| /* |
| * QUIC transport layer over SOCK_DGRAM sockets. |
| * |
| * Copyright 2020 HAProxy Technologies, Frederic Lecaille <flecaille@haproxy.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #define _GNU_SOURCE |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include <sys/socket.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| |
| #include <netinet/tcp.h> |
| |
| #include <import/ebmbtree.h> |
| |
| #include <haproxy/buf-t.h> |
| #include <haproxy/compat.h> |
| #include <haproxy/api.h> |
| #include <haproxy/debug.h> |
| #include <haproxy/tools.h> |
| #include <haproxy/ticks.h> |
| |
| #include <haproxy/connection.h> |
| #include <haproxy/fd.h> |
| #include <haproxy/freq_ctr.h> |
| #include <haproxy/global.h> |
| #include <haproxy/h3.h> |
| #include <haproxy/hq_interop.h> |
| #include <haproxy/log.h> |
| #include <haproxy/mux_quic.h> |
| #include <haproxy/pipe.h> |
| #include <haproxy/proxy.h> |
| #include <haproxy/quic_cc.h> |
| #include <haproxy/quic_frame.h> |
| #include <haproxy/quic_loss.h> |
| #include <haproxy/quic_sock.h> |
| #include <haproxy/cbuf.h> |
| #include <haproxy/proto_quic.h> |
| #include <haproxy/quic_tls.h> |
| #include <haproxy/sink.h> |
| #include <haproxy/ssl_sock.h> |
| #include <haproxy/task.h> |
| #include <haproxy/trace.h> |
| #include <haproxy/xprt_quic.h> |
| |
| /* list of supported QUIC versions by this implementation */ |
| static int quic_supported_version[] = { |
| 0x00000001, |
| 0xff00001d, /* draft-29 */ |
| |
| /* placeholder, do not add entry after this */ |
| 0x0 |
| }; |
| |
| /* This is the values of some QUIC transport parameters when absent. |
| * Should be used to initialize any transport parameters (local or remote) |
| * before updating them with customized values. |
| */ |
| struct quic_transport_params quic_dflt_transport_params = { |
| .max_udp_payload_size = QUIC_PACKET_MAXLEN, |
| .ack_delay_exponent = QUIC_DFLT_ACK_DELAY_COMPONENT, |
| .max_ack_delay = QUIC_DFLT_MAX_ACK_DELAY, |
| .active_connection_id_limit = QUIC_ACTIVE_CONNECTION_ID_LIMIT, |
| }; |
| |
| /* trace source and events */ |
| static void quic_trace(enum trace_level level, uint64_t mask, \ |
| const struct trace_source *src, |
| const struct ist where, const struct ist func, |
| const void *a1, const void *a2, const void *a3, const void *a4); |
| |
| static const struct trace_event quic_trace_events[] = { |
| { .mask = QUIC_EV_CONN_NEW, .name = "new_conn", .desc = "new QUIC connection" }, |
| { .mask = QUIC_EV_CONN_INIT, .name = "new_conn_init", .desc = "new QUIC connection initialization" }, |
| { .mask = QUIC_EV_CONN_ISEC, .name = "init_secs", .desc = "initial secrets derivation" }, |
| { .mask = QUIC_EV_CONN_RSEC, .name = "read_secs", .desc = "read secrets derivation" }, |
| { .mask = QUIC_EV_CONN_WSEC, .name = "write_secs", .desc = "write secrets derivation" }, |
| { .mask = QUIC_EV_CONN_LPKT, .name = "lstnr_packet", .desc = "new listener received packet" }, |
| { .mask = QUIC_EV_CONN_SPKT, .name = "srv_packet", .desc = "new server received packet" }, |
| { .mask = QUIC_EV_CONN_ENCPKT, .name = "enc_hdshk_pkt", .desc = "handhshake packet encryption" }, |
| { .mask = QUIC_EV_CONN_HPKT, .name = "hdshk_pkt", .desc = "handhshake packet building" }, |
| { .mask = QUIC_EV_CONN_PAPKT, .name = "phdshk_apkt", .desc = "post handhshake application packet preparation" }, |
| { .mask = QUIC_EV_CONN_PAPKTS, .name = "phdshk_apkts", .desc = "post handhshake application packets preparation" }, |
| { .mask = QUIC_EV_CONN_IO_CB, .name = "qc_io_cb", .desc = "QUIC conn. I/O processin" }, |
| { .mask = QUIC_EV_CONN_RMHP, .name = "rm_hp", .desc = "Remove header protection" }, |
| { .mask = QUIC_EV_CONN_PRSHPKT, .name = "parse_hpkt", .desc = "parse handshake packet" }, |
| { .mask = QUIC_EV_CONN_PRSAPKT, .name = "parse_apkt", .desc = "parse application packet" }, |
| { .mask = QUIC_EV_CONN_PRSFRM, .name = "parse_frm", .desc = "parse frame" }, |
| { .mask = QUIC_EV_CONN_PRSAFRM, .name = "parse_ack_frm", .desc = "parse ACK frame" }, |
| { .mask = QUIC_EV_CONN_BFRM, .name = "build_frm", .desc = "build frame" }, |
| { .mask = QUIC_EV_CONN_PHPKTS, .name = "phdshk_pkts", .desc = "handhshake packets preparation" }, |
| { .mask = QUIC_EV_CONN_TRMHP, .name = "rm_hp_try", .desc = "header protection removing try" }, |
| { .mask = QUIC_EV_CONN_ELRMHP, .name = "el_rm_hp", .desc = "handshake enc. level header protection removing" }, |
| { .mask = QUIC_EV_CONN_ELRXPKTS, .name = "el_treat_rx_pkts", .desc = "handshake enc. level rx packets treatment" }, |
| { .mask = QUIC_EV_CONN_SSLDATA, .name = "ssl_provide_data", .desc = "CRYPTO data provision to TLS stack" }, |
| { .mask = QUIC_EV_CONN_RXCDATA, .name = "el_treat_rx_cfrms",.desc = "enc. level RX CRYPTO frames processing"}, |
| { .mask = QUIC_EV_CONN_ADDDATA, .name = "add_hdshk_data", .desc = "TLS stack ->add_handshake_data() call"}, |
| { .mask = QUIC_EV_CONN_FFLIGHT, .name = "flush_flight", .desc = "TLS stack ->flush_flight() call"}, |
| { .mask = QUIC_EV_CONN_SSLALERT, .name = "send_alert", .desc = "TLS stack ->send_alert() call"}, |
| { .mask = QUIC_EV_CONN_RTTUPDT, .name = "rtt_updt", .desc = "RTT sampling" }, |
| { .mask = QUIC_EV_CONN_SPPKTS, .name = "sppkts", .desc = "send prepared packets" }, |
| { .mask = QUIC_EV_CONN_PKTLOSS, .name = "pktloss", .desc = "detect packet loss" }, |
| { .mask = QUIC_EV_CONN_STIMER, .name = "stimer", .desc = "set timer" }, |
| { .mask = QUIC_EV_CONN_PTIMER, .name = "ptimer", .desc = "process timer" }, |
| { .mask = QUIC_EV_CONN_SPTO, .name = "spto", .desc = "set PTO" }, |
| { .mask = QUIC_EV_CONN_BCFRMS, .name = "bcfrms", .desc = "build CRYPTO data frames" }, |
| { .mask = QUIC_EV_CONN_XPRTSEND, .name = "xprt_send", .desc = "sending XRPT subscription" }, |
| { .mask = QUIC_EV_CONN_XPRTRECV, .name = "xprt_recv", .desc = "receiving XRPT subscription" }, |
| { .mask = QUIC_EV_CONN_FREED, .name = "conn_freed", .desc = "releasing conn. memory" }, |
| { .mask = QUIC_EV_CONN_CLOSE, .name = "conn_close", .desc = "closing conn." }, |
| { .mask = QUIC_EV_CONN_ACKSTRM, .name = "ack_strm", .desc = "STREAM ack."}, |
| { .mask = QUIC_EV_CONN_FRMLIST, .name = "frm_list", .desc = "frame list"}, |
| { /* end */ } |
| }; |
| |
| static const struct name_desc quic_trace_lockon_args[4] = { |
| /* arg1 */ { /* already used by the connection */ }, |
| /* arg2 */ { .name="quic", .desc="QUIC transport" }, |
| /* arg3 */ { }, |
| /* arg4 */ { } |
| }; |
| |
| static const struct name_desc quic_trace_decoding[] = { |
| #define QUIC_VERB_CLEAN 1 |
| { .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" }, |
| { /* end */ } |
| }; |
| |
| |
| struct trace_source trace_quic = { |
| .name = IST("quic"), |
| .desc = "QUIC xprt", |
| .arg_def = TRC_ARG1_QCON, /* TRACE()'s first argument is always a quic_conn */ |
| .default_cb = quic_trace, |
| .known_events = quic_trace_events, |
| .lockon_args = quic_trace_lockon_args, |
| .decoding = quic_trace_decoding, |
| .report_events = ~0, /* report everything by default */ |
| }; |
| |
| #define TRACE_SOURCE &trace_quic |
| INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE); |
| |
| static BIO_METHOD *ha_quic_meth; |
| |
| DECLARE_POOL(pool_head_quic_tx_ring, "quic_tx_ring_pool", QUIC_TX_RING_BUFSZ); |
| DECLARE_POOL(pool_head_quic_conn_rxbuf, "quic_conn_rxbuf", QUIC_CONN_RX_BUFSZ); |
| DECLARE_STATIC_POOL(pool_head_quic_conn_ctx, |
| "quic_conn_ctx_pool", sizeof(struct ssl_sock_ctx)); |
| DECLARE_STATIC_POOL(pool_head_quic_conn, "quic_conn", sizeof(struct quic_conn)); |
| DECLARE_POOL(pool_head_quic_connection_id, |
| "quic_connnection_id_pool", sizeof(struct quic_connection_id)); |
| DECLARE_POOL(pool_head_quic_dgram, "quic_dgram", sizeof(struct quic_dgram)); |
| DECLARE_POOL(pool_head_quic_rx_packet, "quic_rx_packet_pool", sizeof(struct quic_rx_packet)); |
| DECLARE_POOL(pool_head_quic_tx_packet, "quic_tx_packet_pool", sizeof(struct quic_tx_packet)); |
| DECLARE_STATIC_POOL(pool_head_quic_rx_crypto_frm, "quic_rx_crypto_frm_pool", sizeof(struct quic_rx_crypto_frm)); |
| DECLARE_POOL(pool_head_quic_rx_strm_frm, "quic_rx_strm_frm", sizeof(struct quic_rx_strm_frm)); |
| DECLARE_STATIC_POOL(pool_head_quic_crypto_buf, "quic_crypto_buf_pool", sizeof(struct quic_crypto_buf)); |
| DECLARE_POOL(pool_head_quic_frame, "quic_frame_pool", sizeof(struct quic_frame)); |
| DECLARE_STATIC_POOL(pool_head_quic_arng, "quic_arng_pool", sizeof(struct quic_arng_node)); |
| DECLARE_STATIC_POOL(pool_head_quic_conn_stream, "qc_stream_desc", sizeof(struct qc_stream_desc)); |
| |
| static struct quic_tx_packet *qc_build_pkt(unsigned char **pos, const unsigned char *buf_end, |
| struct quic_enc_level *qel, struct list *frms, |
| struct quic_conn *qc, size_t dglen, int pkt_type, |
| int padding, int probe, int cc, int *err); |
| static struct task *quic_conn_app_io_cb(struct task *t, void *context, unsigned int state); |
| static void qc_idle_timer_do_rearm(struct quic_conn *qc); |
| static void qc_idle_timer_rearm(struct quic_conn *qc, int read); |
| |
| /* Only for debug purpose */ |
| struct enc_debug_info { |
| unsigned char *payload; |
| size_t payload_len; |
| unsigned char *aad; |
| size_t aad_len; |
| uint64_t pn; |
| }; |
| |
| /* Initializes a enc_debug_info struct (only for debug purpose) */ |
| static inline void enc_debug_info_init(struct enc_debug_info *edi, |
| unsigned char *payload, size_t payload_len, |
| unsigned char *aad, size_t aad_len, uint64_t pn) |
| { |
| edi->payload = payload; |
| edi->payload_len = payload_len; |
| edi->aad = aad; |
| edi->aad_len = aad_len; |
| edi->pn = pn; |
| } |
| |
| /* Trace callback for QUIC. |
| * These traces always expect that arg1, if non-null, is of type connection. |
| */ |
| static void quic_trace(enum trace_level level, uint64_t mask, const struct trace_source *src, |
| const struct ist where, const struct ist func, |
| const void *a1, const void *a2, const void *a3, const void *a4) |
| { |
| const struct quic_conn *qc = a1; |
| |
| if (qc) { |
| const struct quic_tls_ctx *tls_ctx; |
| |
| chunk_appendf(&trace_buf, " : qc@%p", qc); |
| if ((mask & QUIC_EV_CONN_INIT) && qc) { |
| chunk_appendf(&trace_buf, "\n odcid"); |
| quic_cid_dump(&trace_buf, &qc->odcid); |
| chunk_appendf(&trace_buf, "\n dcid"); |
| quic_cid_dump(&trace_buf, &qc->dcid); |
| chunk_appendf(&trace_buf, "\n scid"); |
| quic_cid_dump(&trace_buf, &qc->scid); |
| } |
| |
| if (mask & QUIC_EV_CONN_ADDDATA) { |
| const enum ssl_encryption_level_t *level = a2; |
| const size_t *len = a3; |
| |
| if (level) { |
| enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level); |
| |
| chunk_appendf(&trace_buf, " el=%c(%d)", quic_enc_level_char(lvl), lvl); |
| } |
| if (len) |
| chunk_appendf(&trace_buf, " len=%llu", (unsigned long long)*len); |
| } |
| if ((mask & QUIC_EV_CONN_ISEC) && qc) { |
| /* Initial read & write secrets. */ |
| enum quic_tls_enc_level level = QUIC_TLS_ENC_LEVEL_INITIAL; |
| const unsigned char *rx_sec = a2; |
| const unsigned char *tx_sec = a3; |
| |
| tls_ctx = &qc->els[level].tls_ctx; |
| if (tls_ctx->flags & QUIC_FL_TLS_SECRETS_SET) { |
| chunk_appendf(&trace_buf, "\n RX el=%c", quic_enc_level_char(level)); |
| if (rx_sec) |
| quic_tls_secret_hexdump(&trace_buf, rx_sec, 32); |
| quic_tls_keys_hexdump(&trace_buf, &tls_ctx->rx); |
| chunk_appendf(&trace_buf, "\n TX el=%c", quic_enc_level_char(level)); |
| if (tx_sec) |
| quic_tls_secret_hexdump(&trace_buf, tx_sec, 32); |
| quic_tls_keys_hexdump(&trace_buf, &tls_ctx->tx); |
| } |
| } |
| if (mask & (QUIC_EV_CONN_RSEC|QUIC_EV_CONN_RWSEC)) { |
| const enum ssl_encryption_level_t *level = a2; |
| const unsigned char *secret = a3; |
| const size_t *secret_len = a4; |
| |
| if (level) { |
| enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level); |
| |
| chunk_appendf(&trace_buf, "\n RX el=%c", quic_enc_level_char(lvl)); |
| if (secret && secret_len) |
| quic_tls_secret_hexdump(&trace_buf, secret, *secret_len); |
| tls_ctx = &qc->els[lvl].tls_ctx; |
| if (tls_ctx->flags & QUIC_FL_TLS_SECRETS_SET) |
| quic_tls_keys_hexdump(&trace_buf, &tls_ctx->rx); |
| } |
| } |
| |
| if (mask & (QUIC_EV_CONN_WSEC|QUIC_EV_CONN_RWSEC)) { |
| const enum ssl_encryption_level_t *level = a2; |
| const unsigned char *secret = a3; |
| const size_t *secret_len = a4; |
| |
| if (level) { |
| enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level); |
| |
| chunk_appendf(&trace_buf, "\n TX el=%c", quic_enc_level_char(lvl)); |
| if (secret && secret_len) |
| quic_tls_secret_hexdump(&trace_buf, secret, *secret_len); |
| tls_ctx = &qc->els[lvl].tls_ctx; |
| if (tls_ctx->flags & QUIC_FL_TLS_SECRETS_SET) |
| quic_tls_keys_hexdump(&trace_buf, &tls_ctx->tx); |
| } |
| |
| } |
| |
| if (mask & QUIC_EV_CONN_FRMLIST) { |
| const struct list *l = a2; |
| |
| if (l) { |
| const struct quic_frame *frm; |
| list_for_each_entry(frm, l, list) |
| chunk_frm_appendf(&trace_buf, frm); |
| } |
| } |
| |
| if (mask & (QUIC_EV_CONN_HPKT|QUIC_EV_CONN_PAPKT)) { |
| const struct quic_tx_packet *pkt = a2; |
| const struct quic_enc_level *qel = a3; |
| const ssize_t *room = a4; |
| |
| if (qel) { |
| const struct quic_pktns *pktns = qc->pktns; |
| chunk_appendf(&trace_buf, " qel=%c cwnd=%llu ppif=%lld pif=%llu " |
| "if=%llu pp=%u", |
| quic_enc_level_char_from_qel(qel, qc), |
| (unsigned long long)qc->path->cwnd, |
| (unsigned long long)qc->path->prep_in_flight, |
| (unsigned long long)qc->path->in_flight, |
| (unsigned long long)pktns->tx.in_flight, |
| pktns->tx.pto_probe); |
| } |
| if (pkt) { |
| const struct quic_frame *frm; |
| if (pkt->pn_node.key != (uint64_t)-1) |
| chunk_appendf(&trace_buf, " pn=%llu",(ull)pkt->pn_node.key); |
| list_for_each_entry(frm, &pkt->frms, list) |
| chunk_frm_appendf(&trace_buf, frm); |
| chunk_appendf(&trace_buf, " rx.bytes=%llu tx.bytes=%llu", |
| (unsigned long long)qc->rx.bytes, |
| (unsigned long long)qc->tx.bytes); |
| } |
| |
| if (room) { |
| chunk_appendf(&trace_buf, " room=%lld", (long long)*room); |
| chunk_appendf(&trace_buf, " dcid.len=%llu scid.len=%llu", |
| (unsigned long long)qc->dcid.len, (unsigned long long)qc->scid.len); |
| } |
| } |
| |
| if (mask & QUIC_EV_CONN_IO_CB) { |
| const enum quic_handshake_state *state = a2; |
| const int *err = a3; |
| |
| if (state) |
| chunk_appendf(&trace_buf, " state=%s", quic_hdshk_state_str(*state)); |
| if (err) |
| chunk_appendf(&trace_buf, " err=%s", ssl_error_str(*err)); |
| } |
| |
| if (mask & (QUIC_EV_CONN_TRMHP|QUIC_EV_CONN_ELRMHP|QUIC_EV_CONN_SPKT)) { |
| const struct quic_rx_packet *pkt = a2; |
| const unsigned long *pktlen = a3; |
| const SSL *ssl = a4; |
| |
| if (pkt) { |
| chunk_appendf(&trace_buf, " pkt@%p", pkt); |
| if (pkt->type == QUIC_PACKET_TYPE_SHORT && pkt->data) |
| chunk_appendf(&trace_buf, " kp=%d", |
| !!(*pkt->data & QUIC_PACKET_KEY_PHASE_BIT)); |
| chunk_appendf(&trace_buf, " el=%c", |
| quic_packet_type_enc_level_char(pkt->type)); |
| if (pkt->pnl) |
| chunk_appendf(&trace_buf, " pnl=%u pn=%llu", pkt->pnl, |
| (unsigned long long)pkt->pn); |
| if (pkt->token_len) |
| chunk_appendf(&trace_buf, " toklen=%llu", |
| (unsigned long long)pkt->token_len); |
| if (pkt->aad_len) |
| chunk_appendf(&trace_buf, " aadlen=%llu", |
| (unsigned long long)pkt->aad_len); |
| chunk_appendf(&trace_buf, " flags=0x%x len=%llu", |
| pkt->flags, (unsigned long long)pkt->len); |
| } |
| if (pktlen) |
| chunk_appendf(&trace_buf, " (%ld)", *pktlen); |
| if (ssl) { |
| enum ssl_encryption_level_t level = SSL_quic_read_level(ssl); |
| chunk_appendf(&trace_buf, " el=%c", |
| quic_enc_level_char(ssl_to_quic_enc_level(level))); |
| } |
| } |
| |
| if (mask & (QUIC_EV_CONN_ELRXPKTS|QUIC_EV_CONN_PRSHPKT|QUIC_EV_CONN_SSLDATA)) { |
| const struct quic_rx_packet *pkt = a2; |
| const struct quic_rx_crypto_frm *cf = a3; |
| const SSL *ssl = a4; |
| |
| if (pkt) |
| chunk_appendf(&trace_buf, " pkt@%p el=%c pn=%llu", pkt, |
| quic_packet_type_enc_level_char(pkt->type), |
| (unsigned long long)pkt->pn); |
| if (cf) |
| chunk_appendf(&trace_buf, " cfoff=%llu cflen=%llu", |
| (unsigned long long)cf->offset_node.key, |
| (unsigned long long)cf->len); |
| if (ssl) { |
| enum ssl_encryption_level_t level = SSL_quic_read_level(ssl); |
| chunk_appendf(&trace_buf, " rel=%c", |
| quic_enc_level_char(ssl_to_quic_enc_level(level))); |
| } |
| |
| if (qc->err_code) |
| chunk_appendf(&trace_buf, " err_code=0x%llx", (ull)qc->err_code); |
| } |
| |
| if (mask & (QUIC_EV_CONN_PRSFRM|QUIC_EV_CONN_BFRM)) { |
| const struct quic_frame *frm = a2; |
| |
| if (frm) |
| chunk_appendf(&trace_buf, " %s", quic_frame_type_string(frm->type)); |
| } |
| |
| if (mask & QUIC_EV_CONN_PHPKTS) { |
| const struct quic_enc_level *qel = a2; |
| |
| if (qel) { |
| const struct quic_pktns *pktns = qel->pktns; |
| chunk_appendf(&trace_buf, |
| " qel=%c state=%s ack?%d cwnd=%llu ppif=%lld pif=%llu if=%llu pp=%u", |
| quic_enc_level_char_from_qel(qel, qc), |
| quic_hdshk_state_str(qc->state), |
| !!(qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED), |
| (unsigned long long)qc->path->cwnd, |
| (unsigned long long)qc->path->prep_in_flight, |
| (unsigned long long)qc->path->in_flight, |
| (unsigned long long)pktns->tx.in_flight, |
| pktns->tx.pto_probe); |
| } |
| } |
| |
| if (mask & QUIC_EV_CONN_ENCPKT) { |
| const struct enc_debug_info *edi = a2; |
| |
| if (edi) |
| chunk_appendf(&trace_buf, |
| " payload=@%p payload_len=%llu" |
| " aad=@%p aad_len=%llu pn=%llu", |
| edi->payload, (unsigned long long)edi->payload_len, |
| edi->aad, (unsigned long long)edi->aad_len, |
| (unsigned long long)edi->pn); |
| } |
| |
| if (mask & QUIC_EV_CONN_RMHP) { |
| const struct quic_rx_packet *pkt = a2; |
| |
| if (pkt) { |
| const int *ret = a3; |
| |
| chunk_appendf(&trace_buf, " pkt@%p", pkt); |
| if (ret && *ret) |
| chunk_appendf(&trace_buf, " pnl=%u pn=%llu", |
| pkt->pnl, (unsigned long long)pkt->pn); |
| } |
| } |
| |
| if (mask & QUIC_EV_CONN_PRSAFRM) { |
| const struct quic_frame *frm = a2; |
| const unsigned long *val1 = a3; |
| const unsigned long *val2 = a4; |
| |
| if (frm) |
| chunk_frm_appendf(&trace_buf, frm); |
| if (val1) |
| chunk_appendf(&trace_buf, " %lu", *val1); |
| if (val2) |
| chunk_appendf(&trace_buf, "..%lu", *val2); |
| } |
| |
| if (mask & QUIC_EV_CONN_ACKSTRM) { |
| const struct quic_stream *s = a2; |
| const struct qc_stream_desc *stream = a3; |
| |
| if (s) |
| chunk_appendf(&trace_buf, " off=%llu len=%llu", (ull)s->offset.key, (ull)s->len); |
| if (stream) |
| chunk_appendf(&trace_buf, " ack_offset=%llu", (ull)stream->ack_offset); |
| } |
| |
| if (mask & QUIC_EV_CONN_RTTUPDT) { |
| const unsigned int *rtt_sample = a2; |
| const unsigned int *ack_delay = a3; |
| const struct quic_loss *ql = a4; |
| |
| if (rtt_sample) |
| chunk_appendf(&trace_buf, " rtt_sample=%ums", *rtt_sample); |
| if (ack_delay) |
| chunk_appendf(&trace_buf, " ack_delay=%ums", *ack_delay); |
| if (ql) |
| chunk_appendf(&trace_buf, |
| " srtt=%ums rttvar=%ums min_rtt=%ums", |
| ql->srtt >> 3, ql->rtt_var >> 2, ql->rtt_min); |
| } |
| if (mask & QUIC_EV_CONN_CC) { |
| const struct quic_cc_event *ev = a2; |
| const struct quic_cc *cc = a3; |
| |
| if (a2) |
| quic_cc_event_trace(&trace_buf, ev); |
| if (a3) |
| quic_cc_state_trace(&trace_buf, cc); |
| } |
| |
| if (mask & QUIC_EV_CONN_PKTLOSS) { |
| const struct quic_pktns *pktns = a2; |
| const struct list *lost_pkts = a3; |
| |
| if (pktns) { |
| chunk_appendf(&trace_buf, " pktns=%s", |
| pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" : |
| pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H"); |
| if (pktns->tx.loss_time) |
| chunk_appendf(&trace_buf, " loss_time=%dms", |
| TICKS_TO_MS(tick_remain(now_ms, pktns->tx.loss_time))); |
| } |
| if (lost_pkts && !LIST_ISEMPTY(lost_pkts)) { |
| struct quic_tx_packet *pkt; |
| |
| chunk_appendf(&trace_buf, " lost_pkts:"); |
| list_for_each_entry(pkt, lost_pkts, list) |
| chunk_appendf(&trace_buf, " %lu", (unsigned long)pkt->pn_node.key); |
| } |
| } |
| |
| if (mask & (QUIC_EV_CONN_STIMER|QUIC_EV_CONN_PTIMER|QUIC_EV_CONN_SPTO)) { |
| const struct quic_pktns *pktns = a2; |
| const int *duration = a3; |
| const uint64_t *ifae_pkts = a4; |
| |
| if (ifae_pkts) |
| chunk_appendf(&trace_buf, " ifae_pkts=%llu", |
| (unsigned long long)*ifae_pkts); |
| if (pktns) { |
| chunk_appendf(&trace_buf, " pktns=%s pp=%d", |
| pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" : |
| pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H", |
| pktns->tx.pto_probe); |
| if (mask & (QUIC_EV_CONN_STIMER|QUIC_EV_CONN_SPTO)) { |
| if (pktns->tx.in_flight) |
| chunk_appendf(&trace_buf, " if=%llu", (ull)pktns->tx.in_flight); |
| if (pktns->tx.loss_time) |
| chunk_appendf(&trace_buf, " loss_time=%dms", |
| TICKS_TO_MS(pktns->tx.loss_time - now_ms)); |
| } |
| if (mask & QUIC_EV_CONN_SPTO) { |
| if (pktns->tx.time_of_last_eliciting) |
| chunk_appendf(&trace_buf, " tole=%dms", |
| TICKS_TO_MS(pktns->tx.time_of_last_eliciting - now_ms)); |
| if (duration) |
| chunk_appendf(&trace_buf, " dur=%dms", TICKS_TO_MS(*duration)); |
| } |
| } |
| |
| if (!(mask & (QUIC_EV_CONN_SPTO|QUIC_EV_CONN_PTIMER)) && qc->timer_task) { |
| chunk_appendf(&trace_buf, |
| " expire=%dms", TICKS_TO_MS(qc->timer - now_ms)); |
| } |
| } |
| |
| if (mask & QUIC_EV_CONN_SPPKTS) { |
| const struct quic_tx_packet *pkt = a2; |
| |
| chunk_appendf(&trace_buf, " cwnd=%llu ppif=%llu pif=%llu", |
| (unsigned long long)qc->path->cwnd, |
| (unsigned long long)qc->path->prep_in_flight, |
| (unsigned long long)qc->path->in_flight); |
| if (pkt) { |
| chunk_appendf(&trace_buf, " pn=%lu(%s) iflen=%llu", |
| (unsigned long)pkt->pn_node.key, |
| pkt->pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" : |
| pkt->pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H", |
| (unsigned long long)pkt->in_flight_len); |
| } |
| } |
| |
| if (mask & QUIC_EV_CONN_SSLALERT) { |
| const uint8_t *alert = a2; |
| const enum ssl_encryption_level_t *level = a3; |
| |
| if (alert) |
| chunk_appendf(&trace_buf, " alert=0x%02x", *alert); |
| if (level) |
| chunk_appendf(&trace_buf, " el=%c", |
| quic_enc_level_char(ssl_to_quic_enc_level(*level))); |
| } |
| |
| if (mask & QUIC_EV_CONN_BCFRMS) { |
| const size_t *sz1 = a2; |
| const size_t *sz2 = a3; |
| const size_t *sz3 = a4; |
| |
| if (sz1) |
| chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz1); |
| if (sz2) |
| chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz2); |
| if (sz3) |
| chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz3); |
| } |
| |
| if (mask & QUIC_EV_CONN_PSTRM) { |
| const struct quic_frame *frm = a2; |
| |
| if (frm) |
| chunk_frm_appendf(&trace_buf, frm); |
| } |
| } |
| if (mask & QUIC_EV_CONN_LPKT) { |
| const struct quic_rx_packet *pkt = a2; |
| const uint64_t *len = a3; |
| |
| if (pkt) { |
| chunk_appendf(&trace_buf, " pkt@%p type=0x%02x %s", |
| pkt, pkt->type, qc_pkt_long(pkt) ? "long" : "short"); |
| if (pkt->pn_node.key != (uint64_t)-1) |
| chunk_appendf(&trace_buf, " pn=%llu", pkt->pn_node.key); |
| } |
| |
| if (len) |
| chunk_appendf(&trace_buf, " len=%llu", (ull)*len); |
| } |
| |
| } |
| |
| /* Returns 1 if the peer has validated <qc> QUIC connection address, 0 if not. */ |
| static inline int quic_peer_validated_addr(struct quic_conn *qc) |
| { |
| struct quic_pktns *hdshk_pktns, *app_pktns; |
| |
| if (!qc_is_listener(qc)) |
| return 1; |
| |
| hdshk_pktns = qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns; |
| app_pktns = qc->els[QUIC_TLS_ENC_LEVEL_APP].pktns; |
| if ((hdshk_pktns->flags & QUIC_FL_PKTNS_PKT_RECEIVED) || |
| (app_pktns->flags & QUIC_FL_PKTNS_PKT_RECEIVED) || |
| qc->state >= QUIC_HS_ST_COMPLETE) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Set the timer attached to the QUIC connection with <ctx> as I/O handler and used for |
| * both loss detection and PTO and schedule the task assiated to this timer if needed. |
| */ |
| static inline void qc_set_timer(struct quic_conn *qc) |
| { |
| struct quic_pktns *pktns; |
| unsigned int pto; |
| int handshake_complete; |
| |
| TRACE_ENTER(QUIC_EV_CONN_STIMER, qc, |
| NULL, NULL, &qc->path->ifae_pkts); |
| |
| pktns = quic_loss_pktns(qc); |
| if (tick_isset(pktns->tx.loss_time)) { |
| qc->timer = pktns->tx.loss_time; |
| goto out; |
| } |
| |
| /* anti-amplification: the timer must be |
| * cancelled for a server which reached the anti-amplification limit. |
| */ |
| if (!quic_peer_validated_addr(qc) && |
| (qc->flags & QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED)) { |
| TRACE_PROTO("anti-amplification reached", QUIC_EV_CONN_STIMER, qc); |
| qc->timer = TICK_ETERNITY; |
| goto out; |
| } |
| |
| if (!qc->path->ifae_pkts && quic_peer_validated_addr(qc)) { |
| TRACE_PROTO("timer cancellation", QUIC_EV_CONN_STIMER, qc); |
| /* Timer cancellation. */ |
| qc->timer = TICK_ETERNITY; |
| goto out; |
| } |
| |
| handshake_complete = qc->state >= QUIC_HS_ST_COMPLETE; |
| pktns = quic_pto_pktns(qc, handshake_complete, &pto); |
| if (tick_isset(pto)) |
| qc->timer = pto; |
| out: |
| if (qc->timer_task && qc->timer != TICK_ETERNITY) { |
| if (tick_is_expired(qc->timer, now_ms)) { |
| TRACE_PROTO("wakeup asap timer task", QUIC_EV_CONN_STIMER, qc); |
| task_wakeup(qc->timer_task, TASK_WOKEN_MSG); |
| } |
| else { |
| TRACE_PROTO("timer task scheduling", QUIC_EV_CONN_STIMER, qc); |
| task_schedule(qc->timer_task, qc->timer); |
| } |
| } |
| TRACE_LEAVE(QUIC_EV_CONN_STIMER, qc, pktns); |
| } |
| |
| /* Derive new keys and ivs required for Key Update feature for <qc> QUIC |
| * connection. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static int quic_tls_key_update(struct quic_conn *qc) |
| { |
| struct quic_tls_ctx *tls_ctx = &qc->els[QUIC_TLS_ENC_LEVEL_APP].tls_ctx; |
| struct quic_tls_secrets *rx, *tx; |
| struct quic_tls_kp *nxt_rx = &qc->ku.nxt_rx; |
| struct quic_tls_kp *nxt_tx = &qc->ku.nxt_tx; |
| |
| tls_ctx = &qc->els[QUIC_TLS_ENC_LEVEL_APP].tls_ctx; |
| rx = &tls_ctx->rx; |
| tx = &tls_ctx->tx; |
| nxt_rx = &qc->ku.nxt_rx; |
| nxt_tx = &qc->ku.nxt_tx; |
| |
| /* Prepare new RX secrets */ |
| if (!quic_tls_sec_update(rx->md, nxt_rx->secret, nxt_rx->secretlen, |
| rx->secret, rx->secretlen)) { |
| TRACE_DEVEL("New RX secret update failed", QUIC_EV_CONN_RWSEC, qc); |
| return 0; |
| } |
| |
| if (!quic_tls_derive_keys(rx->aead, NULL, rx->md, |
| nxt_rx->key, nxt_rx->keylen, |
| nxt_rx->iv, nxt_rx->ivlen, NULL, 0, |
| nxt_rx->secret, nxt_rx->secretlen)) { |
| TRACE_DEVEL("New RX key derivation failed", QUIC_EV_CONN_RWSEC, qc); |
| return 0; |
| } |
| |
| /* Prepare new TX secrets */ |
| if (!quic_tls_sec_update(tx->md, nxt_tx->secret, nxt_tx->secretlen, |
| tx->secret, tx->secretlen)) { |
| TRACE_DEVEL("New TX secret update failed", QUIC_EV_CONN_RWSEC, qc); |
| return 0; |
| } |
| |
| if (!quic_tls_derive_keys(tx->aead, NULL, tx->md, |
| nxt_tx->key, nxt_tx->keylen, |
| nxt_tx->iv, nxt_tx->ivlen, NULL, 0, |
| nxt_tx->secret, nxt_tx->secretlen)) { |
| TRACE_DEVEL("New TX key derivation failed", QUIC_EV_CONN_RWSEC, qc); |
| return 0; |
| } |
| |
| if (nxt_rx->ctx) { |
| EVP_CIPHER_CTX_free(nxt_rx->ctx); |
| nxt_rx->ctx = NULL; |
| } |
| |
| if (!quic_tls_rx_ctx_init(&nxt_rx->ctx, tls_ctx->rx.aead, nxt_rx->key)) { |
| TRACE_DEVEL("could not initial RX TLS cipher context", QUIC_EV_CONN_RWSEC, qc); |
| return 0; |
| } |
| |
| if (nxt_tx->ctx) { |
| EVP_CIPHER_CTX_free(nxt_tx->ctx); |
| nxt_tx->ctx = NULL; |
| } |
| |
| if (!quic_tls_rx_ctx_init(&nxt_tx->ctx, tls_ctx->tx.aead, nxt_tx->key)) { |
| TRACE_DEVEL("could not initial RX TLS cipher context", QUIC_EV_CONN_RWSEC, qc); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Rotate the Key Update information for <qc> QUIC connection. |
| * Must be used after having updated them. |
| * Always succeeds. |
| */ |
| static void quic_tls_rotate_keys(struct quic_conn *qc) |
| { |
| struct quic_tls_ctx *tls_ctx = &qc->els[QUIC_TLS_ENC_LEVEL_APP].tls_ctx; |
| unsigned char *curr_secret, *curr_iv, *curr_key; |
| EVP_CIPHER_CTX *curr_ctx; |
| |
| /* Rotate the RX secrets */ |
| curr_ctx = tls_ctx->rx.ctx; |
| curr_secret = tls_ctx->rx.secret; |
| curr_iv = tls_ctx->rx.iv; |
| curr_key = tls_ctx->rx.key; |
| |
| tls_ctx->rx.ctx = qc->ku.nxt_rx.ctx; |
| tls_ctx->rx.secret = qc->ku.nxt_rx.secret; |
| tls_ctx->rx.iv = qc->ku.nxt_rx.iv; |
| tls_ctx->rx.key = qc->ku.nxt_rx.key; |
| |
| qc->ku.nxt_rx.ctx = qc->ku.prv_rx.ctx; |
| qc->ku.nxt_rx.secret = qc->ku.prv_rx.secret; |
| qc->ku.nxt_rx.iv = qc->ku.prv_rx.iv; |
| qc->ku.nxt_rx.key = qc->ku.prv_rx.key; |
| |
| qc->ku.prv_rx.ctx = curr_ctx; |
| qc->ku.prv_rx.secret = curr_secret; |
| qc->ku.prv_rx.iv = curr_iv; |
| qc->ku.prv_rx.key = curr_key; |
| qc->ku.prv_rx.pn = tls_ctx->rx.pn; |
| |
| /* Update the TX secrets */ |
| curr_ctx = tls_ctx->tx.ctx; |
| curr_secret = tls_ctx->tx.secret; |
| curr_iv = tls_ctx->tx.iv; |
| curr_key = tls_ctx->tx.key; |
| |
| tls_ctx->tx.ctx = qc->ku.nxt_tx.ctx; |
| tls_ctx->tx.secret = qc->ku.nxt_tx.secret; |
| tls_ctx->tx.iv = qc->ku.nxt_tx.iv; |
| tls_ctx->tx.key = qc->ku.nxt_tx.key; |
| |
| qc->ku.nxt_tx.ctx = curr_ctx; |
| qc->ku.nxt_tx.secret = curr_secret; |
| qc->ku.nxt_tx.iv = curr_iv; |
| qc->ku.nxt_tx.key = curr_key; |
| } |
| |
| #ifndef OPENSSL_IS_BORINGSSL |
| int ha_quic_set_encryption_secrets(SSL *ssl, enum ssl_encryption_level_t level, |
| const uint8_t *read_secret, |
| const uint8_t *write_secret, size_t secret_len) |
| { |
| struct quic_conn *qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index); |
| struct quic_tls_ctx *tls_ctx = &qc->els[ssl_to_quic_enc_level(level)].tls_ctx; |
| const SSL_CIPHER *cipher = SSL_get_current_cipher(ssl); |
| struct quic_tls_secrets *rx, *tx; |
| |
| TRACE_ENTER(QUIC_EV_CONN_RWSEC, qc); |
| BUG_ON(secret_len > QUIC_TLS_SECRET_LEN); |
| if (qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE) { |
| TRACE_PROTO("CC required", QUIC_EV_CONN_RWSEC, qc); |
| goto no_secret; |
| } |
| |
| if (!quic_tls_ctx_keys_alloc(tls_ctx)) { |
| TRACE_DEVEL("keys allocation failed", QUIC_EV_CONN_RWSEC, qc); |
| goto err; |
| } |
| |
| rx = &tls_ctx->rx; |
| tx = &tls_ctx->tx; |
| |
| rx->aead = tx->aead = tls_aead(cipher); |
| rx->md = tx->md = tls_md(cipher); |
| rx->hp = tx->hp = tls_hp(cipher); |
| |
| if (!quic_tls_derive_keys(rx->aead, rx->hp, rx->md, rx->key, rx->keylen, |
| rx->iv, rx->ivlen, rx->hp_key, sizeof rx->hp_key, |
| read_secret, secret_len)) { |
| TRACE_DEVEL("RX key derivation failed", QUIC_EV_CONN_RWSEC, qc); |
| goto err; |
| } |
| |
| if (!quic_tls_rx_ctx_init(&rx->ctx, rx->aead, rx->key)) { |
| TRACE_DEVEL("could not initial RX TLS cipher context", QUIC_EV_CONN_RWSEC, qc); |
| goto err; |
| } |
| |
| /* Enqueue this connection asap if we could derive O-RTT secrets as |
| * listener. Note that a listener derives only RX secrets for this |
| * level. |
| */ |
| if (qc_is_listener(qc) && level == ssl_encryption_early_data) |
| quic_accept_push_qc(qc); |
| |
| if (!write_secret) |
| goto out; |
| |
| if (!quic_tls_derive_keys(tx->aead, tx->hp, tx->md, tx->key, tx->keylen, |
| tx->iv, tx->ivlen, tx->hp_key, sizeof tx->hp_key, |
| write_secret, secret_len)) { |
| TRACE_DEVEL("TX key derivation failed", QUIC_EV_CONN_RWSEC, qc); |
| goto err; |
| } |
| |
| if (!quic_tls_tx_ctx_init(&tx->ctx, tx->aead, tx->key)) { |
| TRACE_DEVEL("could not initial RX TLS cipher context", QUIC_EV_CONN_RWSEC, qc); |
| goto err; |
| } |
| |
| if (level == ssl_encryption_application) { |
| struct quic_tls_kp *prv_rx = &qc->ku.prv_rx; |
| struct quic_tls_kp *nxt_rx = &qc->ku.nxt_rx; |
| struct quic_tls_kp *nxt_tx = &qc->ku.nxt_tx; |
| |
| /* These secrets must be stored only for Application encryption level */ |
| if (!(rx->secret = pool_alloc(pool_head_quic_tls_secret)) || |
| !(tx->secret = pool_alloc(pool_head_quic_tls_secret))) { |
| TRACE_DEVEL("Could not allocate secrete keys", QUIC_EV_CONN_RWSEC, qc); |
| goto err; |
| } |
| |
| memcpy(rx->secret, read_secret, secret_len); |
| rx->secretlen = secret_len; |
| memcpy(tx->secret, write_secret, secret_len); |
| tx->secretlen = secret_len; |
| /* Initialize all the secret keys lengths */ |
| prv_rx->secretlen = nxt_rx->secretlen = nxt_tx->secretlen = secret_len; |
| /* Prepare the next key update */ |
| if (!quic_tls_key_update(qc)) |
| goto err; |
| } |
| |
| out: |
| tls_ctx->flags |= QUIC_FL_TLS_SECRETS_SET; |
| no_secret: |
| TRACE_LEAVE(QUIC_EV_CONN_RWSEC, qc, &level); |
| return 1; |
| |
| err: |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_RWSEC, qc); |
| return 0; |
| } |
| #else |
| /* ->set_read_secret callback to derive the RX secrets at <level> encryption |
| * level. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| int ha_set_rsec(SSL *ssl, enum ssl_encryption_level_t level, |
| const SSL_CIPHER *cipher, |
| const uint8_t *secret, size_t secret_len) |
| { |
| struct quic_conn *qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index); |
| struct quic_tls_ctx *tls_ctx = |
| &qc->els[ssl_to_quic_enc_level(level)].tls_ctx; |
| |
| TRACE_ENTER(QUIC_EV_CONN_RSEC, qc); |
| if (qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE) { |
| TRACE_PROTO("CC required", QUIC_EV_CONN_RSEC, qc); |
| goto out; |
| } |
| |
| tls_ctx->rx.aead = tls_aead(cipher); |
| tls_ctx->rx.md = tls_md(cipher); |
| tls_ctx->rx.hp = tls_hp(cipher); |
| |
| if (!(ctx->rx.key = pool_alloc(pool_head_quic_tls_key))) |
| goto err; |
| |
| if (!quic_tls_derive_keys(tls_ctx->rx.aead, tls_ctx->rx.hp, tls_ctx->rx.md, |
| tls_ctx->rx.key, tls_ctx->rx.keylen, |
| tls_ctx->rx.iv, tls_ctx->rx.ivlen, |
| tls_ctx->rx.hp_key, sizeof tls_ctx->rx.hp_key, |
| secret, secret_len)) { |
| TRACE_DEVEL("RX key derivation failed", QUIC_EV_CONN_RSEC, qc); |
| goto err; |
| } |
| |
| if (!qc_is_listener(qc) && level == ssl_encryption_application) { |
| const unsigned char *buf; |
| size_t buflen; |
| |
| SSL_get_peer_quic_transport_params(ssl, &buf, &buflen); |
| if (!buflen) |
| goto err; |
| |
| if (!quic_transport_params_store(qc, 1, buf, buf + buflen)) |
| goto err; |
| } |
| |
| tls_ctx->rx.flags |= QUIC_FL_TLS_SECRETS_SET; |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_RSEC, qc, &level, secret, &secret_len); |
| |
| return 1; |
| |
| err: |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_RSEC, qc); |
| return 0; |
| } |
| |
| /* ->set_write_secret callback to derive the TX secrets at <level> |
| * encryption level. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| int ha_set_wsec(SSL *ssl, enum ssl_encryption_level_t level, |
| const SSL_CIPHER *cipher, |
| const uint8_t *secret, size_t secret_len) |
| { |
| struct quic_conn *qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index); |
| struct quic_tls_ctx *tls_ctx = &qc->els[ssl_to_quic_enc_level(level)].tls_ctx; |
| |
| TRACE_ENTER(QUIC_EV_CONN_WSEC, qc); |
| if (qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE) { |
| TRACE_PROTO("CC required", QUIC_EV_CONN_WSEC, qc); |
| goto out; |
| } |
| |
| if (!(ctx->tx.key = pool_alloc(pool_head_quic_tls_key))) |
| goto err; |
| |
| tls_ctx->tx.aead = tls_aead(cipher); |
| tls_ctx->tx.md = tls_md(cipher); |
| tls_ctx->tx.hp = tls_hp(cipher); |
| |
| if (!quic_tls_derive_keys(tls_ctx->tx.aead, tls_ctx->tx.hp, tls_ctx->tx.md, |
| tls_ctx->tx.key, tls_ctx->tx.keylen, |
| tls_ctx->tx.iv, tls_ctx->tx.ivlen, |
| tls_ctx->tx.hp_key, sizeof tls_ctx->tx.hp_key, |
| secret, secret_len)) { |
| TRACE_DEVEL("TX key derivation failed", QUIC_EV_CONN_WSEC, qc); |
| goto err; |
| } |
| |
| tls_ctx->tx.flags |= QUIC_FL_TLS_SECRETS_SET; |
| TRACE_LEAVE(QUIC_EV_CONN_WSEC, qc, &level, secret, &secret_len); |
| out: |
| return 1; |
| |
| err: |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_WSEC, qc); |
| return 0; |
| } |
| #endif |
| |
| /* This function copies the CRYPTO data provided by the TLS stack found at <data> |
| * with <len> as size in CRYPTO buffers dedicated to store the information about |
| * outgoing CRYPTO frames so that to be able to replay the CRYPTO data streams. |
| * It fails only if it could not managed to allocate enough CRYPTO buffers to |
| * store all the data. |
| * Note that CRYPTO data may exist at any encryption level except at 0-RTT. |
| */ |
| static int quic_crypto_data_cpy(struct quic_enc_level *qel, |
| const unsigned char *data, size_t len) |
| { |
| struct quic_crypto_buf **qcb; |
| /* The remaining byte to store in CRYPTO buffers. */ |
| size_t cf_offset, cf_len, *nb_buf; |
| unsigned char *pos; |
| |
| nb_buf = &qel->tx.crypto.nb_buf; |
| qcb = &qel->tx.crypto.bufs[*nb_buf - 1]; |
| cf_offset = (*nb_buf - 1) * QUIC_CRYPTO_BUF_SZ + (*qcb)->sz; |
| cf_len = len; |
| |
| while (len) { |
| size_t to_copy, room; |
| |
| pos = (*qcb)->data + (*qcb)->sz; |
| room = QUIC_CRYPTO_BUF_SZ - (*qcb)->sz; |
| to_copy = len > room ? room : len; |
| if (to_copy) { |
| memcpy(pos, data, to_copy); |
| /* Increment the total size of this CRYPTO buffers by <to_copy>. */ |
| qel->tx.crypto.sz += to_copy; |
| (*qcb)->sz += to_copy; |
| len -= to_copy; |
| data += to_copy; |
| } |
| else { |
| struct quic_crypto_buf **tmp; |
| |
| tmp = realloc(qel->tx.crypto.bufs, |
| (*nb_buf + 1) * sizeof *qel->tx.crypto.bufs); |
| if (tmp) { |
| qel->tx.crypto.bufs = tmp; |
| qcb = &qel->tx.crypto.bufs[*nb_buf]; |
| *qcb = pool_alloc(pool_head_quic_crypto_buf); |
| if (!*qcb) |
| return 0; |
| |
| (*qcb)->sz = 0; |
| ++*nb_buf; |
| } |
| else { |
| break; |
| } |
| } |
| } |
| |
| /* Allocate a TX CRYPTO frame only if all the CRYPTO data |
| * have been buffered. |
| */ |
| if (!len) { |
| struct quic_frame *frm; |
| struct quic_frame *found = NULL; |
| |
| /* There is at most one CRYPTO frame in this packet number |
| * space. Let's look for it. |
| */ |
| list_for_each_entry(frm, &qel->pktns->tx.frms, list) { |
| if (frm->type != QUIC_FT_CRYPTO) |
| continue; |
| |
| /* Found */ |
| found = frm; |
| break; |
| } |
| |
| if (found) { |
| found->crypto.len += cf_len; |
| } |
| else { |
| frm = pool_alloc(pool_head_quic_frame); |
| if (!frm) |
| return 0; |
| |
| frm->type = QUIC_FT_CRYPTO; |
| frm->crypto.offset = cf_offset; |
| frm->crypto.len = cf_len; |
| frm->crypto.qel = qel; |
| LIST_APPEND(&qel->pktns->tx.frms, &frm->list); |
| } |
| } |
| |
| return len == 0; |
| } |
| |
| |
| /* Set <alert> TLS alert as QUIC CRYPTO_ERROR error */ |
| void quic_set_tls_alert(struct quic_conn *qc, int alert) |
| { |
| qc->err_code = QC_ERR_CRYPTO_ERROR | alert; |
| qc->flags |= QUIC_FL_CONN_IMMEDIATE_CLOSE; |
| TRACE_PROTO("Alert set", QUIC_EV_CONN_SSLDATA, qc); |
| } |
| |
| /* Set the application for <qc> QUIC connection. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| int quic_set_app_ops(struct quic_conn *qc, const unsigned char *alpn, size_t alpn_len) |
| { |
| if (alpn_len >= 2 && memcmp(alpn, "h3", 2) == 0) |
| qc->app_ops = &h3_ops; |
| else if (alpn_len >= 10 && memcmp(alpn, "hq-interop", 10) == 0) |
| qc->app_ops = &hq_interop_ops; |
| else |
| return 0; |
| |
| return 1; |
| } |
| |
| /* ->add_handshake_data QUIC TLS callback used by the QUIC TLS stack when it |
| * wants to provide the QUIC layer with CRYPTO data. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| int ha_quic_add_handshake_data(SSL *ssl, enum ssl_encryption_level_t level, |
| const uint8_t *data, size_t len) |
| { |
| struct quic_conn *qc; |
| enum quic_tls_enc_level tel; |
| struct quic_enc_level *qel; |
| |
| qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index); |
| TRACE_ENTER(QUIC_EV_CONN_ADDDATA, qc); |
| if (qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE) { |
| TRACE_PROTO("CC required", QUIC_EV_CONN_ADDDATA, qc); |
| goto out; |
| } |
| |
| tel = ssl_to_quic_enc_level(level); |
| if (tel == -1) { |
| TRACE_PROTO("Wrong encryption level", QUIC_EV_CONN_ADDDATA, qc); |
| goto err; |
| } |
| |
| qel = &qc->els[tel]; |
| if (!quic_crypto_data_cpy(qel, data, len)) { |
| TRACE_PROTO("Could not bufferize", QUIC_EV_CONN_ADDDATA, qc); |
| goto err; |
| } |
| |
| TRACE_PROTO("CRYPTO data buffered", QUIC_EV_CONN_ADDDATA, |
| qc, &level, &len); |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_ADDDATA, qc); |
| return 1; |
| |
| err: |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_ADDDATA, qc); |
| return 0; |
| } |
| |
| int ha_quic_flush_flight(SSL *ssl) |
| { |
| struct quic_conn *qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index); |
| |
| TRACE_ENTER(QUIC_EV_CONN_FFLIGHT, qc); |
| TRACE_LEAVE(QUIC_EV_CONN_FFLIGHT, qc); |
| |
| return 1; |
| } |
| |
| int ha_quic_send_alert(SSL *ssl, enum ssl_encryption_level_t level, uint8_t alert) |
| { |
| struct quic_conn *qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index); |
| |
| TRACE_DEVEL("SSL alert", QUIC_EV_CONN_SSLALERT, qc, &alert, &level); |
| quic_set_tls_alert(qc, alert); |
| qc->flags |= QUIC_FL_CONN_IMMEDIATE_CLOSE; |
| return 1; |
| } |
| |
| /* QUIC TLS methods */ |
| static SSL_QUIC_METHOD ha_quic_method = { |
| #ifdef OPENSSL_IS_BORINGSSL |
| .set_read_secret = ha_set_rsec, |
| .set_write_secret = ha_set_wsec, |
| #else |
| .set_encryption_secrets = ha_quic_set_encryption_secrets, |
| #endif |
| .add_handshake_data = ha_quic_add_handshake_data, |
| .flush_flight = ha_quic_flush_flight, |
| .send_alert = ha_quic_send_alert, |
| }; |
| |
| /* Initialize the TLS context of a listener with <bind_conf> as configuration. |
| * Returns an error count. |
| */ |
| int ssl_quic_initial_ctx(struct bind_conf *bind_conf) |
| { |
| struct ssl_bind_conf __maybe_unused *ssl_conf_cur; |
| int cfgerr = 0; |
| |
| long options = |
| (SSL_OP_ALL & ~SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) | |
| SSL_OP_SINGLE_ECDH_USE | |
| SSL_OP_CIPHER_SERVER_PREFERENCE; |
| SSL_CTX *ctx; |
| |
| ctx = SSL_CTX_new(TLS_server_method()); |
| bind_conf->initial_ctx = ctx; |
| |
| SSL_CTX_set_options(ctx, options); |
| SSL_CTX_set_mode(ctx, SSL_MODE_RELEASE_BUFFERS); |
| SSL_CTX_set_min_proto_version(ctx, TLS1_3_VERSION); |
| SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION); |
| |
| #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME |
| #ifdef OPENSSL_IS_BORINGSSL |
| SSL_CTX_set_select_certificate_cb(ctx, ssl_sock_switchctx_cbk); |
| SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk); |
| #elif (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) |
| if (bind_conf->ssl_conf.early_data) { |
| SSL_CTX_set_options(ctx, SSL_OP_NO_ANTI_REPLAY); |
| SSL_CTX_set_max_early_data(ctx, 0xffffffff); |
| } |
| SSL_CTX_set_client_hello_cb(ctx, ssl_sock_switchctx_cbk, NULL); |
| SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk); |
| #else |
| SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_cbk); |
| #endif |
| SSL_CTX_set_tlsext_servername_arg(ctx, bind_conf); |
| #endif |
| SSL_CTX_set_quic_method(ctx, &ha_quic_method); |
| |
| return cfgerr; |
| } |
| |
| /* Decode an expected packet number from <truncated_on> its truncated value, |
| * depending on <largest_pn> the largest received packet number, and <pn_nbits> |
| * the number of bits used to encode this packet number (its length in bytes * 8). |
| * See https://quicwg.org/base-drafts/draft-ietf-quic-transport.html#packet-encoding |
| */ |
| static uint64_t decode_packet_number(uint64_t largest_pn, |
| uint32_t truncated_pn, unsigned int pn_nbits) |
| { |
| uint64_t expected_pn = largest_pn + 1; |
| uint64_t pn_win = (uint64_t)1 << pn_nbits; |
| uint64_t pn_hwin = pn_win / 2; |
| uint64_t pn_mask = pn_win - 1; |
| uint64_t candidate_pn; |
| |
| |
| candidate_pn = (expected_pn & ~pn_mask) | truncated_pn; |
| /* Note that <pn_win> > <pn_hwin>. */ |
| if (candidate_pn < QUIC_MAX_PACKET_NUM - pn_win && |
| candidate_pn + pn_hwin <= expected_pn) |
| return candidate_pn + pn_win; |
| |
| if (candidate_pn > expected_pn + pn_hwin && candidate_pn >= pn_win) |
| return candidate_pn - pn_win; |
| |
| return candidate_pn; |
| } |
| |
| /* Remove the header protection of <pkt> QUIC packet using <tls_ctx> as QUIC TLS |
| * cryptographic context. |
| * <largest_pn> is the largest received packet number and <pn> the address of |
| * the packet number field for this packet with <byte0> address of its first byte. |
| * <end> points to one byte past the end of this packet. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| static int qc_do_rm_hp(struct quic_conn *qc, |
| struct quic_rx_packet *pkt, struct quic_tls_ctx *tls_ctx, |
| int64_t largest_pn, unsigned char *pn, |
| unsigned char *byte0, const unsigned char *end) |
| { |
| int ret, outlen, i, pnlen; |
| uint64_t packet_number; |
| uint32_t truncated_pn = 0; |
| unsigned char mask[5] = {0}; |
| unsigned char *sample; |
| EVP_CIPHER_CTX *cctx; |
| unsigned char *hp_key; |
| |
| /* Check there is enough data in this packet. */ |
| if (end - pn < QUIC_PACKET_PN_MAXLEN + sizeof mask) { |
| TRACE_DEVEL("too short packet", QUIC_EV_CONN_RMHP, qc, pkt); |
| return 0; |
| } |
| |
| cctx = EVP_CIPHER_CTX_new(); |
| if (!cctx) { |
| TRACE_DEVEL("memory allocation failed", QUIC_EV_CONN_RMHP, qc, pkt); |
| return 0; |
| } |
| |
| ret = 0; |
| sample = pn + QUIC_PACKET_PN_MAXLEN; |
| |
| hp_key = tls_ctx->rx.hp_key; |
| if (!EVP_DecryptInit_ex(cctx, tls_ctx->rx.hp, NULL, hp_key, sample) || |
| !EVP_DecryptUpdate(cctx, mask, &outlen, mask, sizeof mask) || |
| !EVP_DecryptFinal_ex(cctx, mask, &outlen)) { |
| TRACE_DEVEL("decryption failed", QUIC_EV_CONN_RMHP, qc, pkt); |
| goto out; |
| } |
| |
| *byte0 ^= mask[0] & (*byte0 & QUIC_PACKET_LONG_HEADER_BIT ? 0xf : 0x1f); |
| pnlen = (*byte0 & QUIC_PACKET_PNL_BITMASK) + 1; |
| for (i = 0; i < pnlen; i++) { |
| pn[i] ^= mask[i + 1]; |
| truncated_pn = (truncated_pn << 8) | pn[i]; |
| } |
| |
| packet_number = decode_packet_number(largest_pn, truncated_pn, pnlen * 8); |
| /* Store remaining information for this unprotected header */ |
| pkt->pn = packet_number; |
| pkt->pnl = pnlen; |
| |
| ret = 1; |
| |
| out: |
| EVP_CIPHER_CTX_free(cctx); |
| |
| return ret; |
| } |
| |
| /* Encrypt the payload of a QUIC packet with <pn> as number found at <payload> |
| * address, with <payload_len> as payload length, <aad> as address of |
| * the ADD and <aad_len> as AAD length depending on the <tls_ctx> QUIC TLS |
| * context. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| static int quic_packet_encrypt(unsigned char *payload, size_t payload_len, |
| unsigned char *aad, size_t aad_len, uint64_t pn, |
| struct quic_tls_ctx *tls_ctx, struct quic_conn *qc) |
| { |
| unsigned char iv[QUIC_TLS_IV_LEN]; |
| unsigned char *tx_iv = tls_ctx->tx.iv; |
| size_t tx_iv_sz = tls_ctx->tx.ivlen; |
| struct enc_debug_info edi; |
| |
| if (!quic_aead_iv_build(iv, sizeof iv, tx_iv, tx_iv_sz, pn)) { |
| TRACE_DEVEL("AEAD IV building for encryption failed", QUIC_EV_CONN_HPKT, qc); |
| goto err; |
| } |
| |
| if (!quic_tls_encrypt(payload, payload_len, aad, aad_len, |
| tls_ctx->tx.ctx, tls_ctx->tx.aead, tls_ctx->tx.key, iv)) { |
| TRACE_DEVEL("QUIC packet encryption failed", QUIC_EV_CONN_HPKT, qc); |
| goto err; |
| } |
| |
| return 1; |
| |
| err: |
| enc_debug_info_init(&edi, payload, payload_len, aad, aad_len, pn); |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_ENCPKT, qc, &edi); |
| return 0; |
| } |
| |
| /* Decrypt <pkt> QUIC packet with <tls_ctx> as QUIC TLS cryptographic context. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| static int qc_pkt_decrypt(struct quic_rx_packet *pkt, struct quic_enc_level *qel) |
| { |
| int ret, kp_changed; |
| unsigned char iv[QUIC_TLS_IV_LEN]; |
| struct quic_tls_ctx *tls_ctx = &qel->tls_ctx; |
| EVP_CIPHER_CTX *rx_ctx = tls_ctx->rx.ctx; |
| unsigned char *rx_iv = tls_ctx->rx.iv; |
| size_t rx_iv_sz = tls_ctx->rx.ivlen; |
| unsigned char *rx_key = tls_ctx->rx.key; |
| |
| kp_changed = 0; |
| if (pkt->type == QUIC_PACKET_TYPE_SHORT) { |
| /* The two tested bits are not at the same position, |
| * this is why they are first both inversed. |
| */ |
| if (!(*pkt->data & QUIC_PACKET_KEY_PHASE_BIT) ^ !(tls_ctx->flags & QUIC_FL_TLS_KP_BIT_SET)) { |
| if (pkt->pn < tls_ctx->rx.pn) { |
| /* The lowest packet number of a previous key phase |
| * cannot be null if it really stores previous key phase |
| * secrets. |
| */ |
| if (!pkt->qc->ku.prv_rx.pn) |
| return 0; |
| |
| rx_ctx = pkt->qc->ku.prv_rx.ctx; |
| rx_iv = pkt->qc->ku.prv_rx.iv; |
| rx_key = pkt->qc->ku.prv_rx.key; |
| } |
| else if (pkt->pn > qel->pktns->rx.largest_pn) { |
| /* Next key phase */ |
| kp_changed = 1; |
| rx_ctx = pkt->qc->ku.nxt_rx.ctx; |
| rx_iv = pkt->qc->ku.nxt_rx.iv; |
| rx_key = pkt->qc->ku.nxt_rx.key; |
| } |
| } |
| } |
| |
| if (!quic_aead_iv_build(iv, sizeof iv, rx_iv, rx_iv_sz, pkt->pn)) |
| return 0; |
| |
| ret = quic_tls_decrypt(pkt->data + pkt->aad_len, pkt->len - pkt->aad_len, |
| pkt->data, pkt->aad_len, |
| rx_ctx, tls_ctx->rx.aead, rx_key, iv); |
| if (!ret) |
| return 0; |
| |
| /* Update the keys only if the packet decryption succeeded. */ |
| if (kp_changed) { |
| quic_tls_rotate_keys(pkt->qc); |
| /* Toggle the Key Phase bit */ |
| tls_ctx->flags ^= QUIC_FL_TLS_KP_BIT_SET; |
| /* Store the lowest packet number received for the current key phase */ |
| tls_ctx->rx.pn = pkt->pn; |
| /* Prepare the next key update */ |
| if (!quic_tls_key_update(pkt->qc)) |
| return 0; |
| } |
| |
| /* Update the packet length (required to parse the frames). */ |
| pkt->len -= QUIC_TLS_TAG_LEN; |
| |
| return 1; |
| } |
| |
| /* Free the stream descriptor <stream> buffer. This function should be used |
| * when all its data have been acknowledged. If the stream was released by the |
| * upper layer, the stream descriptor will be freed. |
| * |
| * Returns 0 if the stream was not freed else non-zero. |
| */ |
| static int qc_stream_desc_free(struct qc_stream_desc *stream) |
| { |
| b_free(&stream->buf); |
| offer_buffers(NULL, 1); |
| |
| if (stream->release) { |
| eb64_delete(&stream->by_id); |
| pool_free(pool_head_quic_conn_stream, stream); |
| |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Remove from <stream> the acknowledged frames. |
| * |
| * Returns 1 if at least one frame was removed else 0. |
| */ |
| static int quic_stream_try_to_consume(struct quic_conn *qc, |
| struct qc_stream_desc *stream) |
| { |
| int ret; |
| struct eb64_node *frm_node; |
| |
| ret = 0; |
| frm_node = eb64_first(&stream->acked_frms); |
| while (frm_node) { |
| struct quic_stream *strm; |
| struct quic_frame *frm; |
| |
| strm = eb64_entry(&frm_node->node, struct quic_stream, offset); |
| if (strm->offset.key > stream->ack_offset) |
| break; |
| |
| TRACE_PROTO("stream consumed", QUIC_EV_CONN_ACKSTRM, |
| qc, strm, stream); |
| |
| if (strm->offset.key + strm->len > stream->ack_offset) { |
| const size_t diff = strm->offset.key + strm->len - |
| stream->ack_offset; |
| stream->ack_offset += diff; |
| b_del(strm->buf, diff); |
| ret = 1; |
| } |
| |
| frm_node = eb64_next(frm_node); |
| eb64_delete(&strm->offset); |
| |
| frm = container_of(strm, struct quic_frame, stream); |
| LIST_DELETE(&frm->list); |
| quic_tx_packet_refdec(frm->pkt); |
| pool_free(pool_head_quic_frame, frm); |
| } |
| |
| if (!b_data(&stream->buf)) |
| qc_stream_desc_free(stream); |
| |
| return ret; |
| } |
| |
| /* Treat <frm> frame whose packet it is attached to has just been acknowledged. */ |
| static inline void qc_treat_acked_tx_frm(struct quic_conn *qc, |
| struct quic_frame *frm) |
| { |
| int stream_acked; |
| |
| TRACE_PROTO("Removing frame", QUIC_EV_CONN_PRSAFRM, qc, frm); |
| stream_acked = 0; |
| switch (frm->type) { |
| case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F: |
| { |
| struct quic_stream *strm_frm = &frm->stream; |
| struct eb64_node *node = NULL; |
| struct qc_stream_desc *stream = NULL; |
| |
| /* do not use strm_frm->stream as the qc_stream_desc instance |
| * might be freed at this stage. Use the id to do a proper |
| * lookup. First search in the MUX then in the released stream |
| * list. |
| * |
| * TODO if lookup operation impact on the perf is noticeable, |
| * implement a refcount on qc_stream_desc instances. |
| */ |
| if (qc->mux_state == QC_MUX_READY) |
| stream = qcc_get_stream(qc->qcc, strm_frm->id); |
| if (!stream) { |
| node = eb64_lookup(&qc->streams_by_id, strm_frm->id); |
| stream = eb64_entry(node, struct qc_stream_desc, by_id); |
| } |
| |
| if (!stream) { |
| TRACE_PROTO("acked stream for released stream", QUIC_EV_CONN_ACKSTRM, qc, strm_frm); |
| LIST_DELETE(&frm->list); |
| quic_tx_packet_refdec(frm->pkt); |
| pool_free(pool_head_quic_frame, frm); |
| |
| /* early return */ |
| return; |
| } |
| |
| TRACE_PROTO("acked stream", QUIC_EV_CONN_ACKSTRM, qc, strm_frm, stream); |
| if (strm_frm->offset.key <= stream->ack_offset) { |
| if (strm_frm->offset.key + strm_frm->len > stream->ack_offset) { |
| const size_t diff = strm_frm->offset.key + strm_frm->len - |
| stream->ack_offset; |
| stream->ack_offset += diff; |
| b_del(strm_frm->buf, diff); |
| stream_acked = 1; |
| |
| if (!b_data(strm_frm->buf)) { |
| if (qc_stream_desc_free(stream)) { |
| /* early return */ |
| return; |
| } |
| } |
| } |
| |
| TRACE_PROTO("stream consumed", QUIC_EV_CONN_ACKSTRM, |
| qc, strm_frm, stream); |
| LIST_DELETE(&frm->list); |
| quic_tx_packet_refdec(frm->pkt); |
| pool_free(pool_head_quic_frame, frm); |
| } |
| else { |
| eb64_insert(&stream->acked_frms, &strm_frm->offset); |
| } |
| |
| stream_acked |= quic_stream_try_to_consume(qc, stream); |
| } |
| break; |
| default: |
| LIST_DELETE(&frm->list); |
| quic_tx_packet_refdec(frm->pkt); |
| pool_free(pool_head_quic_frame, frm); |
| } |
| |
| if (stream_acked) { |
| struct qcc *qcc = qc->qcc; |
| |
| if (qcc->subs && qcc->subs->events & SUB_RETRY_SEND) { |
| tasklet_wakeup(qcc->subs->tasklet); |
| qcc->subs->events &= ~SUB_RETRY_SEND; |
| if (!qcc->subs->events) |
| qcc->subs = NULL; |
| } |
| } |
| } |
| |
| /* Remove <largest> down to <smallest> node entries from <pkts> tree of TX packet, |
| * deallocating them, and their TX frames. |
| * Returns the last node reached to be used for the next range. |
| * May be NULL if <largest> node could not be found. |
| */ |
| static inline struct eb64_node *qc_ackrng_pkts(struct quic_conn *qc, |
| struct eb_root *pkts, |
| unsigned int *pkt_flags, |
| struct list *newly_acked_pkts, |
| struct eb64_node *largest_node, |
| uint64_t largest, uint64_t smallest) |
| { |
| struct eb64_node *node; |
| struct quic_tx_packet *pkt; |
| |
| if (largest_node) |
| node = largest_node; |
| else { |
| node = eb64_lookup(pkts, largest); |
| while (!node && largest > smallest) { |
| node = eb64_lookup(pkts, --largest); |
| } |
| } |
| |
| while (node && node->key >= smallest) { |
| struct quic_frame *frm, *frmbak; |
| |
| pkt = eb64_entry(&node->node, struct quic_tx_packet, pn_node); |
| *pkt_flags |= pkt->flags; |
| LIST_INSERT(newly_acked_pkts, &pkt->list); |
| TRACE_PROTO("Removing packet #", QUIC_EV_CONN_PRSAFRM, qc, NULL, &pkt->pn_node.key); |
| list_for_each_entry_safe(frm, frmbak, &pkt->frms, list) |
| qc_treat_acked_tx_frm(qc, frm); |
| node = eb64_prev(node); |
| eb64_delete(&pkt->pn_node); |
| } |
| |
| return node; |
| } |
| |
| /* Remove all frames from <pkt_frm_list> and reinsert them in the |
| * same order they have been sent into <pktns_frm_list>. |
| */ |
| static inline void qc_requeue_nacked_pkt_tx_frms(struct quic_conn *qc, |
| struct list *pkt_frm_list, |
| struct list *pktns_frm_list) |
| { |
| struct quic_frame *frm, *frmbak; |
| struct list tmp = LIST_HEAD_INIT(tmp); |
| |
| list_for_each_entry_safe(frm, frmbak, pkt_frm_list, list) { |
| LIST_DELETE(&frm->list); |
| quic_tx_packet_refdec(frm->pkt); |
| /* This frame is not freed but removed from its packet */ |
| frm->pkt = NULL; |
| TRACE_PROTO("to resend frame", QUIC_EV_CONN_PRSAFRM, qc, frm); |
| LIST_APPEND(&tmp, &frm->list); |
| } |
| |
| LIST_SPLICE(pktns_frm_list, &tmp); |
| } |
| |
| /* Free <pkt> TX packet and its attached frames. |
| * This is the responsability of the caller to remove this packet of |
| * any data structure it was possibly attached to. |
| */ |
| static inline void free_quic_tx_packet(struct quic_tx_packet *pkt) |
| { |
| struct quic_frame *frm, *frmbak; |
| |
| if (!pkt) |
| return; |
| |
| list_for_each_entry_safe(frm, frmbak, &pkt->frms, list) { |
| LIST_DELETE(&frm->list); |
| pool_free(pool_head_quic_frame, frm); |
| } |
| pool_free(pool_head_quic_tx_packet, pkt); |
| } |
| |
| /* Free the TX packets of <pkts> list */ |
| static inline void free_quic_tx_pkts(struct list *pkts) |
| { |
| struct quic_tx_packet *pkt, *tmp; |
| |
| list_for_each_entry_safe(pkt, tmp, pkts, list) { |
| LIST_DELETE(&pkt->list); |
| eb64_delete(&pkt->pn_node); |
| free_quic_tx_packet(pkt); |
| } |
| } |
| |
| /* Remove already sent ranges of acknowledged packet numbers from |
| * <pktns> packet number space tree below <largest_acked_pn> possibly |
| * updating the range which contains <largest_acked_pn>. |
| * Never fails. |
| */ |
| static void qc_treat_ack_of_ack(struct quic_pktns *pktns, |
| int64_t largest_acked_pn) |
| { |
| struct eb64_node *ar, *next_ar; |
| struct quic_arngs *arngs = &pktns->rx.arngs; |
| |
| ar = eb64_first(&arngs->root); |
| while (ar) { |
| struct quic_arng_node *ar_node; |
| |
| next_ar = eb64_next(ar); |
| ar_node = eb64_entry(&ar->node, struct quic_arng_node, first); |
| if ((int64_t)ar_node->first.key > largest_acked_pn) |
| break; |
| |
| if (largest_acked_pn < ar_node->last) { |
| eb64_delete(ar); |
| ar_node->first.key = largest_acked_pn + 1; |
| eb64_insert(&arngs->root, ar); |
| break; |
| } |
| |
| eb64_delete(ar); |
| pool_free(pool_head_quic_arng, ar_node); |
| arngs->sz--; |
| ar = next_ar; |
| } |
| } |
| |
| /* Send a packet ack event nofication for each newly acked packet of |
| * <newly_acked_pkts> list and free them. |
| * Always succeeds. |
| */ |
| static inline void qc_treat_newly_acked_pkts(struct quic_conn *qc, |
| struct list *newly_acked_pkts) |
| { |
| struct quic_tx_packet *pkt, *tmp; |
| struct quic_cc_event ev = { .type = QUIC_CC_EVT_ACK, }; |
| |
| list_for_each_entry_safe(pkt, tmp, newly_acked_pkts, list) { |
| pkt->pktns->tx.in_flight -= pkt->in_flight_len; |
| qc->path->prep_in_flight -= pkt->in_flight_len; |
| qc->path->in_flight -= pkt->in_flight_len; |
| if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING) |
| qc->path->ifae_pkts--; |
| /* If this packet contained an ACK frame, proceed to the |
| * acknowledging of range of acks from the largest acknowledged |
| * packet number which was sent in an ACK frame by this packet. |
| */ |
| if (pkt->largest_acked_pn != -1) |
| qc_treat_ack_of_ack(pkt->pktns, pkt->largest_acked_pn); |
| ev.ack.acked = pkt->in_flight_len; |
| ev.ack.time_sent = pkt->time_sent; |
| quic_cc_event(&qc->path->cc, &ev); |
| LIST_DELETE(&pkt->list); |
| eb64_delete(&pkt->pn_node); |
| quic_tx_packet_refdec(pkt); |
| } |
| |
| } |
| |
| /* Release all the frames attached to <pktns> packet number space */ |
| static inline void qc_release_pktns_frms(struct quic_pktns *pktns) |
| { |
| struct quic_frame *frm, *frmbak; |
| |
| list_for_each_entry_safe(frm, frmbak, &pktns->tx.frms, list) { |
| LIST_DELETE(&frm->list); |
| pool_free(pool_head_quic_frame, frm); |
| } |
| } |
| |
| /* Handle <pkts> list of lost packets detected at <now_us> handling |
| * their TX frames. |
| * Send a packet loss event to the congestion controller if |
| * in flight packet have been lost. |
| * Also frees the packet in <pkts> list. |
| * Never fails. |
| */ |
| static inline void qc_release_lost_pkts(struct quic_conn *qc, |
| struct quic_pktns *pktns, |
| struct list *pkts, |
| uint64_t now_us) |
| { |
| struct quic_tx_packet *pkt, *tmp, *oldest_lost, *newest_lost; |
| uint64_t lost_bytes; |
| |
| lost_bytes = 0; |
| oldest_lost = newest_lost = NULL; |
| list_for_each_entry_safe(pkt, tmp, pkts, list) { |
| struct list tmp = LIST_HEAD_INIT(tmp); |
| |
| lost_bytes += pkt->in_flight_len; |
| pkt->pktns->tx.in_flight -= pkt->in_flight_len; |
| qc->path->prep_in_flight -= pkt->in_flight_len; |
| qc->path->in_flight -= pkt->in_flight_len; |
| if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING) |
| qc->path->ifae_pkts--; |
| /* Treat the frames of this lost packet. */ |
| qc_requeue_nacked_pkt_tx_frms(qc, &pkt->frms, &pktns->tx.frms); |
| LIST_DELETE(&pkt->list); |
| if (!oldest_lost) { |
| oldest_lost = newest_lost = pkt; |
| } |
| else { |
| if (newest_lost != oldest_lost) |
| quic_tx_packet_refdec(newest_lost); |
| newest_lost = pkt; |
| } |
| } |
| |
| if (newest_lost) { |
| /* Sent a congestion event to the controller */ |
| struct quic_cc_event ev = { |
| .type = QUIC_CC_EVT_LOSS, |
| .loss.time_sent = newest_lost->time_sent, |
| }; |
| |
| quic_cc_event(&qc->path->cc, &ev); |
| } |
| |
| /* If an RTT have been already sampled, <rtt_min> has been set. |
| * We must check if we are experiencing a persistent congestion. |
| * If this is the case, the congestion controller must re-enter |
| * slow start state. |
| */ |
| if (qc->path->loss.rtt_min && newest_lost != oldest_lost) { |
| unsigned int period = newest_lost->time_sent - oldest_lost->time_sent; |
| |
| if (quic_loss_persistent_congestion(&qc->path->loss, period, |
| now_ms, qc->max_ack_delay)) |
| qc->path->cc.algo->slow_start(&qc->path->cc); |
| } |
| |
| if (lost_bytes) { |
| quic_tx_packet_refdec(oldest_lost); |
| if (newest_lost != oldest_lost) |
| quic_tx_packet_refdec(newest_lost); |
| } |
| } |
| |
| /* Look for packet loss from sent packets for <qel> encryption level of a |
| * connection with <ctx> as I/O handler context. If remove is true, remove them from |
| * their tree if deemed as lost or set the <loss_time> value the packet number |
| * space if any not deemed lost. |
| * Should be called after having received an ACK frame with newly acknowledged |
| * packets or when the the loss detection timer has expired. |
| * Always succeeds. |
| */ |
| static void qc_packet_loss_lookup(struct quic_pktns *pktns, |
| struct quic_conn *qc, |
| struct list *lost_pkts) |
| { |
| struct eb_root *pkts; |
| struct eb64_node *node; |
| struct quic_loss *ql; |
| unsigned int loss_delay; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PKTLOSS, qc, pktns); |
| pkts = &pktns->tx.pkts; |
| pktns->tx.loss_time = TICK_ETERNITY; |
| if (eb_is_empty(pkts)) |
| goto out; |
| |
| ql = &qc->path->loss; |
| loss_delay = QUIC_MAX(ql->latest_rtt, ql->srtt >> 3); |
| loss_delay = QUIC_MAX(loss_delay, MS_TO_TICKS(QUIC_TIMER_GRANULARITY)); |
| |
| node = eb64_first(pkts); |
| while (node) { |
| struct quic_tx_packet *pkt; |
| int64_t largest_acked_pn; |
| unsigned int loss_time_limit, time_sent; |
| |
| pkt = eb64_entry(&node->node, struct quic_tx_packet, pn_node); |
| largest_acked_pn = pktns->rx.largest_acked_pn; |
| node = eb64_next(node); |
| if ((int64_t)pkt->pn_node.key > largest_acked_pn) |
| break; |
| |
| time_sent = pkt->time_sent; |
| loss_time_limit = tick_add(time_sent, loss_delay); |
| if (tick_is_le(time_sent, now_ms) || |
| (int64_t)largest_acked_pn >= pkt->pn_node.key + QUIC_LOSS_PACKET_THRESHOLD) { |
| eb64_delete(&pkt->pn_node); |
| LIST_APPEND(lost_pkts, &pkt->list); |
| } |
| else { |
| if (tick_isset(pktns->tx.loss_time)) |
| pktns->tx.loss_time = tick_first(pktns->tx.loss_time, loss_time_limit); |
| else |
| pktns->tx.loss_time = loss_time_limit; |
| } |
| } |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_PKTLOSS, qc, pktns, lost_pkts); |
| } |
| |
| /* Parse ACK frame into <frm> from a buffer at <buf> address with <end> being at |
| * one byte past the end of this buffer. Also update <rtt_sample> if needed, i.e. |
| * if the largest acked packet was newly acked and if there was at least one newly |
| * acked ack-eliciting packet. |
| * Return 1, if succeeded, 0 if not. |
| */ |
| static inline int qc_parse_ack_frm(struct quic_conn *qc, |
| struct quic_frame *frm, |
| struct quic_enc_level *qel, |
| unsigned int *rtt_sample, |
| const unsigned char **pos, const unsigned char *end) |
| { |
| struct quic_ack *ack = &frm->ack; |
| uint64_t smallest, largest; |
| struct eb_root *pkts; |
| struct eb64_node *largest_node; |
| unsigned int time_sent, pkt_flags; |
| struct list newly_acked_pkts = LIST_HEAD_INIT(newly_acked_pkts); |
| struct list lost_pkts = LIST_HEAD_INIT(lost_pkts); |
| |
| if (ack->largest_ack > qel->pktns->tx.next_pn) { |
| TRACE_DEVEL("ACK for not sent packet", QUIC_EV_CONN_PRSAFRM, |
| qc, NULL, &ack->largest_ack); |
| goto err; |
| } |
| |
| if (ack->first_ack_range > ack->largest_ack) { |
| TRACE_DEVEL("too big first ACK range", QUIC_EV_CONN_PRSAFRM, |
| qc, NULL, &ack->first_ack_range); |
| goto err; |
| } |
| |
| largest = ack->largest_ack; |
| smallest = largest - ack->first_ack_range; |
| pkts = &qel->pktns->tx.pkts; |
| pkt_flags = 0; |
| largest_node = NULL; |
| time_sent = 0; |
| |
| if ((int64_t)ack->largest_ack > qel->pktns->rx.largest_acked_pn) { |
| largest_node = eb64_lookup(pkts, largest); |
| if (!largest_node) { |
| TRACE_DEVEL("Largest acked packet not found", |
| QUIC_EV_CONN_PRSAFRM, qc); |
| } |
| else { |
| time_sent = eb64_entry(&largest_node->node, |
| struct quic_tx_packet, pn_node)->time_sent; |
| } |
| } |
| |
| TRACE_PROTO("ack range", QUIC_EV_CONN_PRSAFRM, |
| qc, NULL, &largest, &smallest); |
| do { |
| uint64_t gap, ack_range; |
| |
| qc_ackrng_pkts(qc, pkts, &pkt_flags, &newly_acked_pkts, |
| largest_node, largest, smallest); |
| if (!ack->ack_range_num--) |
| break; |
| |
| if (!quic_dec_int(&gap, pos, end)) |
| goto err; |
| |
| if (smallest < gap + 2) { |
| TRACE_DEVEL("wrong gap value", QUIC_EV_CONN_PRSAFRM, |
| qc, NULL, &gap, &smallest); |
| goto err; |
| } |
| |
| largest = smallest - gap - 2; |
| if (!quic_dec_int(&ack_range, pos, end)) |
| goto err; |
| |
| if (largest < ack_range) { |
| TRACE_DEVEL("wrong ack range value", QUIC_EV_CONN_PRSAFRM, |
| qc, NULL, &largest, &ack_range); |
| goto err; |
| } |
| |
| /* Do not use this node anymore. */ |
| largest_node = NULL; |
| /* Next range */ |
| smallest = largest - ack_range; |
| |
| TRACE_PROTO("ack range", QUIC_EV_CONN_PRSAFRM, |
| qc, NULL, &largest, &smallest); |
| } while (1); |
| |
| if (time_sent && (pkt_flags & QUIC_FL_TX_PACKET_ACK_ELICITING)) { |
| *rtt_sample = tick_remain(time_sent, now_ms); |
| qel->pktns->rx.largest_acked_pn = ack->largest_ack; |
| } |
| |
| if (!LIST_ISEMPTY(&newly_acked_pkts)) { |
| if (!eb_is_empty(&qel->pktns->tx.pkts)) { |
| qc_packet_loss_lookup(qel->pktns, qc, &lost_pkts); |
| if (!LIST_ISEMPTY(&lost_pkts)) |
| qc_release_lost_pkts(qc, qel->pktns, &lost_pkts, now_ms); |
| } |
| qc_treat_newly_acked_pkts(qc, &newly_acked_pkts); |
| if (quic_peer_validated_addr(qc)) |
| qc->path->loss.pto_count = 0; |
| qc_set_timer(qc); |
| } |
| |
| |
| return 1; |
| |
| err: |
| free_quic_tx_pkts(&newly_acked_pkts); |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PRSAFRM, qc); |
| return 0; |
| } |
| |
| /* This function gives the detail of the SSL error. It is used only |
| * if the debug mode and the verbose mode are activated. It dump all |
| * the SSL error until the stack was empty. |
| */ |
| static forceinline void qc_ssl_dump_errors(struct connection *conn) |
| { |
| if (unlikely(global.mode & MODE_DEBUG)) { |
| while (1) { |
| const char *func = NULL; |
| unsigned long ret; |
| |
| ERR_peek_error_func(&func); |
| ret = ERR_get_error(); |
| if (!ret) |
| return; |
| |
| fprintf(stderr, "conn. @%p OpenSSL error[0x%lx] %s: %s\n", conn, ret, |
| func, ERR_reason_error_string(ret)); |
| } |
| } |
| } |
| |
| int ssl_sock_get_alpn(const struct connection *conn, void *xprt_ctx, |
| const char **str, int *len); |
| |
| /* Provide CRYPTO data to the TLS stack found at <data> with <len> as length |
| * from <qel> encryption level with <ctx> as QUIC connection context. |
| * Remaining parameter are there for debugging purposes. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static inline int qc_provide_cdata(struct quic_enc_level *el, |
| struct ssl_sock_ctx *ctx, |
| const unsigned char *data, size_t len, |
| struct quic_rx_packet *pkt, |
| struct quic_rx_crypto_frm *cf) |
| { |
| int ssl_err, state; |
| struct quic_conn *qc; |
| |
| ssl_err = SSL_ERROR_NONE; |
| qc = ctx->qc; |
| |
| TRACE_ENTER(QUIC_EV_CONN_SSLDATA, qc); |
| |
| if (SSL_provide_quic_data(ctx->ssl, el->level, data, len) != 1) { |
| TRACE_PROTO("SSL_provide_quic_data() error", |
| QUIC_EV_CONN_SSLDATA, qc, pkt, cf, ctx->ssl); |
| goto err; |
| } |
| |
| el->rx.crypto.offset += len; |
| TRACE_PROTO("in order CRYPTO data", |
| QUIC_EV_CONN_SSLDATA, qc, NULL, cf, ctx->ssl); |
| |
| state = qc->state; |
| if (state < QUIC_HS_ST_COMPLETE) { |
| ssl_err = SSL_do_handshake(ctx->ssl); |
| if (ssl_err != 1) { |
| ssl_err = SSL_get_error(ctx->ssl, ssl_err); |
| if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) { |
| TRACE_PROTO("SSL handshake", |
| QUIC_EV_CONN_IO_CB, qc, &state, &ssl_err); |
| goto out; |
| } |
| |
| TRACE_DEVEL("SSL handshake error", |
| QUIC_EV_CONN_IO_CB, qc, &state, &ssl_err); |
| qc_ssl_dump_errors(ctx->conn); |
| ERR_clear_error(); |
| goto err; |
| } |
| |
| TRACE_PROTO("SSL handshake OK", QUIC_EV_CONN_IO_CB, qc, &state); |
| |
| /* Check the alpn could be negotiated */ |
| if (!qc->app_ops) { |
| TRACE_PROTO("No ALPN", QUIC_EV_CONN_IO_CB, qc, &state); |
| quic_set_tls_alert(qc, SSL_AD_NO_APPLICATION_PROTOCOL); |
| goto err; |
| } |
| |
| /* I/O callback switch */ |
| ctx->wait_event.tasklet->process = quic_conn_app_io_cb; |
| if (qc_is_listener(ctx->qc)) { |
| qc->state = QUIC_HS_ST_CONFIRMED; |
| /* The connection is ready to be accepted. */ |
| quic_accept_push_qc(qc); |
| } |
| else { |
| qc->state = QUIC_HS_ST_COMPLETE; |
| } |
| } else { |
| ssl_err = SSL_process_quic_post_handshake(ctx->ssl); |
| if (ssl_err != 1) { |
| ssl_err = SSL_get_error(ctx->ssl, ssl_err); |
| if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) { |
| TRACE_DEVEL("SSL post handshake", |
| QUIC_EV_CONN_IO_CB, qc, &state, &ssl_err); |
| goto out; |
| } |
| |
| TRACE_DEVEL("SSL post handshake error", |
| QUIC_EV_CONN_IO_CB, qc, &state, &ssl_err); |
| goto err; |
| } |
| |
| TRACE_PROTO("SSL post handshake succeeded", |
| QUIC_EV_CONN_IO_CB, qc, &state); |
| } |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_SSLDATA, qc); |
| return 1; |
| |
| err: |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_SSLDATA, qc); |
| return 0; |
| } |
| |
| /* Allocate a new STREAM RX frame from <stream_fm> STREAM frame attached to |
| * <pkt> RX packet. |
| * Return it if succeeded, NULL if not. |
| */ |
| static inline |
| struct quic_rx_strm_frm *new_quic_rx_strm_frm(struct quic_stream *stream_frm, |
| struct quic_rx_packet *pkt) |
| { |
| struct quic_rx_strm_frm *frm; |
| |
| frm = pool_alloc(pool_head_quic_rx_strm_frm); |
| if (frm) { |
| frm->offset_node.key = stream_frm->offset.key; |
| frm->len = stream_frm->len; |
| frm->data = stream_frm->data; |
| frm->pkt = pkt; |
| frm->fin = stream_frm->fin; |
| } |
| |
| return frm; |
| } |
| |
| /* Copy as most as possible STREAM data from <strm_frm> into <strm> stream. |
| * Also update <strm_frm> frame to reflect the data which have been consumed. |
| */ |
| static size_t qc_strm_cpy(struct buffer *buf, struct quic_stream *strm_frm) |
| { |
| size_t ret; |
| |
| ret = b_putblk(buf, (char *)strm_frm->data, strm_frm->len); |
| strm_frm->len -= ret; |
| strm_frm->offset.key += ret; |
| |
| return ret; |
| } |
| |
| /* Handle <strm_frm> bidirectional STREAM frame. Depending on its ID, several |
| * streams may be open. The data are copied to the stream RX buffer if possible. |
| * If not, the STREAM frame is stored to be treated again later. |
| * We rely on the flow control so that not to store too much STREAM frames. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static int qc_handle_bidi_strm_frm(struct quic_rx_packet *pkt, |
| struct quic_stream *strm_frm, |
| struct quic_conn *qc) |
| { |
| struct quic_rx_strm_frm *frm; |
| struct eb64_node *frm_node; |
| struct qcs *qcs = NULL; |
| int ret; |
| |
| ret = qcc_recv(qc->qcc, strm_frm->id, strm_frm->len, |
| strm_frm->offset.key, strm_frm->fin, |
| (char *)strm_frm->data, &qcs); |
| |
| /* invalid or already received frame */ |
| if (ret == 1) |
| return 1; |
| |
| if (ret == 2) { |
| /* frame cannot be parsed at the moment and should be |
| * buffered. |
| */ |
| frm = new_quic_rx_strm_frm(strm_frm, pkt); |
| if (!frm) { |
| TRACE_PROTO("Could not alloc RX STREAM frame", |
| QUIC_EV_CONN_PSTRM, qc); |
| return 0; |
| } |
| |
| eb64_insert(&qcs->rx.frms, &frm->offset_node); |
| quic_rx_packet_refinc(pkt); |
| |
| return 1; |
| } |
| |
| /* Frame correctly received by the mux. |
| * If there is buffered frame for next offset, it may be possible to |
| * receive them now. |
| */ |
| frm_node = eb64_first(&qcs->rx.frms); |
| while (frm_node) { |
| frm = eb64_entry(&frm_node->node, |
| struct quic_rx_strm_frm, offset_node); |
| |
| ret = qcc_recv(qc->qcc, qcs->id, frm->len, |
| frm->offset_node.key, frm->fin, |
| (char *)frm->data, &qcs); |
| |
| /* interrupt the parsing if the frame cannot be handled for the |
| * moment only by the MUX. |
| */ |
| if (ret == 2) |
| break; |
| |
| /* Remove a newly received frame or an invalid one. */ |
| frm_node = eb64_next(frm_node); |
| eb64_delete(&frm->offset_node); |
| quic_rx_packet_refdec(frm->pkt); |
| pool_free(pool_head_quic_rx_strm_frm, frm); |
| } |
| |
| /* Decode the received data. */ |
| qcc_decode_qcs(qc->qcc, qcs); |
| |
| return 1; |
| } |
| |
| /* Handle <strm_frm> unidirectional STREAM frame. Depending on its ID, several |
| * streams may be open. The data are copied to the stream RX buffer if possible. |
| * If not, the STREAM frame is stored to be treated again later. |
| * We rely on the flow control so that not to store too much STREAM frames. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static int qc_handle_uni_strm_frm(struct quic_rx_packet *pkt, |
| struct quic_stream *strm_frm, |
| struct quic_conn *qc) |
| { |
| struct qcs *strm; |
| struct quic_rx_strm_frm *frm; |
| size_t strm_frm_len; |
| |
| strm = qcc_get_qcs(qc->qcc, strm_frm->id); |
| if (!strm) { |
| TRACE_PROTO("Stream not found", QUIC_EV_CONN_PSTRM, qc); |
| return 0; |
| } |
| |
| if (strm_frm->offset.key < strm->rx.offset) { |
| size_t diff; |
| |
| if (strm_frm->offset.key + strm_frm->len <= strm->rx.offset) { |
| TRACE_PROTO("Already received STREAM data", |
| QUIC_EV_CONN_PSTRM, qc); |
| goto out; |
| } |
| |
| TRACE_PROTO("Partially already received STREAM data", QUIC_EV_CONN_PSTRM, qc); |
| diff = strm->rx.offset - strm_frm->offset.key; |
| strm_frm->offset.key = strm->rx.offset; |
| strm_frm->len -= diff; |
| strm_frm->data += diff; |
| } |
| |
| strm_frm_len = strm_frm->len; |
| if (strm_frm->offset.key == strm->rx.offset) { |
| int ret; |
| |
| if (!qc_get_buf(strm, &strm->rx.buf)) |
| goto store_frm; |
| |
| /* qc_strm_cpy() will modify the offset, depending on the number |
| * of bytes copied. |
| */ |
| ret = qc_strm_cpy(&strm->rx.buf, strm_frm); |
| /* Inform the application of the arrival of this new stream */ |
| if (!strm->rx.offset && !qc->qcc->app_ops->attach_ruqs(strm, qc->qcc->ctx)) { |
| TRACE_PROTO("Could not set an uni-stream", QUIC_EV_CONN_PSTRM, qc); |
| return 0; |
| } |
| |
| if (ret) |
| qcs_notify_recv(strm); |
| |
| strm_frm->offset.key += ret; |
| } |
| /* Take this frame into an account for the stream flow control */ |
| strm->rx.offset += strm_frm_len; |
| /* It all the data were provided to the application, there is no need to |
| * store any more information for it. |
| */ |
| if (!strm_frm->len) |
| goto out; |
| |
| store_frm: |
| frm = new_quic_rx_strm_frm(strm_frm, pkt); |
| if (!frm) { |
| TRACE_PROTO("Could not alloc RX STREAM frame", |
| QUIC_EV_CONN_PSTRM, qc); |
| return 0; |
| } |
| |
| eb64_insert(&strm->rx.frms, &frm->offset_node); |
| quic_rx_packet_refinc(pkt); |
| |
| out: |
| return 1; |
| } |
| |
| static inline int qc_handle_strm_frm(struct quic_rx_packet *pkt, |
| struct quic_stream *strm_frm, |
| struct quic_conn *qc) |
| { |
| if (strm_frm->id & QCS_ID_DIR_BIT) |
| return qc_handle_uni_strm_frm(pkt, strm_frm, qc); |
| else |
| return qc_handle_bidi_strm_frm(pkt, strm_frm, qc); |
| } |
| |
| /* Prepare a fast retransmission from <qel> encryption level */ |
| static void qc_prep_fast_retrans(struct quic_enc_level *qel, |
| struct quic_conn *qc) |
| { |
| struct eb_root *pkts = &qel->pktns->tx.pkts; |
| struct eb64_node *node; |
| struct quic_tx_packet *pkt; |
| |
| pkt = NULL; |
| pkts = &qel->pktns->tx.pkts; |
| node = eb64_first(pkts); |
| /* Skip the empty packet (they have already been retransmitted) */ |
| while (node) { |
| pkt = eb64_entry(&node->node, struct quic_tx_packet, pn_node); |
| if (!LIST_ISEMPTY(&pkt->frms)) |
| break; |
| node = eb64_next(node); |
| } |
| |
| if (!pkt) |
| return; |
| |
| /* When building a packet from another one, the field which may increase the |
| * packet size is the packet number. And the maximum increase is 4 bytes. |
| */ |
| if (!quic_peer_validated_addr(qc) && qc_is_listener(qc) && |
| pkt->len + 4 > 3 * qc->rx.bytes - qc->tx.prep_bytes) { |
| TRACE_PROTO("anti-amplification limit would be reached", QUIC_EV_CONN_PRSAFRM, qc); |
| return; |
| } |
| |
| qc_requeue_nacked_pkt_tx_frms(qc, &pkt->frms, &qel->pktns->tx.frms); |
| } |
| |
| /* Prepare a fast retransmission during handshake after a client |
| * has resent Initial packets. According to the RFC a server may retransmit |
| * up to two datagrams of Initial packets if did not receive all Initial packets |
| * and resend them coalescing with others (Handshake here). |
| * (Listener only). |
| */ |
| static void qc_prep_hdshk_fast_retrans(struct quic_conn *qc) |
| { |
| struct list itmp = LIST_HEAD_INIT(itmp); |
| struct list htmp = LIST_HEAD_INIT(htmp); |
| struct quic_frame *frm, *frmbak; |
| |
| struct quic_enc_level *iqel = &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]; |
| struct quic_enc_level *hqel = &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]; |
| struct quic_enc_level *qel = iqel; |
| struct eb_root *pkts; |
| struct eb64_node *node; |
| struct quic_tx_packet *pkt; |
| struct list *tmp = &itmp; |
| |
| /* Do not probe from a packet number space if some probing |
| * was already asked. |
| */ |
| if (qel->pktns->tx.pto_probe) { |
| qel = hqel; |
| if (qel->pktns->tx.pto_probe) |
| return; |
| } |
| |
| start: |
| pkt = NULL; |
| pkts = &qel->pktns->tx.pkts; |
| node = eb64_first(pkts); |
| /* Skip the empty packet (they have already been retransmitted) */ |
| while (node) { |
| pkt = eb64_entry(&node->node, struct quic_tx_packet, pn_node); |
| if (!LIST_ISEMPTY(&pkt->frms)) |
| break; |
| node = eb64_next(node); |
| } |
| |
| if (!pkt) |
| goto end; |
| |
| /* When building a packet from another one, the field which may increase the |
| * packet size is the packet number. And the maximum increase is 4 bytes. |
| */ |
| if (!quic_peer_validated_addr(qc) && qc_is_listener(qc) && |
| pkt->len + 4 > 3 * qc->rx.bytes - qc->tx.prep_bytes) { |
| TRACE_PROTO("anti-amplification limit would be reached", QUIC_EV_CONN_PRSAFRM, qc); |
| goto end; |
| } |
| |
| qel->pktns->tx.pto_probe += 1; |
| requeue: |
| list_for_each_entry_safe(frm, frmbak, &pkt->frms, list) { |
| struct quic_frame *dup_frm; |
| |
| |
| dup_frm = pool_alloc(pool_head_quic_frame); |
| if (!dup_frm) { |
| TRACE_PROTO("could not duplicate frame", QUIC_EV_CONN_PRSAFRM, qc, frm); |
| break; |
| } |
| |
| TRACE_PROTO("to resend frame", QUIC_EV_CONN_PRSAFRM, qc, frm); |
| *dup_frm = *frm; |
| LIST_APPEND(tmp, &dup_frm->list); |
| } |
| |
| if (qel == iqel) { |
| if (pkt->next && pkt->next->type == QUIC_PACKET_TYPE_HANDSHAKE) { |
| pkt = pkt->next; |
| tmp = &htmp; |
| hqel->pktns->tx.pto_probe += 1; |
| goto requeue; |
| } |
| |
| qel = hqel; |
| tmp = &htmp; |
| goto start; |
| } |
| |
| end: |
| LIST_SPLICE(&iqel->pktns->tx.frms, &itmp); |
| LIST_SPLICE(&hqel->pktns->tx.frms, &htmp); |
| } |
| |
| /* Parse all the frames of <pkt> QUIC packet for QUIC connection with <ctx> |
| * as I/O handler context and <qel> as encryption level. |
| * Returns 1 if succeeded, 0 if failed. |
| */ |
| static int qc_parse_pkt_frms(struct quic_rx_packet *pkt, struct ssl_sock_ctx *ctx, |
| struct quic_enc_level *qel) |
| { |
| struct quic_frame frm; |
| const unsigned char *pos, *end; |
| struct quic_conn *qc = ctx->qc; |
| int fast_retrans = 0; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PRSHPKT, qc); |
| /* Skip the AAD */ |
| pos = pkt->data + pkt->aad_len; |
| end = pkt->data + pkt->len; |
| |
| while (pos < end) { |
| if (!qc_parse_frm(&frm, pkt, &pos, end, qc)) |
| goto err; |
| |
| TRACE_PROTO("RX frame", QUIC_EV_CONN_PSTRM, qc, &frm); |
| switch (frm.type) { |
| case QUIC_FT_PADDING: |
| break; |
| case QUIC_FT_PING: |
| break; |
| case QUIC_FT_ACK: |
| { |
| unsigned int rtt_sample; |
| |
| rtt_sample = 0; |
| if (!qc_parse_ack_frm(qc, &frm, qel, &rtt_sample, &pos, end)) |
| goto err; |
| |
| if (rtt_sample) { |
| unsigned int ack_delay; |
| |
| ack_delay = !quic_application_pktns(qel->pktns, qc) ? 0 : |
| qc->state >= QUIC_HS_ST_CONFIRMED ? |
| MS_TO_TICKS(QUIC_MIN(quic_ack_delay_ms(&frm.ack, qc), qc->max_ack_delay)) : |
| MS_TO_TICKS(quic_ack_delay_ms(&frm.ack, qc)); |
| quic_loss_srtt_update(&qc->path->loss, rtt_sample, ack_delay, qc); |
| } |
| break; |
| } |
| case QUIC_FT_STOP_SENDING: |
| break; |
| case QUIC_FT_CRYPTO: |
| { |
| struct quic_rx_crypto_frm *cf; |
| |
| if (unlikely(qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_DCD)) { |
| /* XXX TO DO: <cfdebug> is used only for the traces. */ |
| struct quic_rx_crypto_frm cfdebug = { }; |
| |
| cfdebug.offset_node.key = frm.crypto.offset; |
| cfdebug.len = frm.crypto.len; |
| TRACE_PROTO("CRYPTO data discarded", |
| QUIC_EV_CONN_ELRXPKTS, qc, pkt, &cfdebug); |
| break; |
| } |
| |
| if (unlikely(frm.crypto.offset < qel->rx.crypto.offset)) { |
| if (frm.crypto.offset + frm.crypto.len <= qel->rx.crypto.offset) { |
| /* XXX TO DO: <cfdebug> is used only for the traces. */ |
| struct quic_rx_crypto_frm cfdebug = { }; |
| |
| cfdebug.offset_node.key = frm.crypto.offset; |
| cfdebug.len = frm.crypto.len; |
| /* Nothing to do */ |
| TRACE_PROTO("Already received CRYPTO data", |
| QUIC_EV_CONN_ELRXPKTS, qc, pkt, &cfdebug); |
| if (qc_is_listener(ctx->qc) && |
| qel == &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]) |
| fast_retrans = 1; |
| break; |
| } |
| else { |
| size_t diff = qel->rx.crypto.offset - frm.crypto.offset; |
| /* XXX TO DO: <cfdebug> is used only for the traces. */ |
| struct quic_rx_crypto_frm cfdebug = { }; |
| |
| cfdebug.offset_node.key = frm.crypto.offset; |
| cfdebug.len = frm.crypto.len; |
| TRACE_PROTO("Partially already received CRYPTO data", |
| QUIC_EV_CONN_ELRXPKTS, qc, pkt, &cfdebug); |
| frm.crypto.len -= diff; |
| frm.crypto.data += diff; |
| frm.crypto.offset = qel->rx.crypto.offset; |
| } |
| } |
| |
| if (frm.crypto.offset == qel->rx.crypto.offset) { |
| /* XXX TO DO: <cf> is used only for the traces. */ |
| struct quic_rx_crypto_frm cfdebug = { }; |
| |
| cfdebug.offset_node.key = frm.crypto.offset; |
| cfdebug.len = frm.crypto.len; |
| if (!qc_provide_cdata(qel, ctx, |
| frm.crypto.data, frm.crypto.len, |
| pkt, &cfdebug)) |
| goto err; |
| |
| break; |
| } |
| |
| /* frm.crypto.offset > qel->rx.crypto.offset */ |
| cf = pool_alloc(pool_head_quic_rx_crypto_frm); |
| if (!cf) { |
| TRACE_DEVEL("CRYPTO frame allocation failed", |
| QUIC_EV_CONN_PRSHPKT, qc); |
| goto err; |
| } |
| |
| cf->offset_node.key = frm.crypto.offset; |
| cf->len = frm.crypto.len; |
| cf->data = frm.crypto.data; |
| cf->pkt = pkt; |
| eb64_insert(&qel->rx.crypto.frms, &cf->offset_node); |
| quic_rx_packet_refinc(pkt); |
| break; |
| } |
| case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F: |
| { |
| struct quic_stream *stream = &frm.stream; |
| |
| if (qc_is_listener(ctx->qc)) { |
| if (stream->id & QUIC_STREAM_FRAME_ID_INITIATOR_BIT) |
| goto err; |
| } else if (!(stream->id & QUIC_STREAM_FRAME_ID_INITIATOR_BIT)) |
| goto err; |
| |
| /* At the application layer the connection may have already been closed. */ |
| if (qc->mux_state != QC_MUX_READY) |
| break; |
| |
| if (!qc_handle_strm_frm(pkt, stream, qc)) |
| goto err; |
| |
| break; |
| } |
| case QUIC_FT_MAX_DATA: |
| if (qc->mux_state == QC_MUX_READY) { |
| struct quic_max_data *data = &frm.max_data; |
| qcc_recv_max_data(qc->qcc, data->max_data); |
| } |
| break; |
| case QUIC_FT_MAX_STREAM_DATA: |
| if (qc->mux_state == QC_MUX_READY) { |
| struct quic_max_stream_data *data = &frm.max_stream_data; |
| qcc_recv_max_stream_data(qc->qcc, data->id, |
| data->max_stream_data); |
| } |
| break; |
| case QUIC_FT_MAX_STREAMS_BIDI: |
| case QUIC_FT_MAX_STREAMS_UNI: |
| case QUIC_FT_DATA_BLOCKED: |
| case QUIC_FT_STREAM_DATA_BLOCKED: |
| case QUIC_FT_STREAMS_BLOCKED_BIDI: |
| case QUIC_FT_STREAMS_BLOCKED_UNI: |
| break; |
| case QUIC_FT_NEW_CONNECTION_ID: |
| case QUIC_FT_RETIRE_CONNECTION_ID: |
| /* XXX TO DO XXX */ |
| break; |
| case QUIC_FT_CONNECTION_CLOSE: |
| case QUIC_FT_CONNECTION_CLOSE_APP: |
| if (!(qc->flags & QUIC_FL_CONN_DRAINING)) { |
| TRACE_PROTO("Entering draining state", QUIC_EV_CONN_PRSHPKT, qc); |
| /* RFC 9000 10.2. Immediate Close: |
| * The closing and draining connection states exist to ensure |
| * that connections close cleanly and that delayed or reordered |
| * packets are properly discarded. These states SHOULD persist |
| * for at least three times the current PTO interval... |
| * |
| * Rearm the idle timeout only one time when entering draining |
| * state. |
| */ |
| qc_idle_timer_do_rearm(qc); |
| qc->flags |= QUIC_FL_CONN_DRAINING|QUIC_FL_CONN_IMMEDIATE_CLOSE; |
| qc_notify_close(qc); |
| } |
| break; |
| case QUIC_FT_HANDSHAKE_DONE: |
| if (qc_is_listener(ctx->qc)) |
| goto err; |
| |
| qc->state = QUIC_HS_ST_CONFIRMED; |
| break; |
| default: |
| goto err; |
| } |
| } |
| |
| /* Flag this packet number space as having received a packet. */ |
| qel->pktns->flags |= QUIC_FL_PKTNS_PKT_RECEIVED; |
| |
| if (fast_retrans) |
| qc_prep_hdshk_fast_retrans(qc); |
| |
| /* The server must switch from INITIAL to HANDSHAKE handshake state when it |
| * has successfully parse a Handshake packet. The Initial encryption must also |
| * be discarded. |
| */ |
| if (pkt->type == QUIC_PACKET_TYPE_HANDSHAKE && qc_is_listener(ctx->qc)) { |
| if (qc->state >= QUIC_HS_ST_SERVER_INITIAL) { |
| if (!(qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].tls_ctx.flags & |
| QUIC_FL_TLS_SECRETS_DCD)) { |
| quic_tls_discard_keys(&qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]); |
| TRACE_PROTO("discarding Initial pktns", QUIC_EV_CONN_PRSHPKT, qc); |
| quic_pktns_discard(qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns, qc); |
| qc_set_timer(ctx->qc); |
| qc_el_rx_pkts_del(&qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]); |
| qc_release_pktns_frms(qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns); |
| } |
| if (qc->state < QUIC_HS_ST_SERVER_HANDSHAKE) |
| qc->state = QUIC_HS_ST_SERVER_HANDSHAKE; |
| } |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_PRSHPKT, qc); |
| return 1; |
| |
| err: |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PRSHPKT, qc); |
| return 0; |
| } |
| |
| /* Must be called only by a <cbuf> writer (packet builder). |
| * Return 1 if <cbuf> may be reused to build packets, depending on its <rd> and |
| * <wr> internal indexes, 0 if not. When this is the case, reset <wr> writer |
| * index after having marked the end of written data. This the responsability |
| * of the caller to ensure there is enough room in <cbuf> to write the end of |
| * data made of a uint16_t null field. |
| * |
| * +XXXXXXXXXXXXXXXXXXXXXXX---------------+ (cannot be reused) |
| * ^ ^ |
| * r w |
| * |
| * +-------XXXXXXXXXXXXXXXX---------------+ (can be reused) |
| * ^ ^ |
| * r w |
| |
| * +--------------------------------------+ (empty buffer, can be reused) |
| * ^ |
| * (r = w) |
| * |
| * +XXXXXXXXXXXXXXXXXXXXX-XXXXXXXXXXXXXXXX+ (full buffer, cannot be reused) |
| * ^ ^ |
| * w r |
| */ |
| static int qc_may_reuse_cbuf(struct cbuf *cbuf) |
| { |
| int rd = HA_ATOMIC_LOAD(&cbuf->rd); |
| |
| /* We can reset the writer index only if in front of the reader index and |
| * if the reader index is not null. Resetting the writer when the reader |
| * index is null would empty the buffer. |
| * XXX Note than the writer index cannot reach the reader index. |
| * Only the reader index can reach the writer index. |
| */ |
| if (rd && rd <= cbuf->wr) { |
| /* Mark the end of contiguous data for the reader */ |
| write_u16(cb_wr(cbuf), 0); |
| cb_add(cbuf, sizeof(uint16_t)); |
| cb_wr_reset(cbuf); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Write <dglen> datagram length and <pkt> first packet address into <cbuf> ring |
| * buffer. This is the responsibility of the caller to check there is enough |
| * room in <cbuf>. Also increase the <cbuf> write index consequently. |
| * This function must be called only after having built a correct datagram. |
| * Always succeeds. |
| */ |
| static inline void qc_set_dg(struct cbuf *cbuf, |
| uint16_t dglen, struct quic_tx_packet *pkt) |
| { |
| write_u16(cb_wr(cbuf), dglen); |
| write_ptr(cb_wr(cbuf) + sizeof dglen, pkt); |
| cb_add(cbuf, dglen + sizeof dglen + sizeof pkt); |
| } |
| |
| /* Returns 1 if a packet may be built for <qc> from <qel> encryption level |
| * with <frms> as ack-eliciting frame list to send, 0 if not. |
| * <cc> must equal to 1 if an immediate close was asked, 0 if not. |
| * <probe> must equalt to 1 if a probing packet is required, 0 if not. |
| */ |
| static int qc_may_build_pkt(struct quic_conn *qc, struct list *frms, |
| struct quic_enc_level *qel, int cc, int probe) |
| { |
| unsigned int must_ack = |
| qel->pktns->rx.nb_aepkts_since_last_ack >= QUIC_MAX_RX_AEPKTS_SINCE_LAST_ACK; |
| |
| /* Do not build any more packet if the TX secrets are not available or |
| * if there is nothing to send, i.e. if no CONNECTION_CLOSE or ACK are required |
| * and if there is no more packets to send upon PTO expiration |
| * and if there is no more ack-eliciting frames to send or in flight |
| * congestion control limit is reached for prepared data |
| */ |
| if (!(qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_SET) || |
| (!cc && !probe && !must_ack && |
| (LIST_ISEMPTY(frms) || qc->path->prep_in_flight >= qc->path->cwnd))) { |
| TRACE_DEVEL("nothing more to do", QUIC_EV_CONN_PHPKTS, qc); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Prepare as much as possible short packets which are also datagrams into <qr> |
| * ring buffer for the QUIC connection with <ctx> as I/O handler context from |
| * <frms> list of prebuilt frames. |
| * A header made of two fields is added to each datagram: the datagram length followed |
| * by the address of the first packet in this datagram. |
| * Returns the number of bytes prepared in packets if succeeded (may be 0), |
| * or -1 if something wrong happened. |
| */ |
| static int qc_prep_app_pkts(struct quic_conn *qc, struct qring *qr, |
| struct list *frms) |
| { |
| struct quic_enc_level *qel; |
| struct cbuf *cbuf; |
| unsigned char *end_buf, *end, *pos; |
| struct quic_tx_packet *pkt; |
| size_t total; |
| size_t dg_headlen; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PHPKTS, qc); |
| /* Each datagram is prepended with its length followed by the |
| * address of the first packet in the datagram. |
| */ |
| dg_headlen = sizeof(uint16_t) + sizeof pkt; |
| qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP]; |
| total = 0; |
| start: |
| cbuf = qr->cbuf; |
| pos = cb_wr(cbuf); |
| /* Leave at least <sizeof(uint16_t)> bytes at the end of this buffer |
| * to ensure there is enough room to mark the end of prepared |
| * contiguous data with a zero length. |
| */ |
| end_buf = pos + cb_contig_space(cbuf) - sizeof(uint16_t); |
| while (end_buf - pos >= (int)qc->path->mtu + dg_headlen) { |
| int err, probe, cc; |
| |
| TRACE_POINT(QUIC_EV_CONN_PHPKTS, qc, qel); |
| probe = 0; |
| cc = qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE; |
| /* We do not probe if an immediate close was asked */ |
| if (!cc) |
| probe = qel->pktns->tx.pto_probe; |
| |
| if (!qc_may_build_pkt(qc, frms, qel, cc, probe)) |
| break; |
| |
| /* Leave room for the datagram header */ |
| pos += dg_headlen; |
| if (!quic_peer_validated_addr(qc) && qc_is_listener(qc)) { |
| end = pos + QUIC_MIN(qc->path->mtu, 3 * qc->rx.bytes - qc->tx.prep_bytes); |
| } |
| else { |
| end = pos + qc->path->mtu; |
| } |
| |
| pkt = qc_build_pkt(&pos, end, qel, frms, qc, 0, 0, |
| QUIC_PACKET_TYPE_SHORT, probe, cc, &err); |
| switch (err) { |
| case -2: |
| goto err; |
| case -1: |
| /* As we provide qc_build_pkt() with an enough big buffer to fulfill an |
| * MTU, we are here because of the congestion control window. There is |
| * no need to try to reuse this buffer. |
| */ |
| goto out; |
| default: |
| break; |
| } |
| |
| /* This is to please to GCC. We cannot have (err >= 0 && !pkt) */ |
| if (!pkt) |
| goto err; |
| |
| total += pkt->len; |
| /* Set the current datagram as prepared into <cbuf>. */ |
| qc_set_dg(cbuf, pkt->len, pkt); |
| } |
| |
| /* Reset <wr> writer index if in front of <rd> index */ |
| if (end_buf - pos < (int)qc->path->mtu + dg_headlen) { |
| TRACE_DEVEL("buffer full", QUIC_EV_CONN_PHPKTS, qc); |
| if (qc_may_reuse_cbuf(cbuf)) |
| goto start; |
| } |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_PHPKTS, qc); |
| return total; |
| |
| err: |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PHPKTS, qc); |
| return -1; |
| } |
| |
| /* Prepare as much as possible packets into <qr> ring buffer for |
| * the QUIC connection with <ctx> as I/O handler context, possibly concatenating |
| * several packets in the same datagram. A header made of two fields is added |
| * to each datagram: the datagram length followed by the address of the first |
| * packet in this datagram. |
| * Returns the number of bytes prepared in packets if succeeded (may be 0), |
| * or -1 if something wrong happened. |
| */ |
| static int qc_prep_pkts(struct quic_conn *qc, struct qring *qr, |
| enum quic_tls_enc_level tel, |
| enum quic_tls_enc_level next_tel) |
| { |
| struct quic_enc_level *qel; |
| struct cbuf *cbuf; |
| unsigned char *end_buf, *end, *pos; |
| struct quic_tx_packet *first_pkt, *cur_pkt, *prv_pkt; |
| /* length of datagrams */ |
| uint16_t dglen; |
| size_t total; |
| int padding; |
| /* Each datagram is prepended with its length followed by the |
| * address of the first packet in the datagram. |
| */ |
| size_t dg_headlen = sizeof dglen + sizeof first_pkt; |
| |
| TRACE_ENTER(QUIC_EV_CONN_PHPKTS, qc); |
| |
| total = 0; |
| start: |
| dglen = 0; |
| padding = 0; |
| qel = &qc->els[tel]; |
| cbuf = qr->cbuf; |
| pos = cb_wr(cbuf); |
| /* Leave at least <dglen> bytes at the end of this buffer |
| * to ensure there is enough room to mark the end of prepared |
| * contiguous data with a zero length. |
| */ |
| end_buf = pos + cb_contig_space(cbuf) - sizeof dglen; |
| first_pkt = prv_pkt = NULL; |
| while (end_buf - pos >= (int)qc->path->mtu + dg_headlen || prv_pkt) { |
| int err, probe, cc; |
| enum quic_pkt_type pkt_type; |
| |
| TRACE_POINT(QUIC_EV_CONN_PHPKTS, qc, qel); |
| probe = 0; |
| cc = qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE; |
| /* We do not probe if an immediate close was asked */ |
| if (!cc) |
| probe = qel->pktns->tx.pto_probe; |
| |
| if (!qc_may_build_pkt(qc, &qel->pktns->tx.frms, qel, cc, probe)) { |
| if (prv_pkt) |
| qc_set_dg(cbuf, dglen, first_pkt); |
| /* Let's select the next encryption level */ |
| if (tel != next_tel && next_tel != QUIC_TLS_ENC_LEVEL_NONE) { |
| tel = next_tel; |
| qel = &qc->els[tel]; |
| /* Build a new datagram */ |
| prv_pkt = NULL; |
| continue; |
| } |
| break; |
| } |
| |
| pkt_type = quic_tls_level_pkt_type(tel); |
| if (!prv_pkt) { |
| /* Leave room for the datagram header */ |
| pos += dg_headlen; |
| if (!quic_peer_validated_addr(qc) && qc_is_listener(qc)) { |
| end = pos + QUIC_MIN(qc->path->mtu, 3 * qc->rx.bytes - qc->tx.prep_bytes); |
| } |
| else { |
| end = pos + qc->path->mtu; |
| } |
| } |
| |
| cur_pkt = qc_build_pkt(&pos, end, qel, &qel->pktns->tx.frms, |
| qc, dglen, padding, pkt_type, probe, cc, &err); |
| switch (err) { |
| case -2: |
| goto err; |
| case -1: |
| /* If there was already a correct packet present, set the |
| * current datagram as prepared into <cbuf>. |
| */ |
| if (prv_pkt) |
| qc_set_dg(cbuf, dglen, first_pkt); |
| goto stop_build; |
| default: |
| break; |
| } |
| |
| /* This is to please to GCC. We cannot have (err >= 0 && !cur_pkt) */ |
| if (!cur_pkt) |
| goto err; |
| |
| total += cur_pkt->len; |
| /* keep trace of the first packet in the datagram */ |
| if (!first_pkt) |
| first_pkt = cur_pkt; |
| /* Attach the current one to the previous one */ |
| if (prv_pkt) |
| prv_pkt->next = cur_pkt; |
| /* Let's say we have to build a new dgram */ |
| prv_pkt = NULL; |
| dglen += cur_pkt->len; |
| /* Client: discard the Initial encryption keys as soon as |
| * a handshake packet could be built. |
| */ |
| if (qc->state == QUIC_HS_ST_CLIENT_INITIAL && |
| pkt_type == QUIC_PACKET_TYPE_HANDSHAKE) { |
| quic_tls_discard_keys(&qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]); |
| TRACE_PROTO("discarding Initial pktns", QUIC_EV_CONN_PHPKTS, qc); |
| quic_pktns_discard(qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns, qc); |
| qc_set_timer(qc); |
| qc_el_rx_pkts_del(&qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]); |
| qc_release_pktns_frms(qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns); |
| qc->state = QUIC_HS_ST_CLIENT_HANDSHAKE; |
| } |
| /* If the data for the current encryption level have all been sent, |
| * select the next level. |
| */ |
| if ((tel == QUIC_TLS_ENC_LEVEL_INITIAL || tel == QUIC_TLS_ENC_LEVEL_HANDSHAKE) && |
| (LIST_ISEMPTY(&qel->pktns->tx.frms) && !qel->pktns->tx.pto_probe)) { |
| /* If QUIC_TLS_ENC_LEVEL_HANDSHAKE was already reached let's try QUIC_TLS_ENC_LEVEL_APP */ |
| if (tel == QUIC_TLS_ENC_LEVEL_HANDSHAKE && next_tel == tel) |
| next_tel = QUIC_TLS_ENC_LEVEL_APP; |
| tel = next_tel; |
| qel = &qc->els[tel]; |
| if (!LIST_ISEMPTY(&qel->pktns->tx.frms)) { |
| /* If there is data for the next level, do not |
| * consume a datagram. |
| */ |
| prv_pkt = cur_pkt; |
| } |
| } |
| /* If we have to build a new datagram, set the current datagram as |
| * prepared into <cbuf>. |
| */ |
| if (!prv_pkt) { |
| qc_set_dg(cbuf, dglen, first_pkt); |
| first_pkt = NULL; |
| dglen = 0; |
| padding = 0; |
| } |
| else if (prv_pkt->type == QUIC_TLS_ENC_LEVEL_INITIAL && |
| (!qc_is_listener(qc) || |
| prv_pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING)) { |
| padding = 1; |
| } |
| } |
| |
| stop_build: |
| /* Reset <wr> writer index if in front of <rd> index */ |
| if (end_buf - pos < (int)qc->path->mtu + dg_headlen) { |
| TRACE_DEVEL("buffer full", QUIC_EV_CONN_PHPKTS, qc); |
| if (qc_may_reuse_cbuf(cbuf)) |
| goto start; |
| } |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_PHPKTS, qc); |
| return total; |
| |
| err: |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PHPKTS, qc); |
| return -1; |
| } |
| |
| /* Send the QUIC packets which have been prepared for QUIC connections |
| * from <qr> ring buffer with <ctx> as I/O handler context. |
| */ |
| int qc_send_ppkts(struct qring *qr, struct ssl_sock_ctx *ctx) |
| { |
| struct quic_conn *qc; |
| struct cbuf *cbuf; |
| |
| qc = ctx->qc; |
| cbuf = qr->cbuf; |
| while (cb_contig_data(cbuf)) { |
| unsigned char *pos; |
| struct buffer tmpbuf = { }; |
| struct quic_tx_packet *first_pkt, *pkt, *next_pkt; |
| uint16_t dglen; |
| size_t headlen = sizeof dglen + sizeof first_pkt; |
| unsigned int time_sent; |
| |
| pos = cb_rd(cbuf); |
| dglen = read_u16(pos); |
| /* End of prepared datagrams. |
| * Reset the reader index only if in front of the writer index. |
| */ |
| if (!dglen) { |
| int wr = HA_ATOMIC_LOAD(&cbuf->wr); |
| |
| if (wr && wr < cbuf->rd) { |
| cb_rd_reset(cbuf); |
| continue; |
| } |
| break; |
| } |
| |
| pos += sizeof dglen; |
| first_pkt = read_ptr(pos); |
| pos += sizeof first_pkt; |
| tmpbuf.area = (char *)pos; |
| tmpbuf.size = tmpbuf.data = dglen; |
| |
| TRACE_PROTO("to send", QUIC_EV_CONN_SPPKTS, qc); |
| if(qc_snd_buf(qc, &tmpbuf, tmpbuf.data, 0) <= 0) |
| break; |
| |
| cb_del(cbuf, dglen + headlen); |
| qc->tx.bytes += tmpbuf.data; |
| time_sent = now_ms; |
| |
| for (pkt = first_pkt; pkt; pkt = next_pkt) { |
| pkt->time_sent = time_sent; |
| if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING) { |
| pkt->pktns->tx.time_of_last_eliciting = time_sent; |
| qc->path->ifae_pkts++; |
| if (qc->flags & QUIC_FL_CONN_IDLE_TIMER_RESTARTED_AFTER_READ) |
| qc_idle_timer_rearm(qc, 0); |
| } |
| if (!(qc->flags & QUIC_FL_CONN_CLOSING) && |
| (pkt->flags & QUIC_FL_TX_PACKET_CC)) { |
| qc->flags |= QUIC_FL_CONN_CLOSING; |
| qc_notify_close(qc); |
| |
| /* RFC 9000 10.2. Immediate Close: |
| * The closing and draining connection states exist to ensure |
| * that connections close cleanly and that delayed or reordered |
| * packets are properly discarded. These states SHOULD persist |
| * for at least three times the current PTO interval... |
| * |
| * Rearm the idle timeout only one time when entering closing |
| * state. |
| */ |
| qc_idle_timer_do_rearm(qc); |
| if (qc->timer_task) { |
| task_destroy(qc->timer_task); |
| qc->timer_task = NULL; |
| } |
| } |
| qc->path->in_flight += pkt->in_flight_len; |
| pkt->pktns->tx.in_flight += pkt->in_flight_len; |
| if (pkt->in_flight_len) |
| qc_set_timer(qc); |
| TRACE_PROTO("sent pkt", QUIC_EV_CONN_SPPKTS, qc, pkt); |
| next_pkt = pkt->next; |
| quic_tx_packet_refinc(pkt); |
| eb64_insert(&pkt->pktns->tx.pkts, &pkt->pn_node); |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* Build all the frames which must be sent just after the handshake have succeeded. |
| * This is essentially NEW_CONNECTION_ID frames. A QUIC server must also send |
| * a HANDSHAKE_DONE frame. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static int quic_build_post_handshake_frames(struct quic_conn *qc) |
| { |
| int i, first, max; |
| struct quic_enc_level *qel; |
| struct quic_frame *frm, *frmbak; |
| struct list frm_list = LIST_HEAD_INIT(frm_list); |
| struct eb64_node *node; |
| |
| qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP]; |
| /* Only servers must send a HANDSHAKE_DONE frame. */ |
| if (qc_is_listener(qc)) { |
| frm = pool_zalloc(pool_head_quic_frame); |
| if (!frm) |
| return 0; |
| |
| frm->type = QUIC_FT_HANDSHAKE_DONE; |
| LIST_APPEND(&frm_list, &frm->list); |
| } |
| |
| first = 1; |
| max = qc->tx.params.active_connection_id_limit; |
| for (i = first; i < max; i++) { |
| struct quic_connection_id *cid; |
| |
| frm = pool_zalloc(pool_head_quic_frame); |
| if (!frm) |
| goto err; |
| |
| cid = new_quic_cid(&qc->cids, qc, i); |
| if (!cid) |
| goto err; |
| |
| /* insert the allocated CID in the receiver datagram handler tree */ |
| ebmb_insert(&quic_dghdlrs[tid].cids, &cid->node, cid->cid.len); |
| |
| quic_connection_id_to_frm_cpy(frm, cid); |
| LIST_APPEND(&frm_list, &frm->list); |
| } |
| |
| LIST_SPLICE(&qel->pktns->tx.frms, &frm_list); |
| qc->flags |= QUIC_FL_CONN_POST_HANDSHAKE_FRAMES_BUILT; |
| |
| return 1; |
| |
| err: |
| /* free the frames */ |
| list_for_each_entry_safe(frm, frmbak, &frm_list, list) |
| pool_free(pool_head_quic_frame, frm); |
| |
| node = eb64_first(&qc->cids); |
| while (node) { |
| struct quic_connection_id *cid; |
| |
| |
| cid = eb64_entry(&node->node, struct quic_connection_id, seq_num); |
| if (cid->seq_num.key >= max) |
| break; |
| |
| if (cid->seq_num.key < first) |
| continue; |
| |
| node = eb64_next(node); |
| ebmb_delete(&cid->node); |
| eb64_delete(&cid->seq_num); |
| pool_free(pool_head_quic_connection_id, cid); |
| } |
| |
| return 0; |
| } |
| |
| /* Deallocate <l> list of ACK ranges. */ |
| void quic_free_arngs(struct quic_arngs *arngs) |
| { |
| struct eb64_node *n; |
| struct quic_arng_node *ar; |
| |
| n = eb64_first(&arngs->root); |
| while (n) { |
| struct eb64_node *next; |
| |
| ar = eb64_entry(&n->node, struct quic_arng_node, first); |
| next = eb64_next(n); |
| eb64_delete(n); |
| pool_free(pool_head_quic_arng, ar); |
| n = next; |
| } |
| } |
| |
| /* Return the gap value between <p> and <q> ACK ranges where <q> follows <p> in |
| * descending order. |
| */ |
| static inline size_t sack_gap(struct quic_arng_node *p, |
| struct quic_arng_node *q) |
| { |
| return p->first.key - q->last - 2; |
| } |
| |
| |
| /* Remove the last elements of <ack_ranges> list of ack range updating its |
| * encoded size until it goes below <limit>. |
| * Returns 1 if succeeded, 0 if not (no more element to remove). |
| */ |
| static int quic_rm_last_ack_ranges(struct quic_arngs *arngs, size_t limit) |
| { |
| struct eb64_node *last, *prev; |
| |
| last = eb64_last(&arngs->root); |
| while (last && arngs->enc_sz > limit) { |
| struct quic_arng_node *last_node, *prev_node; |
| |
| prev = eb64_prev(last); |
| if (!prev) |
| return 0; |
| |
| last_node = eb64_entry(&last->node, struct quic_arng_node, first); |
| prev_node = eb64_entry(&prev->node, struct quic_arng_node, first); |
| arngs->enc_sz -= quic_int_getsize(last_node->last - last_node->first.key); |
| arngs->enc_sz -= quic_int_getsize(sack_gap(prev_node, last_node)); |
| arngs->enc_sz -= quic_decint_size_diff(arngs->sz); |
| --arngs->sz; |
| eb64_delete(last); |
| pool_free(pool_head_quic_arng, last); |
| last = prev; |
| } |
| |
| return 1; |
| } |
| |
| /* Set the encoded size of <arngs> QUIC ack ranges. */ |
| static void quic_arngs_set_enc_sz(struct quic_arngs *arngs) |
| { |
| struct eb64_node *node, *next; |
| struct quic_arng_node *ar, *ar_next; |
| |
| node = eb64_last(&arngs->root); |
| if (!node) |
| return; |
| |
| ar = eb64_entry(&node->node, struct quic_arng_node, first); |
| arngs->enc_sz = quic_int_getsize(ar->last) + |
| quic_int_getsize(ar->last - ar->first.key) + quic_int_getsize(arngs->sz - 1); |
| |
| while ((next = eb64_prev(node))) { |
| ar_next = eb64_entry(&next->node, struct quic_arng_node, first); |
| arngs->enc_sz += quic_int_getsize(sack_gap(ar, ar_next)) + |
| quic_int_getsize(ar_next->last - ar_next->first.key); |
| node = next; |
| ar = eb64_entry(&node->node, struct quic_arng_node, first); |
| } |
| } |
| |
| /* Insert <ar> ack range into <argns> tree of ack ranges. |
| * Returns the ack range node which has been inserted if succeeded, NULL if not. |
| */ |
| static inline |
| struct quic_arng_node *quic_insert_new_range(struct quic_arngs *arngs, |
| struct quic_arng *ar) |
| { |
| struct quic_arng_node *new_ar; |
| |
| new_ar = pool_alloc(pool_head_quic_arng); |
| if (new_ar) { |
| new_ar->first.key = ar->first; |
| new_ar->last = ar->last; |
| eb64_insert(&arngs->root, &new_ar->first); |
| arngs->sz++; |
| } |
| |
| return new_ar; |
| } |
| |
| /* Update <arngs> tree of ACK ranges with <ar> as new ACK range value. |
| * Note that this function computes the number of bytes required to encode |
| * this tree of ACK ranges in descending order. |
| * |
| * Descending order |
| * -------------> |
| * range1 range2 |
| * ..........|--------|..............|--------| |
| * ^ ^ ^ ^ |
| * | | | | |
| * last1 first1 last2 first2 |
| * ..........+--------+--------------+--------+...... |
| * diff1 gap12 diff2 |
| * |
| * To encode the previous list of ranges we must encode integers as follows in |
| * descending order: |
| * enc(last2),enc(diff2),enc(gap12),enc(diff1) |
| * with diff1 = last1 - first1 |
| * diff2 = last2 - first2 |
| * gap12 = first1 - last2 - 2 (>= 0) |
| * |
| */ |
| int quic_update_ack_ranges_list(struct quic_arngs *arngs, |
| struct quic_arng *ar) |
| { |
| struct eb64_node *le; |
| struct quic_arng_node *new_node; |
| struct eb64_node *new; |
| |
| new = NULL; |
| if (eb_is_empty(&arngs->root)) { |
| new_node = quic_insert_new_range(arngs, ar); |
| if (!new_node) |
| return 0; |
| |
| goto out; |
| } |
| |
| le = eb64_lookup_le(&arngs->root, ar->first); |
| if (!le) { |
| new_node = quic_insert_new_range(arngs, ar); |
| if (!new_node) |
| return 0; |
| |
| new = &new_node->first; |
| } |
| else { |
| struct quic_arng_node *le_ar = |
| eb64_entry(&le->node, struct quic_arng_node, first); |
| |
| /* Already existing range */ |
| if (le_ar->last >= ar->last) |
| return 1; |
| |
| if (le_ar->last + 1 >= ar->first) { |
| le_ar->last = ar->last; |
| new = le; |
| new_node = le_ar; |
| } |
| else { |
| new_node = quic_insert_new_range(arngs, ar); |
| if (!new_node) |
| return 0; |
| |
| new = &new_node->first; |
| } |
| } |
| |
| /* Verify that the new inserted node does not overlap the nodes |
| * which follow it. |
| */ |
| if (new) { |
| struct eb64_node *next; |
| struct quic_arng_node *next_node; |
| |
| while ((next = eb64_next(new))) { |
| next_node = |
| eb64_entry(&next->node, struct quic_arng_node, first); |
| if (new_node->last + 1 < next_node->first.key) |
| break; |
| |
| if (next_node->last > new_node->last) |
| new_node->last = next_node->last; |
| eb64_delete(next); |
| pool_free(pool_head_quic_arng, next_node); |
| /* Decrement the size of these ranges. */ |
| arngs->sz--; |
| } |
| } |
| |
| out: |
| quic_arngs_set_enc_sz(arngs); |
| |
| return 1; |
| } |
| /* Remove the header protection of packets at <el> encryption level. |
| * Always succeeds. |
| */ |
| static inline void qc_rm_hp_pkts(struct quic_conn *qc, struct quic_enc_level *el) |
| { |
| struct quic_tls_ctx *tls_ctx; |
| struct quic_rx_packet *pqpkt; |
| struct mt_list *pkttmp1, pkttmp2; |
| struct quic_enc_level *app_qel; |
| |
| TRACE_ENTER(QUIC_EV_CONN_ELRMHP, qc); |
| app_qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP]; |
| /* A server must not process incoming 1-RTT packets before the handshake is complete. */ |
| if (el == app_qel && qc_is_listener(qc) && qc->state < QUIC_HS_ST_COMPLETE) { |
| TRACE_PROTO("hp not removed (handshake not completed)", |
| QUIC_EV_CONN_ELRMHP, qc); |
| goto out; |
| } |
| tls_ctx = &el->tls_ctx; |
| mt_list_for_each_entry_safe(pqpkt, &el->rx.pqpkts, list, pkttmp1, pkttmp2) { |
| if (!qc_do_rm_hp(qc, pqpkt, tls_ctx, el->pktns->rx.largest_pn, |
| pqpkt->data + pqpkt->pn_offset, |
| pqpkt->data, pqpkt->data + pqpkt->len)) { |
| TRACE_PROTO("hp removing error", QUIC_EV_CONN_ELRMHP, qc); |
| /* XXX TO DO XXX */ |
| } |
| else { |
| /* The AAD includes the packet number field */ |
| pqpkt->aad_len = pqpkt->pn_offset + pqpkt->pnl; |
| /* Store the packet into the tree of packets to decrypt. */ |
| pqpkt->pn_node.key = pqpkt->pn; |
| HA_RWLOCK_WRLOCK(QUIC_LOCK, &el->rx.pkts_rwlock); |
| eb64_insert(&el->rx.pkts, &pqpkt->pn_node); |
| quic_rx_packet_refinc(pqpkt); |
| HA_RWLOCK_WRUNLOCK(QUIC_LOCK, &el->rx.pkts_rwlock); |
| TRACE_PROTO("hp removed", QUIC_EV_CONN_ELRMHP, qc, pqpkt); |
| } |
| MT_LIST_DELETE_SAFE(pkttmp1); |
| quic_rx_packet_refdec(pqpkt); |
| } |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_ELRMHP, qc); |
| } |
| |
| /* Process all the CRYPTO frame at <el> encryption level. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static inline int qc_treat_rx_crypto_frms(struct quic_enc_level *el, |
| struct ssl_sock_ctx *ctx) |
| { |
| struct eb64_node *node; |
| |
| node = eb64_first(&el->rx.crypto.frms); |
| while (node) { |
| struct quic_rx_crypto_frm *cf; |
| |
| cf = eb64_entry(&node->node, struct quic_rx_crypto_frm, offset_node); |
| if (cf->offset_node.key != el->rx.crypto.offset) |
| break; |
| |
| if (!qc_provide_cdata(el, ctx, cf->data, cf->len, cf->pkt, cf)) |
| goto err; |
| |
| node = eb64_next(node); |
| quic_rx_packet_refdec(cf->pkt); |
| eb64_delete(&cf->offset_node); |
| pool_free(pool_head_quic_rx_crypto_frm, cf); |
| } |
| return 1; |
| |
| err: |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_RXCDATA, ctx->qc); |
| return 0; |
| } |
| |
| /* Process all the packets at <el> and <next_el> encryption level. |
| * This is the caller responsibility to check that <cur_el> is different of <next_el> |
| * as pointer value. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| int qc_treat_rx_pkts(struct quic_enc_level *cur_el, struct quic_enc_level *next_el, |
| struct ssl_sock_ctx *ctx, int force_ack) |
| { |
| struct eb64_node *node; |
| int64_t largest_pn = -1; |
| struct quic_conn *qc = ctx->qc; |
| struct quic_enc_level *qel = cur_el; |
| |
| TRACE_ENTER(QUIC_EV_CONN_ELRXPKTS, ctx->qc); |
| qel = cur_el; |
| next_tel: |
| if (!qel) |
| goto out; |
| |
| HA_RWLOCK_WRLOCK(QUIC_LOCK, &qel->rx.pkts_rwlock); |
| node = eb64_first(&qel->rx.pkts); |
| while (node) { |
| struct quic_rx_packet *pkt; |
| |
| pkt = eb64_entry(&node->node, struct quic_rx_packet, pn_node); |
| TRACE_PROTO("new packet", QUIC_EV_CONN_ELRXPKTS, |
| ctx->qc, pkt, NULL, ctx->ssl); |
| if (!qc_pkt_decrypt(pkt, qel)) { |
| /* Drop the packet */ |
| TRACE_PROTO("packet decryption failed -> dropped", |
| QUIC_EV_CONN_ELRXPKTS, ctx->qc, pkt); |
| } |
| else { |
| if (!qc_parse_pkt_frms(pkt, ctx, qel)) { |
| /* Drop the packet */ |
| TRACE_PROTO("packet parsing failed -> dropped", |
| QUIC_EV_CONN_ELRXPKTS, ctx->qc, pkt); |
| } |
| else { |
| struct quic_arng ar = { .first = pkt->pn, .last = pkt->pn }; |
| |
| if (pkt->flags & QUIC_FL_RX_PACKET_ACK_ELICITING || force_ack) { |
| qel->pktns->flags |= QUIC_FL_PKTNS_ACK_REQUIRED; |
| qel->pktns->rx.nb_aepkts_since_last_ack++; |
| qc_idle_timer_rearm(qc, 1); |
| } |
| if (pkt->pn > largest_pn) |
| largest_pn = pkt->pn; |
| /* Update the list of ranges to acknowledge. */ |
| if (!quic_update_ack_ranges_list(&qel->pktns->rx.arngs, &ar)) |
| TRACE_DEVEL("Could not update ack range list", |
| QUIC_EV_CONN_ELRXPKTS, ctx->qc); |
| } |
| } |
| node = eb64_next(node); |
| eb64_delete(&pkt->pn_node); |
| quic_rx_packet_refdec(pkt); |
| } |
| HA_RWLOCK_WRUNLOCK(QUIC_LOCK, &qel->rx.pkts_rwlock); |
| |
| /* Update the largest packet number. */ |
| if (largest_pn != -1 && largest_pn > qel->pktns->rx.largest_pn) |
| qel->pktns->rx.largest_pn = largest_pn; |
| if (!qc_treat_rx_crypto_frms(qel, ctx)) |
| goto err; |
| |
| if (qel == cur_el) { |
| BUG_ON(qel == next_el); |
| qel = next_el; |
| goto next_tel; |
| } |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_ELRXPKTS, ctx->qc); |
| return 1; |
| |
| err: |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_ELRXPKTS, ctx->qc); |
| return 0; |
| } |
| |
| /* Check if it's possible to remove header protection for packets related to |
| * encryption level <qel>. If <qel> is NULL, assume it's false. |
| * |
| * Return true if the operation is possible else false. |
| */ |
| static int qc_qel_may_rm_hp(struct quic_conn *qc, struct quic_enc_level *qel) |
| { |
| enum quic_tls_enc_level tel; |
| |
| if (!qel) |
| return 0; |
| |
| tel = ssl_to_quic_enc_level(qel->level); |
| |
| /* check if tls secrets are available */ |
| if (qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_DCD) { |
| TRACE_DEVEL("Discarded keys", QUIC_EV_CONN_TRMHP, qc); |
| return 0; |
| } |
| |
| if (!(qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_SET)) |
| return 0; |
| |
| /* check if the connection layer is ready before using app level */ |
| if ((tel == QUIC_TLS_ENC_LEVEL_APP || tel == QUIC_TLS_ENC_LEVEL_EARLY_DATA) && |
| qc->mux_state == QC_MUX_NULL) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Sends application level packets from <qc> QUIC connection */ |
| int qc_send_app_pkts(struct quic_conn *qc, struct list *frms) |
| { |
| int ret; |
| struct qring *qr; |
| |
| qr = MT_LIST_POP(qc->tx.qring_list, typeof(qr), mt_list); |
| if (!qr) |
| /* Never happens */ |
| return 1; |
| |
| ret = qc_prep_app_pkts(qc, qr, frms); |
| if (ret == -1) |
| goto err; |
| else if (ret == 0) |
| goto out; |
| |
| if (!qc_send_ppkts(qr, qc->xprt_ctx)) |
| goto err; |
| |
| out: |
| MT_LIST_APPEND(qc->tx.qring_list, &qr->mt_list); |
| return 1; |
| |
| err: |
| MT_LIST_APPEND(qc->tx.qring_list, &qr->mt_list); |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_IO_CB, qc); |
| return 0; |
| } |
| |
| /* QUIC connection packet handler task (post handshake) */ |
| static struct task *quic_conn_app_io_cb(struct task *t, void *context, unsigned int state) |
| { |
| struct ssl_sock_ctx *ctx; |
| struct quic_conn *qc; |
| struct quic_enc_level *qel; |
| |
| |
| ctx = context; |
| qc = ctx->qc; |
| qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP]; |
| |
| TRACE_PROTO("state", QUIC_EV_CONN_IO_CB, qc, &qc->state); |
| |
| if (!MT_LIST_ISEMPTY(&qel->rx.pqpkts) && qc_qel_may_rm_hp(qc, qel)) |
| qc_rm_hp_pkts(qc, qel); |
| |
| if (!qc_treat_rx_pkts(qel, NULL, ctx, 0)) |
| goto err; |
| |
| if ((qc->flags & QUIC_FL_CONN_DRAINING) && |
| !(qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE)) |
| goto out; |
| |
| if (!qc_send_app_pkts(qc, &qel->pktns->tx.frms)) |
| goto err; |
| |
| out: |
| return t; |
| |
| err: |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_IO_CB, qc, &qc->state); |
| return t; |
| } |
| |
| /* QUIC connection packet handler task. */ |
| struct task *quic_conn_io_cb(struct task *t, void *context, unsigned int state) |
| { |
| int ret, ssl_err; |
| struct ssl_sock_ctx *ctx; |
| struct quic_conn *qc; |
| enum quic_tls_enc_level tel, next_tel; |
| struct quic_enc_level *qel, *next_qel; |
| struct qring *qr; // Tx ring |
| int st, force_ack, zero_rtt; |
| |
| ctx = context; |
| qc = ctx->qc; |
| TRACE_ENTER(QUIC_EV_CONN_IO_CB, qc); |
| qr = NULL; |
| st = qc->state; |
| TRACE_PROTO("state", QUIC_EV_CONN_IO_CB, qc, &st); |
| if (qc->flags & QUIC_FL_CONN_IO_CB_WAKEUP) { |
| qc->flags &= ~QUIC_FL_CONN_IO_CB_WAKEUP; |
| /* The I/O handler has been woken up by the dgram listener |
| * after the anti-amplification was reached. |
| */ |
| qc_set_timer(qc); |
| if (tick_isset(qc->timer) && tick_is_lt(qc->timer, now_ms)) |
| task_wakeup(qc->timer_task, TASK_WOKEN_MSG); |
| } |
| ssl_err = SSL_ERROR_NONE; |
| zero_rtt = st < QUIC_HS_ST_COMPLETE && |
| (!MT_LIST_ISEMPTY(&qc->els[QUIC_TLS_ENC_LEVEL_EARLY_DATA].rx.pqpkts) || |
| qc_el_rx_pkts(&qc->els[QUIC_TLS_ENC_LEVEL_EARLY_DATA])); |
| start: |
| if (st >= QUIC_HS_ST_COMPLETE && |
| qc_el_rx_pkts(&qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE])) { |
| TRACE_PROTO("remaining Handshake packets", QUIC_EV_CONN_PHPKTS, qc); |
| /* There may be remaining Handshake packets to treat and acknowledge. */ |
| tel = QUIC_TLS_ENC_LEVEL_HANDSHAKE; |
| next_tel = QUIC_TLS_ENC_LEVEL_APP; |
| } |
| else if (!quic_get_tls_enc_levels(&tel, &next_tel, st, zero_rtt)) |
| goto err; |
| |
| qel = &qc->els[tel]; |
| next_qel = next_tel == QUIC_TLS_ENC_LEVEL_NONE ? NULL : &qc->els[next_tel]; |
| |
| next_level: |
| /* Treat packets waiting for header packet protection decryption */ |
| if (!MT_LIST_ISEMPTY(&qel->rx.pqpkts) && qc_qel_may_rm_hp(qc, qel)) |
| qc_rm_hp_pkts(qc, qel); |
| |
| force_ack = qel == &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL] || |
| qel == &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]; |
| if (!qc_treat_rx_pkts(qel, next_qel, ctx, force_ack)) |
| goto err; |
| |
| if ((qc->flags & QUIC_FL_CONN_DRAINING) && |
| !(qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE)) |
| goto out; |
| |
| if (zero_rtt && next_qel && !MT_LIST_ISEMPTY(&next_qel->rx.pqpkts) && |
| (next_qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_SET)) { |
| qel = next_qel; |
| next_qel = NULL; |
| goto next_level; |
| } |
| |
| st = qc->state; |
| if (st >= QUIC_HS_ST_COMPLETE) { |
| if (!(qc->flags & QUIC_FL_CONN_POST_HANDSHAKE_FRAMES_BUILT) && |
| !quic_build_post_handshake_frames(qc)) |
| goto err; |
| |
| if (!(qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].tls_ctx.flags & |
| QUIC_FL_TLS_SECRETS_DCD)) { |
| /* Discard the Handshake keys. */ |
| quic_tls_discard_keys(&qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]); |
| TRACE_PROTO("discarding Handshake pktns", QUIC_EV_CONN_PHPKTS, qc); |
| quic_pktns_discard(qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns, qc); |
| qc_set_timer(qc); |
| qc_el_rx_pkts_del(&qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]); |
| qc_release_pktns_frms(qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns); |
| } |
| |
| if (qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED) { |
| /* There may be remaining handshake to build (acks) */ |
| st = QUIC_HS_ST_SERVER_HANDSHAKE; |
| } |
| } |
| |
| if (!qr) |
| qr = MT_LIST_POP(qc->tx.qring_list, typeof(qr), mt_list); |
| /* A listener does not send any O-RTT packet. O-RTT packet number space must not |
| * be considered. |
| */ |
| if (!quic_get_tls_enc_levels(&tel, &next_tel, st, 0)) |
| goto err; |
| ret = qc_prep_pkts(qc, qr, tel, next_tel); |
| if (ret == -1) |
| goto err; |
| else if (ret == 0) |
| goto skip_send; |
| |
| if (!qc_send_ppkts(qr, ctx)) |
| goto err; |
| |
| skip_send: |
| /* Check if there is something to do for the next level. |
| */ |
| if (next_qel && next_qel != qel && |
| (next_qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_SET) && |
| (!MT_LIST_ISEMPTY(&next_qel->rx.pqpkts) || qc_el_rx_pkts(next_qel))) { |
| qel = next_qel; |
| next_qel = NULL; |
| goto next_level; |
| } |
| |
| out: |
| if (qr) |
| MT_LIST_APPEND(qc->tx.qring_list, &qr->mt_list); |
| TRACE_LEAVE(QUIC_EV_CONN_IO_CB, qc, &st); |
| return t; |
| |
| err: |
| if (qr) |
| MT_LIST_APPEND(qc->tx.qring_list, &qr->mt_list); |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_IO_CB, qc, &st, &ssl_err); |
| return t; |
| } |
| |
| /* Uninitialize <qel> QUIC encryption level. Never fails. */ |
| static void quic_conn_enc_level_uninit(struct quic_enc_level *qel) |
| { |
| int i; |
| |
| for (i = 0; i < qel->tx.crypto.nb_buf; i++) { |
| if (qel->tx.crypto.bufs[i]) { |
| pool_free(pool_head_quic_crypto_buf, qel->tx.crypto.bufs[i]); |
| qel->tx.crypto.bufs[i] = NULL; |
| } |
| } |
| ha_free(&qel->tx.crypto.bufs); |
| } |
| |
| /* Initialize QUIC TLS encryption level with <level<> as level for <qc> QUIC |
| * connection allocating everything needed. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| static int quic_conn_enc_level_init(struct quic_conn *qc, |
| enum quic_tls_enc_level level) |
| { |
| struct quic_enc_level *qel; |
| |
| qel = &qc->els[level]; |
| qel->level = quic_to_ssl_enc_level(level); |
| qel->tls_ctx.rx.aead = qel->tls_ctx.tx.aead = NULL; |
| qel->tls_ctx.rx.md = qel->tls_ctx.tx.md = NULL; |
| qel->tls_ctx.rx.hp = qel->tls_ctx.tx.hp = NULL; |
| qel->tls_ctx.flags = 0; |
| |
| qel->rx.pkts = EB_ROOT; |
| HA_RWLOCK_INIT(&qel->rx.pkts_rwlock); |
| MT_LIST_INIT(&qel->rx.pqpkts); |
| qel->rx.crypto.offset = 0; |
| qel->rx.crypto.frms = EB_ROOT_UNIQUE; |
| |
| /* Allocate only one buffer. */ |
| qel->tx.crypto.bufs = malloc(sizeof *qel->tx.crypto.bufs); |
| if (!qel->tx.crypto.bufs) |
| goto err; |
| |
| qel->tx.crypto.bufs[0] = pool_alloc(pool_head_quic_crypto_buf); |
| if (!qel->tx.crypto.bufs[0]) |
| goto err; |
| |
| qel->tx.crypto.bufs[0]->sz = 0; |
| qel->tx.crypto.nb_buf = 1; |
| |
| qel->tx.crypto.sz = 0; |
| qel->tx.crypto.offset = 0; |
| |
| return 1; |
| |
| err: |
| ha_free(&qel->tx.crypto.bufs); |
| return 0; |
| } |
| |
| /* Release the quic_conn <qc>. The connection is removed from the CIDs tree. |
| * The connection tasklet is killed. |
| * |
| * This function must only be called by the thread responsible of the quic_conn |
| * tasklet. |
| */ |
| static void quic_conn_release(struct quic_conn *qc) |
| { |
| int i; |
| struct ssl_sock_ctx *conn_ctx; |
| struct eb64_node *node; |
| struct quic_tls_ctx *app_tls_ctx; |
| |
| /* We must not free the quic-conn if the MUX is still allocated. */ |
| BUG_ON(qc->mux_state == QC_MUX_READY); |
| |
| /* free remaining stream descriptors */ |
| node = eb64_first(&qc->streams_by_id); |
| while (node) { |
| struct qc_stream_desc *stream; |
| |
| stream = eb64_entry(node, struct qc_stream_desc, by_id); |
| node = eb64_next(node); |
| |
| /* all streams attached to the quic-conn are released, so |
| * qc_stream_desc_free will liberate the stream instance. |
| */ |
| BUG_ON(!stream->release); |
| qc_stream_desc_free(stream); |
| } |
| |
| if (qc->idle_timer_task) { |
| task_destroy(qc->idle_timer_task); |
| qc->idle_timer_task = NULL; |
| } |
| |
| if (qc->timer_task) { |
| task_destroy(qc->timer_task); |
| qc->timer_task = NULL; |
| } |
| |
| /* remove the connection from receiver cids trees */ |
| ebmb_delete(&qc->odcid_node); |
| ebmb_delete(&qc->scid_node); |
| free_quic_conn_cids(qc); |
| |
| conn_ctx = qc->xprt_ctx; |
| if (conn_ctx) { |
| tasklet_free(conn_ctx->wait_event.tasklet); |
| SSL_free(conn_ctx->ssl); |
| pool_free(pool_head_quic_conn_ctx, conn_ctx); |
| } |
| |
| quic_tls_ku_free(qc); |
| for (i = 0; i < QUIC_TLS_ENC_LEVEL_MAX; i++) { |
| quic_tls_ctx_secs_free(&qc->els[i].tls_ctx); |
| quic_conn_enc_level_uninit(&qc->els[i]); |
| } |
| |
| app_tls_ctx = &qc->els[QUIC_TLS_ENC_LEVEL_APP].tls_ctx; |
| pool_free(pool_head_quic_tls_secret, app_tls_ctx->rx.secret); |
| pool_free(pool_head_quic_tls_secret, app_tls_ctx->tx.secret); |
| |
| for (i = 0; i < QUIC_TLS_PKTNS_MAX; i++) { |
| quic_pktns_tx_pkts_release(&qc->pktns[i]); |
| quic_free_arngs(&qc->pktns[i].rx.arngs); |
| } |
| |
| pool_free(pool_head_quic_conn_rxbuf, qc->rx.buf.area); |
| pool_free(pool_head_quic_conn, qc); |
| TRACE_PROTO("QUIC conn. freed", QUIC_EV_CONN_FREED, qc); |
| } |
| |
| static void quic_close(struct connection *conn, void *xprt_ctx) |
| { |
| struct ssl_sock_ctx *conn_ctx = xprt_ctx; |
| struct quic_conn *qc = conn_ctx->qc; |
| |
| TRACE_ENTER(QUIC_EV_CONN_CLOSE, qc); |
| |
| /* Next application data can be dropped. */ |
| qc->mux_state = QC_MUX_RELEASED; |
| |
| /* If the quic-conn timer has already expired free the quic-conn. */ |
| if (qc->flags & QUIC_FL_CONN_EXP_TIMER) { |
| quic_conn_release(qc); |
| TRACE_LEAVE(QUIC_EV_CONN_CLOSE); |
| return; |
| } |
| |
| TRACE_LEAVE(QUIC_EV_CONN_CLOSE, qc); |
| } |
| |
| /* Callback called upon loss detection and PTO timer expirations. */ |
| static struct task *process_timer(struct task *task, void *ctx, unsigned int state) |
| { |
| struct ssl_sock_ctx *conn_ctx; |
| struct quic_conn *qc; |
| struct quic_pktns *pktns; |
| int i; |
| |
| conn_ctx = task->context; |
| qc = conn_ctx->qc; |
| TRACE_ENTER(QUIC_EV_CONN_PTIMER, qc, |
| NULL, NULL, &qc->path->ifae_pkts); |
| task->expire = TICK_ETERNITY; |
| pktns = quic_loss_pktns(qc); |
| if (tick_isset(pktns->tx.loss_time)) { |
| struct list lost_pkts = LIST_HEAD_INIT(lost_pkts); |
| |
| qc_packet_loss_lookup(pktns, qc, &lost_pkts); |
| if (!LIST_ISEMPTY(&lost_pkts)) |
| qc_release_lost_pkts(qc, pktns, &lost_pkts, now_ms); |
| qc_set_timer(qc); |
| goto out; |
| } |
| |
| if (qc->path->in_flight) { |
| pktns = quic_pto_pktns(qc, qc->state >= QUIC_HS_ST_COMPLETE, NULL); |
| if (pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL]) { |
| pktns->tx.pto_probe = 1; |
| if (qc->pktns[QUIC_TLS_PKTNS_HANDSHAKE].tx.in_flight) |
| qc->pktns[QUIC_TLS_PKTNS_HANDSHAKE].tx.pto_probe = 1; |
| } |
| else { |
| pktns->tx.pto_probe = 2; |
| } |
| } |
| else if (!qc_is_listener(qc) && qc->state <= QUIC_HS_ST_COMPLETE) { |
| struct quic_enc_level *iel = &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]; |
| struct quic_enc_level *hel = &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]; |
| |
| if (hel->tls_ctx.flags == QUIC_FL_TLS_SECRETS_SET) |
| hel->pktns->tx.pto_probe = 1; |
| if (iel->tls_ctx.flags == QUIC_FL_TLS_SECRETS_SET) |
| iel->pktns->tx.pto_probe = 1; |
| } |
| |
| for (i = QUIC_TLS_ENC_LEVEL_INITIAL; i < QUIC_TLS_ENC_LEVEL_MAX; i++) { |
| if (i == QUIC_TLS_ENC_LEVEL_APP && !quic_peer_validated_addr(qc)) |
| continue; |
| |
| qc_prep_fast_retrans(&qc->els[i], qc); |
| } |
| |
| tasklet_wakeup(conn_ctx->wait_event.tasklet); |
| qc->path->loss.pto_count++; |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_PTIMER, qc, pktns); |
| |
| return task; |
| } |
| |
| /* Initialize <conn> QUIC connection with <quic_initial_clients> as root of QUIC |
| * connections used to identify the first Initial packets of client connecting |
| * to listeners. This parameter must be NULL for QUIC connections attached |
| * to listeners. <dcid> is the destination connection ID with <dcid_len> as length. |
| * <scid> is the source connection ID with <scid_len> as length. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| static struct quic_conn *qc_new_conn(unsigned int version, int ipv4, |
| unsigned char *dcid, size_t dcid_len, size_t dcid_addr_len, |
| unsigned char *scid, size_t scid_len, int server, void *owner) |
| { |
| int i; |
| struct quic_conn *qc; |
| /* Initial CID. */ |
| struct quic_connection_id *icid; |
| char *buf_area = NULL; |
| struct listener *l = NULL; |
| |
| TRACE_ENTER(QUIC_EV_CONN_INIT); |
| qc = pool_zalloc(pool_head_quic_conn); |
| if (!qc) { |
| TRACE_PROTO("Could not allocate a new connection", QUIC_EV_CONN_INIT); |
| goto err; |
| } |
| |
| buf_area = pool_alloc(pool_head_quic_conn_rxbuf); |
| if (!buf_area) { |
| TRACE_PROTO("Could not allocate a new RX buffer", QUIC_EV_CONN_INIT, qc); |
| goto err; |
| } |
| |
| qc->cids = EB_ROOT; |
| /* QUIC Server (or listener). */ |
| if (server) { |
| l = owner; |
| |
| qc->flags |= QUIC_FL_CONN_LISTENER; |
| qc->state = QUIC_HS_ST_SERVER_INITIAL; |
| /* Copy the initial DCID with the address. */ |
| qc->odcid.len = dcid_len; |
| qc->odcid.addrlen = dcid_addr_len; |
| memcpy(qc->odcid.data, dcid, dcid_len + dcid_addr_len); |
| |
| /* copy the packet SCID to reuse it as DCID for sending */ |
| if (scid_len) |
| memcpy(qc->dcid.data, scid, scid_len); |
| qc->dcid.len = scid_len; |
| qc->tx.qring_list = &l->rx.tx_qring_list; |
| qc->li = l; |
| } |
| /* QUIC Client (outgoing connection to servers) */ |
| else { |
| qc->state = QUIC_HS_ST_CLIENT_INITIAL; |
| if (dcid_len) |
| memcpy(qc->dcid.data, dcid, dcid_len); |
| qc->dcid.len = dcid_len; |
| } |
| qc->mux_state = QC_MUX_NULL; |
| |
| /* Initialize the output buffer */ |
| qc->obuf.pos = qc->obuf.data; |
| |
| icid = new_quic_cid(&qc->cids, qc, 0); |
| if (!icid) { |
| TRACE_PROTO("Could not allocate a new connection ID", QUIC_EV_CONN_INIT, qc); |
| goto err; |
| } |
| |
| /* insert the allocated CID in the receiver datagram handler tree */ |
| if (server) |
| ebmb_insert(&quic_dghdlrs[tid].cids, &icid->node, icid->cid.len); |
| |
| /* Select our SCID which is the first CID with 0 as sequence number. */ |
| qc->scid = icid->cid; |
| |
| /* Packet number spaces initialization. */ |
| for (i = 0; i < QUIC_TLS_PKTNS_MAX; i++) |
| quic_pktns_init(&qc->pktns[i]); |
| /* QUIC encryption level context initialization. */ |
| for (i = 0; i < QUIC_TLS_ENC_LEVEL_MAX; i++) { |
| if (!quic_conn_enc_level_init(qc, i)) { |
| TRACE_PROTO("Could not initialize an encryption level", QUIC_EV_CONN_INIT, qc); |
| goto err; |
| } |
| /* Initialize the packet number space. */ |
| qc->els[i].pktns = &qc->pktns[quic_tls_pktns(i)]; |
| } |
| |
| qc->version = version; |
| qc->tps_tls_ext = qc->version & 0xff000000 ? |
| TLS_EXTENSION_QUIC_TRANSPORT_PARAMETERS_DRAFT: |
| TLS_EXTENSION_QUIC_TRANSPORT_PARAMETERS; |
| /* TX part. */ |
| LIST_INIT(&qc->tx.frms_to_send); |
| qc->tx.nb_buf = QUIC_CONN_TX_BUFS_NB; |
| qc->tx.wbuf = qc->tx.rbuf = 0; |
| qc->tx.bytes = 0; |
| /* RX part. */ |
| qc->rx.bytes = 0; |
| qc->rx.buf = b_make(buf_area, QUIC_CONN_RX_BUFSZ, 0, 0); |
| |
| qc->nb_pkt_for_cc = 1; |
| qc->nb_pkt_since_cc = 0; |
| |
| LIST_INIT(&qc->rx.pkt_list); |
| if (!quic_tls_ku_init(qc)) { |
| TRACE_PROTO("Key update initialization failed", QUIC_EV_CONN_INIT, qc); |
| goto err; |
| } |
| |
| /* XXX TO DO: Only one path at this time. */ |
| qc->path = &qc->paths[0]; |
| quic_path_init(qc->path, ipv4, default_quic_cc_algo, qc); |
| |
| /* required to use MTLIST_IN_LIST */ |
| MT_LIST_INIT(&qc->accept_list); |
| |
| qc->streams_by_id = EB_ROOT_UNIQUE; |
| |
| TRACE_LEAVE(QUIC_EV_CONN_INIT, qc); |
| |
| return qc; |
| |
| err: |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_INIT, qc ? qc : NULL); |
| pool_free(pool_head_quic_conn_rxbuf, buf_area); |
| if (qc) |
| qc->rx.buf.area = NULL; |
| quic_conn_release(qc); |
| return NULL; |
| } |
| |
| /* Initialize the timer task of <qc> QUIC connection. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| static int quic_conn_init_timer(struct quic_conn *qc) |
| { |
| /* Attach this task to the same thread ID used for the connection */ |
| qc->timer_task = task_new(1UL << qc->tid); |
| if (!qc->timer_task) |
| return 0; |
| |
| qc->timer = TICK_ETERNITY; |
| qc->timer_task->process = process_timer; |
| qc->timer_task->context = qc->xprt_ctx; |
| |
| return 1; |
| } |
| |
| /* Rearm the idle timer for <qc> QUIC connection. */ |
| static void qc_idle_timer_do_rearm(struct quic_conn *qc) |
| { |
| unsigned int expire; |
| |
| expire = QUIC_MAX(3 * quic_pto(qc), qc->max_idle_timeout); |
| qc->idle_timer_task->expire = tick_add(now_ms, MS_TO_TICKS(expire)); |
| } |
| |
| /* Rearm the idle timer for <qc> QUIC connection depending on <read> boolean |
| * which is set to 1 when receiving a packet , and 0 when sending packet |
| */ |
| static void qc_idle_timer_rearm(struct quic_conn *qc, int read) |
| { |
| if (read) { |
| qc->flags |= QUIC_FL_CONN_IDLE_TIMER_RESTARTED_AFTER_READ; |
| } |
| else { |
| qc->flags &= ~QUIC_FL_CONN_IDLE_TIMER_RESTARTED_AFTER_READ; |
| } |
| qc_idle_timer_do_rearm(qc); |
| } |
| |
| /* The task handling the idle timeout */ |
| static struct task *qc_idle_timer_task(struct task *t, void *ctx, unsigned int state) |
| { |
| struct quic_conn *qc = ctx; |
| |
| /* Notify the MUX before settings QUIC_FL_CONN_EXP_TIMER or the MUX |
| * might free the quic-conn too early via quic_close(). |
| */ |
| qc_notify_close(qc); |
| |
| /* If the MUX is still alive, keep the quic-conn. The MUX is |
| * responsible to call quic_close to release it. |
| */ |
| qc->flags |= QUIC_FL_CONN_EXP_TIMER; |
| if (qc->mux_state != QC_MUX_READY) |
| quic_conn_release(qc); |
| |
| /* TODO if the quic-conn cannot be freed because of the MUX, we may at |
| * least clean some parts of it such as the tasklet. |
| */ |
| |
| return NULL; |
| } |
| |
| /* Initialize the idle timeout task for <qc>. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| static int quic_conn_init_idle_timer_task(struct quic_conn *qc) |
| { |
| qc->idle_timer_task = task_new_here(); |
| if (!qc->idle_timer_task) |
| return 0; |
| |
| qc->idle_timer_task->process = qc_idle_timer_task; |
| qc->idle_timer_task->context = qc; |
| qc_idle_timer_rearm(qc, 1); |
| task_queue(qc->idle_timer_task); |
| |
| return 1; |
| } |
| |
| /* Parse into <pkt> a long header located at <*buf> buffer, <end> begin a pointer to the end |
| * past one byte of this buffer. |
| */ |
| static inline int quic_packet_read_long_header(unsigned char **buf, const unsigned char *end, |
| struct quic_rx_packet *pkt) |
| { |
| unsigned char dcid_len, scid_len; |
| |
| /* Version */ |
| if (!quic_read_uint32(&pkt->version, (const unsigned char **)buf, end)) |
| return 0; |
| |
| /* Destination Connection ID Length */ |
| dcid_len = *(*buf)++; |
| /* We want to be sure we can read <dcid_len> bytes and one more for <scid_len> value */ |
| if (dcid_len > QUIC_CID_MAXLEN || end - *buf < dcid_len + 1) |
| /* XXX MUST BE DROPPED */ |
| return 0; |
| |
| if (dcid_len) { |
| /* Check that the length of this received DCID matches the CID lengths |
| * of our implementation for non Initials packets only. |
| */ |
| if (pkt->type != QUIC_PACKET_TYPE_INITIAL && |
| pkt->type != QUIC_PACKET_TYPE_0RTT && |
| dcid_len != QUIC_HAP_CID_LEN) |
| return 0; |
| |
| memcpy(pkt->dcid.data, *buf, dcid_len); |
| } |
| |
| pkt->dcid.len = dcid_len; |
| *buf += dcid_len; |
| |
| /* Source Connection ID Length */ |
| scid_len = *(*buf)++; |
| if (scid_len > QUIC_CID_MAXLEN || end - *buf < scid_len) |
| /* XXX MUST BE DROPPED */ |
| return 0; |
| |
| if (scid_len) |
| memcpy(pkt->scid.data, *buf, scid_len); |
| pkt->scid.len = scid_len; |
| *buf += scid_len; |
| |
| return 1; |
| } |
| |
| /* Insert <pkt> RX packet in its <qel> RX packets tree */ |
| static void qc_pkt_insert(struct quic_rx_packet *pkt, struct quic_enc_level *qel) |
| { |
| pkt->pn_node.key = pkt->pn; |
| quic_rx_packet_refinc(pkt); |
| HA_RWLOCK_WRLOCK(QUIC_LOCK, &qel->rx.pkts_rwlock); |
| eb64_insert(&qel->rx.pkts, &pkt->pn_node); |
| HA_RWLOCK_WRUNLOCK(QUIC_LOCK, &qel->rx.pkts_rwlock); |
| } |
| |
| /* Try to remove the header protection of <pkt> QUIC packet attached to <qc> |
| * QUIC connection with <buf> as packet number field address, <end> a pointer to one |
| * byte past the end of the buffer containing this packet and <beg> the address of |
| * the packet first byte. |
| * If succeeded, this function updates <*buf> to point to the next packet in the buffer. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| static inline int qc_try_rm_hp(struct quic_conn *qc, |
| struct quic_rx_packet *pkt, |
| unsigned char *buf, unsigned char *beg, |
| const unsigned char *end, |
| struct quic_enc_level **el) |
| { |
| unsigned char *pn = NULL; /* Packet number field */ |
| enum quic_tls_enc_level tel; |
| struct quic_enc_level *qel; |
| /* Only for traces. */ |
| struct quic_rx_packet *qpkt_trace; |
| |
| qpkt_trace = NULL; |
| TRACE_ENTER(QUIC_EV_CONN_TRMHP, qc); |
| /* The packet number is here. This is also the start minus |
| * QUIC_PACKET_PN_MAXLEN of the sample used to add/remove the header |
| * protection. |
| */ |
| pn = buf; |
| |
| tel = quic_packet_type_enc_level(pkt->type); |
| qel = &qc->els[tel]; |
| |
| if (qc_qel_may_rm_hp(qc, qel)) { |
| /* Note that the following function enables us to unprotect the packet |
| * number and its length subsequently used to decrypt the entire |
| * packets. |
| */ |
| if (!qc_do_rm_hp(qc, pkt, &qel->tls_ctx, |
| qel->pktns->rx.largest_pn, pn, beg, end)) { |
| TRACE_PROTO("hp error", QUIC_EV_CONN_TRMHP, qc); |
| goto err; |
| } |
| |
| /* The AAD includes the packet number field found at <pn>. */ |
| pkt->aad_len = pn - beg + pkt->pnl; |
| qpkt_trace = pkt; |
| } |
| else { |
| if (qel->tls_ctx.flags & QUIC_FL_TLS_SECRETS_DCD) { |
| /* If the packet number space has been discarded, this packet |
| * will be not parsed. |
| */ |
| TRACE_PROTO("Discarded pktns", QUIC_EV_CONN_TRMHP, qc, pkt); |
| goto out; |
| } |
| |
| TRACE_PROTO("hp not removed", QUIC_EV_CONN_TRMHP, qc, pkt); |
| pkt->pn_offset = pn - beg; |
| MT_LIST_APPEND(&qel->rx.pqpkts, &pkt->list); |
| quic_rx_packet_refinc(pkt); |
| } |
| |
| *el = qel; |
| /* No reference counter incrementation here!!! */ |
| LIST_APPEND(&qc->rx.pkt_list, &pkt->qc_rx_pkt_list); |
| memcpy(b_tail(&qc->rx.buf), beg, pkt->len); |
| pkt->data = (unsigned char *)b_tail(&qc->rx.buf); |
| b_add(&qc->rx.buf, pkt->len); |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_TRMHP, qc, qpkt_trace); |
| return 1; |
| |
| err: |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_TRMHP, qc, qpkt_trace); |
| return 0; |
| } |
| |
| /* Parse the header form from <byte0> first byte of <pkt> pacekt to set type. |
| * Also set <*long_header> to 1 if this form is long, 0 if not. |
| */ |
| static inline void qc_parse_hd_form(struct quic_rx_packet *pkt, |
| unsigned char byte0, int *long_header) |
| { |
| if (byte0 & QUIC_PACKET_LONG_HEADER_BIT) { |
| pkt->type = |
| (byte0 >> QUIC_PACKET_TYPE_SHIFT) & QUIC_PACKET_TYPE_BITMASK; |
| *long_header = 1; |
| } |
| else { |
| pkt->type = QUIC_PACKET_TYPE_SHORT; |
| *long_header = 0; |
| } |
| } |
| |
| /* |
| * Check if the QUIC version in packet <pkt> is supported. Returns a boolean. |
| */ |
| static inline int qc_pkt_is_supported_version(struct quic_rx_packet *pkt) |
| { |
| int j = 0, version; |
| |
| do { |
| version = quic_supported_version[j]; |
| if (version == pkt->version) |
| return 1; |
| |
| version = quic_supported_version[++j]; |
| } while(version); |
| |
| return 0; |
| } |
| |
| /* |
| * Send a Version Negotiation packet on response to <pkt> on socket <fd> to |
| * address <addr>. |
| * Implementation of RFC9000 6. Version Negotiation |
| * |
| * TODO implement a rate-limiting sending of Version Negotiation packets |
| * |
| * Returns 0 on success else non-zero |
| */ |
| static int send_version_negotiation(int fd, struct sockaddr_storage *addr, |
| struct quic_rx_packet *pkt) |
| { |
| char buf[256]; |
| int i = 0, j, version; |
| const socklen_t addrlen = get_addr_len(addr); |
| |
| /* |
| * header form |
| * long header, fixed bit to 0 for Version Negotiation |
| */ |
| if (RAND_bytes((unsigned char *)buf, 1) != 1) |
| return 1; |
| |
| buf[i++] |= '\x80'; |
| /* null version for Version Negotiation */ |
| buf[i++] = '\x00'; |
| buf[i++] = '\x00'; |
| buf[i++] = '\x00'; |
| buf[i++] = '\x00'; |
| |
| /* source connection id */ |
| buf[i++] = pkt->scid.len; |
| memcpy(&buf[i], pkt->scid.data, pkt->scid.len); |
| i += pkt->scid.len; |
| |
| /* destination connection id */ |
| buf[i++] = pkt->dcid.len; |
| memcpy(&buf[i], pkt->dcid.data, pkt->dcid.len); |
| i += pkt->dcid.len; |
| |
| /* supported version */ |
| j = 0; |
| do { |
| version = htonl(quic_supported_version[j]); |
| memcpy(&buf[i], &version, sizeof(version)); |
| i += sizeof(version); |
| |
| version = quic_supported_version[++j]; |
| } while (version); |
| |
| if (sendto(fd, buf, i, 0, (struct sockaddr *)addr, addrlen) < 0) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Generate the token to be used in Retry packets. The token is written to |
| * <buf> which is expected to be <len> bytes. |
| * |
| * Various parameters are expected to be encoded in the token. For now, only |
| * the DCID from <pkt> is stored. This is useful to implement a stateless Retry |
| * as this CID must be repeated by the server in the transport parameters. |
| * |
| * TODO add the client address to validate the token origin. |
| * |
| * Returns the length of the encoded token or 0 on error. |
| */ |
| static int generate_retry_token(unsigned char *buf, unsigned char len, |
| struct quic_rx_packet *pkt) |
| { |
| const size_t token_len = 1 + pkt->dcid.len; |
| unsigned char i = 0; |
| |
| if (token_len > len) |
| return 0; |
| |
| buf[i++] = pkt->dcid.len; |
| memcpy(&buf[i], pkt->dcid.data, pkt->dcid.len); |
| i += pkt->dcid.len; |
| |
| return i; |
| } |
| |
| /* Generate a Retry packet and send it on <fd> socket to <addr> in response to |
| * the Initial <pkt> packet. |
| * |
| * Returns 0 on success else non-zero. |
| */ |
| static int send_retry(int fd, struct sockaddr_storage *addr, |
| struct quic_rx_packet *pkt) |
| { |
| unsigned char buf[128]; |
| int i = 0, token_len; |
| const socklen_t addrlen = get_addr_len(addr); |
| struct quic_cid scid; |
| |
| /* long header + fixed bit + packet type 0x3 */ |
| buf[i++] = 0xf0; |
| /* version */ |
| buf[i++] = 0x00; |
| buf[i++] = 0x00; |
| buf[i++] = 0x00; |
| buf[i++] = 0x01; |
| |
| /* Use the SCID from <pkt> for Retry DCID. */ |
| buf[i++] = pkt->scid.len; |
| memcpy(&buf[i], pkt->scid.data, pkt->scid.len); |
| i += pkt->scid.len; |
| |
| /* Generate a new CID to be used as SCID for the Retry packet. */ |
| scid.len = QUIC_HAP_CID_LEN; |
| if (RAND_bytes(scid.data, scid.len) != 1) |
| return 1; |
| |
| buf[i++] = scid.len; |
| memcpy(&buf[i], scid.data, scid.len); |
| i += scid.len; |
| |
| /* token */ |
| if (!(token_len = generate_retry_token(&buf[i], sizeof(buf) - i, pkt))) |
| return 1; |
| |
| i += token_len; |
| |
| /* token integrity tag */ |
| if ((&buf[i] - buf < QUIC_TLS_TAG_LEN) || |
| !quic_tls_generate_retry_integrity_tag(pkt->dcid.data, |
| pkt->dcid.len, buf, i)) { |
| return 1; |
| } |
| |
| i += QUIC_TLS_TAG_LEN; |
| |
| if (sendto(fd, buf, i, 0, (struct sockaddr *)addr, addrlen) < 0) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Retrieve a quic_conn instance from the <pkt> DCID field. If the packet is of |
| * type INITIAL, the ODCID tree is first used. In this case, <saddr> is |
| * concatenated to the <pkt> DCID field. |
| * |
| * Returns the instance or NULL if not found. |
| */ |
| static struct quic_conn *retrieve_qc_conn_from_cid(struct quic_rx_packet *pkt, |
| struct listener *l, |
| struct sockaddr_storage *saddr) |
| { |
| struct quic_conn *qc = NULL; |
| struct ebmb_node *node; |
| struct quic_connection_id *id; |
| /* set if the quic_conn is found in the second DCID tree */ |
| int found_in_dcid = 0; |
| |
| /* Look first into ODCIDs tree for INITIAL/0-RTT packets. */ |
| if (pkt->type == QUIC_PACKET_TYPE_INITIAL || |
| pkt->type == QUIC_PACKET_TYPE_0RTT) { |
| /* DCIDs of first packets coming from multiple clients may have |
| * the same values. Let's distinguish them by concatenating the |
| * socket addresses. |
| */ |
| quic_cid_saddr_cat(&pkt->dcid, saddr); |
| node = ebmb_lookup(&quic_dghdlrs[tid].odcids, pkt->dcid.data, |
| pkt->dcid.len + pkt->dcid.addrlen); |
| if (node) { |
| qc = ebmb_entry(node, struct quic_conn, odcid_node); |
| goto end; |
| } |
| } |
| |
| /* Look into DCIDs tree for non-INITIAL/0-RTT packets. This may be used |
| * also for INITIAL/0-RTT non-first packets with the final DCID in |
| * used. |
| */ |
| node = ebmb_lookup(&quic_dghdlrs[tid].cids, pkt->dcid.data, pkt->dcid.len); |
| if (!node) |
| goto end; |
| |
| id = ebmb_entry(node, struct quic_connection_id, node); |
| qc = id->qc; |
| found_in_dcid = 1; |
| |
| end: |
| /* If found in DCIDs tree, remove the quic_conn from the ODCIDs tree. |
| * If already done, this is a noop. |
| */ |
| if (qc && found_in_dcid) |
| ebmb_delete(&qc->odcid_node); |
| |
| return qc; |
| } |
| |
| /* Parse the Retry token from buffer <token> whose size is <token_len>. This |
| * will extract the parameters stored in the token : <odcid>. |
| * |
| * Returns 0 on success else non-zero. |
| */ |
| static int parse_retry_token(const unsigned char *token, uint64_t token_len, |
| struct quic_cid *odcid) |
| { |
| uint64_t odcid_len; |
| |
| if (!quic_dec_int(&odcid_len, &token, token + token_len)) |
| return 1; |
| |
| if (odcid_len > QUIC_CID_MAXLEN) |
| return 1; |
| |
| memcpy(odcid->data, token, odcid_len); |
| odcid->len = odcid_len; |
| |
| return 0; |
| } |
| |
| /* Try to allocate the <*ssl> SSL session object for <qc> QUIC connection |
| * with <ssl_ctx> as SSL context inherited settings. Also set the transport |
| * parameters of this session. |
| * This is the responsibility of the caller to check the validity of all the |
| * pointers passed as parameter to this function. |
| * Return 0 if succeeded, -1 if not. If failed, sets the ->err_code member of <qc->conn> to |
| * CO_ER_SSL_NO_MEM. |
| */ |
| static int qc_ssl_sess_init(struct quic_conn *qc, SSL_CTX *ssl_ctx, SSL **ssl, |
| unsigned char *params, size_t params_len) |
| { |
| int retry; |
| |
| retry = 1; |
| retry: |
| *ssl = SSL_new(ssl_ctx); |
| if (!*ssl) { |
| if (!retry--) |
| goto err; |
| |
| pool_gc(NULL); |
| goto retry; |
| } |
| |
| if (!SSL_set_quic_method(*ssl, &ha_quic_method) || |
| !SSL_set_ex_data(*ssl, ssl_qc_app_data_index, qc) || |
| !SSL_set_quic_transport_params(*ssl, qc->enc_params, qc->enc_params_len)) { |
| SSL_free(*ssl); |
| *ssl = NULL; |
| if (!retry--) |
| goto err; |
| |
| pool_gc(NULL); |
| goto retry; |
| } |
| |
| return 0; |
| |
| err: |
| qc->conn->err_code = CO_ER_SSL_NO_MEM; |
| return -1; |
| } |
| |
| /* Allocate the ssl_sock_ctx from connection <qc>. This creates the tasklet |
| * used to process <qc> received packets. The allocated context is stored in |
| * <qc.xprt_ctx>. |
| * |
| * Returns 0 on success else non-zero. |
| */ |
| int qc_conn_alloc_ssl_ctx(struct quic_conn *qc) |
| { |
| struct bind_conf *bc = qc->li->bind_conf; |
| struct ssl_sock_ctx *ctx = NULL; |
| |
| ctx = pool_zalloc(pool_head_quic_conn_ctx); |
| if (!ctx) |
| goto err; |
| |
| ctx->wait_event.tasklet = tasklet_new(); |
| if (!ctx->wait_event.tasklet) |
| goto err; |
| |
| ctx->wait_event.tasklet->process = quic_conn_io_cb; |
| ctx->wait_event.tasklet->context = ctx; |
| ctx->wait_event.events = 0; |
| ctx->subs = NULL; |
| ctx->xprt_ctx = NULL; |
| ctx->qc = qc; |
| |
| /* Set tasklet tid based on the SCID selected by us for this |
| * connection. The upper layer will also be binded on the same thread. |
| */ |
| qc->tid = ctx->wait_event.tasklet->tid = quic_get_cid_tid(qc->scid.data); |
| |
| if (qc_is_listener(qc)) { |
| if (qc_ssl_sess_init(qc, bc->initial_ctx, &ctx->ssl, |
| qc->enc_params, qc->enc_params_len) == -1) { |
| goto err; |
| } |
| |
| /* Enabling 0-RTT */ |
| if (bc->ssl_conf.early_data) |
| SSL_set_quic_early_data_enabled(ctx->ssl, 1); |
| |
| SSL_set_accept_state(ctx->ssl); |
| } |
| |
| ctx->xprt = xprt_get(XPRT_QUIC); |
| |
| /* Store the allocated context in <qc>. */ |
| qc->xprt_ctx = ctx; |
| |
| return 0; |
| |
| err: |
| if (ctx && ctx->wait_event.tasklet) |
| tasklet_free(ctx->wait_event.tasklet); |
| pool_free(pool_head_quic_conn_ctx, ctx); |
| |
| return 1; |
| } |
| |
| static ssize_t qc_lstnr_pkt_rcv(unsigned char *buf, const unsigned char *end, |
| struct quic_rx_packet *pkt, int first_pkt, |
| struct quic_dgram *dgram) |
| { |
| unsigned char *beg, *payload; |
| struct quic_conn *qc, *qc_to_purge = NULL; |
| struct listener *l; |
| struct ssl_sock_ctx *conn_ctx; |
| int long_header = 0, io_cb_wakeup = 0; |
| size_t b_cspace; |
| struct quic_enc_level *qel; |
| |
| beg = buf; |
| qc = NULL; |
| conn_ctx = NULL; |
| qel = NULL; |
| TRACE_ENTER(QUIC_EV_CONN_LPKT); |
| /* This ist only to please to traces and distinguish the |
| * packet with parsed packet number from others. |
| */ |
| pkt->pn_node.key = (uint64_t)-1; |
| if (end <= buf) |
| goto err; |
| |
| /* Fixed bit */ |
| if (!(*buf & QUIC_PACKET_FIXED_BIT)) { |
| /* XXX TO BE DISCARDED */ |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT); |
| goto err; |
| } |
| |
| l = dgram->owner; |
| /* Header form */ |
| qc_parse_hd_form(pkt, *buf++, &long_header); |
| if (long_header) { |
| uint64_t len; |
| |
| if (!quic_packet_read_long_header(&buf, end, pkt)) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT); |
| goto err; |
| } |
| |
| /* When multiple QUIC packets are coalesced on the same UDP datagram, |
| * they must have the same DCID. |
| */ |
| if (!first_pkt && |
| (pkt->dcid.len != dgram->dcid_len || |
| memcmp(dgram->dcid, pkt->dcid.data, pkt->dcid.len))) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc); |
| goto err; |
| } |
| |
| /* Retry of Version Negotiation packets are only sent by servers */ |
| if (pkt->type == QUIC_PACKET_TYPE_RETRY || !pkt->version) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT); |
| goto err; |
| } |
| |
| /* RFC9000 6. Version Negotiation */ |
| if (!qc_pkt_is_supported_version(pkt)) { |
| /* unsupported version, send Negotiation packet */ |
| if (send_version_negotiation(l->rx.fd, &dgram->saddr, pkt)) { |
| TRACE_PROTO("Error on Version Negotiation sending", QUIC_EV_CONN_LPKT); |
| goto err; |
| } |
| |
| TRACE_PROTO("Unsupported QUIC version, send Version Negotiation packet", QUIC_EV_CONN_LPKT); |
| goto err; |
| } |
| |
| /* For Initial packets, and for servers (QUIC clients connections), |
| * there is no Initial connection IDs storage. |
| */ |
| if (pkt->type == QUIC_PACKET_TYPE_INITIAL) { |
| uint64_t token_len; |
| |
| if (!quic_dec_int(&token_len, (const unsigned char **)&buf, end) || |
| end - buf < token_len) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT); |
| goto err; |
| } |
| |
| /* The token may be provided in a Retry packet or NEW_TOKEN frame |
| * only by the QUIC server. |
| */ |
| pkt->token_len = token_len; |
| |
| /* TODO Retry should be automatically activated if |
| * suspect network usage is detected. |
| */ |
| if (!token_len && l->bind_conf->quic_force_retry) { |
| TRACE_PROTO("Initial without token, sending retry", QUIC_EV_CONN_LPKT); |
| if (send_retry(l->rx.fd, &dgram->saddr, pkt)) { |
| TRACE_PROTO("Error during Retry generation", QUIC_EV_CONN_LPKT); |
| goto err; |
| } |
| |
| goto err; |
| } |
| else { |
| pkt->token = buf; |
| buf += pkt->token_len; |
| } |
| } |
| else if (pkt->type != QUIC_PACKET_TYPE_0RTT) { |
| if (pkt->dcid.len != QUIC_HAP_CID_LEN) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT); |
| goto err; |
| } |
| } |
| |
| if (!quic_dec_int(&len, (const unsigned char **)&buf, end) || |
| end - buf < len) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT); |
| goto err; |
| } |
| |
| payload = buf; |
| pkt->len = len + payload - beg; |
| |
| qc = retrieve_qc_conn_from_cid(pkt, l, &dgram->saddr); |
| if (!qc) { |
| int ipv4; |
| struct quic_cid *odcid; |
| struct ebmb_node *n = NULL; |
| const unsigned char *salt = initial_salt_v1; |
| size_t salt_len = sizeof initial_salt_v1; |
| |
| if (pkt->type != QUIC_PACKET_TYPE_INITIAL) { |
| TRACE_PROTO("Non Initial packet", QUIC_EV_CONN_LPKT); |
| goto err; |
| } |
| |
| if (pkt->dcid.len < QUIC_ODCID_MINLEN) { |
| TRACE_PROTO("dropped packet", QUIC_EV_CONN_LPKT); |
| goto err; |
| } |
| |
| pkt->saddr = dgram->saddr; |
| ipv4 = dgram->saddr.ss_family == AF_INET; |
| qc = qc_new_conn(pkt->version, ipv4, |
| pkt->dcid.data, pkt->dcid.len, pkt->dcid.addrlen, |
| pkt->scid.data, pkt->scid.len, 1, l); |
| if (qc == NULL) |
| goto err; |
| |
| memcpy(&qc->peer_addr, &pkt->saddr, sizeof(pkt->saddr)); |
| |
| odcid = &qc->rx.params.original_destination_connection_id; |
| /* Copy the transport parameters. */ |
| qc->rx.params = l->bind_conf->quic_params; |
| |
| /* Copy original_destination_connection_id transport parameter. */ |
| if (pkt->token_len) { |
| if (parse_retry_token(pkt->token, pkt->token_len, odcid)) { |
| TRACE_PROTO("Error during Initial token parsing", QUIC_EV_CONN_LPKT, qc); |
| goto err; |
| } |
| /* Copy retry_source_connection_id transport parameter. */ |
| quic_cid_cpy(&qc->rx.params.retry_source_connection_id, |
| &pkt->dcid); |
| } |
| else { |
| memcpy(odcid->data, &pkt->dcid.data, pkt->dcid.len); |
| odcid->len = pkt->dcid.len; |
| } |
| |
| /* Copy the initial source connection ID. */ |
| quic_cid_cpy(&qc->rx.params.initial_source_connection_id, &qc->scid); |
| qc->enc_params_len = |
| quic_transport_params_encode(qc->enc_params, |
| qc->enc_params + sizeof qc->enc_params, |
| &qc->rx.params, 1); |
| if (!qc->enc_params_len) |
| goto err; |
| |
| if (qc_conn_alloc_ssl_ctx(qc)) |
| goto err; |
| |
| if (!quic_conn_init_timer(qc)) |
| goto err; |
| |
| if (!quic_conn_init_idle_timer_task(qc)) |
| goto err; |
| |
| /* NOTE: the socket address has been concatenated to the destination ID |
| * chosen by the client for Initial packets. |
| */ |
| if (pkt->version == QUIC_PROTOCOL_VERSION_DRAFT_29) { |
| salt = initial_salt_draft_29; |
| salt_len = sizeof initial_salt_draft_29; |
| } |
| if (!qc_new_isecs(qc, salt, salt_len, |
| pkt->dcid.data, pkt->dcid.len, 1)) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc); |
| goto err; |
| } |
| |
| /* Insert the DCID the QUIC client has chosen (only for listeners) */ |
| n = ebmb_insert(&quic_dghdlrs[tid].odcids, &qc->odcid_node, |
| qc->odcid.len + qc->odcid.addrlen); |
| |
| /* If the insertion failed, it means that another |
| * thread has already allocated a QUIC connection for |
| * the same CID. Liberate our allocated connection. |
| */ |
| if (unlikely(n != &qc->odcid_node)) { |
| qc_to_purge = qc; |
| |
| qc = ebmb_entry(n, struct quic_conn, odcid_node); |
| pkt->qc = qc; |
| } |
| |
| if (likely(!qc_to_purge)) { |
| /* Enqueue this packet. */ |
| pkt->qc = qc; |
| } |
| else { |
| quic_conn_release(qc_to_purge); |
| } |
| } |
| else { |
| pkt->qc = qc; |
| } |
| } |
| else { |
| if (end - buf < QUIC_HAP_CID_LEN) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT); |
| goto err; |
| } |
| |
| memcpy(pkt->dcid.data, buf, QUIC_HAP_CID_LEN); |
| pkt->dcid.len = QUIC_HAP_CID_LEN; |
| |
| /* When multiple QUIC packets are coalesced on the same UDP datagram, |
| * they must have the same DCID. |
| */ |
| if (!first_pkt && |
| (pkt->dcid.len != dgram->dcid_len || |
| memcmp(dgram->dcid, pkt->dcid.data, pkt->dcid.len))) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc); |
| goto err; |
| } |
| |
| buf += QUIC_HAP_CID_LEN; |
| |
| /* A short packet is the last one of a UDP datagram. */ |
| payload = buf; |
| pkt->len = end - beg; |
| |
| qc = retrieve_qc_conn_from_cid(pkt, l, &dgram->saddr); |
| if (!qc) { |
| size_t pktlen = end - buf; |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, NULL, pkt, &pktlen); |
| goto err; |
| } |
| |
| pkt->qc = qc; |
| } |
| |
| if (qc->flags & QUIC_FL_CONN_CLOSING) { |
| if (++qc->nb_pkt_since_cc >= qc->nb_pkt_for_cc) { |
| qc->flags |= QUIC_FL_CONN_IMMEDIATE_CLOSE; |
| qc->nb_pkt_for_cc++; |
| qc->nb_pkt_since_cc = 0; |
| } |
| /* Skip the entire datagram */ |
| pkt->len = end - beg; |
| TRACE_PROTO("Closing state connection", QUIC_EV_CONN_LPKT, pkt->qc); |
| goto out; |
| } |
| |
| /* When multiple QUIC packets are coalesced on the same UDP datagram, |
| * they must have the same DCID. |
| * |
| * This check must be done after the final update to pkt.len to |
| * properly drop the packet on failure. |
| */ |
| if (first_pkt && !quic_peer_validated_addr(qc) && |
| qc->flags & QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED) { |
| TRACE_PROTO("PTO timer must be armed after anti-amplication was reached", |
| QUIC_EV_CONN_LPKT, qc); |
| /* Reset the anti-amplification bit. It will be set again |
| * when sending the next packet if reached again. |
| */ |
| qc->flags &= ~QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED; |
| qc->flags |= QUIC_FL_CONN_IO_CB_WAKEUP; |
| io_cb_wakeup = 1; |
| } |
| |
| dgram->qc = qc; |
| |
| if (qc->err_code) { |
| TRACE_PROTO("Connection error", QUIC_EV_CONN_LPKT, qc); |
| goto out; |
| } |
| |
| pkt->raw_len = pkt->len; |
| quic_rx_pkts_del(qc); |
| b_cspace = b_contig_space(&qc->rx.buf); |
| if (b_cspace < pkt->len) { |
| /* Let us consume the remaining contiguous space. */ |
| if (b_cspace) { |
| b_putchr(&qc->rx.buf, 0x00); |
| b_cspace--; |
| } |
| b_add(&qc->rx.buf, b_cspace); |
| if (b_contig_space(&qc->rx.buf) < pkt->len) { |
| TRACE_PROTO("Too big packet", QUIC_EV_CONN_LPKT, qc, pkt, &pkt->len); |
| qc_list_all_rx_pkts(qc); |
| goto err; |
| } |
| } |
| |
| if (!qc_try_rm_hp(qc, pkt, payload, beg, end, &qel)) { |
| TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc); |
| goto err; |
| } |
| |
| TRACE_PROTO("New packet", QUIC_EV_CONN_LPKT, qc, pkt); |
| if (pkt->aad_len) |
| qc_pkt_insert(pkt, qel); |
| out: |
| /* Wake up the connection packet handler task from here only if all |
| * the contexts have been initialized, especially the mux context |
| * conn_ctx->conn->ctx. Note that this is ->start xprt callback which |
| * will start it if these contexts for the connection are not already |
| * initialized. |
| */ |
| conn_ctx = qc->xprt_ctx; |
| if (conn_ctx) |
| tasklet_wakeup(conn_ctx->wait_event.tasklet); |
| |
| TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc ? qc : NULL, pkt); |
| |
| return pkt->len; |
| |
| err: |
| /* Wakeup the I/O handler callback if the PTO timer must be armed. |
| * This cannot be done by this thread. |
| */ |
| if (io_cb_wakeup) { |
| conn_ctx = qc->xprt_ctx; |
| if (conn_ctx && conn_ctx->wait_event.tasklet) |
| tasklet_wakeup(conn_ctx->wait_event.tasklet); |
| } |
| /* If length not found, consume the entire datagram */ |
| if (!pkt->len) |
| pkt->len = end - beg; |
| TRACE_DEVEL("Leaving in error", QUIC_EV_CONN_LPKT, |
| qc ? qc : NULL, pkt); |
| |
| return -1; |
| } |
| |
| /* This function builds into <buf> buffer a QUIC long packet header. |
| * Return 1 if enough room to build this header, 0 if not. |
| */ |
| static int quic_build_packet_long_header(unsigned char **buf, const unsigned char *end, |
| int type, size_t pn_len, struct quic_conn *conn) |
| { |
| if (end - *buf < sizeof conn->version + conn->dcid.len + conn->scid.len + 3) |
| return 0; |
| |
| /* #0 byte flags */ |
| *(*buf)++ = QUIC_PACKET_FIXED_BIT | QUIC_PACKET_LONG_HEADER_BIT | |
| (type << QUIC_PACKET_TYPE_SHIFT) | (pn_len - 1); |
| /* Version */ |
| quic_write_uint32(buf, end, conn->version); |
| *(*buf)++ = conn->dcid.len; |
| /* Destination connection ID */ |
| if (conn->dcid.len) { |
| memcpy(*buf, conn->dcid.data, conn->dcid.len); |
| *buf += conn->dcid.len; |
| } |
| /* Source connection ID */ |
| *(*buf)++ = conn->scid.len; |
| if (conn->scid.len) { |
| memcpy(*buf, conn->scid.data, conn->scid.len); |
| *buf += conn->scid.len; |
| } |
| |
| return 1; |
| } |
| |
| /* This function builds into <buf> buffer a QUIC short packet header. |
| * Return 1 if enough room to build this header, 0 if not. |
| */ |
| static int quic_build_packet_short_header(unsigned char **buf, const unsigned char *end, |
| size_t pn_len, struct quic_conn *conn, |
| unsigned char tls_flags) |
| { |
| if (end - *buf < 1 + conn->dcid.len) |
| return 0; |
| |
| /* #0 byte flags */ |
| *(*buf)++ = QUIC_PACKET_FIXED_BIT | |
| ((tls_flags & QUIC_FL_TLS_KP_BIT_SET) ? QUIC_PACKET_KEY_PHASE_BIT : 0) | (pn_len - 1); |
| /* Destination connection ID */ |
| if (conn->dcid.len) { |
| memcpy(*buf, conn->dcid.data, conn->dcid.len); |
| *buf += conn->dcid.len; |
| } |
| |
| return 1; |
| } |
| |
| /* Apply QUIC header protection to the packet with <buf> as first byte address, |
| * <pn> as address of the Packet number field, <pnlen> being this field length |
| * with <aead> as AEAD cipher and <key> as secret key. |
| * Returns 1 if succeeded or 0 if failed. |
| */ |
| static int quic_apply_header_protection(unsigned char *buf, unsigned char *pn, size_t pnlen, |
| const EVP_CIPHER *aead, const unsigned char *key) |
| { |
| int i, ret, outlen; |
| EVP_CIPHER_CTX *ctx; |
| /* We need an IV of at least 5 bytes: one byte for bytes #0 |
| * and at most 4 bytes for the packet number |
| */ |
| unsigned char mask[5] = {0}; |
| |
| ret = 0; |
| ctx = EVP_CIPHER_CTX_new(); |
| if (!ctx) |
| return 0; |
| |
| if (!EVP_EncryptInit_ex(ctx, aead, NULL, key, pn + QUIC_PACKET_PN_MAXLEN) || |
| !EVP_EncryptUpdate(ctx, mask, &outlen, mask, sizeof mask) || |
| !EVP_EncryptFinal_ex(ctx, mask, &outlen)) |
| goto out; |
| |
| *buf ^= mask[0] & (*buf & QUIC_PACKET_LONG_HEADER_BIT ? 0xf : 0x1f); |
| for (i = 0; i < pnlen; i++) |
| pn[i] ^= mask[i + 1]; |
| |
| ret = 1; |
| |
| out: |
| EVP_CIPHER_CTX_free(ctx); |
| |
| return ret; |
| } |
| |
| /* Reduce the encoded size of <ack_frm> ACK frame removing the last |
| * ACK ranges if needed to a value below <limit> in bytes. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static int quic_ack_frm_reduce_sz(struct quic_frame *ack_frm, size_t limit) |
| { |
| size_t room, ack_delay_sz; |
| |
| ack_delay_sz = quic_int_getsize(ack_frm->tx_ack.ack_delay); |
| /* A frame is made of 1 byte for the frame type. */ |
| room = limit - ack_delay_sz - 1; |
| if (!quic_rm_last_ack_ranges(ack_frm->tx_ack.arngs, room)) |
| return 0; |
| |
| return 1 + ack_delay_sz + ack_frm->tx_ack.arngs->enc_sz; |
| } |
| |
| /* Prepare into <outlist> as most as possible ack-eliciting frame from their |
| * <inlist> prebuilt frames for <qel> encryption level to be encoded in a buffer |
| * with <room> as available room, and <*len> the packet Length field initialized |
| * with the number of bytes already present in this buffer which must be taken |
| * into an account for the Length packet field value. <headlen> is the number of |
| * bytes already present in this packet before building frames. |
| * |
| * Update consequently <*len> to reflect the size of these frames built |
| * by this function. Also attach these frames to <l> frame list. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static inline int qc_build_frms(struct list *outlist, struct list *inlist, |
| size_t room, size_t *len, size_t headlen, |
| struct quic_enc_level *qel, |
| struct quic_conn *qc) |
| { |
| int ret; |
| struct quic_frame *cf, *cfbak; |
| |
| ret = 0; |
| if (*len > room) |
| return 0; |
| |
| /* If we are not probing we must take into an account the congestion |
| * control window. |
| */ |
| if (!qel->pktns->tx.pto_probe) { |
| size_t remain = quic_path_prep_data(qc->path); |
| |
| if (headlen > remain) |
| return 0; |
| |
| room = QUIC_MIN(room, remain - headlen); |
| } |
| |
| TRACE_PROTO("************** frames build (headlen)", |
| QUIC_EV_CONN_BCFRMS, qc, &headlen); |
| list_for_each_entry_safe(cf, cfbak, inlist, list) { |
| /* header length, data length, frame length. */ |
| size_t hlen, dlen, dlen_sz, avail_room, flen; |
| |
| if (!room) |
| break; |
| |
| switch (cf->type) { |
| case QUIC_FT_CRYPTO: |
| TRACE_PROTO(" New CRYPTO frame build (room, len)", |
| QUIC_EV_CONN_BCFRMS, qc, &room, len); |
| /* Compute the length of this CRYPTO frame header */ |
| hlen = 1 + quic_int_getsize(cf->crypto.offset); |
| /* Compute the data length of this CRyPTO frame. */ |
| dlen = max_stream_data_size(room, *len + hlen, cf->crypto.len); |
| TRACE_PROTO(" CRYPTO data length (hlen, crypto.len, dlen)", |
| QUIC_EV_CONN_BCFRMS, qc, &hlen, &cf->crypto.len, &dlen); |
| if (!dlen) |
| break; |
| |
| /* CRYPTO frame length. */ |
| flen = hlen + quic_int_getsize(dlen) + dlen; |
| TRACE_PROTO(" CRYPTO frame length (flen)", |
| QUIC_EV_CONN_BCFRMS, qc, &flen); |
| /* Add the CRYPTO data length and its encoded length to the packet |
| * length and the length of this length. |
| */ |
| *len += flen; |
| room -= flen; |
| if (dlen == cf->crypto.len) { |
| /* <cf> CRYPTO data have been consumed. */ |
| LIST_DELETE(&cf->list); |
| LIST_APPEND(outlist, &cf->list); |
| } |
| else { |
| struct quic_frame *new_cf; |
| |
| new_cf = pool_alloc(pool_head_quic_frame); |
| if (!new_cf) { |
| TRACE_PROTO("No memory for new crypto frame", QUIC_EV_CONN_BCFRMS, qc); |
| return 0; |
| } |
| |
| new_cf->type = QUIC_FT_CRYPTO; |
| new_cf->crypto.len = dlen; |
| new_cf->crypto.offset = cf->crypto.offset; |
| new_cf->crypto.qel = qel; |
| LIST_APPEND(outlist, &new_cf->list); |
| /* Consume <dlen> bytes of the current frame. */ |
| cf->crypto.len -= dlen; |
| cf->crypto.offset += dlen; |
| } |
| break; |
| |
| case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F: |
| /* Note that these frames are accepted in short packets only without |
| * "Length" packet field. Here, <*len> is used only to compute the |
| * sum of the lengths of the already built frames for this packet. |
| * |
| * Compute the length of this STREAM frame "header" made a all the field |
| * excepting the variable ones. Note that +1 is for the type of this frame. |
| */ |
| hlen = 1 + quic_int_getsize(cf->stream.id) + |
| ((cf->type & QUIC_STREAM_FRAME_TYPE_OFF_BIT) ? quic_int_getsize(cf->stream.offset.key) : 0); |
| /* Compute the data length of this STREAM frame. */ |
| avail_room = room - hlen - *len; |
| if ((ssize_t)avail_room <= 0) |
| break; |
| |
| TRACE_PROTO(" New STREAM frame build (room, len)", |
| QUIC_EV_CONN_BCFRMS, qc, &room, len); |
| if (cf->type & QUIC_STREAM_FRAME_TYPE_LEN_BIT) { |
| dlen = max_available_room(avail_room, &dlen_sz); |
| if (dlen > cf->stream.len) { |
| dlen = cf->stream.len; |
| } |
| dlen_sz = quic_int_getsize(dlen); |
| flen = hlen + dlen_sz + dlen; |
| } |
| else { |
| dlen = QUIC_MIN(avail_room, cf->stream.len); |
| flen = hlen + dlen; |
| } |
| TRACE_PROTO(" STREAM data length (hlen, stream.len, dlen)", |
| QUIC_EV_CONN_BCFRMS, qc, &hlen, &cf->stream.len, &dlen); |
| TRACE_PROTO(" STREAM frame length (flen)", |
| QUIC_EV_CONN_BCFRMS, qc, &flen); |
| /* Add the STREAM data length and its encoded length to the packet |
| * length and the length of this length. |
| */ |
| *len += flen; |
| room -= flen; |
| if (dlen == cf->stream.len) { |
| /* <cf> STREAM data have been consumed. */ |
| LIST_DELETE(&cf->list); |
| LIST_APPEND(outlist, &cf->list); |
| |
| /* The MUX stream might be released at this |
| * stage. This can most notably happen on |
| * retransmission. |
| */ |
| if (qc->mux_state == QC_MUX_READY && |
| !cf->stream.stream->release) { |
| qcc_streams_sent_done(cf->stream.stream->ctx, |
| cf->stream.len, |
| cf->stream.offset.key); |
| } |
| } |
| else { |
| struct quic_frame *new_cf; |
| struct buffer cf_buf; |
| |
| new_cf = pool_zalloc(pool_head_quic_frame); |
| if (!new_cf) { |
| TRACE_PROTO("No memory for new STREAM frame", QUIC_EV_CONN_BCFRMS, qc); |
| return 0; |
| } |
| |
| new_cf->type = cf->type; |
| new_cf->stream.stream = cf->stream.stream; |
| new_cf->stream.buf = cf->stream.buf; |
| new_cf->stream.id = cf->stream.id; |
| if (cf->type & QUIC_STREAM_FRAME_TYPE_OFF_BIT) |
| new_cf->stream.offset = cf->stream.offset; |
| new_cf->stream.len = dlen; |
| new_cf->type |= QUIC_STREAM_FRAME_TYPE_LEN_BIT; |
| /* FIN bit reset */ |
| new_cf->type &= ~QUIC_STREAM_FRAME_TYPE_FIN_BIT; |
| new_cf->stream.data = cf->stream.data; |
| LIST_APPEND(outlist, &new_cf->list); |
| cf->type |= QUIC_STREAM_FRAME_TYPE_OFF_BIT; |
| /* Consume <dlen> bytes of the current frame. */ |
| cf_buf = b_make(b_orig(cf->stream.buf), |
| b_size(cf->stream.buf), |
| (char *)cf->stream.data - b_orig(cf->stream.buf), 0); |
| cf->stream.len -= dlen; |
| cf->stream.offset.key += dlen; |
| cf->stream.data = (unsigned char *)b_peek(&cf_buf, dlen); |
| |
| /* The MUX stream might be released at this |
| * stage. This can most notably happen on |
| * retransmission. |
| */ |
| if (qc->mux_state == QC_MUX_READY && |
| !cf->stream.stream->release) { |
| qcc_streams_sent_done(new_cf->stream.stream->ctx, |
| new_cf->stream.len, |
| new_cf->stream.offset.key); |
| } |
| } |
| |
| /* TODO the MUX is notified about the frame sending via |
| * previous qcc_streams_sent_done call. However, the |
| * sending can fail later, for example if the sendto |
| * system call returns an error. As the MUX has been |
| * notified, the transport layer is responsible to |
| * bufferize and resent the announced data later. |
| */ |
| |
| break; |
| |
| default: |
| flen = qc_frm_len(cf); |
| BUG_ON(!flen); |
| if (flen > room) |
| continue; |
| |
| *len += flen; |
| room -= flen; |
| LIST_DELETE(&cf->list); |
| LIST_APPEND(outlist, &cf->list); |
| break; |
| } |
| ret = 1; |
| } |
| |
| return ret; |
| } |
| |
| /* This function builds a clear packet from <pkt> information (its type) |
| * into a buffer with <pos> as position pointer and <qel> as QUIC TLS encryption |
| * level for <conn> QUIC connection and <qel> as QUIC TLS encryption level, |
| * filling the buffer with as much frames as possible from <frms> list of |
| * prebuilt frames. |
| * The trailing QUIC_TLS_TAG_LEN bytes of this packet are not built. But they are |
| * reserved so that to ensure there is enough room to build this AEAD TAG after |
| * having returned from this function. |
| * This function also updates the value of <buf_pn> pointer to point to the packet |
| * number field in this packet. <pn_len> will also have the packet number |
| * length as value. |
| * |
| * Return 1 if succeeded (enough room to buile this packet), O if not. |
| */ |
| static int qc_do_build_pkt(unsigned char *pos, const unsigned char *end, |
| size_t dglen, struct quic_tx_packet *pkt, |
| int64_t pn, size_t *pn_len, unsigned char **buf_pn, |
| int padding, int cc, int probe, |
| struct quic_enc_level *qel, struct quic_conn *qc, |
| struct list *frms) |
| { |
| unsigned char *beg; |
| size_t len, len_sz, len_frms, padding_len; |
| struct quic_frame frm = { .type = QUIC_FT_CRYPTO, }; |
| struct quic_frame ack_frm = { .type = QUIC_FT_ACK, }; |
| struct quic_frame cc_frm = { . type = QUIC_FT_CONNECTION_CLOSE, }; |
| size_t ack_frm_len, head_len; |
| int64_t rx_largest_acked_pn; |
| int add_ping_frm; |
| struct list frm_list = LIST_HEAD_INIT(frm_list); |
| struct quic_frame *cf; |
| |
| /* Length field value with CRYPTO frames if present. */ |
| len_frms = 0; |
| beg = pos; |
| /* When not probing, and no immediate close is required, reduce the size of this |
| * buffer to respect the congestion controller window. |
| * This size will be limited if we have ack-eliciting frames to send from <frms>. |
| */ |
| if (!probe && !LIST_ISEMPTY(frms) && !cc) { |
| size_t path_room; |
| |
| path_room = quic_path_prep_data(qc->path); |
| if (end - beg > path_room) |
| end = beg + path_room; |
| } |
| |
| /* Ensure there is enough room for the TLS encryption tag and a zero token |
| * length field if any. |
| */ |
| if (end - pos < QUIC_TLS_TAG_LEN + |
| (pkt->type == QUIC_PACKET_TYPE_INITIAL ? 1 : 0)) |
| goto no_room; |
| |
| end -= QUIC_TLS_TAG_LEN; |
| rx_largest_acked_pn = qel->pktns->rx.largest_acked_pn; |
| /* packet number length */ |
| *pn_len = quic_packet_number_length(pn, rx_largest_acked_pn); |
| /* Build the header */ |
| if ((pkt->type == QUIC_PACKET_TYPE_SHORT && |
| !quic_build_packet_short_header(&pos, end, *pn_len, qc, qel->tls_ctx.flags)) || |
| (pkt->type != QUIC_PACKET_TYPE_SHORT && |
| !quic_build_packet_long_header(&pos, end, pkt->type, *pn_len, qc))) |
| goto no_room; |
| |
| /* XXX FIXME XXX Encode the token length (0) for an Initial packet. */ |
| if (pkt->type == QUIC_PACKET_TYPE_INITIAL) |
| *pos++ = 0; |
| head_len = pos - beg; |
| /* Build an ACK frame if required. */ |
| ack_frm_len = 0; |
| if ((qel->pktns->flags & QUIC_FL_PKTNS_ACK_REQUIRED)) { |
| BUG_ON(eb_is_empty(&qel->pktns->rx.arngs.root)); |
| ack_frm.tx_ack.ack_delay = 0; |
| ack_frm.tx_ack.arngs = &qel->pktns->rx.arngs; |
| /* XXX BE CAREFUL XXX : here we reserved at least one byte for the |
| * smallest frame (PING) and <*pn_len> more for the packet number. Note |
| * that from here, we do not know if we will have to send a PING frame. |
| * This will be decided after having computed the ack-eliciting frames |
| * to be added to this packet. |
| */ |
| ack_frm_len = quic_ack_frm_reduce_sz(&ack_frm, end - 1 - *pn_len - pos); |
| if (!ack_frm_len) |
| goto no_room; |
| } |
| |
| /* Length field value without the ack-eliciting frames. */ |
| len = ack_frm_len + *pn_len; |
| len_frms = 0; |
| if (!cc && !LIST_ISEMPTY(frms)) { |
| ssize_t room = end - pos; |
| |
| TRACE_PROTO("Avail. ack eliciting frames", QUIC_EV_CONN_FRMLIST, qc, frms); |
| /* Initialize the length of the frames built below to <len>. |
| * If any frame could be successfully built by qc_build_frms(), |
| * we will have len_frms > len. |
| */ |
| len_frms = len; |
| if (!qc_build_frms(&frm_list, frms, |
| end - pos, &len_frms, pos - beg, qel, qc)) { |
| TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT, |
| qc, NULL, NULL, &room); |
| } |
| } |
| |
| /* Length (of the remaining data). Must not fail because, the buffer size |
| * has been checked above. Note that we have reserved QUIC_TLS_TAG_LEN bytes |
| * for the encryption tag. It must be taken into an account for the length |
| * of this packet. |
| */ |
| if (len_frms) |
| len = len_frms + QUIC_TLS_TAG_LEN; |
| else |
| len += QUIC_TLS_TAG_LEN; |
| /* CONNECTION_CLOSE frame */ |
| if (cc) { |
| struct quic_connection_close *cc = &cc_frm.connection_close; |
| |
| cc->error_code = qc->err_code; |
| len += qc_frm_len(&cc_frm); |
| } |
| add_ping_frm = 0; |
| padding_len = 0; |
| len_sz = quic_int_getsize(len); |
| /* Add this packet size to <dglen> */ |
| dglen += head_len + len_sz + len; |
| if (padding && dglen < QUIC_INITIAL_PACKET_MINLEN) { |
| /* This is a maximum padding size */ |
| padding_len = QUIC_INITIAL_PACKET_MINLEN - dglen; |
| /* The length field value is of this packet is <len> + <padding_len> |
| * the size of which may be greater than the initial computed size |
| * <len_sz>. So, let's deduce the difference between these to packet |
| * sizes from <padding_len>. |
| */ |
| padding_len -= quic_int_getsize(len + padding_len) - len_sz; |
| len += padding_len; |
| } |
| else if (LIST_ISEMPTY(&frm_list) || len_frms == len) { |
| if (qel->pktns->tx.pto_probe) { |
| /* If we cannot send a frame, we send a PING frame. */ |
| add_ping_frm = 1; |
| len += 1; |
| } |
| /* If there is no frame at all to follow, add at least a PADDING frame. */ |
| if (!ack_frm_len && !cc) |
| len += padding_len = QUIC_PACKET_PN_MAXLEN - *pn_len; |
| } |
| |
| if (pkt->type != QUIC_PACKET_TYPE_SHORT && !quic_enc_int(&pos, end, len)) |
| goto no_room; |
| |
| /* Packet number field address. */ |
| *buf_pn = pos; |
| |
| /* Packet number encoding. */ |
| if (!quic_packet_number_encode(&pos, end, pn, *pn_len)) |
| goto no_room; |
| |
| if (ack_frm_len) { |
| if (!qc_build_frm(&pos, end, &ack_frm, pkt, qc)) |
| goto no_room; |
| |
| pkt->largest_acked_pn = quic_pktns_get_largest_acked_pn(qel->pktns); |
| pkt->flags |= QUIC_FL_TX_PACKET_ACK; |
| } |
| |
| /* Ack-eliciting frames */ |
| if (!LIST_ISEMPTY(&frm_list)) { |
| list_for_each_entry(cf, &frm_list, list) { |
| unsigned char *spos = pos; |
| |
| if (!qc_build_frm(&spos, end, cf, pkt, qc)) { |
| ssize_t room = end - pos; |
| TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT, |
| qc, NULL, NULL, &room); |
| /* TODO: this should not have happened if qc_build_frms() |
| * had correctly computed and sized the frames to be |
| * added to this packet. Note that <cf> was added |
| * from <frm_list> to <frms> list by qc_build_frms(). |
| */ |
| LIST_DELETE(&cf->list); |
| LIST_INSERT(frms, &cf->list); |
| break; |
| } |
| |
| pos = spos; |
| quic_tx_packet_refinc(pkt); |
| cf->pkt = pkt; |
| } |
| } |
| |
| /* Build a PING frame if needed. */ |
| if (add_ping_frm) { |
| frm.type = QUIC_FT_PING; |
| if (!qc_build_frm(&pos, end, &frm, pkt, qc)) |
| goto no_room; |
| } |
| |
| /* Build a CONNECTION_CLOSE frame if needed. */ |
| if (cc) { |
| if (!qc_build_frm(&pos, end, &cc_frm, pkt, qc)) |
| goto no_room; |
| |
| pkt->flags |= QUIC_FL_TX_PACKET_CC; |
| } |
| |
| /* Build a PADDING frame if needed. */ |
| if (padding_len) { |
| frm.type = QUIC_FT_PADDING; |
| frm.padding.len = padding_len; |
| if (!qc_build_frm(&pos, end, &frm, pkt, qc)) |
| goto no_room; |
| } |
| |
| /* If this packet is ack-eliciting and we are probing let's |
| * decrement the PTO probe counter. |
| */ |
| if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING && |
| qel->pktns->tx.pto_probe) |
| qel->pktns->tx.pto_probe--; |
| |
| pkt->len = pos - beg; |
| LIST_SPLICE(&pkt->frms, &frm_list); |
| TRACE_PROTO("Packet ack-eliciting frames", QUIC_EV_CONN_HPKT, qc, pkt); |
| |
| return 1; |
| |
| no_room: |
| /* Replace the pre-built frames which could not be add to this packet */ |
| LIST_SPLICE(frms, &frm_list); |
| TRACE_PROTO("Remaining ack-eliciting frames", QUIC_EV_CONN_HPKT, qc, pkt); |
| |
| return 0; |
| } |
| |
| static inline void quic_tx_packet_init(struct quic_tx_packet *pkt, int type) |
| { |
| pkt->type = type; |
| pkt->len = 0; |
| pkt->in_flight_len = 0; |
| pkt->pn_node.key = (uint64_t)-1; |
| LIST_INIT(&pkt->frms); |
| pkt->time_sent = TICK_ETERNITY; |
| pkt->next = NULL; |
| pkt->largest_acked_pn = -1; |
| pkt->flags = 0; |
| pkt->refcnt = 0; |
| } |
| |
| /* Build a packet into <buf> packet buffer with <pkt_type> as packet |
| * type for <qc> QUIC connection from <qel> encryption level from <frms> list |
| * of prebuilt frames. |
| * |
| * Return -2 if the packet could not be allocated or encrypted for any reason, |
| * -1 if there was not enough room to build a packet. |
| * XXX NOTE XXX |
| * If you provide provide qc_build_pkt() with a big enough buffer to build a packet as big as |
| * possible (to fill an MTU), the unique reason why this function may fail is the congestion |
| * control window limitation. |
| */ |
| static struct quic_tx_packet *qc_build_pkt(unsigned char **pos, |
| const unsigned char *buf_end, |
| struct quic_enc_level *qel, struct list *frms, |
| struct quic_conn *qc, size_t dglen, int padding, |
| int pkt_type, int probe, int cc, int *err) |
| { |
| /* The pointer to the packet number field. */ |
| unsigned char *buf_pn; |
| unsigned char *beg, *end, *payload; |
| int64_t pn; |
| size_t pn_len, payload_len, aad_len; |
| struct quic_tls_ctx *tls_ctx; |
| struct quic_tx_packet *pkt; |
| |
| TRACE_ENTER(QUIC_EV_CONN_HPKT, qc, NULL, qel); |
| *err = 0; |
| pkt = pool_alloc(pool_head_quic_tx_packet); |
| if (!pkt) { |
| TRACE_DEVEL("Not enough memory for a new packet", QUIC_EV_CONN_HPKT, qc); |
| *err = -2; |
| goto err; |
| } |
| |
| quic_tx_packet_init(pkt, pkt_type); |
| beg = *pos; |
| pn_len = 0; |
| buf_pn = NULL; |
| |
| pn = qel->pktns->tx.next_pn + 1; |
| if (!qc_do_build_pkt(*pos, buf_end, dglen, pkt, pn, &pn_len, &buf_pn, |
| padding, cc, probe, qel, qc, frms)) { |
| *err = -1; |
| goto err; |
| } |
| |
| end = beg + pkt->len; |
| payload = buf_pn + pn_len; |
| payload_len = end - payload; |
| aad_len = payload - beg; |
| |
| tls_ctx = &qel->tls_ctx; |
| if (!quic_packet_encrypt(payload, payload_len, beg, aad_len, pn, tls_ctx, qc)) { |
| *err = -2; |
| goto err; |
| } |
| |
| end += QUIC_TLS_TAG_LEN; |
| pkt->len += QUIC_TLS_TAG_LEN; |
| if (!quic_apply_header_protection(beg, buf_pn, pn_len, |
| tls_ctx->tx.hp, tls_ctx->tx.hp_key)) { |
| TRACE_DEVEL("Could not apply the header protection", QUIC_EV_CONN_HPKT, qc); |
| *err = -2; |
| goto err; |
| } |
| |
| /* Consume a packet number */ |
| qel->pktns->tx.next_pn++; |
| qc->tx.prep_bytes += pkt->len; |
| if (qc->tx.prep_bytes >= 3 * qc->rx.bytes && !quic_peer_validated_addr(qc)) |
| qc->flags |= QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED; |
| /* Now that a correct packet is built, let us consume <*pos> buffer. */ |
| *pos = end; |
| /* Attach the built packet to its tree. */ |
| pkt->pn_node.key = pn; |
| /* Set the packet in fligth length for in flight packet only. */ |
| if (pkt->flags & QUIC_FL_TX_PACKET_IN_FLIGHT) { |
| pkt->in_flight_len = pkt->len; |
| qc->path->prep_in_flight += pkt->len; |
| } |
| /* Always reset this flags */ |
| qc->flags &= ~QUIC_FL_CONN_IMMEDIATE_CLOSE; |
| if (pkt->flags & QUIC_FL_TX_PACKET_ACK) { |
| qel->pktns->flags &= ~QUIC_FL_PKTNS_ACK_REQUIRED; |
| qel->pktns->rx.nb_aepkts_since_last_ack = 0; |
| } |
| |
| pkt->pktns = qel->pktns; |
| TRACE_LEAVE(QUIC_EV_CONN_HPKT, qc, pkt); |
| |
| return pkt; |
| |
| err: |
| /* TODO: what about the frames which have been built |
| * for this packet. |
| */ |
| free_quic_tx_packet(pkt); |
| TRACE_DEVEL("leaving in error", QUIC_EV_CONN_HPKT, qc); |
| return NULL; |
| } |
| |
| |
| /* Called from the upper layer, to subscribe <es> to events <event_type>. The |
| * event subscriber <es> is not allowed to change from a previous call as long |
| * as at least one event is still subscribed. The <event_type> must only be a |
| * combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0. |
| */ |
| static int quic_conn_subscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es) |
| { |
| struct qcc *qcc = conn->handle.qc->qcc; |
| |
| BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV)); |
| BUG_ON(qcc->subs && qcc->subs != es); |
| |
| es->events |= event_type; |
| qcc->subs = es; |
| |
| if (event_type & SUB_RETRY_RECV) |
| TRACE_DEVEL("subscribe(recv)", QUIC_EV_CONN_XPRTRECV, conn->handle.qc, qcc); |
| |
| if (event_type & SUB_RETRY_SEND) |
| TRACE_DEVEL("subscribe(send)", QUIC_EV_CONN_XPRTSEND, conn->handle.qc, qcc); |
| |
| return 0; |
| } |
| |
| /* Called from the upper layer, to unsubscribe <es> from events <event_type>. |
| * The <es> pointer is not allowed to differ from the one passed to the |
| * subscribe() call. It always returns zero. |
| */ |
| static int quic_conn_unsubscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es) |
| { |
| return conn_unsubscribe(conn, xprt_ctx, event_type, es); |
| } |
| |
| /* Store in <xprt_ctx> the context attached to <conn>. |
| * Returns always 0. |
| */ |
| static int qc_conn_init(struct connection *conn, void **xprt_ctx) |
| { |
| struct quic_conn *qc = NULL; |
| |
| TRACE_ENTER(QUIC_EV_CONN_NEW, conn); |
| |
| /* do not store the context if already set */ |
| if (*xprt_ctx) |
| goto out; |
| |
| *xprt_ctx = conn->handle.qc->xprt_ctx; |
| |
| out: |
| TRACE_LEAVE(QUIC_EV_CONN_NEW, qc); |
| |
| return 0; |
| } |
| |
| /* Start the QUIC transport layer */ |
| static int qc_xprt_start(struct connection *conn, void *ctx) |
| { |
| struct quic_conn *qc; |
| struct ssl_sock_ctx *qctx = ctx; |
| |
| qc = conn->handle.qc; |
| if (qcc_install_app_ops(qc->qcc, qc->app_ops)) { |
| TRACE_PROTO("Cannot install app layer", QUIC_EV_CONN_LPKT, qc); |
| return 0; |
| } |
| |
| /* mux-quic can now be considered ready. */ |
| qc->mux_state = QC_MUX_READY; |
| |
| tasklet_wakeup(qctx->wait_event.tasklet); |
| return 1; |
| } |
| |
| static struct ssl_sock_ctx *qc_get_ssl_sock_ctx(struct connection *conn) |
| { |
| if (!conn || conn->xprt != xprt_get(XPRT_QUIC) || !conn->handle.qc || !conn->xprt_ctx) |
| return NULL; |
| |
| return conn->handle.qc->xprt_ctx; |
| } |
| |
| /* transport-layer operations for QUIC connections. */ |
| static struct xprt_ops ssl_quic = { |
| .close = quic_close, |
| .subscribe = quic_conn_subscribe, |
| .unsubscribe = quic_conn_unsubscribe, |
| .init = qc_conn_init, |
| .start = qc_xprt_start, |
| .prepare_bind_conf = ssl_sock_prepare_bind_conf, |
| .destroy_bind_conf = ssl_sock_destroy_bind_conf, |
| .get_alpn = ssl_sock_get_alpn, |
| .get_ssl_sock_ctx = qc_get_ssl_sock_ctx, |
| .name = "QUIC", |
| }; |
| |
| __attribute__((constructor)) |
| static void __quic_conn_init(void) |
| { |
| ha_quic_meth = BIO_meth_new(0x666, "ha QUIC methods"); |
| xprt_register(XPRT_QUIC, &ssl_quic); |
| } |
| |
| __attribute__((destructor)) |
| static void __quic_conn_deinit(void) |
| { |
| BIO_meth_free(ha_quic_meth); |
| } |
| |
| /* Read all the QUIC packets found in <buf> from QUIC connection with <owner> |
| * as owner calling <func> function. |
| * Return the number of bytes read if succeeded, -1 if not. |
| */ |
| struct task *quic_lstnr_dghdlr(struct task *t, void *ctx, unsigned int state) |
| { |
| unsigned char *pos; |
| const unsigned char *end; |
| struct quic_dghdlr *dghdlr = ctx; |
| struct quic_dgram *dgram; |
| int first_pkt = 1; |
| |
| while ((dgram = MT_LIST_POP(&dghdlr->dgrams, typeof(dgram), mt_list))) { |
| pos = dgram->buf; |
| end = pos + dgram->len; |
| do { |
| int ret; |
| struct quic_rx_packet *pkt; |
| |
| pkt = pool_zalloc(pool_head_quic_rx_packet); |
| if (!pkt) |
| goto err; |
| |
| quic_rx_packet_refinc(pkt); |
| ret = qc_lstnr_pkt_rcv(pos, end, pkt, first_pkt, dgram); |
| first_pkt = 0; |
| pos += pkt->len; |
| quic_rx_packet_refdec(pkt); |
| if (ret == -1) |
| /* If the packet length could not be found, we cannot continue. */ |
| break; |
| } while (pos < end); |
| |
| /* Increasing the received bytes counter by the UDP datagram length |
| * if this datagram could be associated to a connection. |
| */ |
| if (dgram->qc) |
| dgram->qc->rx.bytes += dgram->len; |
| |
| /* Mark this datagram as consumed */ |
| HA_ATOMIC_STORE(&dgram->buf, NULL); |
| } |
| |
| return t; |
| |
| err: |
| return t; |
| } |
| |
| /* Retreive the DCID from a QUIC datagram or packet with <buf> as first octet. |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| static int quic_get_dgram_dcid(unsigned char *buf, const unsigned char *end, |
| unsigned char **dcid, size_t *dcid_len) |
| { |
| int long_header; |
| size_t minlen, skip; |
| |
| if (!(*buf & QUIC_PACKET_FIXED_BIT)) |
| goto err; |
| |
| long_header = *buf & QUIC_PACKET_LONG_HEADER_BIT; |
| minlen = long_header ? |
| QUIC_LONG_PACKET_MINLEN : QUIC_SHORT_PACKET_MINLEN + QUIC_HAP_CID_LEN; |
| skip = long_header ? QUIC_LONG_PACKET_DCID_OFF : QUIC_SHORT_PACKET_DCID_OFF; |
| if (end - buf <= minlen) |
| goto err; |
| |
| buf += skip; |
| *dcid_len = long_header ? *buf++ : QUIC_HAP_CID_LEN; |
| if (*dcid_len > QUIC_CID_MAXLEN || end - buf <= *dcid_len) |
| goto err; |
| |
| *dcid = buf; |
| |
| return 1; |
| |
| err: |
| TRACE_PROTO("wrong datagram", QUIC_EV_CONN_LPKT); |
| return 0; |
| } |
| |
| /* Retrieve the DCID from the datagram found in <buf> and deliver it to the |
| * correct datagram handler. |
| * Return 1 if a correct datagram could be found, 0 if not. |
| */ |
| int quic_lstnr_dgram_dispatch(unsigned char *buf, size_t len, void *owner, |
| struct sockaddr_storage *saddr, |
| struct quic_dgram *new_dgram, struct list *dgrams) |
| { |
| struct quic_dgram *dgram; |
| unsigned char *dcid; |
| size_t dcid_len; |
| int cid_tid; |
| |
| if (!len || !quic_get_dgram_dcid(buf, buf + len, &dcid, &dcid_len)) |
| goto err; |
| |
| dgram = new_dgram ? new_dgram : pool_alloc(pool_head_quic_dgram); |
| if (!dgram) |
| goto err; |
| |
| cid_tid = quic_get_cid_tid(dcid); |
| |
| /* All the members must be initialized! */ |
| dgram->owner = owner; |
| dgram->buf = buf; |
| dgram->len = len; |
| dgram->dcid = dcid; |
| dgram->dcid_len = dcid_len; |
| dgram->saddr = *saddr; |
| dgram->qc = NULL; |
| LIST_APPEND(dgrams, &dgram->list); |
| MT_LIST_APPEND(&quic_dghdlrs[cid_tid].dgrams, &dgram->mt_list); |
| |
| tasklet_wakeup(quic_dghdlrs[cid_tid].task); |
| |
| return 1; |
| |
| err: |
| return 0; |
| } |
| |
| /* Allocate a new stream descriptor with id <id>. The caller is responsible to |
| * store the stream in the appropriate tree. |
| * |
| * Returns the newly allocated instance on success or else NULL. |
| */ |
| struct qc_stream_desc *qc_stream_desc_new(uint64_t id, void *ctx) |
| { |
| struct qc_stream_desc *stream; |
| |
| stream = pool_alloc(pool_head_quic_conn_stream); |
| if (!stream) |
| return NULL; |
| |
| stream->by_id.key = id; |
| stream->by_id.node.leaf_p = NULL; |
| |
| stream->buf = BUF_NULL; |
| stream->acked_frms = EB_ROOT; |
| stream->ack_offset = 0; |
| stream->release = 0; |
| stream->ctx = ctx; |
| |
| return stream; |
| } |
| |
| /* Mark the stream descriptor <stream> as released by the upper layer. It will |
| * be freed as soon as all its buffered data are acknowledged. In the meantime, |
| * the stream is stored in the <qc> tree : thus it must have been removed from |
| * any other tree before calling this function. |
| */ |
| void qc_stream_desc_release(struct qc_stream_desc *stream, |
| struct quic_conn *qc) |
| { |
| BUG_ON(stream->by_id.node.leaf_p); |
| |
| stream->release = 1; |
| stream->ctx = NULL; |
| |
| if (!b_data(&stream->buf)) |
| qc_stream_desc_free(stream); |
| else |
| eb64_insert(&qc->streams_by_id, &stream->by_id); |
| } |
| |
| /* Notify the MUX layer if alive about an imminent close of <qc>. */ |
| void qc_notify_close(struct quic_conn *qc) |
| { |
| if (qc->flags & QUIC_FL_CONN_NOTIFY_CLOSE) |
| return; |
| |
| qc->flags |= QUIC_FL_CONN_NOTIFY_CLOSE; |
| |
| /* wake up the MUX */ |
| if (qc->mux_state == QC_MUX_READY && qc->conn->mux->wake) |
| qc->conn->mux->wake(qc->conn); |
| } |
| |
| /* Function to automatically activate QUIC traces on stdout. |
| * Activated via the compilation flag -DENABLE_QUIC_STDOUT_TRACES. |
| * Main use for now is in the docker image for QUIC interop testing. |
| */ |
| static void quic_init_stdout_traces(void) |
| { |
| #ifdef ENABLE_QUIC_STDOUT_TRACES |
| trace_quic.sink = sink_find("stdout"); |
| trace_quic.level = TRACE_LEVEL_DEVELOPER; |
| trace_quic.state = TRACE_STATE_RUNNING; |
| #endif |
| } |
| INITCALL0(STG_INIT, quic_init_stdout_traces); |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |