries_nb < 0) {
ha_alert("Cannot open configuration directory %s : %s\n",
wl->s,
strerror(errno));
exit(1);
}
/* for each element in the directory wl->s */
for (dir_entries_it = 0; dir_entries_it < dir_entries_nb; dir_entries_it++) {
struct dirent *dir_entry = dir_entries[dir_entries_it];
char *filename = NULL;
char *d_name_cfgext = strstr(dir_entry->d_name, ".cfg");
/* don't add filename that begin with .
* only add filename with .cfg extension
*/
if (dir_entry->d_name[0] == '.' ||
!(d_name_cfgext && d_name_cfgext[4] == '\0'))
goto next_dir_entry;
if (!memprintf(&filename, "%s/%s", wl->s, dir_entry->d_name)) {
ha_alert("Cannot load configuration files %s : out of memory.\n",
filename);
exit(1);
}
if (stat(filename, &file_stat)) {
ha_alert("Cannot open configuration file %s : %s\n",
wl->s,
strerror(errno));
exit(1);
}
/* don't add anything else than regular file in cfg_cfgfiles
* this way we avoid loops
*/
if (!S_ISREG(file_stat.st_mode))
goto next_dir_entry;
if (!list_append_word(&wl->list, filename, &err)) {
ha_alert("Cannot load configuration files %s : %s\n",
filename,
err);
exit(1);
}
next_dir_entry:
free(filename);
free(dir_entry);
}
free(dir_entries);
/* remove the current directory (wl) from cfg_cfgfiles */
free(wl->s);
LIST_DELETE(&wl->list);
free(wl);
}
free(err);
}
/*
* copy and cleanup the current argv
* Remove the -sf /-st / -x parameters
* Return an allocated copy of argv
*/
static char **copy_argv(int argc, char **argv)
{
char **newargv, **retargv;
newargv = calloc(argc + 2, sizeof(*newargv));
if (newargv == NULL) {
ha_warning("Cannot allocate memory\n");
return NULL;
}
retargv = newargv;
/* first copy argv[0] */
*newargv++ = *argv++;
argc--;
while (argc > 0) {
if (**argv != '-') {
/* non options are copied but will fail in the argument parser */
*newargv++ = *argv++;
argc--;
} else {
char *flag;
flag = *argv + 1;
if (flag[0] == '-' && flag[1] == 0) {
/* "--\0" copy every arguments till the end of argv */
*newargv++ = *argv++;
argc--;
while (argc > 0) {
*newargv++ = *argv++;
argc--;
}
} else {
switch (*flag) {
case 's':
/* -sf / -st and their parameters are ignored */
if (flag[1] == 'f' || flag[1] == 't') {
argc--;
argv++;
/* The list can't contain a negative value since the only
way to know the end of this list is by looking for the
next option or the end of the options */
while (argc > 0 && argv[0][0] != '-') {
argc--;
argv++;
}
} else {
argc--;
argv++;
}
break;
case 'x':
/* this option and its parameter are ignored */
argc--;
argv++;
if (argc > 0) {
argc--;
argv++;
}
break;
case 'C':
case 'n':
case 'm':
case 'N':
case 'L':
case 'f':
case 'p':
case 'S':
/* these options have only 1 parameter which must be copied and can start with a '-' */
*newargv++ = *argv++;
argc--;
if (argc == 0)
goto error;
*newargv++ = *argv++;
argc--;
break;
default:
/* for other options just copy them without parameters, this is also done
* for options like "--foo", but this will fail in the argument parser.
* */
*newargv++ = *argv++;
argc--;
break;
}
}
}
}
return retargv;
error:
free(retargv);
return NULL;
}
/* Performs basic random seed initialization. The main issue with this is that
* srandom_r() only takes 32 bits and purposely provides a reproducible sequence,
* which means that there will only be 4 billion possible random sequences once
* srandom() is called, regardless of the internal state. Not calling it is
* even worse as we'll always produce the same randoms sequences. What we do
* here is to create an initial sequence from various entropy sources, hash it
* using SHA1 and keep the resulting 160 bits available globally.
*
* We initialize the current process with the first 32 bits before starting the
* polling loop, where all this will be changed to have process specific and
* thread specific sequences.
*
* Before starting threads, it's still possible to call random() as srandom()
* is initialized from this, but after threads and/or processes are started,
* only ha_random() is expected to be used to guarantee distinct sequences.
*/
static void ha_random_boot(char *const *argv)
{
unsigned char message[256];
unsigned char *m = message;
struct timeval tv;
blk_SHA_CTX ctx;
unsigned long l;
int fd;
int i;
/* start with current time as pseudo-random seed */
gettimeofday(&tv, NULL);
write_u32(m, tv.tv_sec); m += 4;
write_u32(m, tv.tv_usec); m += 4;
/* PID and PPID add some OS-based randomness */
write_u16(m, getpid()); m += 2;
write_u16(m, getppid()); m += 2;
/* take up to 160 bits bytes from /dev/urandom if available (non-blocking) */
fd = open("/dev/urandom", O_RDONLY);
if (fd >= 0) {
i = read(fd, m, 20);
if (i > 0)
m += i;
close(fd);
}
/* take up to 160 bits bytes from openssl (non-blocking) */
#ifdef USE_OPENSSL
if (RAND_bytes(m, 20) == 1)
m += 20;
#endif
/* take 160 bits from existing random in case it was already initialized */
for (i = 0; i < 5; i++) {
write_u32(m, random());
m += 4;
}
/* stack address (benefit form operating system's ASLR) */
l = (unsigned long)&m;
memcpy(m, &l, sizeof(l)); m += sizeof(l);
/* argv address (benefit form operating system's ASLR) */
l = (unsigned long)&argv;
memcpy(m, &l, sizeof(l)); m += sizeof(l);
/* use tv_usec again after all the operations above */
gettimeofday(&tv, NULL);
write_u32(m, tv.tv_usec); m += 4;
/*
* At this point, ~84-92 bytes have been used
*/
/* finish with the hostname */
strncpy((char *)m, hostname, message + sizeof(message) - m);
m += strlen(hostname);
/* total message length */
l = m - message;
memset(&ctx, 0, sizeof(ctx));
blk_SHA1_Init(&ctx);
blk_SHA1_Update(&ctx, message, l);
blk_SHA1_Final(boot_seed, &ctx);
srandom(read_u32(boot_seed));
ha_random_seed(boot_seed, sizeof(boot_seed));
}
/* considers splicing proxies' maxconn, computes the ideal global.maxpipes
* setting, and returns it. It may return -1 meaning "unlimited" if some
* unlimited proxies have been found and the global.maxconn value is not yet
* set. It may also return a value greater than maxconn if it's not yet set.
* Note that a value of zero means there is no need for pipes. -1 is never
* returned if global.maxconn is valid.
*/
static int compute_ideal_maxpipes()
{
struct proxy *cur;
int nbfe = 0, nbbe = 0;
int unlimited = 0;
int pipes;
int max;
for (cur = proxies_list; cur; cur = cur->next) {
if (cur->options2 & (PR_O2_SPLIC_ANY)) {
if (cur->cap & PR_CAP_FE) {
max = cur->maxconn;
nbfe += max;
if (!max) {
unlimited = 1;
break;
}
}
if (cur->cap & PR_CAP_BE) {
max = cur->fullconn ? cur->fullconn : global.maxconn;
nbbe += max;
if (!max) {
unlimited = 1;
break;
}
}
}
}
pipes = MAX(nbfe, nbbe);
if (global.maxconn) {
if (pipes > global.maxconn || unlimited)
pipes = global.maxconn;
} else if (unlimited) {
pipes = -1;
}
return pipes >= 4 ? pipes / 4 : pipes;
}
/* considers global.maxsocks, global.maxpipes, async engines, SSL frontends and
* rlimits and computes an ideal maxconn. It's meant to be called only when
* maxsock contains the sum of listening FDs, before it is updated based on
* maxconn and pipes. If there are not enough FDs left, DEFAULT_MAXCONN (by
* default 100) is returned as it is expected that it will even run on tight
* environments, and will maintain compatibility with previous packages that
* used to rely on this value as the default one. The system will emit a
* warning indicating how many FDs are missing anyway if needed.
*/
static int compute_ideal_maxconn()
{
int ssl_sides = !!global.ssl_used_frontend + !!global.ssl_used_backend;
int engine_fds = global.ssl_used_async_engines * ssl_sides;
int pipes = compute_ideal_maxpipes();
int remain = MAX(rlim_fd_cur_at_boot, rlim_fd_max_at_boot);
int maxconn;
/* we have to take into account these elements :
* - number of engine_fds, which inflates the number of FD needed per
* connection by this number.
* - number of pipes per connection on average : for the unlimited
* case, this is 0.5 pipe FDs per connection, otherwise it's a
* fixed value of 2*pipes.
* - two FDs per connection
*/
/* subtract listeners and checks */
remain -= global.maxsock;
/* one epoll_fd/kqueue_fd per thread */
remain -= global.nbthread;
/* one wake-up pipe (2 fd) per thread */
remain -= 2 * global.nbthread;
/* Fixed pipes values : we only subtract them if they're not larger
* than the remaining FDs because pipes are optional.
*/
if (pipes >= 0 && pipes * 2 < remain)
remain -= pipes * 2;
if (pipes < 0) {
/* maxsock = maxconn * 2 + maxconn/4 * 2 + maxconn * engine_fds.
* = maxconn * (2 + 0.5 + engine_fds)
* = maxconn * (4 + 1 + 2*engine_fds) / 2
*/
maxconn = 2 * remain / (5 + 2 * engine_fds);
} else {
/* maxsock = maxconn * 2 + maxconn * engine_fds.
* = maxconn * (2 + engine_fds)
*/
maxconn = remain / (2 + engine_fds);
}
return MAX(maxconn, DEFAULT_MAXCONN);
}
/* computes the estimated maxsock value for the given maxconn based on the
* possibly set global.maxpipes and existing partial global.maxsock. It may
* temporarily change global.maxconn for the time needed to propagate the
* computations, and will reset it.
*/
static int compute_ideal_maxsock(int maxconn)
{
int maxpipes = global.maxpipes;
int maxsock = global.maxsock;
if (!maxpipes) {
int old_maxconn = global.maxconn;
global.maxconn = maxconn;
maxpipes = compute_ideal_maxpipes();
global.maxconn = old_maxconn;
}
maxsock += maxconn * 2; /* each connection needs two sockets */
maxsock += maxpipes * 2; /* each pipe needs two FDs */
maxsock += global.nbthread; /* one epoll_fd/kqueue_fd per thread */
maxsock += 2 * global.nbthread; /* one wake-up pipe (2 fd) per thread */
/* compute fd used by async engines */
if (global.ssl_used_async_engines) {
int sides = !!global.ssl_used_frontend + !!global.ssl_used_backend;
maxsock += maxconn * sides * global.ssl_used_async_engines;
}
return maxsock;
}
/* Tests if it is possible to set the current process's RLIMIT_NOFILE to
* <maxsock>, then sets it back to the previous value. Returns non-zero if the
* value is accepted, non-zero otherwise. This is used to determine if an
* automatic limit may be applied or not. When it is not, the caller knows that
* the highest we can do is the rlim_max at boot. In case of error, we return
* that the setting is possible, so that we defer the error processing to the
* final stage in charge of enforcing this.
*/
static int check_if_maxsock_permitted(int maxsock)
{
struct rlimit orig_limit, test_limit;
int ret;
if (getrlimit(RLIMIT_NOFILE, &orig_limit) != 0)
return 1;
/* don't go further if we can't even set to what we have */
if (setrlimit(RLIMIT_NOFILE, &orig_limit) != 0)
return 1;
test_limit.rlim_max = MAX(maxsock, orig_limit.rlim_max);
test_limit.rlim_cur = test_limit.rlim_max;
ret = setrlimit(RLIMIT_NOFILE, &test_limit);
if (setrlimit(RLIMIT_NOFILE, &orig_limit) != 0)
return 1;
return ret == 0;
}
void mark_tainted(const enum tainted_flags flag)
{
HA_ATOMIC_OR(&tainted, flag);
}
unsigned int get_tainted()
{
int tainted_state;
HA_ATOMIC_STORE(&tainted_state, tainted);
return tainted_state;
}
/*
* This function initializes all the necessary variables. It only returns
* if everything is OK. If something fails, it exits.
*/
static void init(int argc, char **argv)
{
int arg_mode = 0; /* MODE_DEBUG, ... */
char *tmp;
char *cfg_pidfile = NULL;
int err_code = 0;
char *err_msg = NULL;
struct wordlist *wl;
char *progname;
char *change_dir = NULL;
struct proxy *px;
struct post_check_fct *pcf;
int ideal_maxconn;
char *check_condition = NULL;
global.mode = MODE_STARTING;
old_argv = copy_argv(argc, argv);
if (!old_argv) {
ha_alert("failed to copy argv.\n");
exit(1);
}
if (!init_trash_buffers(1)) {
ha_alert("failed to initialize trash buffers.\n");
exit(1);
}
/* NB: POSIX does not make it mandatory for gethostname() to NULL-terminate
* the string in case of truncation, and at least FreeBSD appears not to do
* it.
*/
memset(hostname, 0, sizeof(hostname));
gethostname(hostname, sizeof(hostname) - 1);
if ((localpeer = strdup(hostname)) == NULL) {
ha_alert("Cannot allocate memory for local peer.\n");
exit(EXIT_FAILURE);
}
setenv("HAPROXY_LOCALPEER", localpeer, 1);
/* we were in mworker mode, we should restart in mworker mode */
if (getenv("HAPROXY_MWORKER_REEXEC") != NULL)
global.mode |= MODE_MWORKER;
/*
* Initialize the previously static variables.
*/
totalconn = actconn = listeners = stopping = 0;
killed = 0;
#ifdef HAPROXY_MEMMAX
global.rlimit_memmax_all = HAPROXY_MEMMAX;
#endif
tzset();
tv_init_process_date();
start_date = now;
ha_random_boot(argv);
if (init_acl() != 0)
exit(1);
/* Initialise lua. */
hlua_init();
/* Initialize process vars */
vars_init(&proc_vars, SCOPE_PROC);
global.tune.options |= GTUNE_USE_SELECT; /* select() is always available */
#if defined(USE_POLL)
global.tune.options |= GTUNE_USE_POLL;
#endif
#if defined(USE_EPOLL)
global.tune.options |= GTUNE_USE_EPOLL;
#endif
#if defined(USE_KQUEUE)
global.tune.options |= GTUNE_USE_KQUEUE;
#endif
#if defined(USE_EVPORTS)
global.tune.options |= GTUNE_USE_EVPORTS;
#endif
#if defined(USE_LINUX_SPLICE)
global.tune.options |= GTUNE_USE_SPLICE;
#endif
#if defined(USE_GETADDRINFO)
global.tune.options |= GTUNE_USE_GAI;
#endif
#if defined(SO_REUSEPORT)
global.tune.options |= GTUNE_USE_REUSEPORT;
#endif
#ifdef USE_THREAD
global.tune.options |= GTUNE_IDLE_POOL_SHARED;
#endif
global.tune.options |= GTUNE_STRICT_LIMITS;
pid = getpid();
progname = *argv;
while ((tmp = strchr(progname, '/')) != NULL)
progname = tmp + 1;
/* the process name is used for the logs only */
chunk_initlen(&global.log_tag, strdup(progname), strlen(progname), strlen(progname));
if (b_orig(&global.log_tag) == NULL) {
chunk_destroy(&global.log_tag);
ha_alert("Cannot allocate memory for log_tag.\n");
exit(EXIT_FAILURE);
}
argc--; argv++;
while (argc > 0) {
char *flag;
if (**argv == '-') {
flag = *argv+1;
/* 1 arg */
if (*flag == 'v') {
display_version();
if (flag[1] == 'v') /* -vv */
display_build_opts();
exit(0);
}
#if defined(USE_EPOLL)
else if (*flag == 'd' && flag[1] == 'e')
global.tune.options &= ~GTUNE_USE_EPOLL;
#endif
#if defined(USE_POLL)
else if (*flag == 'd' && flag[1] == 'p')
global.tune.options &= ~GTUNE_USE_POLL;
#endif
#if defined(USE_KQUEUE)
else if (*flag == 'd' && flag[1] == 'k')
global.tune.options &= ~GTUNE_USE_KQUEUE;
#endif
#if defined(USE_EVPORTS)
else if (*flag == 'd' && flag[1] == 'v')
global.tune.options &= ~GTUNE_USE_EVPORTS;
#endif
#if defined(USE_LINUX_SPLICE)
else if (*flag == 'd' && flag[1] == 'S')
global.tune.options &= ~GTUNE_USE_SPLICE;
#endif
#if defined(USE_GETADDRINFO)
else if (*flag == 'd' && flag[1] == 'G')
global.tune.options &= ~GTUNE_USE_GAI;
#endif
#if defined(SO_REUSEPORT)
else if (*flag == 'd' && flag[1] == 'R')
global.tune.options &= ~GTUNE_USE_REUSEPORT;
#endif
else if (*flag == 'd' && flag[1] == 'V')
global.ssl_server_verify = SSL_SERVER_VERIFY_NONE;
else if (*flag == 'V')
arg_mode |= MODE_VERBOSE;
else if (*flag == 'd' && flag[1] == 'b')
arg_mode |= MODE_FOREGROUND;
else if (*flag == 'd' && flag[1] == 'D')
arg_mode |= MODE_DIAG;
else if (*flag == 'd' && flag[1] == 'W')
arg_mode |= MODE_ZERO_WARNING;
else if (*flag == 'd' && flag[1] == 'M')
mem_poison_byte = flag[2] ? strtol(flag + 2, NULL, 0) : 'P';
else if (*flag == 'd' && flag[1] == 'r')
global.tune.options |= GTUNE_RESOLVE_DONTFAIL;
else if (*flag == 'd')
arg_mode |= MODE_DEBUG;
else if (*flag == 'c' && flag[1] == 'c') {
arg_mode |= MODE_CHECK_CONDITION;
argv++;
argc--;
check_condition = *argv;
}
else if (*flag == 'c')
arg_mode |= MODE_CHECK;
else if (*flag == 'D')
arg_mode |= MODE_DAEMON;
else if (*flag == 'W' && flag[1] == 's') {
arg_mode |= MODE_MWORKER | MODE_FOREGROUND;
#if defined(USE_SYSTEMD)
global.tune.options |= GTUNE_USE_SYSTEMD;
#else
ha_alert("master-worker mode with systemd support (-Ws) requested, but not compiled. Use master-worker mode (-W) if you are not using Type=notify in your unit file or recompile with USE_SYSTEMD=1.\n\n");
usage(progname);
#endif
}
else if (*flag == 'W')
arg_mode |= MODE_MWORKER;
else if (*flag == 'q')
arg_mode |= MODE_QUIET;
else if (*flag == 'x') {
if (argc <= 1) {
ha_alert("Unix socket path expected with the -x flag\n\n");
usage(progname);
}
if (old_unixsocket)
ha_warning("-x option already set, overwriting the value\n");
old_unixsocket = argv[1];
argv++;
argc--;
}
else if (*flag == 'S') {
struct wordlist *c;
if (argc <= 1) {
ha_alert("Socket and optional bind parameters expected with the -S flag\n");
usage(progname);
}
if ((c = malloc(sizeof(*c))) == NULL || (c->s = strdup(argv[1])) == NULL) {
ha_alert("Cannot allocate memory\n");
exit(EXIT_FAILURE);
}
LIST_INSERT(&mworker_cli_conf, &c->list);
argv++;
argc--;
}
else if (*flag == 's' && (flag[1] == 'f' || flag[1] == 't')) {
/* list of pids to finish ('f') or terminate ('t') */
if (flag[1] == 'f')
oldpids_sig = SIGUSR1; /* finish then exit */
else
oldpids_sig = SIGTERM; /* terminate immediately */
while (argc > 1 && argv[1][0] != '-') {
char * endptr = NULL;
oldpids = realloc(oldpids, (nb_oldpids + 1) * sizeof(int));
if (!oldpids) {
ha_alert("Cannot allocate old pid : out of memory.\n");
exit(1);
}
argc--; argv++;
errno = 0;
oldpids[nb_oldpids] = strtol(*argv, &endptr, 10);
if (errno) {
ha_alert("-%2s option: failed to parse {%s}: %s\n",
flag,
*argv, strerror(errno));
exit(1);
} else if (endptr && strlen(endptr)) {
while (isspace((unsigned char)*endptr)) endptr++;
if (*endptr != 0) {
ha_alert("-%2s option: some bytes unconsumed in PID list {%s}\n",
flag, endptr);
exit(1);
}
}
if (oldpids[nb_oldpids] <= 0)
usage(progname);
nb_oldpids++;
}
}
else if (flag[0] == '-' && flag[1] == 0) { /* "--" */
/* now that's a cfgfile list */
argv++; argc--;
while (argc > 0) {
if (!list_append_word(&cfg_cfgfiles, *argv, &err_msg)) {
ha_alert("Cannot load configuration file/directory %s : %s\n",
*argv,
err_msg);
exit(1);
}
argv++; argc--;
}
break;
}
else { /* >=2 args */
argv++; argc--;
if (argc == 0)
usage(progname);
switch (*flag) {
case 'C' : change_dir = *argv; break;
case 'n' : cfg_maxconn = atol(*argv); break;
case 'm' : global.rlimit_memmax_all = atol(*argv); break;
case 'N' : cfg_maxpconn = atol(*argv); break;
case 'L' :
free(localpeer);
if ((localpeer = strdup(*argv)) == NULL) {
ha_alert("Cannot allocate memory for local peer.\n");
exit(EXIT_FAILURE);
}
setenv("HAPROXY_LOCALPEER", localpeer, 1);
global.localpeer_cmdline = 1;
break;
case 'f' :
if (!list_append_word(&cfg_cfgfiles, *argv, &err_msg)) {
ha_alert("Cannot load configuration file/directory %s : %s\n",
*argv,
err_msg);
exit(1);
}
break;
case 'p' : cfg_pidfile = *argv; break;
default: usage(progname);
}
}
}
else
usage(progname);
argv++; argc--;
}
global.mode |= (arg_mode & (MODE_DAEMON | MODE_MWORKER | MODE_FOREGROUND | MODE_VERBOSE
| MODE_QUIET | MODE_CHECK | MODE_DEBUG | MODE_ZERO_WARNING
| MODE_DIAG | MODE_CHECK_CONDITION));
if (getenv("HAPROXY_MWORKER_WAIT_ONLY")) {
unsetenv("HAPROXY_MWORKER_WAIT_ONLY");
global.mode |= MODE_MWORKER_WAIT;
global.mode &= ~MODE_MWORKER;
}
if ((global.mode & MODE_MWORKER) && (getenv("HAPROXY_MWORKER_REEXEC") != NULL)) {
atexit_flag = 1;
atexit(reexec_on_failure);
}
if (change_dir && chdir(change_dir) < 0) {
ha_alert("Could not change to directory %s : %s\n", change_dir, strerror(errno));
exit(1);
}
global.maxsock = 10; /* reserve 10 fds ; will be incremented by socket eaters */
#ifdef USE_CPU_AFFINITY
{
int i;
for (i = 0; i < MAX_PROCS; ++i) {
ha_cpuset_zero(&cpu_map.proc[i]);
ha_cpuset_zero(&cpu_map.proc_t1[i]);
}
for (i = 0; i < MAX_THREADS; ++i) {
ha_cpuset_zero(&cpu_map.thread[i]);
}
}
#endif
usermsgs_clr("config");
if (global.mode & MODE_CHECK_CONDITION) {
int result;
uint32_t err;
const char *errptr;
char *errmsg = NULL;
char *args[MAX_LINE_ARGS+1];
int arg = sizeof(args) / sizeof(*args);
size_t outlen = strlen(check_condition) + 1;
err = parse_line(check_condition, check_condition, &outlen, args, &arg,
PARSE_OPT_DQUOTE | PARSE_OPT_SQUOTE | PARSE_OPT_BKSLASH,
&errptr);
if (err & PARSE_ERR_QUOTE) {
ha_alert("Syntax Error in condition: Unmatched quote.\n");
exit(2);
}
if (err & PARSE_ERR_HEX) {
ha_alert("Syntax Error in condition: Truncated or invalid hexadecimal sequence.\n");
exit(2);
}
if (err & (PARSE_ERR_TOOLARGE|PARSE_ERR_OVERLAP)) {
ha_alert("Error in condition: Line too long.\n");
exit(2);
}
if (err & PARSE_ERR_TOOMANY) {
ha_alert("Error in condition: Too many words.\n");
exit(2);
}
if (err) {
ha_alert("Unhandled error in condition, please report this to the developers.\n");
exit(2);
}
result = cfg_eval_condition(args, &errmsg, &errptr);
if (result < 0) {
if (errmsg)
ha_alert("Failed to evaluate condition: %s\n", errmsg);
exit(2);
}
exit(result ? 0 : 1);
}
/* in wait mode, we don't try to read the configuration files */
if (!(global.mode & MODE_MWORKER_WAIT)) {
char *env_cfgfiles = NULL;
int env_err = 0;
/* handle cfgfiles that are actually directories */
cfgfiles_expand_directories();
if (LIST_ISEMPTY(&cfg_cfgfiles))
usage(progname);
list_for_each_entry(wl, &cfg_cfgfiles, list) {
int ret;
if (env_err == 0) {
if (!memprintf(&env_cfgfiles, "%s%s%s",
(env_cfgfiles ? env_cfgfiles : ""),
(env_cfgfiles ? ";" : ""), wl->s))
env_err = 1;
}
ret = readcfgfile(wl->s);
if (ret == -1) {
ha_alert("Could not open configuration file %s : %s\n",
wl->s, strerror(errno));
free(env_cfgfiles);
exit(1);
}
if (ret & (ERR_ABORT|ERR_FATAL))
ha_alert("Error(s) found in configuration file : %s\n", wl->s);
err_code |= ret;
if (err_code & ERR_ABORT) {
free(env_cfgfiles);
exit(1);
}
}
/* do not try to resolve arguments nor to spot inconsistencies when
* the configuration contains fatal errors caused by files not found
* or failed memory allocations.
*/
if (err_code & (ERR_ABORT|ERR_FATAL)) {
ha_alert("Fatal errors found in configuration.\n");
free(env_cfgfiles);
exit(1);
}
if (env_err) {
ha_alert("Could not allocate memory for HAPROXY_CFGFILES env variable\n");
exit(1);
}
setenv("HAPROXY_CFGFILES", env_cfgfiles, 1);
free(env_cfgfiles);
}
if (global.mode & MODE_MWORKER) {
int proc;
struct mworker_proc *tmproc;
setenv("HAPROXY_MWORKER", "1", 1);
if (getenv("HAPROXY_MWORKER_REEXEC") == NULL) {
tmproc = calloc(1, sizeof(*tmproc));
if (!tmproc) {
ha_alert("Cannot allocate process structures.\n");
exit(EXIT_FAILURE);
}
tmproc->options |= PROC_O_TYPE_MASTER; /* master */
tmproc->reloads = 0;
tmproc->relative_pid = 0;
tmproc->pid = pid;
tmproc->timestamp = start_date.tv_sec;
tmproc->ipc_fd[0] = -1;
tmproc->ipc_fd[1] = -1;
proc_self = tmproc;
LIST_APPEND(&proc_list, &tmproc->list);
}
for (proc = 0; proc < global.nbproc; proc++) {
tmproc = calloc(1, sizeof(*tmproc));
if (!tmproc) {
ha_alert("Cannot allocate process structures.\n");
exit(EXIT_FAILURE);
}
tmproc->options |= PROC_O_TYPE_WORKER; /* worker */
tmproc->pid = -1;
tmproc->reloads = 0;
tmproc->timestamp = -1;
tmproc->relative_pid = 1 + proc;
tmproc->ipc_fd[0] = -1;
tmproc->ipc_fd[1] = -1;
if (mworker_cli_sockpair_new(tmproc, proc) < 0) {
exit(EXIT_FAILURE);
}
LIST_APPEND(&proc_list, &tmproc->list);
}
}
if (global.mode & (MODE_MWORKER|MODE_MWORKER_WAIT)) {
struct wordlist *it, *c;
/* get the info of the children in the env */
if (mworker_env_to_proc_list() < 0) {
exit(EXIT_FAILURE);
}
if (!LIST_ISEMPTY(&mworker_cli_conf)) {
if (mworker_cli_proxy_create() < 0) {
ha_alert("Can't create the master's CLI.\n");
exit(EXIT_FAILURE);
}
list_for_each_entry_safe(c, it, &mworker_cli_conf, list) {
if (mworker_cli_proxy_new_listener(c->s) < 0) {
ha_alert("Can't create the master's CLI.\n");
exit(EXIT_FAILURE);
}
LIST_DELETE(&c->list);
free(c->s);
free(c);
}
}
}
if (!LIST_ISEMPTY(&mworker_cli_conf) && !(arg_mode & MODE_MWORKER)) {
ha_warning("a master CLI socket was defined, but master-worker mode (-W) is not enabled.\n");
}
if (global.nbproc > 1 && !global.nbthread) {
ha_warning("nbproc is deprecated!\n"
" | For suffering many limitations, the 'nbproc' directive is now deprecated\n"
" | and scheduled for removal in 2.5. Just comment it out: haproxy will use\n"
" | threads and will run on all allocated processors. You may also switch to\n"
" | 'nbthread %d' to keep the same number of processors. If you absolutely\n"
" | want to run in multi-process mode, you can silence this warning by adding\n"
" | 'nbthread 1', but then please report your use case to developers.\n",
global.nbproc);
}
/* defaults sections are not needed anymore */
proxy_destroy_all_defaults();
err_code |= check_config_validity();
for (px = proxies_list; px; px = px->next) {
struct server *srv;
struct post_proxy_check_fct *ppcf;
struct post_server_check_fct *pscf;
if (px->disabled)
continue;
list_for_each_entry(pscf, &post_server_check_list, list) {
for (srv = px->srv; srv; srv = srv->next)
err_code |= pscf->fct(srv);
}
list_for_each_entry(ppcf, &post_proxy_check_list, list)
err_code |= ppcf->fct(px);
}
if (err_code & (ERR_ABORT|ERR_FATAL)) {
ha_alert("Fatal errors found in configuration.\n");
exit(1);
}
err_code |= pattern_finalize_config();
if (err_code & (ERR_ABORT|ERR_FATAL)) {
ha_alert("Failed to finalize pattern config.\n");
exit(1);
}
/* recompute the amount of per-process memory depending on nbproc and
* the shared SSL cache size (allowed to exist in all processes).
*/
if (global.rlimit_memmax_all) {
#if defined (USE_OPENSSL) && !defined(USE_PRIVATE_CACHE)
int64_t ssl_cache_bytes = global.tune.sslcachesize * 200LL;
global.rlimit_memmax =
((((int64_t)global.rlimit_memmax_all * 1048576LL) -
ssl_cache_bytes) / global.nbproc +
ssl_cache_bytes + 1048575LL) / 1048576LL;
#else
global.rlimit_memmax = global.rlimit_memmax_all / global.nbproc;
#endif
}
#ifdef USE_NS
err_code |= netns_init();
if (err_code & (ERR_ABORT|ERR_FATAL)) {
ha_alert("Failed to initialize namespace support.\n");
exit(1);
}
#endif
/* Apply server states */
apply_server_state();
for (px = proxies_list; px; px = px->next)
srv_compute_all_admin_states(px);
/* Apply servers' configured address */
err_code |= srv_init_addr();
if (err_code & (ERR_ABORT|ERR_FATAL)) {
ha_alert("Failed to initialize server(s) addr.\n");
exit(1);
}
if (warned & WARN_ANY && global.mode & MODE_ZERO_WARNING) {
ha_alert("Some warnings were found and 'zero-warning' is set. Aborting.\n");
exit(1);
}
if (global.mode & MODE_CHECK) {
struct peers *pr;
struct proxy *px;
if (warned & WARN_ANY)
qfprintf(stdout, "Warnings were found.\n");
for (pr = cfg_peers; pr; pr = pr->next)
if (pr->peers_fe)
break;
for (px = proxies_list; px; px = px->next)
if (!px->disabled && px->li_all)
break;
if (pr || px) {
/* At least one peer or one listener has been found */
qfprintf(stdout, "Configuration file is valid\n");
deinit_and_exit(0);
}
qfprintf(stdout, "Configuration file has no error but will not start (no listener) => exit(2).\n");
exit(2);
}
if (global.mode & MODE_DIAG) {
cfg_run_diagnostics();
}
/* now we know the buffer size, we can initialize the channels and buffers */
init_buffer();
list_for_each_entry(pcf, &post_check_list, list) {
err_code |= pcf->fct();
if (err_code & (ERR_ABORT|ERR_FATAL))
exit(1);
}
if (cfg_maxconn > 0)
global.maxconn = cfg_maxconn;
if (global.cli_fe)
global.maxsock += global.cli_fe->maxconn;
if (cfg_peers) {
/* peers also need to bypass global maxconn */
struct peers *p = cfg_peers;
for (p = cfg_peers; p; p = p->next)
if (p->peers_fe)
global.maxsock += p->peers_fe->maxconn;
}
if (cfg_pidfile) {
free(global.pidfile);
global.pidfile = strdup(cfg_pidfile);
}
/* Now we want to compute the maxconn and possibly maxsslconn values.
* It's a bit tricky. Maxconn defaults to the pre-computed value based
* on rlim_fd_cur and the number of FDs in use due to the configuration,
* and maxsslconn defaults to DEFAULT_MAXSSLCONN. On top of that we can
* enforce a lower limit based on memmax.
*
* If memmax is set, then it depends on which values are set. If
* maxsslconn is set, we use memmax to determine how many cleartext
* connections may be added, and set maxconn to the sum of the two.
* If maxconn is set and not maxsslconn, maxsslconn is computed from
* the remaining amount of memory between memmax and the cleartext
* connections. If neither are set, then it is considered that all
* connections are SSL-capable, and maxconn is computed based on this,
* then maxsslconn accordingly. We need to know if SSL is used on the
* frontends, backends, or both, because when it's used on both sides,
* we need twice the value for maxsslconn, but we only count the
* handshake once since it is not performed on the two sides at the
* same time (frontend-side is terminated before backend-side begins).
* The SSL stack is supposed to have filled ssl_session_cost and
* ssl_handshake_cost during its initialization. In any case, if
* SYSTEM_MAXCONN is set, we still enforce it as an upper limit for
* maxconn in order to protect the system.
*/
ideal_maxconn = compute_ideal_maxconn();
if (!global.rlimit_memmax) {
if (global.maxconn == 0) {
global.maxconn = ideal_maxconn;
if (global.mode & (MODE_VERBOSE|MODE_DEBUG))
fprintf(stderr, "Note: setting global.maxconn to %d.\n", global.maxconn);
}
}
#ifdef USE_OPENSSL
else if (!global.maxconn && !global.maxsslconn &&
(global.ssl_used_frontend || global.ssl_used_backend)) {
/* memmax is set, compute everything automatically. Here we want
* to ensure that all SSL connections will be served. We take
* care of the number of sides where SSL is used, and consider
* the worst case : SSL used on both sides and doing a handshake
* simultaneously. Note that we can't have more than maxconn
* handshakes at a time by definition, so for the worst case of
* two SSL conns per connection, we count a single handshake.
*/
int sides = !!global.ssl_used_frontend + !!global.ssl_used_backend;
int64_t mem = global.rlimit_memmax * 1048576ULL;
int retried = 0;
mem -= global.tune.sslcachesize * 200; // about 200 bytes per SSL cache entry
mem -= global.maxzlibmem;
mem = mem * MEM_USABLE_RATIO;
/* Principle: we test once to set maxconn according to the free
* memory. If it results in values the system rejects, we try a
* second time by respecting rlim_fd_max. If it fails again, we
* go back to the initial value and will let the final code
* dealing with rlimit report the error. That's up to 3 attempts.
*/
do {
global.maxconn = mem /
((STREAM_MAX_COST + 2 * global.tune.bufsize) + // stream + 2 buffers per stream
sides * global.ssl_session_max_cost + // SSL buffers, one per side
global.ssl_handshake_max_cost); // 1 handshake per connection max
if (retried == 1)
global.maxconn = MIN(global.maxconn, ideal_maxconn);
global.maxconn = round_2dig(global.maxconn);
#ifdef SYSTEM_MAXCONN
if (global.maxconn > SYSTEM_MAXCONN)
global.maxconn = SYSTEM_MAXCONN;
#endif /* SYSTEM_MAXCONN */
global.maxsslconn = sides * global.maxconn;
if (check_if_maxsock_permitted(compute_ideal_maxsock(global.maxconn)))
break;
} while (retried++ < 2);
if (global.mode & (MODE_VERBOSE|MODE_DEBUG))
fprintf(stderr, "Note: setting global.maxconn to %d and global.maxsslconn to %d.\n",
global.maxconn, global.maxsslconn);
}
else if (!global.maxsslconn &&
(global.ssl_used_frontend || global.ssl_used_backend)) {
/* memmax and maxconn are known, compute maxsslconn automatically.
* maxsslconn being forced, we don't know how many of it will be
* on each side if both sides are being used. The worst case is
* when all connections use only one SSL instance because
* handshakes may be on two sides at the same time.
*/
int sides = !!global.ssl_used_frontend + !!global.ssl_used_backend;
int64_t mem = global.rlimit_memmax * 1048576ULL;
int64_t sslmem;
mem -= global.tune.sslcachesize * 200; // about 200 bytes per SSL cache entry
mem -= global.maxzlibmem;
mem = mem * MEM_USABLE_RATIO;
sslmem = mem - global.maxconn * (int64_t)(STREAM_MAX_COST + 2 * global.tune.bufsize);
global.maxsslconn = sslmem / (global.ssl_session_max_cost + global.ssl_handshake_max_cost);
global.maxsslconn = round_2dig(global.maxsslconn);
if (sslmem <= 0 || global.maxsslconn < sides) {
ha_alert("Cannot compute the automatic maxsslconn because global.maxconn is already too "
"high for the global.memmax value (%d MB). The absolute maximum possible value "
"without SSL is %d, but %d was found and SSL is in use.\n",
global.rlimit_memmax,
(int)(mem / (STREAM_MAX_COST + 2 * global.tune.bufsize)),
global.maxconn);
exit(1);
}
if (global.maxsslconn > sides * global.maxconn)
global.maxsslconn = sides * global.maxconn;
if (global.mode & (MODE_VERBOSE|MODE_DEBUG))
fprintf(stderr, "Note: setting global.maxsslconn to %d\n", global.maxsslconn);
}
#endif
else if (!global.maxconn) {
/* memmax and maxsslconn are known/unused, compute maxconn automatically */
int sides = !!global.ssl_used_frontend + !!global.ssl_used_backend;
int64_t mem = global.rlimit_memmax * 1048576ULL;
int64_t clearmem;
int retried = 0;
if (global.ssl_used_frontend || global.ssl_used_backend)
mem -= global.tune.sslcachesize * 200; // about 200 bytes per SSL cache entry
mem -= global.maxzlibmem;
mem = mem * MEM_USABLE_RATIO;
clearmem = mem;
if (sides)
clearmem -= (global.ssl_session_max_cost + global.ssl_handshake_max_cost) * (int64_t)global.maxsslconn;
/* Principle: we test once to set maxconn according to the free
* memory. If it results in values the system rejects, we try a
* second time by respecting rlim_fd_max. If it fails again, we
* go back to the initial value and will let the final code
* dealing with rlimit report the error. That's up to 3 attempts.
*/
do {
global.maxconn = clearmem / (STREAM_MAX_COST + 2 * global.tune.bufsize);
if (retried == 1)
global.maxconn = MIN(global.maxconn, ideal_maxconn);
global.maxconn = round_2dig(global.maxconn);
#ifdef SYSTEM_MAXCONN
if (global.maxconn > SYSTEM_MAXCONN)
global.maxconn = SYSTEM_MAXCONN;
#endif /* SYSTEM_MAXCONN */
if (clearmem <= 0 || !global.maxconn) {
ha_alert("Cannot compute the automatic maxconn because global.maxsslconn is already too "
"high for the global.memmax value (%d MB). The absolute maximum possible value "
"is %d, but %d was found.\n",
global.rlimit_memmax,
(int)(mem / (global.ssl_session_max_cost + global.ssl_handshake_max_cost)),
global.maxsslconn);
exit(1);
}
if (check_if_maxsock_permitted(compute_ideal_maxsock(global.maxconn)))
break;
} while (retried++ < 2);
if (global.mode & (MODE_VERBOSE|MODE_DEBUG)) {
if (sides && global.maxsslconn > sides * global.maxconn) {
fprintf(stderr, "Note: global.maxsslconn is forced to %d which causes global.maxconn "
"to be limited to %d. Better reduce global.maxsslconn to get more "
"room for extra connections.\n", global.maxsslconn, global.maxconn);
}
fprintf(stderr, "Note: setting global.maxconn to %d\n", global.maxconn);
}
}
global.maxsock = compute_ideal_maxsock(global.maxconn);
global.hardmaxconn = global.maxconn;
if (!global.maxpipes)
global.maxpipes = compute_ideal_maxpipes();
/* update connection pool thresholds */
global.tune.pool_low_count = ((long long)global.maxsock * global.tune.pool_low_ratio + 99) / 100;
global.tune.pool_high_count = ((long long)global.maxsock * global.tune.pool_high_ratio + 99) / 100;
proxy_adjust_all_maxconn();
if (global.tune.maxpollevents <= 0)
global.tune.maxpollevents = MAX_POLL_EVENTS;
if (global.tune.runqueue_depth <= 0) {
/* tests on various thread counts from 1 to 64 have shown an
* optimal queue depth following roughly 1/sqrt(threads).
*/
int s = my_flsl(global.nbthread);
s += (global.nbthread / s); // roughly twice the sqrt.
global.tune.runqueue_depth = RUNQUEUE_DEPTH * 2 / s;
}
if (global.tune.recv_enough == 0)
global.tune.recv_enough = MIN_RECV_AT_ONCE_ENOUGH;
if (global.tune.maxrewrite >= global.tune.bufsize / 2)
global.tune.maxrewrite = global.tune.bufsize / 2;
usermsgs_clr(NULL);
if (arg_mode & (MODE_DEBUG | MODE_FOREGROUND)) {
/* command line debug mode inhibits configuration mode */
global.mode &= ~(MODE_DAEMON | MODE_QUIET);
global.mode |= (arg_mode & (MODE_DEBUG | MODE_FOREGROUND));
}
if (arg_mode & MODE_DAEMON) {
/* command line daemon mode inhibits foreground and debug modes mode */
global.mode &= ~(MODE_DEBUG | MODE_FOREGROUND);
global.mode |= arg_mode & MODE_DAEMON;
}
global.mode |= (arg_mode & (MODE_QUIET | MODE_VERBOSE));
if ((global.mode & MODE_DEBUG) && (global.mode & (MODE_DAEMON | MODE_QUIET))) {
ha_warning("<debug> mode incompatible with <quiet> and <daemon>. Keeping <debug> only.\n");
global.mode &= ~(MODE_DAEMON | MODE_QUIET);
}
if ((global.nbproc > 1) && !(global.mode & (MODE_DAEMON | MODE_MWORKER))) {
if (!(global.mode & (MODE_FOREGROUND | MODE_DEBUG)))
ha_warning("<nbproc> is only meaningful in daemon mode or master-worker mode. Setting limit to 1 process.\n");
global.nbproc = 1;
}
if (global.nbproc < 1)
global.nbproc = 1;
if (global.nbthread < 1)
global.nbthread = 1;
/* Realloc trash buffers because global.tune.bufsize may have changed */
if (!init_trash_buffers(0)) {
ha_alert("failed to initialize trash buffers.\n");
exit(1);
}
if (!init_log_buffers()) {
ha_alert("failed to initialize log buffers.\n");
exit(1);
}
/*
* Note: we could register external pollers here.
* Built-in pollers have been registered before main().
*/
if (!(global.tune.options & GTUNE_USE_KQUEUE))
disable_poller("kqueue");
if (!(global.tune.options & GTUNE_USE_EVPORTS))
disable_poller("evports");
if (!(global.tune.options & GTUNE_USE_EPOLL))
disable_poller("epoll");
if (!(global.tune.options & GTUNE_USE_POLL))
disable_poller("poll");
if (!(global.tune.options & GTUNE_USE_SELECT))
disable_poller("select");
/* Note: we could disable any poller by name here */
if (global.mode & (MODE_VERBOSE|MODE_DEBUG)) {
list_pollers(stderr);
fprintf(stderr, "\n");
list_filters(stderr);
}
if (!init_pollers()) {
ha_alert("No polling mechanism available.\n"
" It is likely that haproxy was built with TARGET=generic and that FD_SETSIZE\n"
" is too low on this platform to support maxconn and the number of listeners\n"
" and servers. You should rebuild haproxy specifying your system using TARGET=\n"
" in order to support other polling systems (poll, epoll, kqueue) or reduce the\n"
" global maxconn setting to accommodate the system's limitation. For reference,\n"
" FD_SETSIZE=%d on this system, global.maxconn=%d resulting in a maximum of\n"
" %d file descriptors. You should thus reduce global.maxconn by %d. Also,\n"
" check build settings using 'haproxy -vv'.\n\n",
FD_SETSIZE, global.maxconn, global.maxsock, (global.maxsock + 1 - FD_SETSIZE) / 2);
exit(1);
}
if (global.mode & (MODE_VERBOSE|MODE_DEBUG)) {
printf("Using %s() as the polling mechanism.\n", cur_poller.name);
}
if (!global.node)
global.node = strdup(hostname);
/* stop disabled proxies */
for (px = proxies_list; px; px = px->next) {
if (px->disabled)
stop_proxy(px);
}
if (!hlua_post_init())
exit(1);
free(err_msg);
}
void deinit(void)
{
struct proxy *p = proxies_list, *p0;
struct wordlist *wl, *wlb;
struct uri_auth *uap, *ua = NULL;
struct logsrv *log, *logb;
struct build_opts_str *bol, *bolb;
struct post_deinit_fct *pdf, *pdfb;
struct proxy_deinit_fct *pxdf, *pxdfb;
struct server_deinit_fct *srvdf, *srvdfb;
struct per_thread_init_fct *tif, *tifb;
struct per_thread_deinit_fct *tdf, *tdfb;
struct per_thread_alloc_fct *taf, *tafb;
struct per_thread_free_fct *tff, *tffb;
struct post_server_check_fct *pscf, *pscfb;
struct post_check_fct *pcf, *pcfb;
struct post_proxy_check_fct *ppcf, *ppcfb;
int cur_fd;
/* At this point the listeners state is weird:
* - most listeners are still bound and referenced in their protocol
* - some might be zombies that are not in their proto anymore, but
* still appear in their proxy's listeners with a valid FD.
* - some might be stopped and still appear in their proxy as FD #-1
* - among all of them, some might be inherited hence shared and we're
* not allowed to pause them or whatever, we must just close them.
* - finally some are not listeners (pipes, logs, stdout, etc) and
* must be left intact.
*
* The safe way to proceed is to unbind (and close) whatever is not yet
* unbound so that no more receiver/listener remains alive. Then close
* remaining listener FDs, which correspond to zombie listeners (those
* belonging to disabled proxies that were in another process).
* objt_listener() would be cleaner here but not converted yet.
*/
protocol_unbind_all();
for (cur_fd = 0; cur_fd < global.maxsock; cur_fd++) {
if (!fdtab || !fdtab[cur_fd].owner)
continue;
if (fdtab[cur_fd].iocb == &sock_accept_iocb) {
struct listener *l = fdtab[cur_fd].owner;
BUG_ON(l->state != LI_INIT);
unbind_listener(l);
}
}
deinit_signals();
while (p) {
/* build a list of unique uri_auths */
if (!ua)
ua = p->uri_auth;
else {
/* check if p->uri_auth is unique */
for (uap = ua; uap; uap=uap->next)
if (uap == p->uri_auth)
break;
if (!uap && p->uri_auth) {
/* add it, if it is */
p->uri_auth->next = ua;
ua = p->uri_auth;
}
}
p0 = p;
p = p->next;
free_proxy(p0);
}/* end while(p) */
while (ua) {
struct stat_scope *scope, *scopep;
uap = ua;
ua = ua->next;
free(uap->uri_prefix);
free(uap->auth_realm);
free(uap->node);
free(uap->desc);
userlist_free(uap->userlist);
free_act_rules(&uap->http_req_rules);
scope = uap->scope;
while (scope) {
scopep = scope;
scope = scope->next;
free(scopep->px_id);
free(scopep);
}
free(uap);
}
userlist_free(userlist);
cfg_unregister_sections();
deinit_log_buffers();
list_for_each_entry(pdf, &post_deinit_list, list)
pdf->fct();
ha_free(&global.log_send_hostname);
chunk_destroy(&global.log_tag);
ha_free(&global.chroot);
ha_free(&global.pidfile);
ha_free(&global.node);
ha_free(&global.desc);
ha_free(&oldpids);
ha_free(&old_argv);
ha_free(&localpeer);
ha_free(&global.server_state_base);
ha_free(&global.server_state_file);
task_destroy(idle_conn_task);
idle_conn_task = NULL;
list_for_each_entry_safe(log, logb, &global.logsrvs, list) {
LIST_DELETE(&log->list);
free(log->conf.file);
free(log);
}
list_for_each_entry_safe(wl, wlb, &cfg_cfgfiles, list) {
free(wl->s);
LIST_DELETE(&wl->list);
free(wl);
}
list_for_each_entry_safe(bol, bolb, &build_opts_list, list) {
if (bol->must_free)
free((void *)bol->str);
LIST_DELETE(&bol->list);
free(bol);
}
list_for_each_entry_safe(pxdf, pxdfb, &proxy_deinit_list, list) {
LIST_DELETE(&pxdf->list);
free(pxdf);
}
list_for_each_entry_safe(pdf, pdfb, &post_deinit_list, list) {
LIST_DELETE(&pdf->list);
free(pdf);
}
list_for_each_entry_safe(srvdf, srvdfb, &server_deinit_list, list) {
LIST_DELETE(&srvdf->list);
free(srvdf);
}
list_for_each_entry_safe(pcf, pcfb, &post_check_list, list) {
LIST_DELETE(&pcf->list);
free(pcf);
}
list_for_each_entry_safe(pscf, pscfb, &post_server_check_list, list) {
LIST_DELETE(&pscf->list);
free(pscf);
}
list_for_each_entry_safe(ppcf, ppcfb, &post_proxy_check_list, list) {
LIST_DELETE(&ppcf->list);
free(ppcf);
}
list_for_each_entry_safe(tif, tifb, &per_thread_init_list, list) {
LIST_DELETE(&tif->list);
free(tif);
}
list_for_each_entry_safe(tdf, tdfb, &per_thread_deinit_list, list) {
LIST_DELETE(&tdf->list);
free(tdf);
}
list_for_each_entry_safe(taf, tafb, &per_thread_alloc_list, list) {
LIST_DELETE(&taf->list);
free(taf);
}
list_for_each_entry_safe(tff, tffb, &per_thread_free_list, list) {
LIST_DELETE(&tff->list);
free(tff);
}
vars_prune(&proc_vars, NULL, NULL);
pool_destroy_all();
deinit_pollers();
} /* end deinit() */
__attribute__((noreturn)) void deinit_and_exit(int status)
{
deinit();
exit(status);
}
/* Handler of the task of mux_stopping_data.
* Called on soft-stop.
*/
struct task *mux_stopping_process(struct task *t, void *ctx, unsigned int state)
{
struct connection *conn, *back;
list_for_each_entry_safe(conn, back, &mux_stopping_data[tid].list, stopping_list) {
if (conn->mux && conn->mux->wake)
conn->mux->wake(conn);
}
return t;
}
/* Runs the polling loop */
void run_poll_loop()
{
int next, wake;
/* allocates the thread bound mux_stopping_data task */
mux_stopping_data[tid].task = task_new(tid_bit);
mux_stopping_data[tid].task->process = mux_stopping_process;
LIST_INIT(&mux_stopping_data[tid].list);
tv_update_date(0,1);
while (1) {
wake_expired_tasks();
/* check if we caught some signals and process them in the
first thread */
if (signal_queue_len && tid == 0) {
activity[tid].wake_signal++;
signal_process_queue();
}
/* Process a few tasks */
process_runnable_tasks();
/* also stop if we failed to cleanly stop all tasks */
if (killed > 1)
break;
/* expire immediately if events are pending */
wake = 1;
if (thread_has_tasks())
activity[tid].wake_tasks++;
else {
_HA_ATOMIC_OR(&sleeping_thread_mask, tid_bit);
__ha_barrier_atomic_store();
if (thread_has_tasks()) {
activity[tid].wake_tasks++;
_HA_ATOMIC_AND(&sleeping_thread_mask, ~tid_bit);
} else
wake = 0;
}
if (!wake) {
int i;
if (stopping) {
/* stop muxes before acknowledging stopping */
if (!(stopping_thread_mask & tid_bit)) {
task_wakeup(mux_stopping_data[tid].task, TASK_WOKEN_OTHER);
wake = 1;
}
if (_HA_ATOMIC_OR_FETCH(&stopping_thread_mask, tid_bit) == tid_bit) {
/* notify all threads that stopping was just set */
for (i = 0; i < global.nbthread; i++)
if (((all_threads_mask & ~stopping_thread_mask) >> i) & 1)
wake_thread(i);
}
}
/* stop when there's nothing left to do */
if ((jobs - unstoppable_jobs) == 0 &&
(stopping_thread_mask & all_threads_mask) == all_threads_mask) {
/* wake all threads waiting on jobs==0 */
for (i = 0; i < global.nbthread; i++)
if (((all_threads_mask & ~tid_bit) >> i) & 1)
wake_thread(i);
break;
}
}
/* If we have to sleep, measure how long */
next = wake ? TICK_ETERNITY : next_timer_expiry();
/* The poller will ensure it returns around <next> */
cur_poller.poll(&cur_poller, next, wake);
activity[tid].loops++;
}
task_destroy(mux_stopping_data[tid].task);
}
static void *run_thread_poll_loop(void *data)
{
struct per_thread_alloc_fct *ptaf;
struct per_thread_init_fct *ptif;
struct per_thread_deinit_fct *ptdf;
struct per_thread_free_fct *ptff;
static int init_left = 0;
__decl_thread(static pthread_mutex_t init_mutex = PTHREAD_MUTEX_INITIALIZER);
__decl_thread(static pthread_cond_t init_cond = PTHREAD_COND_INITIALIZER);
ha_set_tid((unsigned long)data);
sched = &task_per_thread[tid];
#if (_POSIX_TIMERS > 0) && defined(_POSIX_THREAD_CPUTIME)
#ifdef USE_THREAD
pthread_getcpuclockid(pthread_self(), &ti->clock_id);
#else
ti->clock_id = CLOCK_THREAD_CPUTIME_ID;
#endif
#endif
/* Now, initialize one thread init at a time. This is better since
* some init code is a bit tricky and may release global resources
* after reallocating them locally. This will also ensure there is
* no race on file descriptors allocation.
*/
#ifdef USE_THREAD
pthread_mutex_lock(&init_mutex);
#endif
/* The first thread must set the number of threads left */
if (!init_left)
init_left = global.nbthread;
init_left--;
tv_init_thread_date();
/* per-thread alloc calls performed here are not allowed to snoop on
* other threads, so they are free to initialize at their own rhythm
* as long as they act as if they were alone. None of them may rely
* on resources initialized by the other ones.
*/
list_for_each_entry(ptaf, &per_thread_alloc_list, list) {
if (!ptaf->fct()) {
ha_alert("failed to allocate resources for thread %u.\n", tid);
exit(1);
}
}
/* per-thread init calls performed here are not allowed to snoop on
* other threads, so they are free to initialize at their own rhythm
* as long as they act as if they were alone.
*/
list_for_each_entry(ptif, &per_thread_init_list, list) {
if (!ptif->fct()) {
ha_alert("failed to initialize thread %u.\n", tid);
exit(1);
}
}
/* enabling protocols will result in fd_insert() calls to be performed,
* we want all threads to have already allocated their local fd tables
* before doing so, thus only the last thread does it.
*/
if (init_left == 0)
protocol_enable_all();
#ifdef USE_THREAD
pthread_cond_broadcast(&init_cond);
pthread_mutex_unlock(&init_mutex);
/* now wait for other threads to finish starting */
pthread_mutex_lock(&init_mutex);
while (init_left)
pthread_cond_wait(&init_cond, &init_mutex);
pthread_mutex_unlock(&init_mutex);
#endif
#if defined(PR_SET_NO_NEW_PRIVS) && defined(USE_PRCTL)
/* Let's refrain from using setuid executables. This way the impact of
* an eventual vulnerability in a library remains limited. It may
* impact external checks but who cares about them anyway ? In the
* worst case it's possible to disable the option. Obviously we do this
* in workers only. We can't hard-fail on this one as it really is
* implementation dependent though we're interested in feedback, hence
* the warning.
*/
if (!(global.tune.options & GTUNE_INSECURE_SETUID) && !master) {
static int warn_fail;
if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) == -1 && !_HA_ATOMIC_FETCH_ADD(&warn_fail, 1)) {
ha_warning("Failed to disable setuid, please report to developers with detailed "
"information about your operating system. You can silence this warning "
"by adding 'insecure-setuid-wanted' in the 'global' section.\n");
}
}
#endif
#if defined(RLIMIT_NPROC)
/* all threads have started, it's now time to prevent any new thread
* or process from starting. Obviously we do this in workers only. We
* can't hard-fail on this one as it really is implementation dependent
* though we're interested in feedback, hence the warning.
*/
if (!(global.tune.options & GTUNE_INSECURE_FORK) && !master) {
struct rlimit limit = { .rlim_cur = 0, .rlim_max = 0 };
static int warn_fail;
if (setrlimit(RLIMIT_NPROC, &limit) == -1 && !_HA_ATOMIC_FETCH_ADD(&warn_fail, 1)) {
ha_warning("Failed to disable forks, please report to developers with detailed "
"information about your operating system. You can silence this warning "
"by adding 'insecure-fork-wanted' in the 'global' section.\n");
}
}
#endif
run_poll_loop();
list_for_each_entry(ptdf, &per_thread_deinit_list, list)
ptdf->fct();
list_for_each_entry(ptff, &per_thread_free_list, list)
ptff->fct();
#ifdef USE_THREAD
_HA_ATOMIC_AND(&all_threads_mask, ~tid_bit);
if (tid > 0)
pthread_exit(NULL);
#endif
return NULL;
}
/* set uid/gid depending on global settings */
static void set_identity(const char *program_name)
{
if (global.gid) {
if (getgroups(0, NULL) > 0 && setgroups(0, NULL) == -1)
ha_warning("[%s.main()] Failed to drop supplementary groups. Using 'gid'/'group'"
" without 'uid'/'user' is generally useless.\n", program_name);
if (setgid(global.gid) == -1) {
ha_alert("[%s.main()] Cannot set gid %d.\n", program_name, global.gid);
protocol_unbind_all();
exit(1);
}
}
if (global.uid && setuid(global.uid) == -1) {
ha_alert("[%s.main()] Cannot set uid %d.\n", program_name, global.uid);
protocol_unbind_all();
exit(1);
}
}
int main(int argc, char **argv)
{
int err, retry;
struct rlimit limit;
int pidfd = -1;
setvbuf(stdout, NULL, _IONBF, 0);
/* this can only safely be done here, though it's optimized away by
* the compiler.
*/
if (MAX_PROCS < 1 || MAX_PROCS > LONGBITS) {
ha_alert("MAX_PROCS value must be between 1 and %d inclusive; "
"HAProxy was built with value %d, please fix it and rebuild.\n",
LONGBITS, MAX_PROCS);
exit(1);
}
/* take a copy of initial limits before we possibly change them */
getrlimit(RLIMIT_NOFILE, &limit);
if (limit.rlim_max == RLIM_INFINITY)
limit.rlim_max = limit.rlim_cur;
rlim_fd_cur_at_boot = limit.rlim_cur;
rlim_fd_max_at_boot = limit.rlim_max;
/* process all initcalls in order of potential dependency */
RUN_INITCALLS(STG_PREPARE);
RUN_INITCALLS(STG_LOCK);
RUN_INITCALLS(STG_ALLOC);
RUN_INITCALLS(STG_POOL);
RUN_INITCALLS(STG_REGISTER);
RUN_INITCALLS(STG_INIT);
init(argc, argv);
signal_register_fct(SIGQUIT, dump, SIGQUIT);
signal_register_fct(SIGUSR1, sig_soft_stop, SIGUSR1);
signal_register_fct(SIGHUP, sig_dump_state, SIGHUP);
signal_register_fct(SIGUSR2, NULL, 0);
/* Always catch SIGPIPE even on platforms which define MSG_NOSIGNAL.
* Some recent FreeBSD setups report broken pipes, and MSG_NOSIGNAL
* was defined there, so let's stay on the safe side.
*/
signal_register_fct(SIGPIPE, NULL, 0);
/* ulimits */
if (!global.rlimit_nofile)
global.rlimit_nofile = global.maxsock;
if (global.rlimit_nofile) {
limit.rlim_cur = global.rlimit_nofile;
limit.rlim_max = MAX(rlim_fd_max_at_boot, limit.rlim_cur);
if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
getrlimit(RLIMIT_NOFILE, &limit);
if (global.tune.options & GTUNE_STRICT_LIMITS) {
ha_alert("[%s.main()] Cannot raise FD limit to %d, limit is %d.\n",
argv[0], global.rlimit_nofile, (int)limit.rlim_cur);
exit(1);
}
else {
/* try to set it to the max possible at least */
limit.rlim_cur = limit.rlim_max;
if (setrlimit(RLIMIT_NOFILE, &limit) != -1)
getrlimit(RLIMIT_NOFILE, &limit);
ha_warning("[%s.main()] Cannot raise FD limit to %d, limit is %d.\n",
argv[0], global.rlimit_nofile, (int)limit.rlim_cur);
global.rlimit_nofile = limit.rlim_cur;
}
}
}
if (global.rlimit_memmax) {
limit.rlim_cur = limit.rlim_max =
global.rlimit_memmax * 1048576ULL;
#ifdef RLIMIT_AS
if (setrlimit(RLIMIT_AS, &limit) == -1) {
if (global.tune.options & GTUNE_STRICT_LIMITS) {
ha_alert("[%s.main()] Cannot fix MEM limit to %d megs.\n",
argv[0], global.rlimit_memmax);
exit(1);
}
else
ha_warning("[%s.main()] Cannot fix MEM limit to %d megs.\n",
argv[0], global.rlimit_memmax);
}
#else
if (setrlimit(RLIMIT_DATA, &limit) == -1) {
if (global.tune.options & GTUNE_STRICT_LIMITS) {
ha_alert("[%s.main()] Cannot fix MEM limit to %d megs.\n",
argv[0], global.rlimit_memmax);
exit(1);
}
else
ha_warning("[%s.main()] Cannot fix MEM limit to %d megs.\n",
argv[0], global.rlimit_memmax);
}
#endif
}
if (old_unixsocket) {
if (strcmp("/dev/null", old_unixsocket) != 0) {
if (sock_get_old_sockets(old_unixsocket) != 0) {
ha_alert("Failed to get the sockets from the old process!\n");
if (!(global.mode & MODE_MWORKER))
exit(1);
}
}
}
get_cur_unixsocket();
/* We will loop at most 100 times with 10 ms delay each time.
* That's at most 1 second. We only send a signal to old pids
* if we cannot grab at least one port.
*/
retry = MAX_START_RETRIES;
err = ERR_NONE;
while (retry >= 0) {
struct timeval w;
err = protocol_bind_all(retry == 0 || nb_oldpids == 0);
/* exit the loop on no error or fatal error */
if ((err & (ERR_RETRYABLE|ERR_FATAL)) != ERR_RETRYABLE)
break;
if (nb_oldpids == 0 || retry == 0)
break;
/* FIXME-20060514: Solaris and OpenBSD do not support shutdown() on
* listening sockets. So on those platforms, it would be wiser to
* simply send SIGUSR1, which will not be undoable.
*/
if (tell_old_pids(SIGTTOU) == 0) {
/* no need to wait if we can't contact old pids */
retry = 0;
continue;
}
/* give some time to old processes to stop listening */
w.tv_sec = 0;
w.tv_usec = 10*1000;
select(0, NULL, NULL, NULL, &w);
retry--;
}
/* Note: protocol_bind_all() sends an alert when it fails. */
if ((err & ~ERR_WARN) != ERR_NONE) {
ha_alert("[%s.main()] Some protocols failed to start their listeners! Exiting.\n", argv[0]);
if (retry != MAX_START_RETRIES && nb_oldpids) {
protocol_unbind_all(); /* cleanup everything we can */
tell_old_pids(SIGTTIN);
}
exit(1);
}
if (!(global.mode & MODE_MWORKER_WAIT) && listeners == 0) {
ha_alert("[%s.main()] No enabled listener found (check for 'bind' directives) ! Exiting.\n", argv[0]);
/* Note: we don't have to send anything to the old pids because we
* never stopped them. */
exit(1);
}
/* Ok, all listeners should now be bound, close any leftover sockets
* the previous process gave us, we don't need them anymore
*/
while (xfer_sock_list != NULL) {
struct xfer_sock_list *tmpxfer = xfer_sock_list->next;
close(xfer_sock_list->fd);
free(xfer_sock_list->iface);
free(xfer_sock_list->namespace);
free(xfer_sock_list);
xfer_sock_list = tmpxfer;
}
/* prepare pause/play signals */
signal_register_fct(SIGTTOU, sig_pause, SIGTTOU);
signal_register_fct(SIGTTIN, sig_listen, SIGTTIN);
/* MODE_QUIET can inhibit alerts and warnings below this line */
if (getenv("HAPROXY_MWORKER_REEXEC") != NULL) {
/* either stdin/out/err are already closed or should stay as they are. */
if ((global.mode & MODE_DAEMON)) {
/* daemon mode re-executing, stdin/stdout/stderr are already closed so keep quiet */
global.mode &= ~MODE_VERBOSE;
global.mode |= MODE_QUIET; /* ensure that we won't say anything from now */
}
} else {
if ((global.mode & MODE_QUIET) && !(global.mode & MODE_VERBOSE)) {
/* detach from the tty */
stdio_quiet(-1);
}
}
/* open log & pid files before the chroot */
if ((global.mode & MODE_DAEMON || global.mode & MODE_MWORKER) && global.pidfile != NULL) {
unlink(global.pidfile);
pidfd = open(global.pidfile, O_CREAT | O_WRONLY | O_TRUNC, 0644);
if (pidfd < 0) {
ha_alert("[%s.main()] Cannot create pidfile %s\n", argv[0], global.pidfile);
if (nb_oldpids)
tell_old_pids(SIGTTIN);
protocol_unbind_all();
exit(1);
}
}
if ((global.last_checks & LSTCHK_NETADM) && global.uid) {
ha_alert("[%s.main()] Some configuration options require full privileges, so global.uid cannot be changed.\n"
"", argv[0]);
protocol_unbind_all();
exit(1);
}
/* If the user is not root, we'll still let them try the configuration
* but we inform them that unexpected behaviour may occur.
*/
if ((global.last_checks & LSTCHK_NETADM) && getuid())
ha_warning("[%s.main()] Some options which require full privileges"
" might not work well.\n"
"", argv[0]);
if ((global.mode & (MODE_MWORKER|MODE_DAEMON)) == 0) {
/* chroot if needed */
if (global.chroot != NULL) {
if (chroot(global.chroot) == -1 || chdir("/") == -1) {
ha_alert("[%s.main()] Cannot chroot(%s).\n", argv[0], global.chroot);
if (nb_oldpids)
tell_old_pids(SIGTTIN);
protocol_unbind_all();
exit(1);
}
}
}
if (nb_oldpids && !(global.mode & MODE_MWORKER_WAIT))
nb_oldpids = tell_old_pids(oldpids_sig);
/* send a SIGTERM to workers who have a too high reloads number */
if ((global.mode & MODE_MWORKER) && !(global.mode & MODE_MWORKER_WAIT))
mworker_kill_max_reloads(SIGTERM);
/* Note that any error at this stage will be fatal because we will not
* be able to restart the old pids.
*/
if ((global.mode & (MODE_MWORKER | MODE_DAEMON)) == 0)
set_identity(argv[0]);
/* check ulimits */
limit.rlim_cur = limit.rlim_max = 0;
getrlimit(RLIMIT_NOFILE, &limit);
if (limit.rlim_cur < global.maxsock) {
if (global.tune.options & GTUNE_STRICT_LIMITS) {
ha_alert("[%s.main()] FD limit (%d) too low for maxconn=%d/maxsock=%d. "
"Please raise 'ulimit-n' to %d or more to avoid any trouble.\n",
argv[0], (int)limit.rlim_cur, global.maxconn, global.maxsock,
global.maxsock);
exit(1);
}
else
ha_alert("[%s.main()] FD limit (%d) too low for maxconn=%d/maxsock=%d. "
"Please raise 'ulimit-n' to %d or more to avoid any trouble.\n",
argv[0], (int)limit.rlim_cur, global.maxconn, global.maxsock,
global.maxsock);
}
if (global.mode & (MODE_DAEMON | MODE_MWORKER | MODE_MWORKER_WAIT)) {
struct proxy *px;
struct peers *curpeers;
int ret = 0;
int proc;
int devnullfd = -1;
/*
* if daemon + mworker: must fork here to let a master
* process live in background before forking children
*/
if ((getenv("HAPROXY_MWORKER_REEXEC") == NULL)
&& (global.mode & MODE_MWORKER)
&& (global.mode & MODE_DAEMON)) {
ret = fork();
if (ret < 0) {
ha_alert("[%s.main()] Cannot fork.\n", argv[0]);
protocol_unbind_all();
exit(1); /* there has been an error */
} else if (ret > 0) { /* parent leave to daemonize */
exit(0);
} else /* change the process group ID in the child (master process) */
setsid();
}
/* if in master-worker mode, write the PID of the father */
if (global.mode & MODE_MWORKER) {
char pidstr[100];
snprintf(pidstr, sizeof(pidstr), "%d\n", (int)getpid());
if (pidfd >= 0)
DISGUISE(write(pidfd, pidstr, strlen(pidstr)));
}
/* the father launches the required number of processes */
if (!(global.mode & MODE_MWORKER_WAIT)) {
if (global.mode & MODE_MWORKER)
mworker_ext_launch_all();
for (proc = 0; proc < global.nbproc; proc++) {
ret = fork();
if (ret < 0) {
ha_alert("[%s.main()] Cannot fork.\n", argv[0]);
protocol_unbind_all();
exit(1); /* there has been an error */
}
else if (ret == 0) { /* child breaks here */
ha_random_jump96(relative_pid);
break;
}
if (pidfd >= 0 && !(global.mode & MODE_MWORKER)) {
char pidstr[100];
snprintf(pidstr, sizeof(pidstr), "%d\n", ret);
DISGUISE(write(pidfd, pidstr, strlen(pidstr)));
}
if (global.mode & MODE_MWORKER) {
struct mworker_proc *child;
ha_notice("New worker #%d (%d) forked\n", relative_pid, ret);
/* find the right mworker_proc */
list_for_each_entry(child, &proc_list, list) {
if (child->relative_pid == relative_pid &&
child->reloads == 0 && child->options & PROC_O_TYPE_WORKER) {
child->timestamp = now.tv_sec;
child->pid = ret;
child->version = strdup(haproxy_version);
break;
}
}
}
relative_pid++; /* each child will get a different one */
pid_bit <<= 1;
}
} else {
/* wait mode */
global.nbproc = 1;
proc = 1;
}
#ifdef USE_CPU_AFFINITY
if (proc < global.nbproc && /* child */
proc < MAX_PROCS && /* only the first 32/64 processes may be pinned */
ha_cpuset_count(&cpu_map.proc[proc])) { /* only do this if the process has a CPU map */
#ifdef __FreeBSD__
struct hap_cpuset *set = &cpu_map.proc[proc];
ret = cpuset_setaffinity(CPU_LEVEL_WHICH, CPU_WHICH_PID, -1, sizeof(set->cpuset), &set->cpuset);
#elif defined(__linux__) || defined(__DragonFly__)
struct hap_cpuset *set = &cpu_map.proc[proc];
sched_setaffinity(0, sizeof(set->cpuset), &set->cpuset);
#endif
}
#endif
/* close the pidfile both in children and father */
if (pidfd >= 0) {
//lseek(pidfd, 0, SEEK_SET); /* debug: emulate eglibc bug */
close(pidfd);
}
/* We won't ever use this anymore */
ha_free(&global.pidfile);
if (proc == global.nbproc) {
if (global.mode & (MODE_MWORKER|MODE_MWORKER_WAIT)) {
if ((!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) &&
(global.mode & MODE_DAEMON)) {
/* detach from the tty, this is required to properly daemonize. */
if ((getenv("HAPROXY_MWORKER_REEXEC") == NULL))
stdio_quiet(-1);
global.mode &= ~MODE_VERBOSE;
global.mode |= MODE_QUIET; /* ensure that we won't say anything from now */
}
mworker_loop();
/* should never get there */
exit(EXIT_FAILURE);
}
#if defined(USE_OPENSSL) && !defined(OPENSSL_NO_DH)
ssl_free_dh();
#endif
exit(0); /* parent must leave */
}
/* child must never use the atexit function */
atexit_flag = 0;
/* close useless master sockets */
if (global.mode & MODE_MWORKER) {
struct mworker_proc *child, *it;
master = 0;
mworker_cli_proxy_stop();
/* free proc struct of other processes */
list_for_each_entry_safe(child, it, &proc_list, list) {
/* close the FD of the master side for all
* workers, we don't need to close the worker
* side of other workers since it's done with
* the bind_proc */
if (child->ipc_fd[0] >= 0)
close(child->ipc_fd[0]);
if (child->relative_pid == relative_pid &&
child->reloads == 0) {
/* keep this struct if this is our pid */
proc_self = child;
continue;
}
LIST_DELETE(&child->list);
mworker_free_child(child);
child = NULL;
}
}
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) {
devnullfd = open("/dev/null", O_RDWR, 0);
if (devnullfd < 0) {
ha_alert("Cannot open /dev/null\n");
exit(EXIT_FAILURE);
}
}
/* Must chroot and setgid/setuid in the children */
/* chroot if needed */
if (global.chroot != NULL) {
if (chroot(global.chroot) == -1 || chdir("/") == -1) {
ha_alert("[%s.main()] Cannot chroot1(%s).\n", argv[0], global.chroot);
if (nb_oldpids)
tell_old_pids(SIGTTIN);
protocol_unbind_all();
exit(1);
}
}
ha_free(&global.chroot);
set_identity(argv[0]);
/* pass through every cli socket, and check if it's bound to
* the current process and if it exposes listeners sockets.
* Caution: the GTUNE_SOCKET_TRANSFER is now set after the fork.
* */
if (global.cli_fe) {
struct bind_conf *bind_conf;
list_for_each_entry(bind_conf, &global.cli_fe->conf.bind, by_fe) {
if (bind_conf->level & ACCESS_FD_LISTENERS) {
if (!bind_conf->settings.bind_proc || bind_conf->settings.bind_proc & (1UL << proc)) {
global.tune.options |= GTUNE_SOCKET_TRANSFER;
break;
}
}
}
}
/* we might have to unbind some proxies from some processes */
px = proxies_list;
while (px != NULL) {
if (px->bind_proc && !px->disabled) {
if (!(px->bind_proc & (1UL << proc)))
stop_proxy(px);
}
px = px->next;
}
/* we might have to unbind some log forward proxies from some processes */
px = cfg_log_forward;
while (px != NULL) {
if (px->bind_proc && !px->disabled) {
if (!(px->bind_proc & (1UL << proc)))
stop_proxy(px);
}
px = px->next;
}
/* we might have to unbind some peers sections from some processes */
for (curpeers = cfg_peers; curpeers; curpeers = curpeers->next) {
if (!curpeers->peers_fe)
continue;
if (curpeers->peers_fe->bind_proc & (1UL << proc))
continue;
stop_proxy(curpeers->peers_fe);
/* disable this peer section so that it kills itself */
signal_unregister_handler(curpeers->sighandler);
task_destroy(curpeers->sync_task);
curpeers->sync_task = NULL;
task_destroy(curpeers->peers_fe->task);
curpeers->peers_fe->task = NULL;
curpeers->peers_fe = NULL;
}
/*
* This is only done in daemon mode because we might want the
* logs on stdout in mworker mode. If we're NOT in QUIET mode,
* we should now close the 3 first FDs to ensure that we can
* detach from the TTY. We MUST NOT do it in other cases since
* it would have already be done, and 0-2 would have been
* affected to listening sockets
*/
if ((global.mode & MODE_DAEMON) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
/* detach from the tty */
stdio_quiet(devnullfd);
global.mode &= ~MODE_VERBOSE;
global.mode |= MODE_QUIET; /* ensure that we won't say anything from now */
}
pid = getpid(); /* update child's pid */
if (!(global.mode & MODE_MWORKER)) /* in mworker mode we don't want a new pgid for the children */
setsid();
fork_poller();
}
/* try our best to re-enable core dumps depending on system capabilities.
* What is addressed here :
* - remove file size limits
* - remove core size limits
* - mark the process dumpable again if it lost it due to user/group
*/
if (global.tune.options & GTUNE_SET_DUMPABLE) {
limit.rlim_cur = limit.rlim_max = RLIM_INFINITY;
#if defined(RLIMIT_FSIZE)
if (setrlimit(RLIMIT_FSIZE, &limit) == -1) {
if (global.tune.options & GTUNE_STRICT_LIMITS) {
ha_alert("[%s.main()] Failed to set the raise the maximum "
"file size.\n", argv[0]);
exit(1);
}
else
ha_warning("[%s.main()] Failed to set the raise the maximum "
"file size.\n", argv[0]);
}
#endif
#if defined(RLIMIT_CORE)
if (setrlimit(RLIMIT_CORE, &limit) == -1) {
if (global.tune.options & GTUNE_STRICT_LIMITS) {
ha_alert("[%s.main()] Failed to set the raise the core "
"dump size.\n", argv[0]);
exit(1);
}
else
ha_warning("[%s.main()] Failed to set the raise the core "
"dump size.\n", argv[0]);
}
#endif
#if defined(USE_PRCTL)
if (prctl(PR_SET_DUMPABLE, 1, 0, 0, 0) == -1)
ha_warning("[%s.main()] Failed to set the dumpable flag, "
"no core will be dumped.\n", argv[0]);
#endif
}
global.mode &= ~MODE_STARTING;
reset_usermsgs_ctx();
/*
* That's it : the central polling loop. Run until we stop.
*/
#ifdef USE_THREAD
{
sigset_t blocked_sig, old_sig;
int i;
/* ensure the signals will be blocked in every thread */
sigfillset(&blocked_sig);
sigdelset(&blocked_sig, SIGPROF);
sigdelset(&blocked_sig, SIGBUS);
sigdelset(&blocked_sig, SIGFPE);
sigdelset(&blocked_sig, SIGILL);
sigdelset(&blocked_sig, SIGSEGV);
pthread_sigmask(SIG_SETMASK, &blocked_sig, &old_sig);
/* Create nbthread-1 thread. The first thread is the current process */
ha_thread_info[0].pthread = pthread_self();
for (i = 1; i < global.nbthread; i++)
pthread_create(&ha_thread_info[i].pthread, NULL, &run_thread_poll_loop, (void *)(long)i);
#ifdef USE_CPU_AFFINITY
/* Now the CPU affinity for all threads */
/* If on multiprocess, use proc_t1 except for the first process.
*/
if ((relative_pid - 1) > 0)
cpu_map.thread[0] = cpu_map.proc_t1[relative_pid-1];
for (i = 0; i < global.nbthread; i++) {
if (ha_cpuset_count(&cpu_map.proc[relative_pid-1]))
ha_cpuset_and(&cpu_map.thread[i], &cpu_map.proc[relative_pid-1]);
if (i < MAX_THREADS && /* only the first 32/64 threads may be pinned */
ha_cpuset_count(&cpu_map.thread[i])) {/* only do this if the thread has a THREAD map */
#if defined(__APPLE__)
int j;
unsigned long set = cpu_map.thread[i].cpuset;
while ((j = ffsl(set)) > 0) {
thread_affinity_policy_data_t cpu_set = { j - 1 };
thread_port_t mthread = pthread_mach_thread_np(ha_thread_info[i].pthread);
thread_policy_set(mthread, THREAD_AFFINITY_POLICY, (thread_policy_t)&cpu_set, 1);
set &= ~(1UL << (j - 1));
}
#else
struct hap_cpuset *set = &cpu_map.thread[i];
pthread_setaffinity_np(ha_thread_info[i].pthread,
sizeof(set->cpuset), &set->cpuset);
#endif
}
}
#endif /* !USE_CPU_AFFINITY */
/* when multithreading we need to let only the thread 0 handle the signals */
haproxy_unblock_signals();
/* Finally, start the poll loop for the first thread */
run_thread_poll_loop(0);
/* Wait the end of other threads */
for (i = 1; i < global.nbthread; i++)
pthread_join(ha_thread_info[i].pthread, NULL);
#if defined(DEBUG_THREAD) || defined(DEBUG_FULL)
show_lock_stats();
#endif
}
#else /* ! USE_THREAD */
haproxy_unblock_signals();
run_thread_poll_loop(0);
#endif
deinit_and_exit(0);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/