blob: fc51f0f7dc4aede0c75844ca7a82fbab9503c553 [file] [log] [blame]
/*
* QUIC mux-demux for connections
*
* Copyright 2021 HAProxy Technologies, Frédéric Lécaille <flecaille@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <import/eb32tree.h>
#include <haproxy/api.h>
#include <haproxy/cfgparse.h>
#include <haproxy/connection.h>
#include <haproxy/h3.h>
#include <haproxy/istbuf.h>
#include <haproxy/log.h>
#include <haproxy/mux_quic.h>
#include <haproxy/net_helper.h>
#include <haproxy/quic_frame.h>
#include <haproxy/session-t.h>
#include <haproxy/stats.h>
#include <haproxy/stream.h>
#include <haproxy/stream_interface.h>
#include <haproxy/trace.h>
/* dummy streams returned for closed, error, refused, idle and states */
static const struct qcs *qc_closed_stream;
/* Connection flags (32 bit), in qcc->flags */
#define QC_CF_NONE 0x00000000
/* Flags indicating why writing to the mux is blocked. */
#define QC_CF_MUX_MALLOC 0x00000001 // mux blocked on lack of connection's mux buffer
#define QC_CF_MUX_MFULL 0x00000002 // mux blocked on connection's mux buffer full
#define QC_CF_MUX_BLOCK_ANY 0x00000003 // aggregate of the mux flags above
/* Flags indicating why writing to the demux is blocked.
* The first two ones directly affect the ability for the mux to receive data
* from the connection. The other ones affect the mux's ability to demux
* received data.
*/
#define QC_CF_DEM_DFULL 0x00000004 // demux blocked on connection's demux buffer full
#define QC_CF_DEM_MBUSY 0x00000008 // demux blocked on connection's mux side busy
#define QC_CF_DEM_MROOM 0x00000010 // demux blocked on lack of room in mux buffer
#define QC_CF_DEM_SALLOC 0x00000020 // demux blocked on lack of stream's request buffer
#define QC_CF_DEM_SFULL 0x00000040 // demux blocked on stream request buffer full
#define QC_CF_DEM_TOOMANY 0x00000100 // demux blocked waiting for some conn_streams to leave
#define QC_CF_DEM_BLOCK_ANY 0x00000170 // aggregate of the demux flags above except DFULL
/* other flags */
#define QC_CF_IS_BACK 0x00008000 // this is an outgoing connection
#define QC_SS_MASK(state) (1UL << (state))
#define QC_SS_IDLE_BIT (1UL << QC_SS_IDLE)
#define QC_SS_RLOC_BIT (1UL << QC_SS_RLOC)
#define QC_SS_RREM_BIT (1UL << QC_SS_RREM)
#define QC_SS_OPEN_BIT (1UL << QC_SS_OPEN)
#define QC_SS_HREM_BIT (1UL << QC_SS_HREM)
#define QC_SS_HLOC_BIT (1UL << QC_SS_HLOC)
#define QC_SS_ERROR_BIT (1UL << QC_SS_ERROR)
#define QC_SS_CLOSED_BIT (1UL << QC_SS_CLOSED)
/* trace source and events */
static void qc_trace(enum trace_level level, uint64_t mask, \
const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4);
/* The event representation is split like this :
* strm - application layer
* qcs - internal QUIC stream
* qcc - internal QUIC connection
* conn - external connection
*
*/
static const struct trace_event qc_trace_events[] = {
#define QC_EV_QCC_NEW (1ULL << 0)
{ .mask = QC_EV_QCC_NEW, .name = "qcc_new", .desc = "new QUIC connection" },
#define QC_EV_QCC_RECV (1ULL << 1)
{ .mask = QC_EV_QCC_RECV, .name = "qcc_recv", .desc = "Rx on QUIC connection" },
#define QC_EV_QCC_SEND (1ULL << 2)
{ .mask = QC_EV_QCC_SEND, .name = "qcc_send", .desc = "Tx on QUIC connection" },
#define QC_EV_QCC_FCTL (1ULL << 3)
{ .mask = QC_EV_QCC_FCTL, .name = "qcc_fctl", .desc = "QUIC connection flow-controlled" },
#define QC_EV_QCC_BLK (1ULL << 4)
{ .mask = QC_EV_QCC_BLK, .name = "qcc_blk", .desc = "QUIC connection blocked" },
#define QC_EV_QCC_WAKE (1ULL << 5)
{ .mask = QC_EV_QCC_WAKE, .name = "qcc_wake", .desc = "QUIC connection woken up" },
#define QC_EV_QCC_END (1ULL << 6)
{ .mask = QC_EV_QCC_END, .name = "qcc_end", .desc = "QUIC connection terminated" },
#define QC_EV_QCC_ERR (1ULL << 7)
{ .mask = QC_EV_QCC_ERR, .name = "qcc_err", .desc = "error on QUIC connection" },
#define QC_EV_TX_FRAME (1ULL << 8)
{ .mask = QC_EV_TX_FRAME, .name = "tx_frame", .desc = "transmission of any QUIC frame" },
#define QC_EV_QCS_NEW (1ULL << 9)
{ .mask = QC_EV_QCS_NEW, .name = "qcs_new", .desc = "new QUIC stream" },
#define QC_EV_QCS_GET (1ULL << 10)
{ .mask = QC_EV_QCS_GET, .name = "qcs_get", .desc = "get QUIC stream by ID" },
#define QC_EV_QCS_SEND (1ULL << 11)
{ .mask = QC_EV_QCS_SEND, .name = "qcs_send", .desc = "Tx for QUIC stream" },
#define QC_EV_QCS_FCTL (1ULL << 12)
{ .mask = QC_EV_QCS_FCTL, .name = "qcs_fctl", .desc = "QUIC stream flow-controlled" },
#define QC_EV_QCS_BLK (1ULL << 13)
{ .mask = QC_EV_QCS_BLK, .name = "qcs_blk", .desc = "QUIC stream blocked" },
#define QC_EV_QCS_WAKE (1ULL << 14)
{ .mask = QC_EV_QCS_WAKE, .name = "qcs_wake", .desc = "QUIC stream woken up" },
#define QC_EV_QCS_END (1ULL << 15)
{ .mask = QC_EV_QCS_END, .name = "qcs_end", .desc = "QUIC stream terminated" },
#define QC_EV_QCS_ERR (1ULL << 16)
{ .mask = QC_EV_QCS_ERR, .name = "qcs_err", .desc = "error on QUIC stream" },
#define QC_EV_STRM_NEW (1ULL << 17)
{ .mask = QC_EV_STRM_NEW, .name = "strm_new", .desc = "app-layer stream creation" },
#define QC_EV_STRM_RECV (1ULL << 18)
{ .mask = QC_EV_STRM_RECV, .name = "strm_recv", .desc = "receiving data for stream" },
#define QC_EV_STRM_SEND (1ULL << 19)
{ .mask = QC_EV_STRM_SEND, .name = "strm_send", .desc = "sending data for stream" },
#define QC_EV_STRM_FULL (1ULL << 20)
{ .mask = QC_EV_STRM_FULL, .name = "strm_full", .desc = "stream buffer full" },
#define QC_EV_STRM_WAKE (1ULL << 21)
{ .mask = QC_EV_STRM_WAKE, .name = "strm_wake", .desc = "stream woken up" },
#define QC_EV_STRM_SHUT (1ULL << 22)
{ .mask = QC_EV_STRM_SHUT, .name = "strm_shut", .desc = "stream shutdown" },
#define QC_EV_STRM_END (1ULL << 23)
{ .mask = QC_EV_STRM_END, .name = "strm_end", .desc = "detaching app-layer stream" },
#define QC_EV_STRM_ERR (1ULL << 24)
{ .mask = QC_EV_STRM_ERR, .name = "strm_err", .desc = "stream error" },
{ }
};
static const struct name_desc qc_trace_lockon_args[4] = {
/* arg1 */ { /* already used by the connection */ },
/* arg2 */ { .name = "qcs", .desc = "QUIC stream" },
/* arg3 */ { },
/* arg4 */ { }
};
static const struct name_desc qc_trace_decoding[] = {
#define QC_VERB_CLEAN 1
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
#define QC_VERB_MINIMAL 2
{ .name="minimal", .desc="report only qcc/qcs state and flags, no real decoding" },
#define QC_VERB_SIMPLE 3
{ .name="simple", .desc="add request/response status line or frame info when available" },
#define QC_VERB_ADVANCED 4
{ .name="advanced", .desc="add header fields or frame decoding when available" },
#define QC_VERB_COMPLETE 5
{ .name="complete", .desc="add full data dump when available" },
{ /* end */ }
};
static struct trace_source trace_mux_quic = {
.name = IST("mux_quic"),
.desc = "QUIC multiplexer",
.arg_def = TRC_ARG1_CONN, // TRACE()'s first argument is always a connection
.default_cb = qc_trace,
.known_events = qc_trace_events,
.lockon_args = qc_trace_lockon_args,
.decoding = qc_trace_decoding,
.report_events = ~0, // report everything by default
};
#define TRACE_SOURCE &trace_mux_quic
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
/* quic stats module */
enum {
QC_ST_RESET_STREAM_RCVD,
QC_ST_CONN_PROTO_ERR,
QC_ST_STRM_PROTO_ERR,
QC_ST_RESET_STREAM_SENT,
QC_ST_OPEN_CONN,
QC_ST_OPEN_STREAM,
QC_ST_TOTAL_CONN,
QC_ST_TOTAL_STREAM,
QC_STATS_COUNT /* must be the last member of the enum */
};
static struct name_desc qc_stats[] = {
[QC_ST_RESET_STREAM_RCVD] = { .name = "qc_rst_stream_rcvd",
.desc = "Total number of received RESET_STREAM frames" },
[QC_ST_CONN_PROTO_ERR] = { .name = "qc_detected_conn_protocol_errors",
.desc = "Total number of connection protocol errors" },
[QC_ST_STRM_PROTO_ERR] = { .name = "qc_detected_strm_protocol_errors",
.desc = "Total number of stream protocol errors" },
[QC_ST_RESET_STREAM_SENT] = { .name = "qc_rst_stream_resp",
.desc = "Total number of RESET_STREAM sent on detected error" },
[QC_ST_OPEN_CONN] = { .name = "qc_open_connections",
.desc = "Count of currently open connections" },
[QC_ST_OPEN_STREAM] = { .name = "qc_backend_open_streams",
.desc = "Count of currently open streams" },
[QC_ST_TOTAL_CONN] = { .name = "qc_open_connections",
.desc = "Total number of connections" },
[QC_ST_TOTAL_STREAM] = { .name = "qc_backend_open_streams",
.desc = "Total number of streams" },
};
static struct qc_counters {
long long rst_stream_rcvd; /* total number of RESET_STREAM frame received */
long long conn_proto_err; /* total number of protocol errors detected */
long long strm_proto_err; /* total number of protocol errors detected */
long long rst_stream_resp; /* total number of RESET_STREAM frame sent on error */
long long open_conns; /* count of currently open connections */
long long open_streams; /* count of currently open streams */
long long total_conns; /* total number of connections */
long long total_streams; /* total number of streams */
} qc_counters;
static void qc_fill_stats(void *data, struct field *stats)
{
struct qc_counters *counters = data;
stats[QC_ST_RESET_STREAM_RCVD] = mkf_u64(FN_COUNTER, counters->rst_stream_rcvd);
stats[QC_ST_CONN_PROTO_ERR] = mkf_u64(FN_COUNTER, counters->conn_proto_err);
stats[QC_ST_STRM_PROTO_ERR] = mkf_u64(FN_COUNTER, counters->strm_proto_err);
stats[QC_ST_RESET_STREAM_SENT] = mkf_u64(FN_COUNTER, counters->rst_stream_resp);
stats[QC_ST_OPEN_CONN] = mkf_u64(FN_GAUGE, counters->open_conns);
stats[QC_ST_OPEN_STREAM] = mkf_u64(FN_GAUGE, counters->open_streams);
stats[QC_ST_TOTAL_CONN] = mkf_u64(FN_COUNTER, counters->total_conns);
stats[QC_ST_TOTAL_STREAM] = mkf_u64(FN_COUNTER, counters->total_streams);
}
static struct stats_module qc_stats_module = {
.name = "quic",
.fill_stats = qc_fill_stats,
.stats = qc_stats,
.stats_count = QC_STATS_COUNT,
.counters = &qc_counters,
.counters_size = sizeof(qc_counters),
.domain_flags = MK_STATS_PROXY_DOMAIN(STATS_PX_CAP_FE|STATS_PX_CAP_BE),
.clearable = 1,
};
INITCALL1(STG_REGISTER, stats_register_module, &qc_stats_module);
/* the qcc connection pool */
DECLARE_STATIC_POOL(pool_head_qcc, "qcc", sizeof(struct qcc));
/* the qcs stream pool */
DECLARE_POOL(pool_head_qcs, "qcs", sizeof(struct qcs));
static struct task *qc_timeout_task(struct task *t, void *context, unsigned int state);
static int qc_send(struct qcc *qcc);
static int qc_recv(struct qcc *qcc);
static int qc_process(struct qcc *qcc);
static struct task *qc_io_cb(struct task *t, void *ctx, unsigned int state);
static inline struct qcs *qcc_st_by_id(struct qcc *qcc, int id);
static struct task *qc_deferred_shut(struct task *t, void *ctx, unsigned int state);
static struct qcs *qcc_bck_stream_new(struct qcc *qcc, int dir,
struct conn_stream *cs, struct session *sess);
static void qcs_alert(struct qcs *qcs);
/* returns a qcc state as an abbreviated 3-letter string, or "???" if unknown */
static inline const char *qcc_st_to_str(enum qc_cs st)
{
switch (st) {
case QC_CS_NOERR: return "NER";
default: return "???";
}
}
/* marks an error on the connection */
void qc_error(struct qcc *qcc, int err)
{
TRACE_POINT(QC_EV_QCC_ERR, qcc->conn, 0, 0, (void *)(long)(err));
qcc->errcode = err;
qcc->st0 = QC_CS_ERROR;
}
static inline const char *qcs_rx_st_to_str(enum qcs_rx_st st)
{
switch (st) {
case QC_RX_SS_IDLE: return "IDL";
case QC_RX_SS_RECV: return "RCV";
case QC_RX_SS_SIZE_KNOWN: return "SKNWN";
case QC_RX_SS_DATA_RECVD: return "DATARCVD";
case QC_RX_SS_DATA_READ : return "DATAREAD";
case QC_RX_SS_RST_RECVD: return "RSTRCVD";
case QC_RX_SS_RST_READ: return "RSTREAD";
default: return "???";
}
}
static inline const char *qcs_tx_st_to_str(enum qcs_tx_st st)
{
switch (st) {
case QC_TX_SS_IDLE: return "IDL";
case QC_TX_SS_READY: return "READY";
case QC_TX_SS_SEND: return "SEND";
case QC_TX_SS_DATA_SENT: return "DATASENT";
case QC_TX_SS_DATA_RECVD: return "DATARCVD";
case QC_TX_SS_RST_SENT: return "RSTSENT";
case QC_TX_SS_RST_RECVD: return "RSTRCVD";
default: return "???";
}
}
/* the QUIC traces always expect that arg1, if non-null, is of type connection
* (from which we can derive qcc), that arg2, if non-null, is of type qcs.
*/
static void qc_trace(enum trace_level level, uint64_t mask, const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4)
{
const struct connection *conn = a1;
const struct qcc *qcc = conn ? conn->ctx : NULL;
const struct qcs *qcs = a2;
if (!qcc)
return;
if (src->verbosity > QC_VERB_CLEAN) {
chunk_appendf(&trace_buf, " : qcc=%p(%c,%s)",
qcc, conn_is_back(conn) ? 'B' : 'F', qcc_st_to_str(qcc->st0));
if (qcs) {
chunk_appendf(&trace_buf, " qcs=%p(rx.%s,tx.%s)",
qcs, qcs_rx_st_to_str(qcs->rx.st), qcs_tx_st_to_str(qcs->tx.st));
}
}
}
/* Detect a pending read0 for a QUIC connection. It happens if a read0 is pending
* on the connection AND if there is no more data in the demux buffer. The
* function returns 1 to report a read0 or 0 otherwise.
*/
__maybe_unused
static int qcc_read0_pending(struct qcc *qcc)
{
if (conn_xprt_read0_pending(qcc->conn) && !qcc->rx.inmux)
return 1;
return 0;
}
/* returns true if the connection is allowed to expire, false otherwise. A
* connection may expire when:
* - it has no stream
* - it has data in the mux buffer
* - it has streams in the blocked list
* - it has streams in the fctl list
* - it has streams in the send list
* Otherwise it means some streams are waiting in the data layer and it should
* not expire.
*/
__maybe_unused
static inline int qcc_may_expire(const struct qcc *qcc)
{
return eb_is_empty(&qcc->streams_by_id) ||
br_data(qcc->mbuf) ||
!LIST_ISEMPTY(&qcc->blocked_list) ||
!LIST_ISEMPTY(&qcc->fctl_list) ||
!LIST_ISEMPTY(&qcc->send_list);
}
static __inline int
qcc_is_dead(const struct qcc *qcc)
{
if (eb_is_empty(&qcc->streams_by_id) && /* don't close if streams exist */
((qcc->conn->flags & CO_FL_ERROR) || /* errors close immediately */
(qcc->st0 >= QC_CS_ERROR && !qcc->task) || /* a timeout stroke earlier */
(!(qcc->conn->owner)) || /* Nobody's left to take care of the connection, drop it now */
(!br_data(qcc->mbuf) && /* mux buffer empty, also process clean events below */
conn_xprt_read0_pending(qcc->conn))))
return 1;
return 0;
}
/*****************************************************/
/* functions below are for dynamic buffer management */
/*****************************************************/
/* indicates whether or not the we may call the qc_recv() function to attempt
* to receive data into the buffer and/or demux pending data. The condition is
* a bit complex due to some API limits for now. The rules are the following :
* - if an error or a shutdown was detected on the connection and the buffer
* is empty, we must not attempt to receive
* - if the demux buf failed to be allocated, we must not try to receive and
* we know there is nothing pending
* - if no flag indicates a blocking condition, we may attempt to receive,
* regardless of whether the demux buffer is full or not, so that only
* de demux part decides whether or not to block. This is needed because
* the connection API indeed prevents us from re-enabling receipt that is
* already enabled in a polled state, so we must always immediately stop
* as soon as the demux can't proceed so as never to hit an end of read
* with data pending in the buffers.
* - otherwise must may not attempt
*/
static inline int qc_recv_allowed(const struct qcc *qcc)
{
if (qcc->rx.inmux == 0 &&
(qcc->st0 >= QC_CS_ERROR ||
qcc->conn->flags & CO_FL_ERROR ||
conn_xprt_read0_pending(qcc->conn)))
return 0;
if (!(qcc->flags & QC_CF_DEM_BLOCK_ANY))
return 1;
return 0;
}
/* restarts reading on the connection if it was not enabled */
static inline void qcc_restart_reading(const struct qcc *qcc, int consider_buffer)
{
if (!qc_recv_allowed(qcc))
return;
if ((!consider_buffer || !qcc->rx.inmux)
&& (qcc->wait_event.events & SUB_RETRY_RECV))
return;
tasklet_wakeup(qcc->wait_event.tasklet);
}
/* Tries to grab a buffer and to re-enable processing on mux <target>. The qcc
* flags are used to figure what buffer was requested. It returns 1 if the
* allocation succeeds, in which case the connection is woken up, or 0 if it's
* impossible to wake up and we prefer to be woken up later.
*/
static int qc_buf_available(void *target)
{
struct qcc *qcc = target;
if ((qcc->flags & QC_CF_MUX_MALLOC) && b_alloc(br_tail(qcc->mbuf))) {
qcc->flags &= ~QC_CF_MUX_MALLOC;
if (qcc->flags & QC_CF_DEM_MROOM) {
qcc->flags &= ~QC_CF_DEM_MROOM;
qcc_restart_reading(qcc, 1);
}
return 1;
}
#if 0
if ((qcc->flags & QC_CF_DEM_SALLOC) &&
(qcs = qcc_st_by_id(qcc, qcc->dsi)) && qcs->cs &&
b_alloc_margin(&qcs->rxbuf, 0)) {
qcc->flags &= ~QC_CF_DEM_SALLOC;
qcc_restart_reading(qcc, 1);
return 1;
}
#endif
return 0;
}
struct buffer *qc_get_buf(struct qcc *qcc, struct buffer *bptr)
{
struct buffer *buf = NULL;
if (likely(!LIST_INLIST(&qcc->buf_wait.list)) &&
unlikely((buf = b_alloc(bptr)) == NULL)) {
qcc->buf_wait.target = qcc;
qcc->buf_wait.wakeup_cb = qc_buf_available;
LIST_APPEND(&ti->buffer_wq, &qcc->buf_wait.list);
}
return buf;
}
__maybe_unused
static inline void qc_release_buf(struct qcc *qcc, struct buffer *bptr)
{
if (bptr->size) {
b_free(bptr);
offer_buffers(NULL, 1);
}
}
static inline void qc_release_mbuf(struct qcc *qcc)
{
struct buffer *buf;
unsigned int count = 0;
while (b_size(buf = br_head_pick(qcc->mbuf))) {
b_free(buf);
count++;
}
if (count)
offer_buffers(NULL, count);
}
/* returns the number of streams in use on a connection to figure if it's
* idle or not. We check nb_cs and not nb_streams as the caller will want
* to know if it was the last one after a detach().
*/
static int qc_used_streams(struct connection *conn)
{
struct qcc *qcc = conn->ctx;
return qcc->nb_cs;
}
/* returns the number of concurrent streams available on the connection with <dir>
* as direction
*/
static int qc_avail_streams(struct connection *conn, enum qcs_dir dir)
{
struct qcc *qcc = conn->ctx;
enum qcs_type qcs_type;
if (qcc->st0 >= QC_CS_ERROR)
return 0;
qcs_type = qcs_type_from_dir(qcc, dir);
return qcc->strms[qcs_type].max_streams - qcc->strms[qcs_type].nb_streams;
}
/* returns the number of concurrent bidirectional streams available on the
* connection.
*/
static int qc_avail_streams_bidi(struct connection *conn)
{
return qc_avail_streams(conn, QCS_BIDI);
}
/* returns the number of concurrent unidirectional streams available on the
* connection.
*/
static int qc_avail_streams_uni(struct connection *conn)
{
return qc_avail_streams(conn, QCS_UNI);
}
/*****************************************************************/
/* functions below are dedicated to the mux setup and management */
/*****************************************************************/
/* Update the mux transport parameter after having received remote transpot parameters */
void quic_mux_transport_params_update(struct qcc *qcc)
{
if (objt_listener(qcc->conn->target)) {
struct quic_transport_params *clt_params;
/* Client parameters, params used to TX. */
clt_params = &qcc->conn->qc->tx.params;
qcc->tx.max_data = clt_params->initial_max_data;
/* Client initiated streams must respect the server flow control. */
qcc->strms[QCS_CLT_BIDI].rx.max_data = clt_params->initial_max_stream_data_bidi_local;
qcc->strms[QCS_CLT_UNI].rx.max_data = clt_params->initial_max_stream_data_uni;
/* Server initiated streams must respect the server flow control. */
qcc->strms[QCS_SRV_BIDI].max_streams = clt_params->initial_max_streams_bidi;
qcc->strms[QCS_SRV_BIDI].tx.max_data = clt_params->initial_max_stream_data_bidi_remote;
qcc->strms[QCS_SRV_UNI].max_streams = clt_params->initial_max_streams_uni;
qcc->strms[QCS_SRV_UNI].tx.max_data = clt_params->initial_max_stream_data_uni;
}
else {
struct quic_transport_params *srv_params;
/* server parameters, TX params. */
srv_params = &qcc->conn->qc->tx.params;
qcc->tx.max_data = srv_params->initial_max_data;
/* Client initiated streams must respect the server flow control. */
qcc->strms[QCS_CLT_BIDI].max_streams = srv_params->initial_max_streams_bidi;
qcc->strms[QCS_CLT_BIDI].tx.max_data = srv_params->initial_max_stream_data_bidi_remote;
qcc->strms[QCS_CLT_UNI].max_streams = srv_params->initial_max_streams_uni;
qcc->strms[QCS_CLT_UNI].tx.max_data = srv_params->initial_max_stream_data_uni;
/* Server initiated streams must respect the server flow control. */
qcc->strms[QCS_SRV_BIDI].rx.max_data = srv_params->initial_max_stream_data_bidi_local;
qcc->strms[QCS_SRV_UNI].rx.max_data = srv_params->initial_max_stream_data_uni;
}
/* Now that we have all the flow control information, we can finalize the application
* context.
*/
qcc->app_ops->finalize(qcc->ctx);
}
/* Initialize the mux once it's attached. For outgoing connections, the context
* is already initialized before installing the mux, so we detect incoming
* connections from the fact that the context is still NULL (even during mux
* upgrades). <input> is always used as Input buffer and may contain data. It is
* the caller responsibility to not reuse it anymore. Returns < 0 on error.
*/
static int qc_init(struct connection *conn, struct proxy *prx,
struct session *sess, struct buffer *input)
{
struct qcc *qcc;
struct task *t = NULL;
void *conn_ctx = conn->ctx;
TRACE_ENTER(QC_EV_QCC_NEW);
qcc = pool_alloc(pool_head_qcc);
if (!qcc)
goto fail_no_qcc;
if (conn_is_back(conn)) {
qcc->flags = QC_CF_IS_BACK;
qcc->shut_timeout = qcc->timeout = prx->timeout.server;
if (tick_isset(prx->timeout.serverfin))
qcc->shut_timeout = prx->timeout.serverfin;
qcc->px_counters = EXTRA_COUNTERS_GET(prx->extra_counters_be,
&qc_stats_module);
} else {
qcc->flags = QC_CF_NONE;
qcc->shut_timeout = qcc->timeout = prx->timeout.client;
if (tick_isset(prx->timeout.clientfin))
qcc->shut_timeout = prx->timeout.clientfin;
qcc->px_counters = EXTRA_COUNTERS_GET(prx->extra_counters_fe,
&qc_stats_module);
}
qcc->proxy = prx;
qcc->task = NULL;
if (tick_isset(qcc->timeout)) {
t = task_new(tid_bit);
if (!t)
goto fail;
qcc->task = t;
t->process = qc_timeout_task;
t->context = qcc;
t->expire = tick_add(now_ms, qcc->timeout);
}
qcc->wait_event.tasklet = tasklet_new();
if (!qcc->wait_event.tasklet)
goto fail;
qcc->wait_event.tasklet->process = qc_io_cb;
qcc->wait_event.tasklet->context = qcc;
qcc->wait_event.events = 0;
/* Initialize the context. */
qcc->st0 = QC_CS_NOERR;
qcc->conn = conn;
qcc->conn->qc->qcc = qcc;
/* Application layer initialization. */
qcc->app_ops = &h3_ops;
if (!qcc->app_ops->init(qcc))
goto fail;
/* The transports parameters which control the data sent have been stored
* in ->tx.params. The ones which control the received data are stored in
* in ->rx.params.
*/
if (objt_listener(qcc->conn->target)) {
struct quic_transport_params *srv_params;
/* Server parameters, params used for RX flow control. */
srv_params = &conn->qc->rx.params;
qcc->rx.max_data = srv_params->initial_max_data;
qcc->tx.max_data = 0;
/* Client initiated streams must respect the server flow control. */
qcc->strms[QCS_CLT_BIDI].max_streams = srv_params->initial_max_streams_bidi;
qcc->strms[QCS_CLT_BIDI].nb_streams = 0;
qcc->strms[QCS_CLT_BIDI].largest_id = -1;
qcc->strms[QCS_CLT_BIDI].rx.max_data = 0;
qcc->strms[QCS_CLT_BIDI].tx.max_data = srv_params->initial_max_stream_data_bidi_remote;
qcc->strms[QCS_CLT_UNI].max_streams = srv_params->initial_max_streams_uni;
qcc->strms[QCS_CLT_UNI].nb_streams = 0;
qcc->strms[QCS_CLT_UNI].largest_id = -1;
qcc->strms[QCS_CLT_UNI].rx.max_data = 0;
qcc->strms[QCS_CLT_UNI].tx.max_data = srv_params->initial_max_stream_data_uni;
/* Server initiated streams must respect the server flow control. */
qcc->strms[QCS_SRV_BIDI].max_streams = 0;
qcc->strms[QCS_SRV_BIDI].nb_streams = 0;
qcc->strms[QCS_SRV_BIDI].largest_id = -1;
qcc->strms[QCS_SRV_BIDI].rx.max_data = srv_params->initial_max_stream_data_bidi_local;
qcc->strms[QCS_SRV_BIDI].tx.max_data = 0;
qcc->strms[QCS_SRV_UNI].max_streams = 0;
qcc->strms[QCS_SRV_UNI].nb_streams = 0;
qcc->strms[QCS_SRV_UNI].largest_id = -1;
qcc->strms[QCS_SRV_UNI].rx.max_data = srv_params->initial_max_stream_data_uni;
qcc->strms[QCS_SRV_UNI].tx.max_data = 0;
}
else {
struct quic_transport_params *clt_params;
/* client parameters, RX params. */
clt_params = &conn->qc->rx.params;
qcc->rx.max_data = clt_params->initial_max_data;
qcc->tx.max_data = 0;
/* Client initiated streams must respect the server flow control. */
qcc->strms[QCS_CLT_BIDI].max_streams = 0;
qcc->strms[QCS_CLT_BIDI].nb_streams = 0;
qcc->strms[QCS_CLT_BIDI].largest_id = -1;
qcc->strms[QCS_CLT_BIDI].rx.max_data = clt_params->initial_max_stream_data_bidi_local;
qcc->strms[QCS_CLT_BIDI].tx.max_data = 0;
qcc->strms[QCS_CLT_UNI].max_streams = 0;
qcc->strms[QCS_CLT_UNI].nb_streams = 0;
qcc->strms[QCS_CLT_UNI].largest_id = -1;
qcc->strms[QCS_CLT_UNI].rx.max_data = clt_params->initial_max_stream_data_uni;
qcc->strms[QCS_CLT_UNI].tx.max_data = 0;
/* Server initiated streams must respect the server flow control. */
qcc->strms[QCS_SRV_BIDI].max_streams = clt_params->initial_max_streams_bidi;
qcc->strms[QCS_SRV_BIDI].nb_streams = 0;
qcc->strms[QCS_SRV_BIDI].largest_id = -1;
qcc->strms[QCS_SRV_BIDI].rx.max_data = 0;
qcc->strms[QCS_SRV_BIDI].tx.max_data = clt_params->initial_max_stream_data_bidi_remote;
qcc->strms[QCS_SRV_UNI].max_streams = clt_params->initial_max_streams_uni;
qcc->strms[QCS_SRV_UNI].nb_streams = 0;
qcc->strms[QCS_SRV_UNI].largest_id = -1;
qcc->strms[QCS_SRV_UNI].rx.max_data = 0;
qcc->strms[QCS_SRV_UNI].tx.max_data = clt_params->initial_max_stream_data_uni;
}
/* Initialize the streams counters. */
qcc->nb_cs = 0;
qcc->stream_cnt = 0;
br_init(qcc->mbuf, sizeof(qcc->mbuf) / sizeof(qcc->mbuf[0]));
qcc->streams_by_id = EB_ROOT_UNIQUE;
LIST_INIT(&qcc->send_list);
LIST_INIT(&qcc->fctl_list);
LIST_INIT(&qcc->blocked_list);
LIST_INIT(&qcc->buf_wait.list);
MT_LIST_INIT(&qcc->qcs_rxbuf_wlist);
conn->ctx = qcc;
if (t)
task_queue(t);
if (qcc->flags & QC_CF_IS_BACK) {
/* FIXME: For outgoing connections we need to immediately allocate streams.
* This highly depends on the QUIC application needs.
*/
}
HA_ATOMIC_ADD(&qcc->px_counters->open_conns, 1);
HA_ATOMIC_ADD(&qcc->px_counters->total_conns, 1);
/* prepare to read something */
qcc_restart_reading(qcc, 1);
TRACE_LEAVE(QC_EV_QCC_NEW, conn);
return 0;
fail:
task_destroy(t);
if (qcc->wait_event.tasklet)
tasklet_free(qcc->wait_event.tasklet);
pool_free(pool_head_qcc, qcc);
fail_no_qcc:
conn->ctx = conn_ctx; /* restore saved ctx */
TRACE_DEVEL("leaving in error", QC_EV_QCC_NEW|QC_EV_QCC_END|QC_EV_QCC_ERR);
return -1;
}
/* returns the stream associated with id <id> or NULL if not found */
__maybe_unused
static inline struct qcs *qcc_st_by_id(struct qcc *qcc, int id)
{
struct eb64_node *node;
node = eb64_lookup(&qcc->streams_by_id, id);
if (!node)
return (struct qcs *)qc_closed_stream;
return container_of(node, struct qcs, by_id);
}
/* release function. This one should be called to free all resources allocated
* to the mux.
*/
static void qc_release(struct qcc *qcc)
{
struct connection *conn = NULL;
TRACE_ENTER(QC_EV_QCC_END);
if (qcc) {
/* The connection must be aattached to this mux to be released */
if (qcc->conn && qcc->conn->ctx == qcc)
conn = qcc->conn;
TRACE_DEVEL("freeing qcc", QC_EV_QCC_END, conn);
if (LIST_INLIST(&qcc->buf_wait.list))
LIST_DELETE(&qcc->buf_wait.list);
qc_release_mbuf(qcc);
if (qcc->task) {
qcc->task->context = NULL;
task_wakeup(qcc->task, TASK_WOKEN_OTHER);
qcc->task = NULL;
}
if (qcc->wait_event.tasklet)
tasklet_free(qcc->wait_event.tasklet);
if (conn && qcc->wait_event.events != 0)
conn->xprt->unsubscribe(conn, conn->xprt_ctx, qcc->wait_event.events,
&qcc->wait_event);
HA_ATOMIC_SUB(&qcc->px_counters->open_conns, 1);
pool_free(pool_head_qcc, qcc);
}
if (conn) {
conn->mux = NULL;
conn->ctx = NULL;
TRACE_DEVEL("freeing conn", QC_EV_QCC_END, conn);
conn_stop_tracking(conn);
conn_full_close(conn);
if (conn->destroy_cb)
conn->destroy_cb(conn);
conn_free(conn);
}
TRACE_LEAVE(QC_EV_QCC_END);
}
/******************************************************/
/* functions below are for the QUIC protocol processing */
/******************************************************/
/* attempt to notify the data layer of recv availability */
__maybe_unused
static void qcs_notify_recv(struct qcs *qcs)
{
if (qcs->subs && qcs->subs->events & SUB_RETRY_RECV) {
TRACE_POINT(QC_EV_STRM_WAKE, qcs->qcc->conn, qcs);
tasklet_wakeup(qcs->subs->tasklet);
qcs->subs->events &= ~SUB_RETRY_RECV;
if (!qcs->subs->events)
qcs->subs = NULL;
}
}
/* attempt to notify the data layer of send availability */
__maybe_unused
static void qcs_notify_send(struct qcs *qcs)
{
if (qcs->subs && qcs->subs->events & SUB_RETRY_SEND) {
TRACE_POINT(QC_EV_STRM_WAKE, qcs->qcc->conn, qcs);
qcs->flags |= QC_SF_NOTIFIED;
tasklet_wakeup(qcs->subs->tasklet);
qcs->subs->events &= ~SUB_RETRY_SEND;
if (!qcs->subs->events)
qcs->subs = NULL;
}
else if (qcs->flags & (QC_SF_WANT_SHUTR | QC_SF_WANT_SHUTW)) {
TRACE_POINT(QC_EV_STRM_WAKE, qcs->qcc->conn, qcs);
tasklet_wakeup(qcs->shut_tl);
}
}
/* alerts the data layer, trying to wake it up by all means, following
* this sequence :
* - if the qcs' data layer is subscribed to recv, then it's woken up for recv
* - if its subscribed to send, then it's woken up for send
* - if it was subscribed to neither, its ->wake() callback is called
* It is safe to call this function with a closed stream which doesn't have a
* conn_stream anymore.
*/
__maybe_unused
static void qcs_alert(struct qcs *qcs)
{
TRACE_ENTER(QC_EV_QCS_WAKE, qcs->qcc->conn, qcs);
if (qcs->subs ||
(qcs->flags & (QC_SF_WANT_SHUTR | QC_SF_WANT_SHUTW))) {
qcs_notify_recv(qcs);
qcs_notify_send(qcs);
}
else if (qcs->cs && qcs->cs->data_cb->wake != NULL) {
TRACE_POINT(QC_EV_STRM_WAKE, qcs->qcc->conn, qcs);
qcs->cs->data_cb->wake(qcs->cs);
}
TRACE_LEAVE(QC_EV_QCS_WAKE, qcs->qcc->conn, qcs);
}
/* marks stream <qcs> as CLOSED and decrement the number of active streams for
* its connection if the stream was not yet closed. Please use this exclusively
* before closing a stream to ensure stream count is well maintained.
*/
static inline void qcs_close(struct qcs *qcs)
{
TRACE_ENTER(QC_EV_QCS_END, qcs->qcc->conn, qcs);
/* XXX TO DO XXX */
TRACE_LEAVE(QC_EV_QCS_END, qcs->qcc->conn, qcs);
}
/* detaches an QUIC stream from its QCC and releases it to the QCS pool. */
/* qcs_destroy should only ever be called by the thread that owns the stream,
* that means that a tasklet should be used if we want to destroy the qcs
* from another thread
*/
static void qcs_destroy(struct qcs *qcs)
{
struct connection *conn = qcs->qcc->conn;
TRACE_ENTER(QC_EV_QCS_END, conn, qcs);
qcs_close(qcs);
eb64_delete(&qcs->by_id);
if (b_size(&qcs->rx.buf)) {
b_free(&qcs->rx.buf);
offer_buffers(NULL, 1);
}
if (qcs->subs)
qcs->subs->events = 0;
/* There's no need to explicitly call unsubscribe here, the only
* reference left would be in the qcc send_list/fctl_list, and if
* we're in it, we're getting out anyway
*/
LIST_DEL_INIT(&qcs->list);
/* ditto, calling tasklet_free() here should be ok */
tasklet_free(qcs->shut_tl);
pool_free(pool_head_qcs, qcs);
TRACE_LEAVE(QC_EV_QCS_END, conn);
}
/* allocates a new bidirection stream <id> for connection <qcc> and adds it into qcc's
* stream tree. In case of error, nothing is added and NULL is returned. The
* causes of errors can be any failed memory allocation. The caller is
* responsible for checking if the connection may support an extra stream
* prior to calling this function.
*/
struct qcs *bidi_qcs_new(struct qcc *qcc, uint64_t id)
{
struct qcs *qcs;
enum qcs_type qcs_type;
TRACE_ENTER(QC_EV_QCS_NEW, qcc->conn);
qcs = pool_alloc(pool_head_qcs);
if (!qcs)
goto out;
qcs->shut_tl = tasklet_new();
if (!qcs->shut_tl) {
pool_free(pool_head_qcs, qcs);
goto out;
}
qcs_type = qcs_id_type(id);
qcs->qcc = qcc;
qcs->cs = NULL;
qcs->id = qcs->by_id.key = id;
qcs->frms = EB_ROOT_UNIQUE;
qcs->flags = QC_SF_NONE;
qcs->rx.buf = BUF_NULL;
qcs->rx.st = QC_RX_SS_IDLE;
qcs->rx.bytes = qcs->rx.offset = 0;
qcs->rx.max_data = qcc->strms[qcs_type].rx.max_data;
qcs->rx.buf = BUF_NULL;
qcs->tx.st = QC_TX_SS_IDLE;
qcs->tx.bytes = qcs->tx.offset = 0;
qcs->tx.max_data = qcc->strms[qcs_type].tx.max_data;
eb64_insert(&qcc->streams_by_id, &qcs->by_id);
qcc->strms[qcs_type].nb_streams++;
qcc->stream_cnt++;
qcs->subs = NULL;
LIST_INIT(&qcs->list);
qcs->shut_tl->process = qc_deferred_shut;
qcs->shut_tl->context = qcs;
HA_ATOMIC_ADD(&qcc->px_counters->open_streams, 1);
HA_ATOMIC_ADD(&qcc->px_counters->total_streams, 1);
TRACE_LEAVE(QC_EV_QCS_NEW, qcc->conn, qcs);
return qcs;
out:
TRACE_DEVEL("leaving in error", QC_EV_QCS_ERR|QC_EV_QCS_END, qcc->conn);
return NULL;
}
/* Release <qcs> outgoing uni-stream */
void qcs_release(struct qcs *qcs)
{
eb64_delete(&qcs->by_id);
pool_free(pool_head_qcs, qcs);
}
/* Allocates a locally initiated unidirectional stream. */
struct qcs *luqs_new(struct qcc *qcc)
{
struct qcs *qcs;
uint64_t next_id;
enum qcs_type qcs_type;
TRACE_ENTER(QC_EV_QCS_NEW, qcc->conn);
qcs = NULL;
/* QCS_ID_DIR_BIT bit is set for unidirectional stream. */
if (objt_listener(qcc->conn->target))
qcs_type = QCS_ID_SRV_INTIATOR_BIT | QCS_ID_DIR_BIT;
else
qcs_type = QCS_ID_DIR_BIT;
next_id = qcs_next_id(qcc, qcs_type);
if (next_id == (uint64_t)-1) {
TRACE_PROTO("No more stream available", QC_EV_QCS_NEW, qcc->conn);
goto out;
}
qcs = pool_alloc(pool_head_qcs);
if (!qcs)
goto out;
qcs->qcc = qcc;
qcs->cs = NULL;
qcs->id = qcs->by_id.key = next_id;
qcs->frms = EB_ROOT_UNIQUE;
qcs->flags = QC_SF_NONE;
qcs->tx.st = QC_TX_SS_IDLE;
qcs->tx.max_data = qcc->strms[qcs_type].tx.max_data;
qcs->tx.offset = qcs->tx.bytes = 0;
qcs->tx.buf = BUF_NULL;
qcs->subs = NULL;
LIST_INIT(&qcs->list);
eb64_insert(&qcc->streams_by_id, &qcs->by_id);
TRACE_LEAVE(QC_EV_QCS_NEW, qcc->conn);
return qcs;
out:
if (qcs)
pool_free(pool_head_qcs, qcs);
TRACE_DEVEL("leaving in error", QC_EV_QCS_ERR|QC_EV_QCS_END, qcc->conn);
return NULL;
}
/* Allocates a remotely initiated unidirectional stream. */
struct qcs *ruqs_new(struct qcc *qcc, uint64_t id)
{
struct qcs *qcs;
enum qcs_type qcs_type;
TRACE_ENTER(QC_EV_QCS_NEW, qcc->conn);
qcs = pool_alloc(pool_head_qcs);
if (!qcs)
goto out;
qcs_type = qcs_id_type(id);
qcs->qcc = qcc;
qcs->cs = NULL;
qcs->qcc = qcc;
qcs->id = qcs->by_id.key = id;
qcs->frms = EB_ROOT_UNIQUE;
qcs->flags = QC_SF_NONE;
qcs->rx.st = QC_RX_SS_IDLE;
qcs->rx.max_data = qcc->strms[qcs_type].rx.max_data;
qcs->rx.offset = qcs->rx.bytes = 0;
qcs->rx.buf = BUF_NULL;
qcs->subs = NULL;
LIST_INIT(&qcs->list);
eb64_insert(&qcc->streams_by_id, &qcs->by_id);
TRACE_LEAVE(QC_EV_QCS_NEW, qcc->conn);
return qcs;
out:
TRACE_DEVEL("leaving in error", QC_EV_QCS_ERR|QC_EV_QCS_END, qcc->conn);
return NULL;
}
/* attempt to notify the data layer of recv availability */
void ruqs_notify_recv(struct qcs *qcs)
{
if (qcs->subs && qcs->subs->events & SUB_RETRY_RECV) {
TRACE_POINT(QC_EV_STRM_WAKE, qcs->qcc->conn);
tasklet_wakeup(qcs->subs->tasklet);
qcs->subs->events &= ~SUB_RETRY_RECV;
if (!qcs->subs->events)
qcs->subs = NULL;
}
}
/* Allocates a new stream associated to conn_stream <cs> on the qcc connection
* with dir as direction and returns it, or NULL in case of memory allocation
* error or if the highest possible stream ID was reached.
*/
static struct qcs *qcc_bck_stream_new(struct qcc *qcc, int dir,
struct conn_stream *cs, struct session *sess)
{
struct qcs *qcs = NULL;
enum qcs_type qcs_type;
TRACE_ENTER(QC_EV_QCS_NEW, qcc->conn);
qcs_type = qcs_type_from_dir(qcc, dir);
if (qcc->strms[qcs_type].largest_id + 1 >= qcc->strms[qcs_type].max_streams)
goto out;
/* Defer choosing the ID until we send the first message to create the stream */
qcs = bidi_qcs_new(qcc, qcc->strms[qcs_type].largest_id + 1);
if (!qcs)
goto out;
qcs->cs = cs;
qcs->sess = sess;
cs->ctx = qcs;
qcc->nb_cs++;
out:
if (likely(qcs))
TRACE_LEAVE(QC_EV_QCS_NEW, qcc->conn, qcs);
else
TRACE_LEAVE(QC_EV_QCS_NEW|QC_EV_QCS_ERR|QC_EV_QCS_END, qcc->conn, qcs);
return qcs;
}
/* Allocates a new bidirectional stream associated to conn_stream <cs> on the <qcc> connection
* and returns it, or NULL in case of memory allocation error or if the highest
* possible stream ID was reached.
*/
__maybe_unused
static struct qcs *qcc_bck_stream_new_bidi(struct qcc *qcc,
struct conn_stream *cs, struct session *sess)
{
return qcc_bck_stream_new(qcc, QCS_BIDI, cs, sess);
}
/* Allocates a new unidirectional stream associated to conn_stream <cs> on the <qcc> connection
* and returns it, or NULL in case of memory allocation error or if the highest
* possible stream ID was reached.
*/
__maybe_unused
static struct qcs *qcc_bck_stream_new_uni(struct qcc *qcc,
struct conn_stream *cs, struct session *sess)
{
return qcc_bck_stream_new(qcc, QCS_UNI, cs, sess);
}
/* wake a specific stream and assign its conn_stream some CS_FL_* flags among
* CS_FL_ERR_PENDING and CS_FL_ERROR if needed. The stream's state
* is automatically updated accordingly. If the stream is orphaned, it is
* destroyed.
*/
static void qcs_wake_one_stream(struct qcs *qcs)
{
struct qcc *qcc = qcs->qcc;
TRACE_ENTER(QC_EV_QCS_WAKE, qcc->conn, qcs);
if (!qcs->cs) {
/* this stream was already orphaned */
qcs_destroy(qcs);
TRACE_DEVEL("leaving with no qcs", QC_EV_QCS_WAKE, qcc->conn);
return;
}
/* XXX TO DO XXX */
TRACE_LEAVE(QC_EV_QCS_WAKE, qcc->conn);
}
/* wake the streams attached to the connection, whose id is greater than <last>
* or unassigned.
*/
static void qc_wake_some_streams(struct qcc *qcc, int last)
{
struct eb64_node *node;
struct qcs *qcs;
TRACE_ENTER(QC_EV_QCS_WAKE, qcc->conn);
/* Wake all streams with ID > last */
node = eb64_lookup_ge(&qcc->streams_by_id, last + 1);
while (node) {
qcs = container_of(node, struct qcs, by_id);
node = eb64_next(node);
qcs_wake_one_stream(qcs);
}
/* Wake all streams with unassigned ID (ID == 0) */
node = eb64_lookup(&qcc->streams_by_id, 0);
while (node) {
qcs = container_of(node, struct qcs, by_id);
if (qcs->id > 0)
break;
node = eb64_next(node);
qcs_wake_one_stream(qcs);
}
TRACE_LEAVE(QC_EV_QCS_WAKE, qcc->conn);
}
/* Wake up all blocked streams whose window size has become positive after the
* mux's initial window was adjusted. This should be done after having processed
* SETTINGS frames which have updated the mux's initial window size.
*/
__maybe_unused
static void qcc_unblock_sfctl(struct qcc *qcc)
{
TRACE_ENTER(QC_EV_QCC_WAKE, qcc->conn);
/* XXX TO DO XXX */
TRACE_LEAVE(QC_EV_QCC_WAKE, qcc->conn);
}
/* process Rx frames to be demultiplexed */
__maybe_unused
static void qc_process_demux(struct qcc *qcc)
{
TRACE_ENTER(QC_EV_QCC_WAKE, qcc->conn);
/* XXX TO DO XXX */
TRACE_LEAVE(QC_EV_QCC_WAKE, qcc->conn);
}
/* resume each qcs eligible for sending in list head <head> */
__maybe_unused
static void qc_resume_each_sending_qcs(struct qcc *qcc, struct list *head)
{
struct qcs *qcs, *qcs_back;
TRACE_ENTER(QC_EV_QCC_SEND|QC_EV_QCS_WAKE, qcc->conn);
list_for_each_entry_safe(qcs, qcs_back, head, list) {
if (qcc_wnd(qcc) <= 0 ||
qcc->flags & QC_CF_MUX_BLOCK_ANY ||
qcc->st0 >= QC_CS_ERROR)
break;
qcs->flags &= ~QC_SF_BLK_ANY;
if (qcs->flags & QC_SF_NOTIFIED)
continue;
/* If the sender changed his mind and unsubscribed, let's just
* remove the stream from the send_list.
*/
if (!(qcs->flags & (QC_SF_WANT_SHUTR|QC_SF_WANT_SHUTW)) &&
(!qcs->subs || !(qcs->subs->events & SUB_RETRY_SEND))) {
LIST_DEL_INIT(&qcs->list);
continue;
}
if (qcs->subs && qcs->subs->events & SUB_RETRY_SEND) {
qcs->flags |= QC_SF_NOTIFIED;
tasklet_wakeup(qcs->subs->tasklet);
qcs->subs->events &= ~SUB_RETRY_SEND;
if (!qcs->subs->events)
qcs->subs = NULL;
}
else if (qcs->flags & (QC_SF_WANT_SHUTR|QC_SF_WANT_SHUTW)) {
tasklet_wakeup(qcs->shut_tl);
}
}
TRACE_LEAVE(QC_EV_QCC_SEND|QC_EV_QCS_WAKE, qcc->conn);
}
/* process Tx frames from streams to be multiplexed. Returns > 0 if it reached
* the end.
*/
__maybe_unused
static int qc_process_mux(struct qcc *qcc)
{
TRACE_ENTER(QC_EV_QCC_WAKE, qcc->conn);
/* XXX TO DO XXX */
TRACE_LEAVE(QC_EV_QCC_WAKE, qcc->conn);
return 0;
}
/* Attempt to read data, and subscribe if none available.
* The function returns 1 if data has been received, otherwise zero.
*/
__maybe_unused
static int qc_recv(struct qcc *qcc)
{
TRACE_ENTER(QC_EV_QCC_RECV, qcc->conn);
/* XXX TO DO XXX */
TRACE_LEAVE(QC_EV_QCC_RECV, qcc->conn);
return 0;
}
/* Try to send data if possible.
* The function returns 1 if data have been sent, otherwise zero.
*/
static int qc_send(struct qcc *qcc)
{
TRACE_ENTER(QC_EV_QCC_SEND, qcc->conn);
/* XXX TO DO XXX */
TRACE_LEAVE(QC_EV_QCC_SEND, qcc->conn);
return 0;
}
/* this is the tasklet referenced in qcc->wait_event.tasklet */
static struct task *qc_io_cb(struct task *t, void *ctx, unsigned int status)
{
struct connection *conn;
struct tasklet *tl = (struct tasklet *)t;
int conn_in_list;
struct qcc *qcc;
int ret = 0;
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
if (t->context == NULL) {
/* The connection has been taken over by another thread,
* we're no longer responsible for it, so just free the
* tasklet, and do nothing.
*/
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
tasklet_free(tl);
goto leave;
}
qcc = ctx;
conn = qcc->conn;
TRACE_ENTER(QC_EV_QCC_WAKE, conn);
conn_in_list = conn->flags & CO_FL_LIST_MASK;
/* Remove the connection from the list, to be sure nobody attempts
* to use it while we handle the I/O events
*/
if (conn_in_list)
conn_delete_from_tree(&conn->hash_node->node);
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
if (!(qcc->wait_event.events & SUB_RETRY_SEND))
ret = qc_send(qcc);
#if 0
if (!(qcc->wait_event.events & SUB_RETRY_RECV))
ret |= qc_recv(qcc);
#endif
// TODO redefine the proper condition here
//if (ret || qcc->rx.inmux)
ret = qc_process(qcc);
/* If we were in an idle list, we want to add it back into it,
* unless qc_process() returned -1, which mean it has destroyed
* the connection (testing !ret is enough, if qc_process() wasn't
* called then ret will be 0 anyway.
*/
if (!ret && conn_in_list) {
struct server *srv = objt_server(conn->target);
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
if (conn_in_list == CO_FL_SAFE_LIST)
ebmb_insert(&srv->per_thr[tid].safe_conns,
&conn->hash_node->node, sizeof(conn->hash_node->hash));
else
ebmb_insert(&srv->per_thr[tid].idle_conns,
&conn->hash_node->node, sizeof(conn->hash_node->hash));
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
}
leave:
TRACE_LEAVE(QC_EV_QCC_WAKE);
return NULL;
}
static int qcs_push_frame(struct qcs *qcs, struct buffer *payload, int fin, uint64_t offset)
{
struct quic_frame *frm;
struct buffer buf = BUF_NULL;
int total = 0;
qc_get_buf(qcs->qcc, &buf);
total = b_xfer(&buf, payload, b_data(payload));
frm = pool_zalloc(pool_head_quic_frame);
if (!frm)
goto err;
frm->type = QUIC_FT_STREAM_8;
if (fin)
frm->type |= QUIC_STREAM_FRAME_TYPE_FIN_BIT;
if (offset) {
frm->type |= QUIC_STREAM_FRAME_TYPE_OFF_BIT;
frm->stream.offset = offset;
}
frm->stream.id = qcs->by_id.key;
if (total) {
frm->type |= QUIC_STREAM_FRAME_TYPE_LEN_BIT;
frm->stream.len = total;
frm->stream.data = (unsigned char *)b_head(&buf);
}
struct quic_enc_level *qel = &qcs->qcc->conn->qc->els[QUIC_TLS_ENC_LEVEL_APP];
MT_LIST_APPEND(&qel->pktns->tx.frms, &frm->mt_list);
fprintf(stderr, "%s: total=%d fin=%d offset=%lu\n", __func__, total, fin, offset);
return total;
err:
return -1;
}
/* callback called on any event by the connection handler.
* It applies changes and returns zero, or < 0 if it wants immediate
* destruction of the connection (which normally doesn not happen in quic).
*/
static int qc_process(struct qcc *qcc)
{
struct connection *conn = qcc->conn;
struct qcs *qcs;
struct eb64_node *node;
TRACE_ENTER(QC_EV_QCC_WAKE, conn);
/* TODO simple loop through all streams and check if there is frames to
* send
*/
node = eb64_first(&qcc->streams_by_id);
while (node) {
struct buffer *buf;
qcs = container_of(node, struct qcs, by_id);
for (buf = br_head(qcs->tx.mbuf); b_data(buf); buf = br_del_head(qcs->tx.mbuf)) {
if (b_data(buf)) {
int ret;
ret = qcs_push_frame(qcs, buf, 0, qcs->tx.offset);
if (ret <= 0)
ABORT_NOW();
qcs->tx.offset += ret;
qcs->qcc->wait_event.events &= ~SUB_RETRY_SEND;
}
b_free(buf);
}
node = eb64_next(node);
}
TRACE_LEAVE(QC_EV_QCC_WAKE, conn);
return 0;
}
/* wake-up function called by the connection layer (mux_ops.wake) */
static int qc_wake(struct connection *conn)
{
struct qcc *qcc = conn->ctx;
int ret;
TRACE_ENTER(QC_EV_QCC_WAKE, conn);
ret = qc_process(qcc);
if (ret >= 0)
qc_wake_some_streams(qcc, 0);
TRACE_LEAVE(QC_EV_QCC_WAKE);
return ret;
}
/* Connection timeout management. The principle is that if there's no receipt
* nor sending for a certain amount of time, the connection is closed. If the
* MUX buffer still has lying data or is not allocatable, the connection is
* immediately killed. If it's allocatable and empty, we attempt to send a
* GOAWAY frame.
*/
static struct task *qc_timeout_task(struct task *t, void *context, unsigned int state)
{
TRACE_ENTER(QC_EV_QCC_WAKE);
/* XXX TO DO XXX */
TRACE_LEAVE(QC_EV_QCC_WAKE);
return NULL;
}
/*******************************************/
/* functions below are used by the streams */
/*******************************************/
/*
* Attach a new stream to a connection
* (Used for outgoing connections)
*/
static struct conn_stream *qc_attach(struct connection *conn, struct session *sess)
{
struct conn_stream *cs;
struct qcs *qcs;
struct qcc *qcc = conn->ctx;
TRACE_ENTER(QC_EV_QCS_NEW, conn);
cs = cs_new(conn, conn->target);
if (!cs) {
TRACE_DEVEL("leaving on CS allocation failure", QC_EV_QCS_NEW|QC_EV_QCS_ERR, conn);
return NULL;
}
qcs = qcc_bck_stream_new(qcc, QCS_BIDI, cs, sess);
if (!qcs) {
TRACE_DEVEL("leaving on stream creation failure", QC_EV_QCS_NEW|QC_EV_QCS_ERR, conn);
cs_free(cs);
return NULL;
}
TRACE_LEAVE(QC_EV_QCS_NEW, conn, qcs);
return cs;
}
/* Retrieves the first valid conn_stream from this connection, or returns NULL.
* We have to scan because we may have some orphan streams. It might be
* beneficial to scan backwards from the end to reduce the likeliness to find
* orphans.
*/
static const struct conn_stream *qc_get_first_cs(const struct connection *conn)
{
struct qcc *qcc = conn->ctx;
struct qcs *qcs;
struct eb64_node *node;
node = eb64_first(&qcc->streams_by_id);
while (node) {
qcs = container_of(node, struct qcs, by_id);
if (qcs->cs)
return qcs->cs;
node = eb64_next(node);
}
return NULL;
}
static int qc_ctl(struct connection *conn, enum mux_ctl_type mux_ctl, void *output)
{
int ret = 0;
struct qcc *qcc = conn->ctx;
switch (mux_ctl) {
case MUX_STATUS:
/* Only consider the mux to be ready if we had no error. */
if (qcc->st0 < QC_CS_ERROR)
ret |= MUX_STATUS_READY;
return ret;
case MUX_EXIT_STATUS:
return MUX_ES_UNKNOWN;
default:
return -1;
}
}
/*
* Destroy the mux and the associated connection, if it is no longer used
*/
static void qc_destroy(void *ctx)
{
struct qcc *qcc = ctx;
TRACE_ENTER(QC_EV_QCC_END, qcc->conn);
if (eb_is_empty(&qcc->streams_by_id) || !qcc->conn || qcc->conn->ctx != qcc)
qc_release(qcc);
TRACE_LEAVE(QC_EV_QCC_END);
}
/*
* Detach the stream from the connection and possibly release the connection.
*/
static void qc_detach(struct conn_stream *cs)
{
struct qcs *qcs = cs->ctx;
TRACE_ENTER(QC_EV_STRM_END, qcs ? qcs->qcc->conn : NULL, qcs);
/* XXX TO DO XXX */
TRACE_LEAVE(QC_EV_STRM_END, qcs ? qcs->qcc->conn : NULL);
}
/* Performs a synchronous or asynchronous shutr(). */
static void qc_do_shutr(struct qcs *qcs)
{
struct qcc *qcc = qcs->qcc;
TRACE_ENTER(QC_EV_STRM_SHUT, qcc->conn, qcs);
/* XXX TO DO XXX */
TRACE_LEAVE(QC_EV_STRM_SHUT, qcc->conn, qcs);
return;
}
/* Performs a synchronous or asynchronous shutw(). */
static void qc_do_shutw(struct qcs *qcs)
{
struct qcc *qcc = qcs->qcc;
TRACE_ENTER(QC_EV_STRM_SHUT, qcc->conn, qcs);
/* XXX TO DO XXX */
TRACE_LEAVE(QC_EV_STRM_SHUT, qcc->conn, qcs);
return;
}
/* This is the tasklet referenced in qcs->shut_tl, it is used for
* deferred shutdowns when the qc_detach() was done but the mux buffer was full
* and prevented the last frame from being emitted.
*/
static struct task *qc_deferred_shut(struct task *t, void *ctx, unsigned int state)
{
struct qcs *qcs = ctx;
struct qcc *qcc = qcs->qcc;
TRACE_ENTER(QC_EV_STRM_SHUT, qcc->conn, qcs);
if (qcs->flags & QC_SF_NOTIFIED) {
/* some data processing remains to be done first */
goto end;
}
if (qcs->flags & QC_SF_WANT_SHUTW)
qc_do_shutw(qcs);
if (qcs->flags & QC_SF_WANT_SHUTR)
qc_do_shutr(qcs);
if (!(qcs->flags & (QC_SF_WANT_SHUTR|QC_SF_WANT_SHUTW))) {
/* We're done trying to send, remove ourself from the send_list */
LIST_DEL_INIT(&qcs->list);
if (!qcs->cs) {
qcs_destroy(qcs);
if (qcc_is_dead(qcc))
qc_release(qcc);
}
}
end:
TRACE_LEAVE(QC_EV_STRM_SHUT);
return NULL;
}
/* shutr() called by the conn_stream (mux_ops.shutr) */
static void qc_shutr(struct conn_stream *cs, enum cs_shr_mode mode)
{
struct qcs *qcs = cs->ctx;
TRACE_ENTER(QC_EV_STRM_SHUT, qcs->qcc->conn, qcs);
if (cs->flags & CS_FL_KILL_CONN)
qcs->flags |= QC_SF_KILL_CONN;
if (mode)
qc_do_shutr(qcs);
TRACE_LEAVE(QC_EV_STRM_SHUT, qcs->qcc->conn, qcs);
}
/* shutw() called by the conn_stream (mux_ops.shutw) */
static void qc_shutw(struct conn_stream *cs, enum cs_shw_mode mode)
{
struct qcs *qcs = cs->ctx;
TRACE_ENTER(QC_EV_STRM_SHUT, qcs->qcc->conn, qcs);
if (cs->flags & CS_FL_KILL_CONN)
qcs->flags |= QC_SF_KILL_CONN;
qc_do_shutw(qcs);
TRACE_LEAVE(QC_EV_STRM_SHUT, qcs->qcc->conn, qcs);
}
/* Called from the upper layer, to subscribe <es> to events <event_type>. The
* event subscriber <es> is not allowed to change from a previous call as long
* as at least one event is still subscribed. The <event_type> must only be a
* combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0.
*/
static int qc_subscribe(struct conn_stream *cs, int event_type, struct wait_event *es)
{
struct qcs *qcs = cs->ctx;
struct qcc *qcc = qcs->qcc;
TRACE_ENTER(QC_EV_STRM_SEND|QC_EV_STRM_RECV, qcc->conn, qcs);
BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV));
BUG_ON(qcs->subs && qcs->subs != es);
es->events |= event_type;
qcs->subs = es;
if (event_type & SUB_RETRY_RECV)
TRACE_DEVEL("subscribe(recv)", QC_EV_STRM_RECV, qcc->conn, qcs);
if (event_type & SUB_RETRY_SEND) {
TRACE_DEVEL("subscribe(send)", QC_EV_STRM_SEND, qcc->conn, qcs);
if (!(qcs->flags & QC_SF_BLK_SFCTL) &&
!LIST_INLIST(&qcs->list)) {
if (qcs->flags & QC_SF_BLK_MFCTL)
LIST_APPEND(&qcc->fctl_list, &qcs->list);
else
LIST_APPEND(&qcc->send_list, &qcs->list);
}
}
TRACE_LEAVE(QC_EV_STRM_SEND|QC_EV_STRM_RECV, qcc->conn, qcs);
return 0;
}
/* Called from the upper layer, to unsubscribe <es> from events <event_type>.
* The <es> pointer is not allowed to differ from the one passed to the
* subscribe() call. It always returns zero.
*/
static int qc_unsubscribe(struct conn_stream *cs, int event_type, struct wait_event *es)
{
struct qcs *qcs = cs->ctx;
TRACE_ENTER(QC_EV_STRM_SEND|QC_EV_STRM_RECV, qcs->qcc->conn, qcs);
BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV));
BUG_ON(qcs->subs && qcs->subs != es);
es->events &= ~event_type;
if (!es->events)
qcs->subs = NULL;
if (event_type & SUB_RETRY_RECV)
TRACE_DEVEL("unsubscribe(recv)", QC_EV_STRM_RECV, qcs->qcc->conn, qcs);
if (event_type & SUB_RETRY_SEND) {
TRACE_DEVEL("subscribe(send)", QC_EV_STRM_SEND, qcs->qcc->conn, qcs);
qcs->flags &= ~QC_SF_NOTIFIED;
if (!(qcs->flags & (QC_SF_WANT_SHUTR | QC_SF_WANT_SHUTW)))
LIST_DEL_INIT(&qcs->list);
}
TRACE_LEAVE(QC_EV_STRM_SEND|QC_EV_STRM_RECV, qcs->qcc->conn, qcs);
return 0;
}
/* Called from the upper layer, to subscribe <es> to events <event_type>. The
* event subscriber <es> is not allowed to change from a previous call as long
* as at least one event is still subscribed. The <event_type> must only be a
* SUB_RETRY_RECV. It always returns 0.
*/
static int ruqs_subscribe(struct qcs *qcs, int event_type, struct wait_event *es)
{
struct qcc *qcc = qcs->qcc;
TRACE_ENTER(QC_EV_STRM_RECV, qcc->conn, qcs);
BUG_ON(event_type & ~SUB_RETRY_RECV);
BUG_ON(qcs->subs && qcs->subs != es);
es->events |= event_type;
qcs->subs = es;
if (event_type & SUB_RETRY_RECV)
TRACE_DEVEL("subscribe(recv)", QC_EV_STRM_RECV, qcc->conn, qcs);
TRACE_LEAVE(QC_EV_STRM_RECV, qcc->conn, qcs);
return 0;
}
/* Called from the upper layer, to unsubscribe <es> from events <event_type>.
* The <es> pointer is not allowed to differ from the one passed to the
* subscribe() call. It always returns zero.
*/
static int ruqs_unsubscribe(struct qcs *qcs, int event_type, struct wait_event *es)
{
TRACE_ENTER(QC_EV_STRM_RECV, qcs->qcc->conn, qcs);
BUG_ON(event_type & ~SUB_RETRY_RECV);
BUG_ON(qcs->subs && qcs->subs != es);
es->events &= ~event_type;
if (!es->events)
qcs->subs = NULL;
if (event_type & SUB_RETRY_RECV)
TRACE_DEVEL("unsubscribe(recv)", QC_EV_STRM_RECV, qcs->qcc->conn, qcs);
TRACE_LEAVE(QC_EV_STRM_RECV, qcs->qcc->conn, qcs);
return 0;
}
/* Called from the upper layer, to subscribe <es> to events <event_type>. The
* event subscriber <es> is not allowed to change from a previous call as long
* as at least one event is still subscribed. The <event_type> must only be
* SUB_RETRY_SEND. It always returns 0.
*/
static int luqs_subscribe(struct qcs *qcs, int event_type, struct wait_event *es)
{
struct qcc *qcc = qcs->qcc;
TRACE_ENTER(QC_EV_STRM_SEND, qcc->conn, qcs);
BUG_ON(event_type & ~SUB_RETRY_SEND);
BUG_ON(qcs->subs && qcs->subs != es);
es->events |= event_type;
qcs->subs = es;
if (event_type & SUB_RETRY_SEND) {
TRACE_DEVEL("subscribe(send)", QC_EV_STRM_SEND, qcc->conn, qcs);
if (!(qcs->flags & QC_SF_BLK_SFCTL) &&
!LIST_INLIST(&qcs->list)) {
if (qcs->flags & QC_SF_BLK_MFCTL)
LIST_APPEND(&qcc->fctl_list, &qcs->list);
else
LIST_APPEND(&qcc->send_list, &qcs->list);
}
}
TRACE_LEAVE(QC_EV_STRM_SEND, qcc->conn, qcs);
return 0;
}
/* Called from the upper layer, to unsubscribe <es> from events <event_type>.
* The <es> pointer is not allowed to differ from the one passed to the
* subscribe() call. It always returns zero.
*/
static int luqs_unsubscribe(struct qcs *qcs, int event_type, struct wait_event *es)
{
struct qcc *qcc = qcs->qcc;
TRACE_ENTER(QC_EV_STRM_SEND, qcc->conn, qcs);
BUG_ON(event_type & ~SUB_RETRY_SEND);
BUG_ON(qcs->subs && qcs->subs != es);
es->events &= ~event_type;
if (!es->events)
qcs->subs = NULL;
if (event_type & SUB_RETRY_SEND) {
TRACE_DEVEL("subscribe(send)", QC_EV_STRM_SEND, qcc->conn, qcs);
qcs->flags &= ~QC_SF_NOTIFIED;
if (!(qcs->flags & (QC_SF_WANT_SHUTR | QC_SF_WANT_SHUTW)))
LIST_DEL_INIT(&qcs->list);
}
TRACE_LEAVE(QC_EV_STRM_SEND, qcc->conn, qcs);
return 0;
}
/* Called from the upper layer, to receive data */
static size_t qc_rcv_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags)
{
struct qcs *qcs = cs->ctx;
struct qcc *qcc = qcs->qcc;
int ret;
ret = 0;
TRACE_ENTER(QC_EV_STRM_RECV, qcc->conn, qcs);
/* XXX TO DO XXX */
TRACE_LEAVE(QC_EV_STRM_RECV, qcc->conn, qcs);
return ret;
}
/* Called from the upper layer, to send data from buffer <buf> for no more than
* <count> bytes. Returns the number of bytes effectively sent. Some status
* flags may be updated on the conn_stream.
*/
static size_t qc_snd_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags)
{
struct qcs *qcs = cs->ctx;
size_t total = 0;
TRACE_ENTER(QC_EV_QCS_SEND|QC_EV_STRM_SEND, qcs->qcc->conn, qcs);
if (count) {
if (!(qcs->qcc->wait_event.events & SUB_RETRY_SEND))
tasklet_wakeup(qcs->qcc->wait_event.tasklet);
}
TRACE_LEAVE(QC_EV_QCS_SEND|QC_EV_STRM_SEND, qcs->qcc->conn, qcs);
return total;
}
/* Called from the upper layer, to send data from buffer <buf> for no more than
* <count> bytes. Returns the number of bytes effectively sent. Some status
* flags may be updated on the outgoing uni-stream.
*/
__maybe_unused
static size_t _qcs_snd_buf(struct qcs *qcs, struct buffer *buf, size_t count, int flags)
{
size_t total = 0;
struct qcc *qcc = qcs->qcc;
struct buffer *res;
struct quic_tx_frm *frm;
TRACE_ENTER(QC_EV_QCS_SEND|QC_EV_STRM_SEND, qcs->qcc->conn);
if (!count)
goto out;
res = br_tail(qcc->mbuf);
if (!qc_get_buf(qcc, res)) {
qcc->flags |= QC_CF_MUX_MALLOC;
goto out;
}
while (count) {
size_t try, room;
room = b_room(res);
if (!room) {
if ((res = br_tail_add(qcc->mbuf)) != NULL)
continue;
qcc->flags |= QC_CF_MUX_MALLOC;
break;
}
try = count;
if (try > room)
try = room;
total += b_xfer(res, buf, try);
count -= try;
}
if (total) {
frm = pool_alloc(pool_head_quic_tx_frm);
if (!frm) { /* XXX XXX */ }
}
out:
TRACE_LEAVE(QC_EV_QCS_SEND|QC_EV_STRM_SEND, qcs->qcc->conn);
return total;
err:
TRACE_DEVEL("leaving on stream error", QC_EV_QCS_SEND|QC_EV_STRM_SEND, qcs->qcc->conn);
return total;
}
/* Called from the upper layer, to send data from buffer <buf> for no more than
* <count> bytes. Returns the number of bytes effectively sent. Some status
* flags may be updated on the mux.
*/
size_t luqs_snd_buf(struct qcs *qcs, struct buffer *buf, size_t count, int flags)
{
size_t room, total = 0;
struct qcc *qcc = qcs->qcc;
struct buffer *res;
TRACE_ENTER(QC_EV_QCS_SEND|QC_EV_STRM_SEND, qcs->qcc->conn);
if (!count)
goto out;
res = &qcs->tx.buf;
if (!qc_get_buf(qcc, res)) {
qcc->flags |= QC_CF_MUX_MALLOC;
goto out;
}
room = b_room(res);
if (!room)
goto out;
if (count > room)
count = room;
total += b_xfer(res, buf, count);
out:
TRACE_LEAVE(QC_EV_QCS_SEND|QC_EV_STRM_SEND, qcs->qcc->conn);
return total;
err:
TRACE_DEVEL("leaving on stream error", QC_EV_QCS_SEND|QC_EV_STRM_SEND, qcs->qcc->conn);
return total;
}
/* for debugging with CLI's "show fd" command */
static int qc_show_fd(struct buffer *msg, struct connection *conn)
{
struct qcc *qcc = conn->ctx;
struct qcs *qcs = NULL;
struct eb64_node *node;
int fctl_cnt = 0;
int send_cnt = 0;
int tree_cnt = 0;
int orph_cnt = 0;
struct buffer *hmbuf, *tmbuf;
if (!qcc)
return 0;
list_for_each_entry(qcs, &qcc->fctl_list, list)
fctl_cnt++;
list_for_each_entry(qcs, &qcc->send_list, list)
send_cnt++;
qcs = NULL;
node = eb64_first(&qcc->streams_by_id);
while (node) {
qcs = container_of(node, struct qcs, by_id);
tree_cnt++;
if (!qcs->cs)
orph_cnt++;
node = eb64_next(node);
}
hmbuf = br_head(qcc->mbuf);
tmbuf = br_tail(qcc->mbuf);
chunk_appendf(msg, " qcc.st0=%s .flg=0x%04x"
" clt.nb_streams_bidi=%llu srv.nb_streams_bidi=%llu"
" clt.nb_streams_uni=%llu srv.nb_streams_uni=%llu"
" .nbcs=%u .fctl_cnt=%d .send_cnt=%d .tree_cnt=%d"
" .orph_cnt=%d .sub=%d"
" .mbuf=[%u..%u|%u],h=[%u@%p+%u/%u],t=[%u@%p+%u/%u]",
qcc_st_to_str(qcc->st0), qcc->flags,
(unsigned long long)qcc->strms[QCS_CLT_BIDI].nb_streams,
(unsigned long long)qcc->strms[QCS_SRV_BIDI].nb_streams,
(unsigned long long)qcc->strms[QCS_CLT_UNI].nb_streams,
(unsigned long long)qcc->strms[QCS_SRV_UNI].nb_streams,
qcc->nb_cs, fctl_cnt, send_cnt, tree_cnt, orph_cnt,
qcc->wait_event.events,
br_head_idx(qcc->mbuf), br_tail_idx(qcc->mbuf), br_size(qcc->mbuf),
(unsigned int)b_data(hmbuf), b_orig(hmbuf),
(unsigned int)b_head_ofs(hmbuf), (unsigned int)b_size(hmbuf),
(unsigned int)b_data(tmbuf), b_orig(tmbuf),
(unsigned int)b_head_ofs(tmbuf), (unsigned int)b_size(tmbuf));
if (qcs) {
chunk_appendf(msg, " last_qcs=%p .id=%llu rx.st=%s tx.st=%s .flg=0x%04x .rxbuf=%u@%p+%u/%u .cs=%p",
qcs, (unsigned long long)qcs->id,
qcs_rx_st_to_str(qcs->rx.st), qcs_tx_st_to_str(qcs->tx.st), qcs->flags,
(unsigned int)b_data(&qcs->rx.buf), b_orig(&qcs->rx.buf),
(unsigned int)b_head_ofs(&qcs->rx.buf), (unsigned int)b_size(&qcs->rx.buf),
qcs->cs);
if (qcs->cs)
chunk_appendf(msg, " .cs.flg=0x%08x .cs.data=%p",
qcs->cs->flags, qcs->cs->data);
}
return 0;
}
/* Migrate the the connection to the current thread.
* Return 0 if successful, non-zero otherwise.
* Expected to be called with the old thread lock held.
*/
static int qc_takeover(struct connection *conn, int orig_tid)
{
struct qcc *qcc = conn->ctx;
struct task *task;
if (fd_takeover(conn->handle.fd, conn) != 0)
return -1;
if (conn->xprt->takeover && conn->xprt->takeover(conn, conn->xprt_ctx, orig_tid) != 0) {
/* We failed to takeover the xprt, even if the connection may
* still be valid, flag it as error'd, as we have already
* taken over the fd, and wake the tasklet, so that it will
* destroy it.
*/
conn->flags |= CO_FL_ERROR;
tasklet_wakeup_on(qcc->wait_event.tasklet, orig_tid);
return -1;
}
if (qcc->wait_event.events)
qcc->conn->xprt->unsubscribe(qcc->conn, qcc->conn->xprt_ctx,
qcc->wait_event.events, &qcc->wait_event);
/* To let the tasklet know it should free itself, and do nothing else,
* set its context to NULL.
*/
qcc->wait_event.tasklet->context = NULL;
tasklet_wakeup_on(qcc->wait_event.tasklet, orig_tid);
task = qcc->task;
if (task) {
task->context = NULL;
qcc->task = NULL;
__ha_barrier_store();
task_kill(task);
qcc->task = task_new(tid_bit);
if (!qcc->task) {
qc_release(qcc);
return -1;
}
qcc->task->process = qc_timeout_task;
qcc->task->context = qcc;
}
qcc->wait_event.tasklet = tasklet_new();
if (!qcc->wait_event.tasklet) {
qc_release(qcc);
return -1;
}
qcc->wait_event.tasklet->process = qc_io_cb;
qcc->wait_event.tasklet->context = qcc;
qcc->conn->xprt->subscribe(qcc->conn, qcc->conn->xprt_ctx,
SUB_RETRY_RECV, &qcc->wait_event);
return 0;
}
/****************************************/
/* MUX initialization and instantiation */
/***************************************/
/* The mux operations */
static const struct mux_ops qc_ops = {
.init = qc_init,
.wake = qc_wake,
.snd_buf = qc_snd_buf,
.rcv_buf = qc_rcv_buf,
.subscribe = qc_subscribe,
.unsubscribe = qc_unsubscribe,
.ruqs_subscribe = ruqs_subscribe,
.ruqs_unsubscribe = ruqs_unsubscribe,
.luqs_subscribe = luqs_subscribe,
.luqs_unsubscribe = luqs_unsubscribe,
.attach = qc_attach,
.get_first_cs = qc_get_first_cs,
.detach = qc_detach,
.destroy = qc_destroy,
.avail_streams_bidi = qc_avail_streams_bidi,
.avail_streams_uni = qc_avail_streams_uni,
.used_streams = qc_used_streams,
.shutr = qc_shutr,
.shutw = qc_shutw,
.ctl = qc_ctl,
.show_fd = qc_show_fd,
.takeover = qc_takeover,
.flags = MX_FL_CLEAN_ABRT|MX_FL_HTX|MX_FL_HOL_RISK,
.name = "QUIC",
};
static struct mux_proto_list mux_proto_quic =
{ .token = IST("quic"), .mode = PROTO_MODE_HTTP, .side = PROTO_SIDE_BOTH, .mux = &qc_ops };
INITCALL1(STG_REGISTER, register_mux_proto, &mux_proto_quic);