blob: ab9f84b567dfba290f0fdb4da7030108499e6ecf [file] [log] [blame]
/*
* Listener management functions.
*
* Copyright 2000-2013 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#define _GNU_SOURCE
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <haproxy/api.h>
#include <common/cfgparse.h>
#include <common/errors.h>
#include <common/mini-clist.h>
#include <common/standard.h>
#include <common/time.h>
#include <types/global.h>
#include <types/protocol.h>
#include <proto/acl.h>
#include <proto/connection.h>
#include <proto/fd.h>
#include <proto/freq_ctr.h>
#include <proto/log.h>
#include <proto/listener.h>
#include <proto/protocol.h>
#include <proto/proto_sockpair.h>
#include <proto/sample.h>
#include <proto/stream.h>
#include <proto/task.h>
/* List head of all known bind keywords */
static struct bind_kw_list bind_keywords = {
.list = LIST_HEAD_INIT(bind_keywords.list)
};
struct xfer_sock_list *xfer_sock_list = NULL;
/* there is one listener queue per thread so that a thread unblocking the
* global queue can wake up listeners bound only to foreign threads by
* moving them to the remote queues and waking up the associated tasklet.
*/
static struct work_list *local_listener_queue;
/* list of the temporarily limited listeners because of lack of resource */
static struct mt_list global_listener_queue = MT_LIST_HEAD_INIT(global_listener_queue);
static struct task *global_listener_queue_task;
static struct task *manage_global_listener_queue(struct task *t, void *context, unsigned short state);
#if defined(USE_THREAD)
struct accept_queue_ring accept_queue_rings[MAX_THREADS] __attribute__((aligned(64))) = { };
/* dequeue and process a pending connection from the local accept queue (single
* consumer). Returns the accepted fd or -1 if none was found. The listener is
* placed into *li. The address is copied into *addr for no more than *addr_len
* bytes, and the address length is returned into *addr_len.
*/
int accept_queue_pop_sc(struct accept_queue_ring *ring, struct listener **li, void *addr, int *addr_len)
{
struct accept_queue_entry *e;
unsigned int pos, next;
struct listener *ptr;
int len;
int fd;
pos = ring->head;
if (pos == ring->tail)
return -1;
next = pos + 1;
if (next >= ACCEPT_QUEUE_SIZE)
next = 0;
e = &ring->entry[pos];
/* wait for the producer to update the listener's pointer */
while (1) {
ptr = e->listener;
__ha_barrier_load();
if (ptr)
break;
pl_cpu_relax();
}
fd = e->fd;
len = e->addr_len;
if (len > *addr_len)
len = *addr_len;
if (likely(len > 0))
memcpy(addr, &e->addr, len);
/* release the entry */
e->listener = NULL;
__ha_barrier_store();
ring->head = next;
*addr_len = len;
*li = ptr;
return fd;
}
/* tries to push a new accepted connection <fd> into ring <ring> for listener
* <li>, from address <addr> whose length is <addr_len>. Returns non-zero if it
* succeeds, or zero if the ring is full. Supports multiple producers.
*/
int accept_queue_push_mp(struct accept_queue_ring *ring, int fd,
struct listener *li, const void *addr, int addr_len)
{
struct accept_queue_entry *e;
unsigned int pos, next;
pos = ring->tail;
do {
next = pos + 1;
if (next >= ACCEPT_QUEUE_SIZE)
next = 0;
if (next == ring->head)
return 0; // ring full
} while (unlikely(!_HA_ATOMIC_CAS(&ring->tail, &pos, next)));
e = &ring->entry[pos];
if (addr_len > sizeof(e->addr))
addr_len = sizeof(e->addr);
if (addr_len)
memcpy(&e->addr, addr, addr_len);
e->addr_len = addr_len;
e->fd = fd;
__ha_barrier_store();
/* now commit the change */
e->listener = li;
return 1;
}
/* proceed with accepting new connections */
static struct task *accept_queue_process(struct task *t, void *context, unsigned short state)
{
struct accept_queue_ring *ring = context;
struct listener *li;
struct sockaddr_storage addr;
unsigned int max_accept;
int addr_len;
int ret;
int fd;
/* if global.tune.maxaccept is -1, then max_accept is UINT_MAX. It
* is not really illimited, but it is probably enough.
*/
max_accept = global.tune.maxaccept ? global.tune.maxaccept : 64;
for (; max_accept; max_accept--) {
addr_len = sizeof(addr);
fd = accept_queue_pop_sc(ring, &li, &addr, &addr_len);
if (fd < 0)
break;
_HA_ATOMIC_ADD(&li->thr_conn[tid], 1);
ret = li->accept(li, fd, &addr);
if (ret <= 0) {
/* connection was terminated by the application */
continue;
}
/* increase the per-process number of cumulated sessions, this
* may only be done once l->accept() has accepted the connection.
*/
if (!(li->options & LI_O_UNLIMITED)) {
HA_ATOMIC_UPDATE_MAX(&global.sps_max,
update_freq_ctr(&global.sess_per_sec, 1));
if (li->bind_conf && li->bind_conf->is_ssl) {
HA_ATOMIC_UPDATE_MAX(&global.ssl_max,
update_freq_ctr(&global.ssl_per_sec, 1));
}
}
}
/* ran out of budget ? Let's come here ASAP */
if (!max_accept)
tasklet_wakeup(ring->tasklet);
return NULL;
}
/* Initializes the accept-queues. Returns 0 on success, otherwise ERR_* flags */
static int accept_queue_init()
{
struct tasklet *t;
int i;
for (i = 0; i < global.nbthread; i++) {
t = tasklet_new();
if (!t) {
ha_alert("Out of memory while initializing accept queue for thread %d\n", i);
return ERR_FATAL|ERR_ABORT;
}
t->tid = i;
t->process = accept_queue_process;
t->context = &accept_queue_rings[i];
accept_queue_rings[i].tasklet = t;
}
return 0;
}
REGISTER_CONFIG_POSTPARSER("multi-threaded accept queue", accept_queue_init);
#endif // USE_THREAD
/* This function adds the specified listener's file descriptor to the polling
* lists if it is in the LI_LISTEN state. The listener enters LI_READY or
* LI_FULL state depending on its number of connections. In daemon mode, we
* also support binding only the relevant processes to their respective
* listeners. We don't do that in debug mode however.
*/
static void enable_listener(struct listener *listener)
{
HA_SPIN_LOCK(LISTENER_LOCK, &listener->lock);
if (listener->state == LI_LISTEN) {
if ((global.mode & (MODE_DAEMON | MODE_MWORKER)) &&
!(proc_mask(listener->bind_conf->bind_proc) & pid_bit)) {
/* we don't want to enable this listener and don't
* want any fd event to reach it.
*/
if (!(global.tune.options & GTUNE_SOCKET_TRANSFER))
do_unbind_listener(listener, 1);
else {
do_unbind_listener(listener, 0);
listener->state = LI_LISTEN;
}
}
else if (!listener->maxconn || listener->nbconn < listener->maxconn) {
fd_want_recv(listener->fd);
listener->state = LI_READY;
}
else {
listener->state = LI_FULL;
}
}
/* if this listener is supposed to be only in the master, close it in the workers */
if ((global.mode & MODE_MWORKER) &&
(listener->options & LI_O_MWORKER) &&
master == 0) {
do_unbind_listener(listener, 1);
}
HA_SPIN_UNLOCK(LISTENER_LOCK, &listener->lock);
}
/* This function removes the specified listener's file descriptor from the
* polling lists if it is in the LI_READY or in the LI_FULL state. The listener
* enters LI_LISTEN.
*/
static void disable_listener(struct listener *listener)
{
HA_SPIN_LOCK(LISTENER_LOCK, &listener->lock);
if (listener->state < LI_READY)
goto end;
if (listener->state == LI_READY)
fd_stop_recv(listener->fd);
MT_LIST_DEL(&listener->wait_queue);
listener->state = LI_LISTEN;
end:
HA_SPIN_UNLOCK(LISTENER_LOCK, &listener->lock);
}
/* This function tries to temporarily disable a listener, depending on the OS
* capabilities. Linux unbinds the listen socket after a SHUT_RD, and ignores
* SHUT_WR. Solaris refuses either shutdown(). OpenBSD ignores SHUT_RD but
* closes upon SHUT_WR and refuses to rebind. So a common validation path
* involves SHUT_WR && listen && SHUT_RD. In case of success, the FD's polling
* is disabled. It normally returns non-zero, unless an error is reported.
*/
int pause_listener(struct listener *l)
{
int ret = 1;
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
if (l->state <= LI_ZOMBIE)
goto end;
if (l->proto->pause) {
/* Returns < 0 in case of failure, 0 if the listener
* was totally stopped, or > 0 if correctly paused.
*/
int ret = l->proto->pause(l);
if (ret < 0) {
ret = 0;
goto end;
}
else if (ret == 0)
goto end;
}
MT_LIST_DEL(&l->wait_queue);
fd_stop_recv(l->fd);
l->state = LI_PAUSED;
end:
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
return ret;
}
/* This function tries to resume a temporarily disabled listener. Paused, full,
* limited and disabled listeners are handled, which means that this function
* may replace enable_listener(). The resulting state will either be LI_READY
* or LI_FULL. 0 is returned in case of failure to resume (eg: dead socket).
* Listeners bound to a different process are not woken up unless we're in
* foreground mode, and are ignored. If the listener was only in the assigned
* state, it's totally rebound. This can happen if a pause() has completely
* stopped it. If the resume fails, 0 is returned and an error might be
* displayed.
*/
int resume_listener(struct listener *l)
{
int ret = 1;
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
/* check that another thread didn't to the job in parallel (e.g. at the
* end of listen_accept() while we'd come from dequeue_all_listeners().
*/
if (MT_LIST_ADDED(&l->wait_queue))
goto end;
if ((global.mode & (MODE_DAEMON | MODE_MWORKER)) &&
!(proc_mask(l->bind_conf->bind_proc) & pid_bit))
goto end;
if (l->state == LI_ASSIGNED) {
char msg[100];
int err;
err = l->proto->bind(l, msg, sizeof(msg));
if (err & ERR_ALERT)
ha_alert("Resuming listener: %s\n", msg);
else if (err & ERR_WARN)
ha_warning("Resuming listener: %s\n", msg);
if (err & (ERR_FATAL | ERR_ABORT)) {
ret = 0;
goto end;
}
}
if (l->state < LI_PAUSED || l->state == LI_ZOMBIE) {
ret = 0;
goto end;
}
if (l->proto->sock_prot == IPPROTO_TCP &&
l->state == LI_PAUSED &&
listen(l->fd, listener_backlog(l)) != 0) {
ret = 0;
goto end;
}
if (l->state == LI_READY)
goto end;
MT_LIST_DEL(&l->wait_queue);
if (l->maxconn && l->nbconn >= l->maxconn) {
l->state = LI_FULL;
goto end;
}
if (!(thread_mask(l->bind_conf->bind_thread) & tid_bit)) {
/* we're not allowed to touch this listener's FD, let's requeue
* the listener into one of its owning thread's queue instead.
*/
int first_thread = my_flsl(thread_mask(l->bind_conf->bind_thread) & all_threads_mask) - 1;
work_list_add(&local_listener_queue[first_thread], &l->wait_queue);
goto end;
}
fd_want_recv(l->fd);
l->state = LI_READY;
end:
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
return ret;
}
/* Marks a ready listener as full so that the stream code tries to re-enable
* it upon next close() using resume_listener().
*/
static void listener_full(struct listener *l)
{
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
if (l->state >= LI_READY) {
MT_LIST_DEL(&l->wait_queue);
if (l->state != LI_FULL) {
fd_stop_recv(l->fd);
l->state = LI_FULL;
}
}
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
}
/* Marks a ready listener as limited so that we only try to re-enable it when
* resources are free again. It will be queued into the specified queue.
*/
static void limit_listener(struct listener *l, struct mt_list *list)
{
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
if (l->state == LI_READY) {
MT_LIST_ADDQ(list, &l->wait_queue);
fd_stop_recv(l->fd);
l->state = LI_LIMITED;
}
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
}
/* This function adds all of the protocol's listener's file descriptors to the
* polling lists when they are in the LI_LISTEN state. It is intended to be
* used as a protocol's generic enable_all() primitive, for use after the
* fork(). It puts the listeners into LI_READY or LI_FULL states depending on
* their number of connections. It always returns ERR_NONE.
*
* Must be called with proto_lock held.
*
*/
int enable_all_listeners(struct protocol *proto)
{
struct listener *listener;
list_for_each_entry(listener, &proto->listeners, proto_list)
enable_listener(listener);
return ERR_NONE;
}
/* This function removes all of the protocol's listener's file descriptors from
* the polling lists when they are in the LI_READY or LI_FULL states. It is
* intended to be used as a protocol's generic disable_all() primitive. It puts
* the listeners into LI_LISTEN, and always returns ERR_NONE.
*
* Must be called with proto_lock held.
*
*/
int disable_all_listeners(struct protocol *proto)
{
struct listener *listener;
list_for_each_entry(listener, &proto->listeners, proto_list)
disable_listener(listener);
return ERR_NONE;
}
/* Dequeues all listeners waiting for a resource the global wait queue */
void dequeue_all_listeners()
{
struct listener *listener;
while ((listener = MT_LIST_POP(&global_listener_queue, struct listener *, wait_queue))) {
/* This cannot fail because the listeners are by definition in
* the LI_LIMITED state.
*/
resume_listener(listener);
}
}
/* Dequeues all listeners waiting for a resource in proxy <px>'s queue */
void dequeue_proxy_listeners(struct proxy *px)
{
struct listener *listener;
while ((listener = MT_LIST_POP(&px->listener_queue, struct listener *, wait_queue))) {
/* This cannot fail because the listeners are by definition in
* the LI_LIMITED state.
*/
resume_listener(listener);
}
}
/* Must be called with the lock held. Depending on <do_close> value, it does
* what unbind_listener or unbind_listener_no_close should do.
*/
void do_unbind_listener(struct listener *listener, int do_close)
{
if (listener->state == LI_READY && fd_updt)
fd_stop_recv(listener->fd);
MT_LIST_DEL(&listener->wait_queue);
if (listener->state >= LI_PAUSED) {
if (do_close) {
fd_delete(listener->fd);
listener->fd = -1;
}
else
fd_remove(listener->fd);
listener->state = LI_ASSIGNED;
}
}
/* This function closes the listening socket for the specified listener,
* provided that it's already in a listening state. The listener enters the
* LI_ASSIGNED state. This function is intended to be used as a generic
* function for standard protocols.
*/
void unbind_listener(struct listener *listener)
{
HA_SPIN_LOCK(LISTENER_LOCK, &listener->lock);
do_unbind_listener(listener, 1);
HA_SPIN_UNLOCK(LISTENER_LOCK, &listener->lock);
}
/* This function pretends the listener is dead, but keeps the FD opened, so
* that we can provide it, for conf reloading.
*/
void unbind_listener_no_close(struct listener *listener)
{
HA_SPIN_LOCK(LISTENER_LOCK, &listener->lock);
do_unbind_listener(listener, 0);
HA_SPIN_UNLOCK(LISTENER_LOCK, &listener->lock);
}
/* This function closes all listening sockets bound to the protocol <proto>,
* and the listeners end in LI_ASSIGNED state if they were higher. It does not
* detach them from the protocol. It always returns ERR_NONE.
*
* Must be called with proto_lock held.
*
*/
int unbind_all_listeners(struct protocol *proto)
{
struct listener *listener;
list_for_each_entry(listener, &proto->listeners, proto_list)
unbind_listener(listener);
return ERR_NONE;
}
/* creates one or multiple listeners for bind_conf <bc> on sockaddr <ss> on port
* range <portl> to <porth>, and possibly attached to fd <fd> (or -1 for auto
* allocation). The address family is taken from ss->ss_family. The number of
* jobs and listeners is automatically increased by the number of listeners
* created. If the <inherited> argument is set to 1, it specifies that the FD
* was obtained from a parent process.
* It returns non-zero on success, zero on error with the error message
* set in <err>.
*/
int create_listeners(struct bind_conf *bc, const struct sockaddr_storage *ss,
int portl, int porth, int fd, int inherited, char **err)
{
struct protocol *proto = protocol_by_family(ss->ss_family);
struct listener *l;
int port;
if (!proto) {
memprintf(err, "unsupported protocol family %d", ss->ss_family);
return 0;
}
for (port = portl; port <= porth; port++) {
l = calloc(1, sizeof(*l));
if (!l) {
memprintf(err, "out of memory");
return 0;
}
l->obj_type = OBJ_TYPE_LISTENER;
LIST_ADDQ(&bc->frontend->conf.listeners, &l->by_fe);
LIST_ADDQ(&bc->listeners, &l->by_bind);
l->bind_conf = bc;
l->fd = fd;
memcpy(&l->addr, ss, sizeof(*ss));
MT_LIST_INIT(&l->wait_queue);
l->state = LI_INIT;
proto->add(l, port);
if (inherited)
l->options |= LI_O_INHERITED;
HA_SPIN_INIT(&l->lock);
_HA_ATOMIC_ADD(&jobs, 1);
_HA_ATOMIC_ADD(&listeners, 1);
}
return 1;
}
/* Delete a listener from its protocol's list of listeners. The listener's
* state is automatically updated from LI_ASSIGNED to LI_INIT. The protocol's
* number of listeners is updated, as well as the global number of listeners
* and jobs. Note that the listener must have previously been unbound. This
* is the generic function to use to remove a listener.
*
* Will grab the proto_lock.
*
*/
void delete_listener(struct listener *listener)
{
HA_SPIN_LOCK(PROTO_LOCK, &proto_lock);
HA_SPIN_LOCK(LISTENER_LOCK, &listener->lock);
if (listener->state == LI_ASSIGNED) {
listener->state = LI_INIT;
LIST_DEL(&listener->proto_list);
listener->proto->nb_listeners--;
_HA_ATOMIC_SUB(&jobs, 1);
_HA_ATOMIC_SUB(&listeners, 1);
}
HA_SPIN_UNLOCK(LISTENER_LOCK, &listener->lock);
HA_SPIN_UNLOCK(PROTO_LOCK, &proto_lock);
}
/* Returns a suitable value for a listener's backlog. It uses the listener's,
* otherwise the frontend's backlog, otherwise the listener's maxconn,
* otherwise the frontend's maxconn, otherwise 1024.
*/
int listener_backlog(const struct listener *l)
{
if (l->backlog)
return l->backlog;
if (l->bind_conf->frontend->backlog)
return l->bind_conf->frontend->backlog;
if (l->maxconn)
return l->maxconn;
if (l->bind_conf->frontend->maxconn)
return l->bind_conf->frontend->maxconn;
return 1024;
}
/* This function is called on a read event from a listening socket, corresponding
* to an accept. It tries to accept as many connections as possible, and for each
* calls the listener's accept handler (generally the frontend's accept handler).
*/
void listener_accept(int fd)
{
struct listener *l = fdtab[fd].owner;
struct proxy *p;
unsigned int max_accept;
int next_conn = 0;
int next_feconn = 0;
int next_actconn = 0;
int expire;
int cfd;
int ret;
#ifdef USE_ACCEPT4
static int accept4_broken;
#endif
if (!l)
return;
p = l->bind_conf->frontend;
/* if l->maxaccept is -1, then max_accept is UINT_MAX. It is not really
* illimited, but it is probably enough.
*/
max_accept = l->maxaccept ? l->maxaccept : 1;
if (!(l->options & LI_O_UNLIMITED) && global.sps_lim) {
int max = freq_ctr_remain(&global.sess_per_sec, global.sps_lim, 0);
if (unlikely(!max)) {
/* frontend accept rate limit was reached */
expire = tick_add(now_ms, next_event_delay(&global.sess_per_sec, global.sps_lim, 0));
goto limit_global;
}
if (max_accept > max)
max_accept = max;
}
if (!(l->options & LI_O_UNLIMITED) && global.cps_lim) {
int max = freq_ctr_remain(&global.conn_per_sec, global.cps_lim, 0);
if (unlikely(!max)) {
/* frontend accept rate limit was reached */
expire = tick_add(now_ms, next_event_delay(&global.conn_per_sec, global.cps_lim, 0));
goto limit_global;
}
if (max_accept > max)
max_accept = max;
}
#ifdef USE_OPENSSL
if (!(l->options & LI_O_UNLIMITED) && global.ssl_lim && l->bind_conf && l->bind_conf->is_ssl) {
int max = freq_ctr_remain(&global.ssl_per_sec, global.ssl_lim, 0);
if (unlikely(!max)) {
/* frontend accept rate limit was reached */
expire = tick_add(now_ms, next_event_delay(&global.ssl_per_sec, global.ssl_lim, 0));
goto limit_global;
}
if (max_accept > max)
max_accept = max;
}
#endif
if (p && p->fe_sps_lim) {
int max = freq_ctr_remain(&p->fe_sess_per_sec, p->fe_sps_lim, 0);
if (unlikely(!max)) {
/* frontend accept rate limit was reached */
expire = tick_add(now_ms, next_event_delay(&p->fe_sess_per_sec, p->fe_sps_lim, 0));
goto limit_proxy;
}
if (max_accept > max)
max_accept = max;
}
/* Note: if we fail to allocate a connection because of configured
* limits, we'll schedule a new attempt worst 1 second later in the
* worst case. If we fail due to system limits or temporary resource
* shortage, we try again 100ms later in the worst case.
*/
for (; max_accept; next_conn = next_feconn = next_actconn = 0, max_accept--) {
struct sockaddr_storage addr;
socklen_t laddr = sizeof(addr);
unsigned int count;
__decl_hathreads(unsigned long mask);
/* pre-increase the number of connections without going too far.
* We process the listener, then the proxy, then the process.
* We know which ones to unroll based on the next_xxx value.
*/
do {
count = l->nbconn;
if (unlikely(l->maxconn && count >= l->maxconn)) {
/* the listener was marked full or another
* thread is going to do it.
*/
next_conn = 0;
listener_full(l);
goto end;
}
next_conn = count + 1;
} while (!_HA_ATOMIC_CAS(&l->nbconn, (int *)(&count), next_conn));
if (p) {
do {
count = p->feconn;
if (unlikely(count >= p->maxconn)) {
/* the frontend was marked full or another
* thread is going to do it.
*/
next_feconn = 0;
expire = TICK_ETERNITY;
goto limit_proxy;
}
next_feconn = count + 1;
} while (!_HA_ATOMIC_CAS(&p->feconn, &count, next_feconn));
}
if (!(l->options & LI_O_UNLIMITED)) {
do {
count = actconn;
if (unlikely(count >= global.maxconn)) {
/* the process was marked full or another
* thread is going to do it.
*/
next_actconn = 0;
expire = tick_add(now_ms, 1000); /* try again in 1 second */
goto limit_global;
}
next_actconn = count + 1;
} while (!_HA_ATOMIC_CAS(&actconn, (int *)(&count), next_actconn));
}
/* with sockpair@ we don't want to do an accept */
if (unlikely(l->addr.ss_family == AF_CUST_SOCKPAIR)) {
if ((cfd = recv_fd_uxst(fd)) != -1)
fcntl(cfd, F_SETFL, O_NONBLOCK);
/* just like with UNIX sockets, only the family is filled */
addr.ss_family = AF_UNIX;
laddr = sizeof(addr.ss_family);
} else
#ifdef USE_ACCEPT4
/* only call accept4() if it's known to be safe, otherwise
* fallback to the legacy accept() + fcntl().
*/
if (unlikely(accept4_broken ||
((cfd = accept4(fd, (struct sockaddr *)&addr, &laddr, SOCK_NONBLOCK)) == -1 &&
(errno == ENOSYS || errno == EINVAL || errno == EBADF) &&
(accept4_broken = 1))))
#endif
if ((cfd = accept(fd, (struct sockaddr *)&addr, &laddr)) != -1)
fcntl(cfd, F_SETFL, O_NONBLOCK);
if (unlikely(cfd == -1)) {
switch (errno) {
case EAGAIN:
if (fdtab[fd].ev & (FD_POLL_HUP|FD_POLL_ERR)) {
/* the listening socket might have been disabled in a shared
* process and we're a collateral victim. We'll just pause for
* a while in case it comes back. In the mean time, we need to
* clear this sticky flag.
*/
_HA_ATOMIC_AND(&fdtab[fd].ev, ~(FD_POLL_HUP|FD_POLL_ERR));
goto transient_error;
}
goto end; /* nothing more to accept */
case EINVAL:
/* might be trying to accept on a shut fd (eg: soft stop) */
goto transient_error;
case EINTR:
case ECONNABORTED:
_HA_ATOMIC_SUB(&l->nbconn, 1);
if (p)
_HA_ATOMIC_SUB(&p->feconn, 1);
if (!(l->options & LI_O_UNLIMITED))
_HA_ATOMIC_SUB(&actconn, 1);
continue;
case ENFILE:
if (p)
send_log(p, LOG_EMERG,
"Proxy %s reached system FD limit (maxsock=%d). Please check system tunables.\n",
p->id, global.maxsock);
goto transient_error;
case EMFILE:
if (p)
send_log(p, LOG_EMERG,
"Proxy %s reached process FD limit (maxsock=%d). Please check 'ulimit-n' and restart.\n",
p->id, global.maxsock);
goto transient_error;
case ENOBUFS:
case ENOMEM:
if (p)
send_log(p, LOG_EMERG,
"Proxy %s reached system memory limit (maxsock=%d). Please check system tunables.\n",
p->id, global.maxsock);
goto transient_error;
default:
/* unexpected result, let's give up and let other tasks run */
max_accept = 0;
goto end;
}
}
/* we don't want to leak the FD upon reload if it's in the master */
if (unlikely(master == 1))
fcntl(cfd, F_SETFD, FD_CLOEXEC);
/* The connection was accepted, it must be counted as such */
if (l->counters)
HA_ATOMIC_UPDATE_MAX(&l->counters->conn_max, next_conn);
if (p)
HA_ATOMIC_UPDATE_MAX(&p->fe_counters.conn_max, next_feconn);
proxy_inc_fe_conn_ctr(l, p);
if (!(l->options & LI_O_UNLIMITED)) {
count = update_freq_ctr(&global.conn_per_sec, 1);
HA_ATOMIC_UPDATE_MAX(&global.cps_max, count);
}
_HA_ATOMIC_ADD(&activity[tid].accepted, 1);
if (unlikely(cfd >= global.maxsock)) {
send_log(p, LOG_EMERG,
"Proxy %s reached the configured maximum connection limit. Please check the global 'maxconn' value.\n",
p->id);
close(cfd);
expire = tick_add(now_ms, 1000); /* try again in 1 second */
goto limit_global;
}
/* past this point, l->accept() will automatically decrement
* l->nbconn, feconn and actconn once done. Setting next_*conn=0
* allows the error path not to rollback on nbconn. It's more
* convenient than duplicating all exit labels.
*/
next_conn = 0;
next_feconn = 0;
next_actconn = 0;
#if defined(USE_THREAD)
mask = thread_mask(l->bind_conf->bind_thread) & all_threads_mask;
if (atleast2(mask) && (global.tune.options & GTUNE_LISTENER_MQ) && !stopping) {
struct accept_queue_ring *ring;
unsigned int t, t0, t1, t2;
/* The principle is that we have two running indexes,
* each visiting in turn all threads bound to this
* listener. The connection will be assigned to the one
* with the least connections, and the other one will
* be updated. This provides a good fairness on short
* connections (round robin) and on long ones (conn
* count), without ever missing any idle thread.
*/
/* keep a copy for the final update. thr_idx is composite
* and made of (t2<<16) + t1.
*/
t0 = l->thr_idx;
do {
unsigned long m1, m2;
int q1, q2;
t2 = t1 = t0;
t2 >>= 16;
t1 &= 0xFFFF;
/* t1 walks low to high bits ;
* t2 walks high to low.
*/
m1 = mask >> t1;
m2 = mask & (t2 ? nbits(t2 + 1) : ~0UL);
if (unlikely(!(m1 & 1))) {
m1 &= ~1UL;
if (!m1) {
m1 = mask;
t1 = 0;
}
t1 += my_ffsl(m1) - 1;
}
if (unlikely(!(m2 & (1UL << t2)) || t1 == t2)) {
/* highest bit not set */
if (!m2)
m2 = mask;
t2 = my_flsl(m2) - 1;
}
/* now we have two distinct thread IDs belonging to the mask */
q1 = accept_queue_rings[t1].tail - accept_queue_rings[t1].head + ACCEPT_QUEUE_SIZE;
if (q1 >= ACCEPT_QUEUE_SIZE)
q1 -= ACCEPT_QUEUE_SIZE;
q2 = accept_queue_rings[t2].tail - accept_queue_rings[t2].head + ACCEPT_QUEUE_SIZE;
if (q2 >= ACCEPT_QUEUE_SIZE)
q2 -= ACCEPT_QUEUE_SIZE;
/* we have 3 possibilities now :
* q1 < q2 : t1 is less loaded than t2, so we pick it
* and update t2 (since t1 might still be
* lower than another thread)
* q1 > q2 : t2 is less loaded than t1, so we pick it
* and update t1 (since t2 might still be
* lower than another thread)
* q1 = q2 : both are equally loaded, thus we pick t1
* and update t1 as it will become more loaded
* than t2.
*/
q1 += l->thr_conn[t1];
q2 += l->thr_conn[t2];
if (q1 - q2 < 0) {
t = t1;
t2 = t2 ? t2 - 1 : LONGBITS - 1;
}
else if (q1 - q2 > 0) {
t = t2;
t1++;
if (t1 >= LONGBITS)
t1 = 0;
}
else {
t = t1;
t1++;
if (t1 >= LONGBITS)
t1 = 0;
}
/* new value for thr_idx */
t1 += (t2 << 16);
} while (unlikely(!_HA_ATOMIC_CAS(&l->thr_idx, &t0, t1)));
/* We successfully selected the best thread "t" for this
* connection. We use deferred accepts even if it's the
* local thread because tests show that it's the best
* performing model, likely due to better cache locality
* when processing this loop.
*/
ring = &accept_queue_rings[t];
if (accept_queue_push_mp(ring, cfd, l, &addr, laddr)) {
_HA_ATOMIC_ADD(&activity[t].accq_pushed, 1);
tasklet_wakeup(ring->tasklet);
continue;
}
/* If the ring is full we do a synchronous accept on
* the local thread here.
*/
_HA_ATOMIC_ADD(&activity[t].accq_full, 1);
}
#endif // USE_THREAD
_HA_ATOMIC_ADD(&l->thr_conn[tid], 1);
ret = l->accept(l, cfd, &addr);
if (unlikely(ret <= 0)) {
/* The connection was closed by stream_accept(). Either
* we just have to ignore it (ret == 0) or it's a critical
* error due to a resource shortage, and we must stop the
* listener (ret < 0).
*/
if (ret == 0) /* successful termination */
continue;
goto transient_error;
}
/* increase the per-process number of cumulated sessions, this
* may only be done once l->accept() has accepted the connection.
*/
if (!(l->options & LI_O_UNLIMITED)) {
count = update_freq_ctr(&global.sess_per_sec, 1);
HA_ATOMIC_UPDATE_MAX(&global.sps_max, count);
}
#ifdef USE_OPENSSL
if (!(l->options & LI_O_UNLIMITED) && l->bind_conf && l->bind_conf->is_ssl) {
count = update_freq_ctr(&global.ssl_per_sec, 1);
HA_ATOMIC_UPDATE_MAX(&global.ssl_max, count);
}
#endif
ti->flags &= ~TI_FL_STUCK; // this thread is still running
} /* end of for (max_accept--) */
end:
if (next_conn)
_HA_ATOMIC_SUB(&l->nbconn, 1);
if (p && next_feconn)
_HA_ATOMIC_SUB(&p->feconn, 1);
if (next_actconn)
_HA_ATOMIC_SUB(&actconn, 1);
if ((l->state == LI_FULL && (!l->maxconn || l->nbconn < l->maxconn)) ||
(l->state == LI_LIMITED &&
((!p || p->feconn < p->maxconn) && (actconn < global.maxconn) &&
(!tick_isset(global_listener_queue_task->expire) ||
tick_is_expired(global_listener_queue_task->expire, now_ms))))) {
/* at least one thread has to this when quitting */
resume_listener(l);
/* Dequeues all of the listeners waiting for a resource */
dequeue_all_listeners();
if (p && !MT_LIST_ISEMPTY(&p->listener_queue) &&
(!p->fe_sps_lim || freq_ctr_remain(&p->fe_sess_per_sec, p->fe_sps_lim, 0) > 0))
dequeue_proxy_listeners(p);
}
/* Now it's getting tricky. The listener was supposed to be in LI_READY
* state but in the mean time we might have changed it to LI_FULL or
* LI_LIMITED, and another thread might also have turned it to
* LI_PAUSED, LI_LISTEN or even LI_INI when stopping a proxy. We must
* be certain to keep the FD enabled when in the READY state but we
* must also stop it for other states that we might have switched to
* while others re-enabled polling.
*/
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
if (l->state == LI_READY) {
if (max_accept > 0)
fd_cant_recv(fd);
else
fd_done_recv(fd);
} else if (l->state > LI_ASSIGNED) {
fd_stop_recv(l->fd);
}
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
return;
transient_error:
/* pause the listener for up to 100 ms */
expire = tick_add(now_ms, 100);
limit_global:
/* (re-)queue the listener to the global queue and set it to expire no
* later than <expire> ahead. The listener turns to LI_LIMITED.
*/
limit_listener(l, &global_listener_queue);
task_schedule(global_listener_queue_task, expire);
goto end;
limit_proxy:
/* (re-)queue the listener to the proxy's queue and set it to expire no
* later than <expire> ahead. The listener turns to LI_LIMITED.
*/
limit_listener(l, &p->listener_queue);
if (p->task && tick_isset(expire))
task_schedule(p->task, expire);
goto end;
}
/* Notify the listener that a connection initiated from it was released. This
* is used to keep the connection count consistent and to possibly re-open
* listening when it was limited.
*/
void listener_release(struct listener *l)
{
struct proxy *fe = l->bind_conf->frontend;
if (!(l->options & LI_O_UNLIMITED))
_HA_ATOMIC_SUB(&actconn, 1);
if (fe)
_HA_ATOMIC_SUB(&fe->feconn, 1);
_HA_ATOMIC_SUB(&l->nbconn, 1);
_HA_ATOMIC_SUB(&l->thr_conn[tid], 1);
if (l->state == LI_FULL || l->state == LI_LIMITED)
resume_listener(l);
/* Dequeues all of the listeners waiting for a resource */
dequeue_all_listeners();
if (!MT_LIST_ISEMPTY(&fe->listener_queue) &&
(!fe->fe_sps_lim || freq_ctr_remain(&fe->fe_sess_per_sec, fe->fe_sps_lim, 0) > 0))
dequeue_proxy_listeners(fe);
}
/* resume listeners waiting in the local listener queue. They are still in LI_LIMITED state */
static struct task *listener_queue_process(struct task *t, void *context, unsigned short state)
{
struct work_list *wl = context;
struct listener *l;
while ((l = MT_LIST_POP(&wl->head, struct listener *, wait_queue))) {
/* The listeners are still in the LI_LIMITED state */
resume_listener(l);
}
return t;
}
/* Initializes the listener queues. Returns 0 on success, otherwise ERR_* flags */
static int listener_queue_init()
{
local_listener_queue = work_list_create(global.nbthread, listener_queue_process, NULL);
if (!local_listener_queue) {
ha_alert("Out of memory while initializing listener queues.\n");
return ERR_FATAL|ERR_ABORT;
}
global_listener_queue_task = task_new(MAX_THREADS_MASK);
if (!global_listener_queue_task) {
ha_alert("Out of memory when initializing global listener queue\n");
return ERR_FATAL|ERR_ABORT;
}
/* very simple initialization, users will queue the task if needed */
global_listener_queue_task->context = NULL; /* not even a context! */
global_listener_queue_task->process = manage_global_listener_queue;
return 0;
}
static void listener_queue_deinit()
{
work_list_destroy(local_listener_queue, global.nbthread);
task_destroy(global_listener_queue_task);
global_listener_queue_task = NULL;
}
REGISTER_CONFIG_POSTPARSER("multi-threaded listener queue", listener_queue_init);
REGISTER_POST_DEINIT(listener_queue_deinit);
/* This is the global management task for listeners. It enables listeners waiting
* for global resources when there are enough free resource, or at least once in
* a while. It is designed to be called as a task.
*/
static struct task *manage_global_listener_queue(struct task *t, void *context, unsigned short state)
{
/* If there are still too many concurrent connections, let's wait for
* some of them to go away. We don't need to re-arm the timer because
* each of them will scan the queue anyway.
*/
if (unlikely(actconn >= global.maxconn))
goto out;
/* We should periodically try to enable listeners waiting for a global
* resource here, because it is possible, though very unlikely, that
* they have been blocked by a temporary lack of global resource such
* as a file descriptor or memory and that the temporary condition has
* disappeared.
*/
dequeue_all_listeners();
out:
t->expire = TICK_ETERNITY;
task_queue(t);
return t;
}
/*
* Registers the bind keyword list <kwl> as a list of valid keywords for next
* parsing sessions.
*/
void bind_register_keywords(struct bind_kw_list *kwl)
{
LIST_ADDQ(&bind_keywords.list, &kwl->list);
}
/* Return a pointer to the bind keyword <kw>, or NULL if not found. If the
* keyword is found with a NULL ->parse() function, then an attempt is made to
* find one with a valid ->parse() function. This way it is possible to declare
* platform-dependant, known keywords as NULL, then only declare them as valid
* if some options are met. Note that if the requested keyword contains an
* opening parenthesis, everything from this point is ignored.
*/
struct bind_kw *bind_find_kw(const char *kw)
{
int index;
const char *kwend;
struct bind_kw_list *kwl;
struct bind_kw *ret = NULL;
kwend = strchr(kw, '(');
if (!kwend)
kwend = kw + strlen(kw);
list_for_each_entry(kwl, &bind_keywords.list, list) {
for (index = 0; kwl->kw[index].kw != NULL; index++) {
if ((strncmp(kwl->kw[index].kw, kw, kwend - kw) == 0) &&
kwl->kw[index].kw[kwend-kw] == 0) {
if (kwl->kw[index].parse)
return &kwl->kw[index]; /* found it !*/
else
ret = &kwl->kw[index]; /* may be OK */
}
}
}
return ret;
}
/* Dumps all registered "bind" keywords to the <out> string pointer. The
* unsupported keywords are only dumped if their supported form was not
* found.
*/
void bind_dump_kws(char **out)
{
struct bind_kw_list *kwl;
int index;
if (!out)
return;
*out = NULL;
list_for_each_entry(kwl, &bind_keywords.list, list) {
for (index = 0; kwl->kw[index].kw != NULL; index++) {
if (kwl->kw[index].parse ||
bind_find_kw(kwl->kw[index].kw) == &kwl->kw[index]) {
memprintf(out, "%s[%4s] %s%s%s\n", *out ? *out : "",
kwl->scope,
kwl->kw[index].kw,
kwl->kw[index].skip ? " <arg>" : "",
kwl->kw[index].parse ? "" : " (not supported)");
}
}
}
}
/************************************************************************/
/* All supported sample and ACL keywords must be declared here. */
/************************************************************************/
/* set temp integer to the number of connexions to the same listening socket */
static int
smp_fetch_dconn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->sess->listener->nbconn;
return 1;
}
/* set temp integer to the id of the socket (listener) */
static int
smp_fetch_so_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->sess->listener->luid;
return 1;
}
static int
smp_fetch_so_name(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.u.str.area = smp->sess->listener->name;
if (!smp->data.u.str.area)
return 0;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
smp->data.u.str.data = strlen(smp->data.u.str.area);
return 1;
}
/* parse the "accept-proxy" bind keyword */
static int bind_parse_accept_proxy(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
list_for_each_entry(l, &conf->listeners, by_bind)
l->options |= LI_O_ACC_PROXY;
return 0;
}
/* parse the "accept-netscaler-cip" bind keyword */
static int bind_parse_accept_netscaler_cip(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
uint32_t val;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing value", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
val = atol(args[cur_arg + 1]);
if (val <= 0) {
memprintf(err, "'%s' : invalid value %d, must be >= 0", args[cur_arg], val);
return ERR_ALERT | ERR_FATAL;
}
list_for_each_entry(l, &conf->listeners, by_bind) {
l->options |= LI_O_ACC_CIP;
conf->ns_cip_magic = val;
}
return 0;
}
/* parse the "backlog" bind keyword */
static int bind_parse_backlog(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
int val;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing value", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
val = atol(args[cur_arg + 1]);
if (val < 0) {
memprintf(err, "'%s' : invalid value %d, must be > 0", args[cur_arg], val);
return ERR_ALERT | ERR_FATAL;
}
list_for_each_entry(l, &conf->listeners, by_bind)
l->backlog = val;
return 0;
}
/* parse the "id" bind keyword */
static int bind_parse_id(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct eb32_node *node;
struct listener *l, *new;
char *error;
if (conf->listeners.n != conf->listeners.p) {
memprintf(err, "'%s' can only be used with a single socket", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : expects an integer argument", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
new = LIST_NEXT(&conf->listeners, struct listener *, by_bind);
new->luid = strtol(args[cur_arg + 1], &error, 10);
if (*error != '\0') {
memprintf(err, "'%s' : expects an integer argument, found '%s'", args[cur_arg], args[cur_arg + 1]);
return ERR_ALERT | ERR_FATAL;
}
new->conf.id.key = new->luid;
if (new->luid <= 0) {
memprintf(err, "'%s' : custom id has to be > 0", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
node = eb32_lookup(&px->conf.used_listener_id, new->luid);
if (node) {
l = container_of(node, struct listener, conf.id);
memprintf(err, "'%s' : custom id %d already used at %s:%d ('bind %s')",
args[cur_arg], l->luid, l->bind_conf->file, l->bind_conf->line,
l->bind_conf->arg);
return ERR_ALERT | ERR_FATAL;
}
eb32_insert(&px->conf.used_listener_id, &new->conf.id);
return 0;
}
/* parse the "maxconn" bind keyword */
static int bind_parse_maxconn(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
int val;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing value", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
val = atol(args[cur_arg + 1]);
if (val < 0) {
memprintf(err, "'%s' : invalid value %d, must be >= 0", args[cur_arg], val);
return ERR_ALERT | ERR_FATAL;
}
list_for_each_entry(l, &conf->listeners, by_bind)
l->maxconn = val;
return 0;
}
/* parse the "name" bind keyword */
static int bind_parse_name(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing name", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
list_for_each_entry(l, &conf->listeners, by_bind)
l->name = strdup(args[cur_arg + 1]);
return 0;
}
/* parse the "nice" bind keyword */
static int bind_parse_nice(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
int val;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing value", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
val = atol(args[cur_arg + 1]);
if (val < -1024 || val > 1024) {
memprintf(err, "'%s' : invalid value %d, allowed range is -1024..1024", args[cur_arg], val);
return ERR_ALERT | ERR_FATAL;
}
list_for_each_entry(l, &conf->listeners, by_bind)
l->nice = val;
return 0;
}
/* parse the "process" bind keyword */
static int bind_parse_process(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
char *slash;
unsigned long proc = 0, thread = 0;
if ((slash = strchr(args[cur_arg + 1], '/')) != NULL)
*slash = 0;
if (parse_process_number(args[cur_arg + 1], &proc, MAX_PROCS, NULL, err)) {
memprintf(err, "'%s' : %s", args[cur_arg], *err);
return ERR_ALERT | ERR_FATAL;
}
if (slash) {
if (parse_process_number(slash+1, &thread, MAX_THREADS, NULL, err)) {
memprintf(err, "'%s' : %s", args[cur_arg], *err);
return ERR_ALERT | ERR_FATAL;
}
*slash = '/';
}
conf->bind_proc |= proc;
conf->bind_thread |= thread;
return 0;
}
/* parse the "proto" bind keyword */
static int bind_parse_proto(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct ist proto;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing value", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
proto = ist2(args[cur_arg + 1], strlen(args[cur_arg + 1]));
conf->mux_proto = get_mux_proto(proto);
if (!conf->mux_proto) {
memprintf(err, "'%s' : unknown MUX protocol '%s'", args[cur_arg], args[cur_arg+1]);
return ERR_ALERT | ERR_FATAL;
}
return 0;
}
/* config parser for global "tune.listener.multi-queue", accepts "on" or "off" */
static int cfg_parse_tune_listener_mq(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
if (strcmp(args[1], "on") == 0)
global.tune.options |= GTUNE_LISTENER_MQ;
else if (strcmp(args[1], "off") == 0)
global.tune.options &= ~GTUNE_LISTENER_MQ;
else {
memprintf(err, "'%s' expects either 'on' or 'off' but got '%s'.", args[0], args[1]);
return -1;
}
return 0;
}
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct sample_fetch_kw_list smp_kws = {ILH, {
{ "dst_conn", smp_fetch_dconn, 0, NULL, SMP_T_SINT, SMP_USE_FTEND, },
{ "so_id", smp_fetch_so_id, 0, NULL, SMP_T_SINT, SMP_USE_FTEND, },
{ "so_name", smp_fetch_so_name, 0, NULL, SMP_T_STR, SMP_USE_FTEND, },
{ /* END */ },
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct acl_kw_list acl_kws = {ILH, {
{ /* END */ },
}};
INITCALL1(STG_REGISTER, acl_register_keywords, &acl_kws);
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted, doing so helps
* all code contributors.
* Optional keywords are also declared with a NULL ->parse() function so that
* the config parser can report an appropriate error when a known keyword was
* not enabled.
*/
static struct bind_kw_list bind_kws = { "ALL", { }, {
{ "accept-netscaler-cip", bind_parse_accept_netscaler_cip, 1 }, /* enable NetScaler Client IP insertion protocol */
{ "accept-proxy", bind_parse_accept_proxy, 0 }, /* enable PROXY protocol */
{ "backlog", bind_parse_backlog, 1 }, /* set backlog of listening socket */
{ "id", bind_parse_id, 1 }, /* set id of listening socket */
{ "maxconn", bind_parse_maxconn, 1 }, /* set maxconn of listening socket */
{ "name", bind_parse_name, 1 }, /* set name of listening socket */
{ "nice", bind_parse_nice, 1 }, /* set nice of listening socket */
{ "process", bind_parse_process, 1 }, /* set list of allowed process for this socket */
{ "proto", bind_parse_proto, 1 }, /* set the proto to use for all incoming connections */
{ /* END */ },
}};
INITCALL1(STG_REGISTER, bind_register_keywords, &bind_kws);
/* config keyword parsers */
static struct cfg_kw_list cfg_kws = {ILH, {
{ CFG_GLOBAL, "tune.listener.multi-queue", cfg_parse_tune_listener_mq },
{ 0, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/