| /* |
| * ACL management functions. |
| * |
| * Copyright 2000-2013 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <ctype.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <haproxy/api.h> |
| #include <common/mini-clist.h> |
| #include <common/standard.h> |
| #include <common/uri_auth.h> |
| |
| #include <types/global.h> |
| |
| #include <proto/acl.h> |
| #include <proto/arg.h> |
| #include <proto/auth.h> |
| #include <proto/channel.h> |
| #include <proto/log.h> |
| #include <proto/pattern.h> |
| #include <proto/proxy.h> |
| #include <proto/sample.h> |
| #include <proto/stick_table.h> |
| |
| #include <import/ebsttree.h> |
| |
| /* List head of all known ACL keywords */ |
| static struct acl_kw_list acl_keywords = { |
| .list = LIST_HEAD_INIT(acl_keywords.list) |
| }; |
| |
| /* input values are 0 or 3, output is the same */ |
| static inline enum acl_test_res pat2acl(struct pattern *pat) |
| { |
| if (pat) |
| return ACL_TEST_PASS; |
| else |
| return ACL_TEST_FAIL; |
| } |
| |
| /* |
| * Registers the ACL keyword list <kwl> as a list of valid keywords for next |
| * parsing sessions. |
| */ |
| void acl_register_keywords(struct acl_kw_list *kwl) |
| { |
| LIST_ADDQ(&acl_keywords.list, &kwl->list); |
| } |
| |
| /* |
| * Unregisters the ACL keyword list <kwl> from the list of valid keywords. |
| */ |
| void acl_unregister_keywords(struct acl_kw_list *kwl) |
| { |
| LIST_DEL(&kwl->list); |
| LIST_INIT(&kwl->list); |
| } |
| |
| /* Return a pointer to the ACL <name> within the list starting at <head>, or |
| * NULL if not found. |
| */ |
| struct acl *find_acl_by_name(const char *name, struct list *head) |
| { |
| struct acl *acl; |
| list_for_each_entry(acl, head, list) { |
| if (strcmp(acl->name, name) == 0) |
| return acl; |
| } |
| return NULL; |
| } |
| |
| /* Return a pointer to the ACL keyword <kw>, or NULL if not found. Note that if |
| * <kw> contains an opening parenthesis or a comma, only the left part of it is |
| * checked. |
| */ |
| struct acl_keyword *find_acl_kw(const char *kw) |
| { |
| int index; |
| const char *kwend; |
| struct acl_kw_list *kwl; |
| |
| kwend = kw; |
| while (is_idchar(*kwend)) |
| kwend++; |
| |
| list_for_each_entry(kwl, &acl_keywords.list, list) { |
| for (index = 0; kwl->kw[index].kw != NULL; index++) { |
| if ((strncmp(kwl->kw[index].kw, kw, kwend - kw) == 0) && |
| kwl->kw[index].kw[kwend-kw] == 0) |
| return &kwl->kw[index]; |
| } |
| } |
| return NULL; |
| } |
| |
| static struct acl_expr *prune_acl_expr(struct acl_expr *expr) |
| { |
| struct arg *arg; |
| int unresolved = 0; |
| |
| pattern_prune(&expr->pat); |
| |
| for (arg = expr->smp->arg_p; arg; arg++) { |
| if (arg->type == ARGT_STOP) |
| break; |
| if (arg->type == ARGT_STR || arg->unresolved) { |
| free(arg->data.str.area); |
| arg->data.str.area = NULL; |
| arg->data.str.data = 0; |
| unresolved |= arg->unresolved; |
| arg->unresolved = 0; |
| } |
| } |
| |
| if (expr->smp->arg_p != empty_arg_list && !unresolved) |
| free(expr->smp->arg_p); |
| return expr; |
| } |
| |
| /* Parse an ACL expression starting at <args>[0], and return it. If <err> is |
| * not NULL, it will be filled with a pointer to an error message in case of |
| * error. This pointer must be freeable or NULL. <al> is an arg_list serving |
| * as a list head to report missing dependencies. |
| * |
| * Right now, the only accepted syntax is : |
| * <subject> [<value>...] |
| */ |
| struct acl_expr *parse_acl_expr(const char **args, char **err, struct arg_list *al, |
| const char *file, int line) |
| { |
| __label__ out_return, out_free_expr; |
| struct acl_expr *expr; |
| struct acl_keyword *aclkw; |
| int refflags, patflags; |
| const char *arg; |
| struct sample_expr *smp = NULL; |
| int idx = 0; |
| char *ckw = NULL; |
| const char *begw; |
| const char *endw; |
| const char *endt; |
| int cur_type; |
| int nbargs; |
| int operator = STD_OP_EQ; |
| int op; |
| int contain_colon, have_dot; |
| const char *dot; |
| signed long long value, minor; |
| /* The following buffer contain two numbers, a ':' separator and the final \0. */ |
| char buffer[NB_LLMAX_STR + 1 + NB_LLMAX_STR + 1]; |
| int is_loaded; |
| int unique_id; |
| char *error; |
| struct pat_ref *ref; |
| struct pattern_expr *pattern_expr; |
| int load_as_map = 0; |
| int acl_conv_found = 0; |
| |
| /* First, we look for an ACL keyword. And if we don't find one, then |
| * we look for a sample fetch expression starting with a sample fetch |
| * keyword. |
| */ |
| |
| al->ctx = ARGC_ACL; // to report errors while resolving args late |
| al->kw = *args; |
| al->conv = NULL; |
| |
| aclkw = find_acl_kw(args[0]); |
| if (aclkw) { |
| /* OK we have a real ACL keyword */ |
| |
| /* build new sample expression for this ACL */ |
| smp = calloc(1, sizeof(*smp)); |
| if (!smp) { |
| memprintf(err, "out of memory when parsing ACL expression"); |
| goto out_return; |
| } |
| LIST_INIT(&(smp->conv_exprs)); |
| smp->fetch = aclkw->smp; |
| smp->arg_p = empty_arg_list; |
| |
| /* look for the beginning of the subject arguments */ |
| for (arg = args[0]; is_idchar(*arg); arg++) |
| ; |
| |
| /* At this point, we have : |
| * - args[0] : beginning of the keyword |
| * - arg : end of the keyword, first character not part of keyword |
| */ |
| nbargs = make_arg_list(arg, -1, smp->fetch->arg_mask, &smp->arg_p, |
| err, &endt, NULL, al); |
| if (nbargs < 0) { |
| /* note that make_arg_list will have set <err> here */ |
| memprintf(err, "ACL keyword '%s' : %s", aclkw->kw, *err); |
| goto out_free_smp; |
| } |
| |
| if (!smp->arg_p) { |
| smp->arg_p = empty_arg_list; |
| } |
| else if (smp->fetch->val_args && !smp->fetch->val_args(smp->arg_p, err)) { |
| /* invalid keyword argument, error must have been |
| * set by val_args(). |
| */ |
| memprintf(err, "in argument to '%s', %s", aclkw->kw, *err); |
| goto out_free_smp; |
| } |
| arg = endt; |
| |
| /* look for the beginning of the converters list. Those directly attached |
| * to the ACL keyword are found just after <arg> which points to the comma. |
| * If we find any converter, then we don't use the ACL keyword's match |
| * anymore but the one related to the converter's output type. |
| */ |
| cur_type = smp->fetch->out_type; |
| while (*arg) { |
| struct sample_conv *conv; |
| struct sample_conv_expr *conv_expr; |
| int err_arg; |
| int argcnt; |
| |
| if (*arg && *arg != ',') { |
| if (ckw) |
| memprintf(err, "ACL keyword '%s' : missing comma after converter '%s'.", |
| aclkw->kw, ckw); |
| else |
| memprintf(err, "ACL keyword '%s' : missing comma after fetch keyword.", |
| aclkw->kw); |
| goto out_free_smp; |
| } |
| |
| /* FIXME: how long should we support such idiocies ? Maybe we |
| * should already warn ? |
| */ |
| while (*arg == ',') /* then trailing commas */ |
| arg++; |
| |
| begw = arg; /* start of converter keyword */ |
| |
| if (!*begw) |
| /* none ? end of converters */ |
| break; |
| |
| for (endw = begw; is_idchar(*endw); endw++) |
| ; |
| |
| free(ckw); |
| ckw = my_strndup(begw, endw - begw); |
| |
| conv = find_sample_conv(begw, endw - begw); |
| if (!conv) { |
| /* Unknown converter method */ |
| memprintf(err, "ACL keyword '%s' : unknown converter '%s'.", |
| aclkw->kw, ckw); |
| goto out_free_smp; |
| } |
| |
| arg = endw; |
| |
| if (conv->in_type >= SMP_TYPES || conv->out_type >= SMP_TYPES) { |
| memprintf(err, "ACL keyword '%s' : returns type of converter '%s' is unknown.", |
| aclkw->kw, ckw); |
| goto out_free_smp; |
| } |
| |
| /* If impossible type conversion */ |
| if (!sample_casts[cur_type][conv->in_type]) { |
| memprintf(err, "ACL keyword '%s' : converter '%s' cannot be applied.", |
| aclkw->kw, ckw); |
| goto out_free_smp; |
| } |
| |
| cur_type = conv->out_type; |
| conv_expr = calloc(1, sizeof(*conv_expr)); |
| if (!conv_expr) |
| goto out_free_smp; |
| |
| LIST_ADDQ(&(smp->conv_exprs), &(conv_expr->list)); |
| conv_expr->conv = conv; |
| acl_conv_found = 1; |
| |
| al->kw = smp->fetch->kw; |
| al->conv = conv_expr->conv->kw; |
| argcnt = make_arg_list(endw, -1, conv->arg_mask, &conv_expr->arg_p, err, &arg, &err_arg, al); |
| if (argcnt < 0) { |
| memprintf(err, "ACL keyword '%s' : invalid arg %d in converter '%s' : %s.", |
| aclkw->kw, err_arg+1, ckw, *err); |
| goto out_free_smp; |
| } |
| |
| if (argcnt && !conv->arg_mask) { |
| memprintf(err, "converter '%s' does not support any args", ckw); |
| goto out_free_smp; |
| } |
| |
| if (!conv_expr->arg_p) |
| conv_expr->arg_p = empty_arg_list; |
| |
| if (conv->val_args && !conv->val_args(conv_expr->arg_p, conv, file, line, err)) { |
| memprintf(err, "ACL keyword '%s' : invalid args in converter '%s' : %s.", |
| aclkw->kw, ckw, *err); |
| goto out_free_smp; |
| } |
| } |
| free(ckw); |
| ckw = NULL; |
| } |
| else { |
| /* This is not an ACL keyword, so we hope this is a sample fetch |
| * keyword that we're going to transparently use as an ACL. If |
| * so, we retrieve a completely parsed expression with args and |
| * convs already done. |
| */ |
| smp = sample_parse_expr((char **)args, &idx, file, line, err, al, NULL); |
| if (!smp) { |
| memprintf(err, "%s in ACL expression '%s'", *err, *args); |
| goto out_return; |
| } |
| cur_type = smp_expr_output_type(smp); |
| } |
| |
| expr = calloc(1, sizeof(*expr)); |
| if (!expr) { |
| memprintf(err, "out of memory when parsing ACL expression"); |
| goto out_free_smp; |
| } |
| |
| pattern_init_head(&expr->pat); |
| |
| expr->pat.expect_type = cur_type; |
| expr->smp = smp; |
| expr->kw = smp->fetch->kw; |
| smp = NULL; /* don't free it anymore */ |
| |
| if (aclkw && !acl_conv_found) { |
| expr->kw = aclkw->kw; |
| expr->pat.parse = aclkw->parse ? aclkw->parse : pat_parse_fcts[aclkw->match_type]; |
| expr->pat.index = aclkw->index ? aclkw->index : pat_index_fcts[aclkw->match_type]; |
| expr->pat.match = aclkw->match ? aclkw->match : pat_match_fcts[aclkw->match_type]; |
| expr->pat.delete = aclkw->delete ? aclkw->delete : pat_delete_fcts[aclkw->match_type]; |
| expr->pat.prune = aclkw->prune ? aclkw->prune : pat_prune_fcts[aclkw->match_type]; |
| } |
| |
| if (!expr->pat.parse) { |
| /* Parse/index/match functions depend on the expression type, |
| * so we have to map them now. Some types can be automatically |
| * converted. |
| */ |
| switch (cur_type) { |
| case SMP_T_BOOL: |
| expr->pat.parse = pat_parse_fcts[PAT_MATCH_BOOL]; |
| expr->pat.index = pat_index_fcts[PAT_MATCH_BOOL]; |
| expr->pat.match = pat_match_fcts[PAT_MATCH_BOOL]; |
| expr->pat.delete = pat_delete_fcts[PAT_MATCH_BOOL]; |
| expr->pat.prune = pat_prune_fcts[PAT_MATCH_BOOL]; |
| expr->pat.expect_type = pat_match_types[PAT_MATCH_BOOL]; |
| break; |
| case SMP_T_SINT: |
| expr->pat.parse = pat_parse_fcts[PAT_MATCH_INT]; |
| expr->pat.index = pat_index_fcts[PAT_MATCH_INT]; |
| expr->pat.match = pat_match_fcts[PAT_MATCH_INT]; |
| expr->pat.delete = pat_delete_fcts[PAT_MATCH_INT]; |
| expr->pat.prune = pat_prune_fcts[PAT_MATCH_INT]; |
| expr->pat.expect_type = pat_match_types[PAT_MATCH_INT]; |
| break; |
| case SMP_T_ADDR: |
| case SMP_T_IPV4: |
| case SMP_T_IPV6: |
| expr->pat.parse = pat_parse_fcts[PAT_MATCH_IP]; |
| expr->pat.index = pat_index_fcts[PAT_MATCH_IP]; |
| expr->pat.match = pat_match_fcts[PAT_MATCH_IP]; |
| expr->pat.delete = pat_delete_fcts[PAT_MATCH_IP]; |
| expr->pat.prune = pat_prune_fcts[PAT_MATCH_IP]; |
| expr->pat.expect_type = pat_match_types[PAT_MATCH_IP]; |
| break; |
| case SMP_T_STR: |
| expr->pat.parse = pat_parse_fcts[PAT_MATCH_STR]; |
| expr->pat.index = pat_index_fcts[PAT_MATCH_STR]; |
| expr->pat.match = pat_match_fcts[PAT_MATCH_STR]; |
| expr->pat.delete = pat_delete_fcts[PAT_MATCH_STR]; |
| expr->pat.prune = pat_prune_fcts[PAT_MATCH_STR]; |
| expr->pat.expect_type = pat_match_types[PAT_MATCH_STR]; |
| break; |
| } |
| } |
| |
| /* Additional check to protect against common mistakes */ |
| if (expr->pat.parse && cur_type != SMP_T_BOOL && !*args[1]) { |
| ha_warning("parsing acl keyword '%s' :\n" |
| " no pattern to match against were provided, so this ACL will never match.\n" |
| " If this is what you intended, please add '--' to get rid of this warning.\n" |
| " If you intended to match only for existence, please use '-m found'.\n" |
| " If you wanted to force an int to match as a bool, please use '-m bool'.\n" |
| "\n", |
| args[0]); |
| } |
| |
| args++; |
| |
| /* check for options before patterns. Supported options are : |
| * -i : ignore case for all patterns by default |
| * -f : read patterns from those files |
| * -m : force matching method (must be used before -f) |
| * -M : load the file as map file |
| * -u : force the unique id of the acl |
| * -- : everything after this is not an option |
| */ |
| refflags = PAT_REF_ACL; |
| patflags = 0; |
| is_loaded = 0; |
| unique_id = -1; |
| while (**args == '-') { |
| if (strcmp(*args, "-i") == 0) |
| patflags |= PAT_MF_IGNORE_CASE; |
| else if (strcmp(*args, "-n") == 0) |
| patflags |= PAT_MF_NO_DNS; |
| else if (strcmp(*args, "-u") == 0) { |
| unique_id = strtol(args[1], &error, 10); |
| if (*error != '\0') { |
| memprintf(err, "the argument of -u must be an integer"); |
| goto out_free_expr; |
| } |
| |
| /* Check if this id is really unique. */ |
| if (pat_ref_lookupid(unique_id)) { |
| memprintf(err, "the id is already used"); |
| goto out_free_expr; |
| } |
| |
| args++; |
| } |
| else if (strcmp(*args, "-f") == 0) { |
| if (!expr->pat.parse) { |
| memprintf(err, "matching method must be specified first (using '-m') when using a sample fetch of this type ('%s')", expr->kw); |
| goto out_free_expr; |
| } |
| |
| if (!pattern_read_from_file(&expr->pat, refflags, args[1], patflags, load_as_map, err, file, line)) |
| goto out_free_expr; |
| is_loaded = 1; |
| args++; |
| } |
| else if (strcmp(*args, "-m") == 0) { |
| int idx; |
| |
| if (is_loaded) { |
| memprintf(err, "'-m' must only be specified before patterns and files in parsing ACL expression"); |
| goto out_free_expr; |
| } |
| |
| idx = pat_find_match_name(args[1]); |
| if (idx < 0) { |
| memprintf(err, "unknown matching method '%s' when parsing ACL expression", args[1]); |
| goto out_free_expr; |
| } |
| |
| /* Note: -m found is always valid, bool/int are compatible, str/bin/reg/len are compatible */ |
| if (idx != PAT_MATCH_FOUND && !sample_casts[cur_type][pat_match_types[idx]]) { |
| memprintf(err, "matching method '%s' cannot be used with fetch keyword '%s'", args[1], expr->kw); |
| goto out_free_expr; |
| } |
| expr->pat.parse = pat_parse_fcts[idx]; |
| expr->pat.index = pat_index_fcts[idx]; |
| expr->pat.match = pat_match_fcts[idx]; |
| expr->pat.delete = pat_delete_fcts[idx]; |
| expr->pat.prune = pat_prune_fcts[idx]; |
| expr->pat.expect_type = pat_match_types[idx]; |
| args++; |
| } |
| else if (strcmp(*args, "-M") == 0) { |
| refflags |= PAT_REF_MAP; |
| load_as_map = 1; |
| } |
| else if (strcmp(*args, "--") == 0) { |
| args++; |
| break; |
| } |
| else { |
| memprintf(err, "'%s' is not a valid ACL option. Please use '--' before any pattern beginning with a '-'", args[0]); |
| goto out_free_expr; |
| break; |
| } |
| args++; |
| } |
| |
| if (!expr->pat.parse) { |
| memprintf(err, "matching method must be specified first (using '-m') when using a sample fetch of this type ('%s')", expr->kw); |
| goto out_free_expr; |
| } |
| |
| /* Create displayed reference */ |
| snprintf(trash.area, trash.size, "acl '%s' file '%s' line %d", |
| expr->kw, file, line); |
| trash.area[trash.size - 1] = '\0'; |
| |
| /* Create new pattern reference. */ |
| ref = pat_ref_newid(unique_id, trash.area, PAT_REF_ACL); |
| if (!ref) { |
| memprintf(err, "memory error"); |
| goto out_free_expr; |
| } |
| |
| /* Create new pattern expression associated to this reference. */ |
| pattern_expr = pattern_new_expr(&expr->pat, ref, patflags, err, NULL); |
| if (!pattern_expr) |
| goto out_free_expr; |
| |
| /* now parse all patterns */ |
| while (**args) { |
| arg = *args; |
| |
| /* Compatibility layer. Each pattern can parse only one string per pattern, |
| * but the pat_parser_int() and pat_parse_dotted_ver() parsers were need |
| * optionally two operators. The first operator is the match method: eq, |
| * le, lt, ge and gt. pat_parse_int() and pat_parse_dotted_ver() functions |
| * can have a compatibility syntax based on ranges: |
| * |
| * pat_parse_int(): |
| * |
| * "eq x" -> "x" or "x:x" |
| * "le x" -> ":x" |
| * "lt x" -> ":y" (with y = x - 1) |
| * "ge x" -> "x:" |
| * "gt x" -> "y:" (with y = x + 1) |
| * |
| * pat_parse_dotted_ver(): |
| * |
| * "eq x.y" -> "x.y" or "x.y:x.y" |
| * "le x.y" -> ":x.y" |
| * "lt x.y" -> ":w.z" (with w.z = x.y - 1) |
| * "ge x.y" -> "x.y:" |
| * "gt x.y" -> "w.z:" (with w.z = x.y + 1) |
| * |
| * If y is not present, assume that is "0". |
| * |
| * The syntax eq, le, lt, ge and gt are proper to the acl syntax. The |
| * following block of code detect the operator, and rewrite each value |
| * in parsable string. |
| */ |
| if (expr->pat.parse == pat_parse_int || |
| expr->pat.parse == pat_parse_dotted_ver) { |
| /* Check for operator. If the argument is operator, memorise it and |
| * continue to the next argument. |
| */ |
| op = get_std_op(arg); |
| if (op != -1) { |
| operator = op; |
| args++; |
| continue; |
| } |
| |
| /* Check if the pattern contain ':' or '-' character. */ |
| contain_colon = (strchr(arg, ':') || strchr(arg, '-')); |
| |
| /* If the pattern contain ':' or '-' character, give it to the parser as is. |
| * If no contain ':' and operator is STD_OP_EQ, give it to the parser as is. |
| * In other case, try to convert the value according with the operator. |
| */ |
| if (!contain_colon && operator != STD_OP_EQ) { |
| /* Search '.' separator. */ |
| dot = strchr(arg, '.'); |
| if (!dot) { |
| have_dot = 0; |
| minor = 0; |
| dot = arg + strlen(arg); |
| } |
| else |
| have_dot = 1; |
| |
| /* convert the integer minor part for the pat_parse_dotted_ver() function. */ |
| if (expr->pat.parse == pat_parse_dotted_ver && have_dot) { |
| if (strl2llrc(dot+1, strlen(dot+1), &minor) != 0) { |
| memprintf(err, "'%s' is neither a number nor a supported operator", arg); |
| goto out_free_expr; |
| } |
| if (minor >= 65536) { |
| memprintf(err, "'%s' contains too large a minor value", arg); |
| goto out_free_expr; |
| } |
| } |
| |
| /* convert the integer value for the pat_parse_int() function, and the |
| * integer major part for the pat_parse_dotted_ver() function. |
| */ |
| if (strl2llrc(arg, dot - arg, &value) != 0) { |
| memprintf(err, "'%s' is neither a number nor a supported operator", arg); |
| goto out_free_expr; |
| } |
| if (expr->pat.parse == pat_parse_dotted_ver) { |
| if (value >= 65536) { |
| memprintf(err, "'%s' contains too large a major value", arg); |
| goto out_free_expr; |
| } |
| value = (value << 16) | (minor & 0xffff); |
| } |
| |
| switch (operator) { |
| |
| case STD_OP_EQ: /* this case is not possible. */ |
| memprintf(err, "internal error"); |
| goto out_free_expr; |
| |
| case STD_OP_GT: |
| value++; /* gt = ge + 1 */ |
| |
| case STD_OP_GE: |
| if (expr->pat.parse == pat_parse_int) |
| snprintf(buffer, NB_LLMAX_STR+NB_LLMAX_STR+2, "%lld:", value); |
| else |
| snprintf(buffer, NB_LLMAX_STR+NB_LLMAX_STR+2, "%lld.%lld:", |
| value >> 16, value & 0xffff); |
| arg = buffer; |
| break; |
| |
| case STD_OP_LT: |
| value--; /* lt = le - 1 */ |
| |
| case STD_OP_LE: |
| if (expr->pat.parse == pat_parse_int) |
| snprintf(buffer, NB_LLMAX_STR+NB_LLMAX_STR+2, ":%lld", value); |
| else |
| snprintf(buffer, NB_LLMAX_STR+NB_LLMAX_STR+2, ":%lld.%lld", |
| value >> 16, value & 0xffff); |
| arg = buffer; |
| break; |
| } |
| } |
| } |
| |
| /* Add sample to the reference, and try to compile it fior each pattern |
| * using this value. |
| */ |
| if (!pat_ref_add(ref, arg, NULL, err)) |
| goto out_free_expr; |
| args++; |
| } |
| |
| return expr; |
| |
| out_free_expr: |
| prune_acl_expr(expr); |
| free(expr); |
| out_free_smp: |
| free(ckw); |
| free(smp); |
| out_return: |
| return NULL; |
| } |
| |
| /* Purge everything in the acl <acl>, then return <acl>. */ |
| struct acl *prune_acl(struct acl *acl) { |
| |
| struct acl_expr *expr, *exprb; |
| |
| free(acl->name); |
| |
| list_for_each_entry_safe(expr, exprb, &acl->expr, list) { |
| LIST_DEL(&expr->list); |
| prune_acl_expr(expr); |
| free(expr); |
| } |
| |
| return acl; |
| } |
| |
| /* Parse an ACL with the name starting at <args>[0], and with a list of already |
| * known ACLs in <acl>. If the ACL was not in the list, it will be added. |
| * A pointer to that ACL is returned. If the ACL has an empty name, then it's |
| * an anonymous one and it won't be merged with any other one. If <err> is not |
| * NULL, it will be filled with an appropriate error. This pointer must be |
| * freeable or NULL. <al> is the arg_list serving as a head for unresolved |
| * dependencies. |
| * |
| * args syntax: <aclname> <acl_expr> |
| */ |
| struct acl *parse_acl(const char **args, struct list *known_acl, char **err, struct arg_list *al, |
| const char *file, int line) |
| { |
| __label__ out_return, out_free_acl_expr, out_free_name; |
| struct acl *cur_acl; |
| struct acl_expr *acl_expr; |
| char *name; |
| const char *pos; |
| |
| if (**args && (pos = invalid_char(*args))) { |
| memprintf(err, "invalid character in ACL name : '%c'", *pos); |
| goto out_return; |
| } |
| |
| acl_expr = parse_acl_expr(args + 1, err, al, file, line); |
| if (!acl_expr) { |
| /* parse_acl_expr will have filled <err> here */ |
| goto out_return; |
| } |
| |
| /* Check for args beginning with an opening parenthesis just after the |
| * subject, as this is almost certainly a typo. Right now we can only |
| * emit a warning, so let's do so. |
| */ |
| if (!strchr(args[1], '(') && *args[2] == '(') |
| ha_warning("parsing acl '%s' :\n" |
| " matching '%s' for pattern '%s' is likely a mistake and probably\n" |
| " not what you want. Maybe you need to remove the extraneous space before '('.\n" |
| " If you are really sure this is not an error, please insert '--' between the\n" |
| " match and the pattern to make this warning message disappear.\n", |
| args[0], args[1], args[2]); |
| |
| if (*args[0]) |
| cur_acl = find_acl_by_name(args[0], known_acl); |
| else |
| cur_acl = NULL; |
| |
| if (!cur_acl) { |
| name = strdup(args[0]); |
| if (!name) { |
| memprintf(err, "out of memory when parsing ACL"); |
| goto out_free_acl_expr; |
| } |
| cur_acl = calloc(1, sizeof(*cur_acl)); |
| if (cur_acl == NULL) { |
| memprintf(err, "out of memory when parsing ACL"); |
| goto out_free_name; |
| } |
| |
| LIST_INIT(&cur_acl->expr); |
| LIST_ADDQ(known_acl, &cur_acl->list); |
| cur_acl->name = name; |
| } |
| |
| /* We want to know what features the ACL needs (typically HTTP parsing), |
| * and where it may be used. If an ACL relies on multiple matches, it is |
| * OK if at least one of them may match in the context where it is used. |
| */ |
| cur_acl->use |= acl_expr->smp->fetch->use; |
| cur_acl->val |= acl_expr->smp->fetch->val; |
| LIST_ADDQ(&cur_acl->expr, &acl_expr->list); |
| return cur_acl; |
| |
| out_free_name: |
| free(name); |
| out_free_acl_expr: |
| prune_acl_expr(acl_expr); |
| free(acl_expr); |
| out_return: |
| return NULL; |
| } |
| |
| /* Some useful ACLs provided by default. Only those used are allocated. */ |
| |
| const struct { |
| const char *name; |
| const char *expr[4]; /* put enough for longest expression */ |
| } default_acl_list[] = { |
| { .name = "TRUE", .expr = {"always_true",""}}, |
| { .name = "FALSE", .expr = {"always_false",""}}, |
| { .name = "LOCALHOST", .expr = {"src","127.0.0.1/8",""}}, |
| { .name = "HTTP", .expr = {"req_proto_http",""}}, |
| { .name = "HTTP_1.0", .expr = {"req_ver","1.0",""}}, |
| { .name = "HTTP_1.1", .expr = {"req_ver","1.1",""}}, |
| { .name = "METH_CONNECT", .expr = {"method","CONNECT",""}}, |
| { .name = "METH_DELETE", .expr = {"method","DELETE",""}}, |
| { .name = "METH_GET", .expr = {"method","GET","HEAD",""}}, |
| { .name = "METH_HEAD", .expr = {"method","HEAD",""}}, |
| { .name = "METH_OPTIONS", .expr = {"method","OPTIONS",""}}, |
| { .name = "METH_POST", .expr = {"method","POST",""}}, |
| { .name = "METH_PUT", .expr = {"method","PUT",""}}, |
| { .name = "METH_TRACE", .expr = {"method","TRACE",""}}, |
| { .name = "HTTP_URL_ABS", .expr = {"url_reg","^[^/:]*://",""}}, |
| { .name = "HTTP_URL_SLASH", .expr = {"url_beg","/",""}}, |
| { .name = "HTTP_URL_STAR", .expr = {"url","*",""}}, |
| { .name = "HTTP_CONTENT", .expr = {"hdr_val(content-length)","gt","0",""}}, |
| { .name = "RDP_COOKIE", .expr = {"req_rdp_cookie_cnt","gt","0",""}}, |
| { .name = "REQ_CONTENT", .expr = {"req_len","gt","0",""}}, |
| { .name = "WAIT_END", .expr = {"wait_end",""}}, |
| { .name = NULL, .expr = {""}} |
| }; |
| |
| /* Find a default ACL from the default_acl list, compile it and return it. |
| * If the ACL is not found, NULL is returned. In theory, it cannot fail, |
| * except when default ACLs are broken, in which case it will return NULL. |
| * If <known_acl> is not NULL, the ACL will be queued at its tail. If <err> is |
| * not NULL, it will be filled with an error message if an error occurs. This |
| * pointer must be freeable or NULL. <al> is an arg_list serving as a list head |
| * to report missing dependencies. |
| */ |
| static struct acl *find_acl_default(const char *acl_name, struct list *known_acl, |
| char **err, struct arg_list *al, |
| const char *file, int line) |
| { |
| __label__ out_return, out_free_acl_expr, out_free_name; |
| struct acl *cur_acl; |
| struct acl_expr *acl_expr; |
| char *name; |
| int index; |
| |
| for (index = 0; default_acl_list[index].name != NULL; index++) { |
| if (strcmp(acl_name, default_acl_list[index].name) == 0) |
| break; |
| } |
| |
| if (default_acl_list[index].name == NULL) { |
| memprintf(err, "no such ACL : '%s'", acl_name); |
| return NULL; |
| } |
| |
| acl_expr = parse_acl_expr((const char **)default_acl_list[index].expr, err, al, file, line); |
| if (!acl_expr) { |
| /* parse_acl_expr must have filled err here */ |
| goto out_return; |
| } |
| |
| name = strdup(acl_name); |
| if (!name) { |
| memprintf(err, "out of memory when building default ACL '%s'", acl_name); |
| goto out_free_acl_expr; |
| } |
| |
| cur_acl = calloc(1, sizeof(*cur_acl)); |
| if (cur_acl == NULL) { |
| memprintf(err, "out of memory when building default ACL '%s'", acl_name); |
| goto out_free_name; |
| } |
| |
| cur_acl->name = name; |
| cur_acl->use |= acl_expr->smp->fetch->use; |
| cur_acl->val |= acl_expr->smp->fetch->val; |
| LIST_INIT(&cur_acl->expr); |
| LIST_ADDQ(&cur_acl->expr, &acl_expr->list); |
| if (known_acl) |
| LIST_ADDQ(known_acl, &cur_acl->list); |
| |
| return cur_acl; |
| |
| out_free_name: |
| free(name); |
| out_free_acl_expr: |
| prune_acl_expr(acl_expr); |
| free(acl_expr); |
| out_return: |
| return NULL; |
| } |
| |
| /* Purge everything in the acl_cond <cond>, then return <cond>. */ |
| struct acl_cond *prune_acl_cond(struct acl_cond *cond) |
| { |
| struct acl_term_suite *suite, *tmp_suite; |
| struct acl_term *term, *tmp_term; |
| |
| /* iterate through all term suites and free all terms and all suites */ |
| list_for_each_entry_safe(suite, tmp_suite, &cond->suites, list) { |
| list_for_each_entry_safe(term, tmp_term, &suite->terms, list) |
| free(term); |
| free(suite); |
| } |
| return cond; |
| } |
| |
| /* Parse an ACL condition starting at <args>[0], relying on a list of already |
| * known ACLs passed in <known_acl>. The new condition is returned (or NULL in |
| * case of low memory). Supports multiple conditions separated by "or". If |
| * <err> is not NULL, it will be filled with a pointer to an error message in |
| * case of error, that the caller is responsible for freeing. The initial |
| * location must either be freeable or NULL. The list <al> serves as a list head |
| * for unresolved dependencies. |
| */ |
| struct acl_cond *parse_acl_cond(const char **args, struct list *known_acl, |
| enum acl_cond_pol pol, char **err, struct arg_list *al, |
| const char *file, int line) |
| { |
| __label__ out_return, out_free_suite, out_free_term; |
| int arg, neg; |
| const char *word; |
| struct acl *cur_acl; |
| struct acl_term *cur_term; |
| struct acl_term_suite *cur_suite; |
| struct acl_cond *cond; |
| unsigned int suite_val; |
| |
| cond = calloc(1, sizeof(*cond)); |
| if (cond == NULL) { |
| memprintf(err, "out of memory when parsing condition"); |
| goto out_return; |
| } |
| |
| LIST_INIT(&cond->list); |
| LIST_INIT(&cond->suites); |
| cond->pol = pol; |
| cond->val = 0; |
| |
| cur_suite = NULL; |
| suite_val = ~0U; |
| neg = 0; |
| for (arg = 0; *args[arg]; arg++) { |
| word = args[arg]; |
| |
| /* remove as many exclamation marks as we can */ |
| while (*word == '!') { |
| neg = !neg; |
| word++; |
| } |
| |
| /* an empty word is allowed because we cannot force the user to |
| * always think about not leaving exclamation marks alone. |
| */ |
| if (!*word) |
| continue; |
| |
| if (strcasecmp(word, "or") == 0 || strcmp(word, "||") == 0) { |
| /* new term suite */ |
| cond->val |= suite_val; |
| suite_val = ~0U; |
| cur_suite = NULL; |
| neg = 0; |
| continue; |
| } |
| |
| if (strcmp(word, "{") == 0) { |
| /* we may have a complete ACL expression between two braces, |
| * find the last one. |
| */ |
| int arg_end = arg + 1; |
| const char **args_new; |
| |
| while (*args[arg_end] && strcmp(args[arg_end], "}") != 0) |
| arg_end++; |
| |
| if (!*args[arg_end]) { |
| memprintf(err, "missing closing '}' in condition"); |
| goto out_free_suite; |
| } |
| |
| args_new = calloc(1, (arg_end - arg + 1) * sizeof(*args_new)); |
| if (!args_new) { |
| memprintf(err, "out of memory when parsing condition"); |
| goto out_free_suite; |
| } |
| |
| args_new[0] = ""; |
| memcpy(args_new + 1, args + arg + 1, (arg_end - arg) * sizeof(*args_new)); |
| args_new[arg_end - arg] = ""; |
| cur_acl = parse_acl(args_new, known_acl, err, al, file, line); |
| free(args_new); |
| |
| if (!cur_acl) { |
| /* note that parse_acl() must have filled <err> here */ |
| goto out_free_suite; |
| } |
| arg = arg_end; |
| } |
| else { |
| /* search for <word> in the known ACL names. If we do not find |
| * it, let's look for it in the default ACLs, and if found, add |
| * it to the list of ACLs of this proxy. This makes it possible |
| * to override them. |
| */ |
| cur_acl = find_acl_by_name(word, known_acl); |
| if (cur_acl == NULL) { |
| cur_acl = find_acl_default(word, known_acl, err, al, file, line); |
| if (cur_acl == NULL) { |
| /* note that find_acl_default() must have filled <err> here */ |
| goto out_free_suite; |
| } |
| } |
| } |
| |
| cur_term = calloc(1, sizeof(*cur_term)); |
| if (cur_term == NULL) { |
| memprintf(err, "out of memory when parsing condition"); |
| goto out_free_suite; |
| } |
| |
| cur_term->acl = cur_acl; |
| cur_term->neg = neg; |
| |
| /* Here it is a bit complex. The acl_term_suite is a conjunction |
| * of many terms. It may only be used if all of its terms are |
| * usable at the same time. So the suite's validity domain is an |
| * AND between all ACL keywords' ones. But, the global condition |
| * is valid if at least one term suite is OK. So it's an OR between |
| * all of their validity domains. We could emit a warning as soon |
| * as suite_val is null because it means that the last ACL is not |
| * compatible with the previous ones. Let's remain simple for now. |
| */ |
| cond->use |= cur_acl->use; |
| suite_val &= cur_acl->val; |
| |
| if (!cur_suite) { |
| cur_suite = calloc(1, sizeof(*cur_suite)); |
| if (cur_suite == NULL) { |
| memprintf(err, "out of memory when parsing condition"); |
| goto out_free_term; |
| } |
| LIST_INIT(&cur_suite->terms); |
| LIST_ADDQ(&cond->suites, &cur_suite->list); |
| } |
| LIST_ADDQ(&cur_suite->terms, &cur_term->list); |
| neg = 0; |
| } |
| |
| cond->val |= suite_val; |
| return cond; |
| |
| out_free_term: |
| free(cur_term); |
| out_free_suite: |
| prune_acl_cond(cond); |
| free(cond); |
| out_return: |
| return NULL; |
| } |
| |
| /* Builds an ACL condition starting at the if/unless keyword. The complete |
| * condition is returned. NULL is returned in case of error or if the first |
| * word is neither "if" nor "unless". It automatically sets the file name and |
| * the line number in the condition for better error reporting, and sets the |
| * HTTP intiailization requirements in the proxy. If <err> is not NULL, it will |
| * be filled with a pointer to an error message in case of error, that the |
| * caller is responsible for freeing. The initial location must either be |
| * freeable or NULL. |
| */ |
| struct acl_cond *build_acl_cond(const char *file, int line, struct list *known_acl, |
| struct proxy *px, const char **args, char **err) |
| { |
| enum acl_cond_pol pol = ACL_COND_NONE; |
| struct acl_cond *cond = NULL; |
| |
| if (err) |
| *err = NULL; |
| |
| if (!strcmp(*args, "if")) { |
| pol = ACL_COND_IF; |
| args++; |
| } |
| else if (!strcmp(*args, "unless")) { |
| pol = ACL_COND_UNLESS; |
| args++; |
| } |
| else { |
| memprintf(err, "conditions must start with either 'if' or 'unless'"); |
| return NULL; |
| } |
| |
| cond = parse_acl_cond(args, known_acl, pol, err, &px->conf.args, file, line); |
| if (!cond) { |
| /* note that parse_acl_cond must have filled <err> here */ |
| return NULL; |
| } |
| |
| cond->file = file; |
| cond->line = line; |
| px->http_needed |= !!(cond->use & SMP_USE_HTTP_ANY); |
| return cond; |
| } |
| |
| /* Execute condition <cond> and return either ACL_TEST_FAIL, ACL_TEST_MISS or |
| * ACL_TEST_PASS depending on the test results. ACL_TEST_MISS may only be |
| * returned if <opt> does not contain SMP_OPT_FINAL, indicating that incomplete |
| * data is being examined. The function automatically sets SMP_OPT_ITERATE. This |
| * function only computes the condition, it does not apply the polarity required |
| * by IF/UNLESS, it's up to the caller to do this using something like this : |
| * |
| * res = acl_pass(res); |
| * if (res == ACL_TEST_MISS) |
| * return 0; |
| * if (cond->pol == ACL_COND_UNLESS) |
| * res = !res; |
| */ |
| enum acl_test_res acl_exec_cond(struct acl_cond *cond, struct proxy *px, struct session *sess, struct stream *strm, unsigned int opt) |
| { |
| __label__ fetch_next; |
| struct acl_term_suite *suite; |
| struct acl_term *term; |
| struct acl_expr *expr; |
| struct acl *acl; |
| struct sample smp; |
| enum acl_test_res acl_res, suite_res, cond_res; |
| |
| /* ACLs are iterated over all values, so let's always set the flag to |
| * indicate this to the fetch functions. |
| */ |
| opt |= SMP_OPT_ITERATE; |
| |
| /* We're doing a logical OR between conditions so we initialize to FAIL. |
| * The MISS status is propagated down from the suites. |
| */ |
| cond_res = ACL_TEST_FAIL; |
| list_for_each_entry(suite, &cond->suites, list) { |
| /* Evaluate condition suite <suite>. We stop at the first term |
| * which returns ACL_TEST_FAIL. The MISS status is still propagated |
| * in case of uncertainty in the result. |
| */ |
| |
| /* we're doing a logical AND between terms, so we must set the |
| * initial value to PASS. |
| */ |
| suite_res = ACL_TEST_PASS; |
| list_for_each_entry(term, &suite->terms, list) { |
| acl = term->acl; |
| |
| /* FIXME: use cache ! |
| * check acl->cache_idx for this. |
| */ |
| |
| /* ACL result not cached. Let's scan all the expressions |
| * and use the first one to match. |
| */ |
| acl_res = ACL_TEST_FAIL; |
| list_for_each_entry(expr, &acl->expr, list) { |
| /* we need to reset context and flags */ |
| memset(&smp, 0, sizeof(smp)); |
| fetch_next: |
| if (!sample_process(px, sess, strm, opt, expr->smp, &smp)) { |
| /* maybe we could not fetch because of missing data */ |
| if (smp.flags & SMP_F_MAY_CHANGE && !(opt & SMP_OPT_FINAL)) |
| acl_res |= ACL_TEST_MISS; |
| continue; |
| } |
| |
| acl_res |= pat2acl(pattern_exec_match(&expr->pat, &smp, 0)); |
| /* |
| * OK now acl_res holds the result of this expression |
| * as one of ACL_TEST_FAIL, ACL_TEST_MISS or ACL_TEST_PASS. |
| * |
| * Then if (!MISS) we can cache the result, and put |
| * (smp.flags & SMP_F_VOLATILE) in the cache flags. |
| * |
| * FIXME: implement cache. |
| * |
| */ |
| |
| /* we're ORing these terms, so a single PASS is enough */ |
| if (acl_res == ACL_TEST_PASS) |
| break; |
| |
| if (smp.flags & SMP_F_NOT_LAST) |
| goto fetch_next; |
| |
| /* sometimes we know the fetched data is subject to change |
| * later and give another chance for a new match (eg: request |
| * size, time, ...) |
| */ |
| if (smp.flags & SMP_F_MAY_CHANGE && !(opt & SMP_OPT_FINAL)) |
| acl_res |= ACL_TEST_MISS; |
| } |
| /* |
| * Here we have the result of an ACL (cached or not). |
| * ACLs are combined, negated or not, to form conditions. |
| */ |
| |
| if (term->neg) |
| acl_res = acl_neg(acl_res); |
| |
| suite_res &= acl_res; |
| |
| /* we're ANDing these terms, so a single FAIL or MISS is enough */ |
| if (suite_res != ACL_TEST_PASS) |
| break; |
| } |
| cond_res |= suite_res; |
| |
| /* we're ORing these terms, so a single PASS is enough */ |
| if (cond_res == ACL_TEST_PASS) |
| break; |
| } |
| return cond_res; |
| } |
| |
| /* Returns a pointer to the first ACL conflicting with usage at place <where> |
| * which is one of the SMP_VAL_* bits indicating a check place, or NULL if |
| * no conflict is found. Only full conflicts are detected (ACL is not usable). |
| * Use the next function to check for useless keywords. |
| */ |
| const struct acl *acl_cond_conflicts(const struct acl_cond *cond, unsigned int where) |
| { |
| struct acl_term_suite *suite; |
| struct acl_term *term; |
| struct acl *acl; |
| |
| list_for_each_entry(suite, &cond->suites, list) { |
| list_for_each_entry(term, &suite->terms, list) { |
| acl = term->acl; |
| if (!(acl->val & where)) |
| return acl; |
| } |
| } |
| return NULL; |
| } |
| |
| /* Returns a pointer to the first ACL and its first keyword to conflict with |
| * usage at place <where> which is one of the SMP_VAL_* bits indicating a check |
| * place. Returns true if a conflict is found, with <acl> and <kw> set (if non |
| * null), or false if not conflict is found. The first useless keyword is |
| * returned. |
| */ |
| int acl_cond_kw_conflicts(const struct acl_cond *cond, unsigned int where, struct acl const **acl, char const **kw) |
| { |
| struct acl_term_suite *suite; |
| struct acl_term *term; |
| struct acl_expr *expr; |
| |
| list_for_each_entry(suite, &cond->suites, list) { |
| list_for_each_entry(term, &suite->terms, list) { |
| list_for_each_entry(expr, &term->acl->expr, list) { |
| if (!(expr->smp->fetch->val & where)) { |
| if (acl) |
| *acl = term->acl; |
| if (kw) |
| *kw = expr->kw; |
| return 1; |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Find targets for userlist and groups in acl. Function returns the number |
| * of errors or OK if everything is fine. It must be called only once sample |
| * fetch arguments have been resolved (after smp_resolve_args()). |
| */ |
| int acl_find_targets(struct proxy *p) |
| { |
| |
| struct acl *acl; |
| struct acl_expr *expr; |
| struct pattern_list *pattern; |
| int cfgerr = 0; |
| struct pattern_expr_list *pexp; |
| |
| list_for_each_entry(acl, &p->acl, list) { |
| list_for_each_entry(expr, &acl->expr, list) { |
| if (!strcmp(expr->kw, "http_auth_group")) { |
| /* Note: the ARGT_USR argument may only have been resolved earlier |
| * by smp_resolve_args(). |
| */ |
| if (expr->smp->arg_p->unresolved) { |
| ha_alert("Internal bug in proxy %s: %sacl %s %s() makes use of unresolved userlist '%s'. Please report this.\n", |
| p->id, *acl->name ? "" : "anonymous ", acl->name, expr->kw, |
| expr->smp->arg_p->data.str.area); |
| cfgerr++; |
| continue; |
| } |
| |
| if (LIST_ISEMPTY(&expr->pat.head)) { |
| ha_alert("proxy %s: acl %s %s(): no groups specified.\n", |
| p->id, acl->name, expr->kw); |
| cfgerr++; |
| continue; |
| } |
| |
| /* For each pattern, check if the group exists. */ |
| list_for_each_entry(pexp, &expr->pat.head, list) { |
| if (LIST_ISEMPTY(&pexp->expr->patterns)) { |
| ha_alert("proxy %s: acl %s %s(): no groups specified.\n", |
| p->id, acl->name, expr->kw); |
| cfgerr++; |
| continue; |
| } |
| |
| list_for_each_entry(pattern, &pexp->expr->patterns, list) { |
| /* this keyword only has one argument */ |
| if (!check_group(expr->smp->arg_p->data.usr, pattern->pat.ptr.str)) { |
| ha_alert("proxy %s: acl %s %s(): invalid group '%s'.\n", |
| p->id, acl->name, expr->kw, pattern->pat.ptr.str); |
| cfgerr++; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| return cfgerr; |
| } |
| |
| /* initializes ACLs by resolving the sample fetch names they rely upon. |
| * Returns 0 on success, otherwise an error. |
| */ |
| int init_acl() |
| { |
| int err = 0; |
| int index; |
| const char *name; |
| struct acl_kw_list *kwl; |
| struct sample_fetch *smp; |
| |
| list_for_each_entry(kwl, &acl_keywords.list, list) { |
| for (index = 0; kwl->kw[index].kw != NULL; index++) { |
| name = kwl->kw[index].fetch_kw; |
| if (!name) |
| name = kwl->kw[index].kw; |
| |
| smp = find_sample_fetch(name, strlen(name)); |
| if (!smp) { |
| ha_alert("Critical internal error: ACL keyword '%s' relies on sample fetch '%s' which was not registered!\n", |
| kwl->kw[index].kw, name); |
| err++; |
| continue; |
| } |
| kwl->kw[index].smp = smp; |
| } |
| } |
| return err; |
| } |
| |
| /************************************************************************/ |
| /* All supported sample and ACL keywords must be declared here. */ |
| /************************************************************************/ |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Please take care of keeping this list alphabetically sorted. |
| */ |
| static struct acl_kw_list acl_kws = {ILH, { |
| { /* END */ }, |
| }}; |
| |
| INITCALL1(STG_REGISTER, acl_register_keywords, &acl_kws); |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |