blob: 7e416f20c1dd90fc947d0962e9fbff9401c52ad7 [file] [log] [blame]
#include <sys/socket.h>
#include <lauxlib.h>
#include <lua.h>
#include <lualib.h>
#if !defined(LUA_VERSION_NUM) || LUA_VERSION_NUM < 503
#error "Requires Lua 5.3 or later."
#endif
#include <ebpttree.h>
#include <common/cfgparse.h>
#include <types/connection.h>
#include <types/hlua.h>
#include <types/proto_tcp.h>
#include <types/proxy.h>
#include <proto/arg.h>
#include <proto/channel.h>
#include <proto/hdr_idx.h>
#include <proto/hlua.h>
#include <proto/obj_type.h>
#include <proto/pattern.h>
#include <proto/payload.h>
#include <proto/proto_http.h>
#include <proto/proto_tcp.h>
#include <proto/raw_sock.h>
#include <proto/sample.h>
#include <proto/server.h>
#include <proto/session.h>
#include <proto/ssl_sock.h>
#include <proto/stream_interface.h>
#include <proto/task.h>
/* Lua uses longjmp to perform yield or throwing errors. This
* macro is used only for identifying the function that can
* not return because a longjmp is executed.
* __LJMP marks a prototype of hlua file that can use longjmp.
* WILL_LJMP() marks an lua function that will use longjmp.
* MAY_LJMP() marks an lua function that may use longjmp.
*/
#define __LJMP
#define WILL_LJMP(func) func
#define MAY_LJMP(func) func
/* The main Lua execution context. */
struct hlua gL;
/* This is the memory pool containing all the signal structs. These
* struct are used to store each requiered signal between two tasks.
*/
struct pool_head *pool2_hlua_com;
struct pool_head *pool2_hlua_sleep;
/* Used for Socket connection. */
static struct proxy socket_proxy;
static struct server socket_tcp;
#ifdef USE_OPENSSL
static struct server socket_ssl;
#endif
/* List head of the function called at the initialisation time. */
struct list hlua_init_functions = LIST_HEAD_INIT(hlua_init_functions);
/* The following variables contains the reference of the different
* Lua classes. These references are useful for identify metadata
* associated with an object.
*/
static int class_txn_ref;
static int class_socket_ref;
static int class_channel_ref;
static int class_fetches_ref;
static int class_converters_ref;
/* Global Lua execution timeout. By default Lua, execution linked
* with session (actions, sample-fetches and converters) have a
* short timeout. Lua linked with tasks doesn't have a timeout
* because a task may remain alive during all the haproxy execution.
*/
static unsigned int hlua_timeout_session = 4000; /* session timeout. */
static unsigned int hlua_timeout_task = TICK_ETERNITY; /* task timeout. */
/* Interrupts the Lua processing each "hlua_nb_instruction" instructions.
* it is used for preventing infinite loops.
*
* I test the scheer with an infinite loop containing one incrementation
* and one test. I run this loop between 10 seconds, I raise a ceil of
* 710M loops from one interrupt each 9000 instructions, so I fix the value
* to one interrupt each 10 000 instructions.
*
* configured | Number of
* instructions | loops executed
* between two | in milions
* forced yields |
* ---------------+---------------
* 10 | 160
* 500 | 670
* 1000 | 680
* 5000 | 700
* 7000 | 700
* 8000 | 700
* 9000 | 710 <- ceil
* 10000 | 710
* 100000 | 710
* 1000000 | 710
*
*/
static unsigned int hlua_nb_instruction = 10000;
/* These functions converts types between HAProxy internal args or
* sample and LUA types. Another function permits to check if the
* LUA stack contains arguments according with an required ARG_T
* format.
*/
static int hlua_arg2lua(lua_State *L, const struct arg *arg);
static int hlua_lua2arg(lua_State *L, int ud, struct arg *arg);
__LJMP static int hlua_lua2arg_check(lua_State *L, int first, struct arg *argp,
unsigned int mask, struct proxy *p);
static int hlua_smp2lua(lua_State *L, struct sample *smp);
static int hlua_smp2lua_str(lua_State *L, struct sample *smp);
static int hlua_lua2smp(lua_State *L, int ud, struct sample *smp);
/* Used to check an Lua function type in the stack. It creates and
* returns a reference of the function. This function throws an
* error if the rgument is not a "function".
*/
__LJMP unsigned int hlua_checkfunction(lua_State *L, int argno)
{
if (!lua_isfunction(L, argno)) {
const char *msg = lua_pushfstring(L, "function expected, got %s", luaL_typename(L, -1));
WILL_LJMP(luaL_argerror(L, argno, msg));
}
lua_pushvalue(L, argno);
return luaL_ref(L, LUA_REGISTRYINDEX);
}
/* The three following functions are useful for adding entries
* in a table. These functions takes a string and respectively an
* integer, a string or a function and add it to the table in the
* top of the stack.
*
* These functions throws an error if no more stack size is
* available.
*/
__LJMP static inline void hlua_class_const_int(lua_State *L, const char *name,
int value)
{
if (!lua_checkstack(L, 2))
WILL_LJMP(luaL_error(L, "full stack"));
lua_pushstring(L, name);
lua_pushinteger(L, value);
lua_settable(L, -3);
}
__LJMP static inline void hlua_class_const_str(lua_State *L, const char *name,
const char *value)
{
if (!lua_checkstack(L, 2))
WILL_LJMP(luaL_error(L, "full stack"));
lua_pushstring(L, name);
lua_pushstring(L, value);
lua_settable(L, -3);
}
__LJMP static inline void hlua_class_function(lua_State *L, const char *name,
int (*function)(lua_State *L))
{
if (!lua_checkstack(L, 2))
WILL_LJMP(luaL_error(L, "full stack"));
lua_pushstring(L, name);
lua_pushcclosure(L, function, 0);
lua_settable(L, -3);
}
/* This function check the number of arguments available in the
* stack. If the number of arguments available is not the same
* then <nb> an error is throwed.
*/
__LJMP static inline void check_args(lua_State *L, int nb, char *fcn)
{
if (lua_gettop(L) == nb)
return;
WILL_LJMP(luaL_error(L, "'%s' needs %d arguments", fcn, nb));
}
/* Return true if the data in stack[<ud>] is an object of
* type <class_ref>.
*/
static int hlua_metaistype(lua_State *L, int ud, int class_ref)
{
if (!lua_getmetatable(L, ud))
return 0;
lua_rawgeti(L, LUA_REGISTRYINDEX, class_ref);
if (!lua_rawequal(L, -1, -2)) {
lua_pop(L, 2);
return 0;
}
lua_pop(L, 2);
return 1;
}
/* Return an object of the expected type, or throws an error. */
__LJMP static void *hlua_checkudata(lua_State *L, int ud, int class_ref)
{
void *p;
/* Check if the stack entry is an array. */
if (!lua_istable(L, ud))
WILL_LJMP(luaL_argerror(L, ud, NULL));
/* Check if the metadata have the expected type. */
if (!hlua_metaistype(L, ud, class_ref))
WILL_LJMP(luaL_argerror(L, ud, NULL));
/* Push on the stack at the entry [0] of the table. */
lua_rawgeti(L, ud, 0);
/* Check if this entry is userdata. */
p = lua_touserdata(L, -1);
if (!p)
WILL_LJMP(luaL_argerror(L, ud, NULL));
/* Remove the entry returned by lua_rawgeti(). */
lua_pop(L, 1);
/* Return the associated struct. */
return p;
}
/* This fucntion push an error string prefixed by the file name
* and the line number where the error is encountered.
*/
static int hlua_pusherror(lua_State *L, const char *fmt, ...)
{
va_list argp;
va_start(argp, fmt);
luaL_where(L, 1);
lua_pushvfstring(L, fmt, argp);
va_end(argp);
lua_concat(L, 2);
return 1;
}
/* This function register a new signal. "lua" is the current lua
* execution context. It contains a pointer to the associated task.
* "link" is a list head attached to an other task that must be wake
* the lua task if an event occurs. This is useful with external
* events like TCP I/O or sleep functions. This funcion allocate
* memory for the signal.
*/
static int hlua_com_new(struct hlua *lua, struct list *link)
{
struct hlua_com *com = pool_alloc2(pool2_hlua_com);
if (!com)
return 0;
LIST_ADDQ(&lua->com, &com->purge_me);
LIST_ADDQ(link, &com->wake_me);
com->task = lua->task;
return 1;
}
/* This function purge all the pending signals when the LUA execution
* is finished. This prevent than a coprocess try to wake a deleted
* task. This function remove the memory associated to the signal.
*/
static void hlua_com_purge(struct hlua *lua)
{
struct hlua_com *com, *back;
/* Delete all pending communication signals. */
list_for_each_entry_safe(com, back, &lua->com, purge_me) {
LIST_DEL(&com->purge_me);
LIST_DEL(&com->wake_me);
pool_free2(pool2_hlua_com, com);
}
}
/* This function sends signals. It wakes all the tasks attached
* to a list head, and remove the signal, and free the used
* memory.
*/
static void hlua_com_wake(struct list *wake)
{
struct hlua_com *com, *back;
/* Wake task and delete all pending communication signals. */
list_for_each_entry_safe(com, back, wake, wake_me) {
LIST_DEL(&com->purge_me);
LIST_DEL(&com->wake_me);
task_wakeup(com->task, TASK_WOKEN_MSG);
pool_free2(pool2_hlua_com, com);
}
}
/* This functions is used with sample fetch and converters. It
* converts the HAProxy configuration argument in a lua stack
* values.
*
* It takes an array of "arg", and each entry of the array is
* converted and pushed in the LUA stack.
*/
static int hlua_arg2lua(lua_State *L, const struct arg *arg)
{
switch (arg->type) {
case ARGT_SINT:
lua_pushinteger(L, arg->data.sint);
break;
case ARGT_UINT:
case ARGT_TIME:
case ARGT_SIZE:
lua_pushinteger(L, arg->data.sint);
break;
case ARGT_STR:
lua_pushlstring(L, arg->data.str.str, arg->data.str.len);
break;
case ARGT_IPV4:
case ARGT_IPV6:
case ARGT_MSK4:
case ARGT_MSK6:
case ARGT_FE:
case ARGT_BE:
case ARGT_TAB:
case ARGT_SRV:
case ARGT_USR:
case ARGT_MAP:
default:
lua_pushnil(L);
break;
}
return 1;
}
/* This function take one entrie in an LUA stack at the index "ud",
* and try to convert it in an HAProxy argument entry. This is useful
* with sample fetch wrappers. The input arguments are gived to the
* lua wrapper and converted as arg list by thi function.
*/
static int hlua_lua2arg(lua_State *L, int ud, struct arg *arg)
{
switch (lua_type(L, ud)) {
case LUA_TNUMBER:
case LUA_TBOOLEAN:
arg->type = ARGT_SINT;
arg->data.sint = lua_tointeger(L, ud);
break;
case LUA_TSTRING:
arg->type = ARGT_STR;
arg->data.str.str = (char *)lua_tolstring(L, ud, (size_t *)&arg->data.str.len);
break;
case LUA_TUSERDATA:
case LUA_TNIL:
case LUA_TTABLE:
case LUA_TFUNCTION:
case LUA_TTHREAD:
case LUA_TLIGHTUSERDATA:
arg->type = ARGT_SINT;
arg->data.uint = 0;
break;
}
return 1;
}
/* the following functions are used to convert a struct sample
* in Lua type. This useful to convert the return of the
* fetchs or converters.
*/
static int hlua_smp2lua(lua_State *L, struct sample *smp)
{
switch (smp->type) {
case SMP_T_SINT:
case SMP_T_BOOL:
case SMP_T_UINT:
lua_pushinteger(L, smp->data.sint);
break;
case SMP_T_BIN:
case SMP_T_STR:
lua_pushlstring(L, smp->data.str.str, smp->data.str.len);
break;
case SMP_T_METH:
switch (smp->data.meth.meth) {
case HTTP_METH_OPTIONS: lua_pushstring(L, "OPTIONS"); break;
case HTTP_METH_GET: lua_pushstring(L, "GET"); break;
case HTTP_METH_HEAD: lua_pushstring(L, "HEAD"); break;
case HTTP_METH_POST: lua_pushstring(L, "POST"); break;
case HTTP_METH_PUT: lua_pushstring(L, "PUT"); break;
case HTTP_METH_DELETE: lua_pushstring(L, "DELETE"); break;
case HTTP_METH_TRACE: lua_pushstring(L, "TRACE"); break;
case HTTP_METH_CONNECT: lua_pushstring(L, "CONNECT"); break;
case HTTP_METH_OTHER:
lua_pushlstring(L, smp->data.meth.str.str, smp->data.meth.str.len);
break;
default:
lua_pushnil(L);
break;
}
break;
case SMP_T_IPV4:
case SMP_T_IPV6:
case SMP_T_ADDR: /* This type is never used to qualify a sample. */
if (sample_casts[smp->type][SMP_T_STR] &&
sample_casts[smp->type][SMP_T_STR](smp))
lua_pushlstring(L, smp->data.str.str, smp->data.str.len);
else
lua_pushnil(L);
break;
default:
lua_pushnil(L);
break;
}
return 1;
}
/* the following functions are used to convert a struct sample
* in Lua strings. This is useful to convert the return of the
* fetchs or converters.
*/
static int hlua_smp2lua_str(lua_State *L, struct sample *smp)
{
switch (smp->type) {
case SMP_T_BIN:
case SMP_T_STR:
lua_pushlstring(L, smp->data.str.str, smp->data.str.len);
break;
case SMP_T_METH:
switch (smp->data.meth.meth) {
case HTTP_METH_OPTIONS: lua_pushstring(L, "OPTIONS"); break;
case HTTP_METH_GET: lua_pushstring(L, "GET"); break;
case HTTP_METH_HEAD: lua_pushstring(L, "HEAD"); break;
case HTTP_METH_POST: lua_pushstring(L, "POST"); break;
case HTTP_METH_PUT: lua_pushstring(L, "PUT"); break;
case HTTP_METH_DELETE: lua_pushstring(L, "DELETE"); break;
case HTTP_METH_TRACE: lua_pushstring(L, "TRACE"); break;
case HTTP_METH_CONNECT: lua_pushstring(L, "CONNECT"); break;
case HTTP_METH_OTHER:
lua_pushlstring(L, smp->data.meth.str.str, smp->data.meth.str.len);
break;
default:
lua_pushstring(L, "");
break;
}
break;
case SMP_T_SINT:
case SMP_T_BOOL:
case SMP_T_UINT:
case SMP_T_IPV4:
case SMP_T_IPV6:
case SMP_T_ADDR: /* This type is never used to qualify a sample. */
if (sample_casts[smp->type][SMP_T_STR] &&
sample_casts[smp->type][SMP_T_STR](smp))
lua_pushlstring(L, smp->data.str.str, smp->data.str.len);
else
lua_pushstring(L, "");
break;
default:
lua_pushstring(L, "");
break;
}
return 1;
}
/* the following functions are used to convert an Lua type in a
* struct sample. This is useful to provide data from a converter
* to the LUA code.
*/
static int hlua_lua2smp(lua_State *L, int ud, struct sample *smp)
{
switch (lua_type(L, ud)) {
case LUA_TNUMBER:
smp->type = SMP_T_SINT;
smp->data.sint = lua_tointeger(L, ud);
break;
case LUA_TBOOLEAN:
smp->type = SMP_T_BOOL;
smp->data.uint = lua_toboolean(L, ud);
break;
case LUA_TSTRING:
smp->type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
smp->data.str.str = (char *)lua_tolstring(L, ud, (size_t *)&smp->data.str.len);
break;
case LUA_TUSERDATA:
case LUA_TNIL:
case LUA_TTABLE:
case LUA_TFUNCTION:
case LUA_TTHREAD:
case LUA_TLIGHTUSERDATA:
smp->type = SMP_T_BOOL;
smp->data.uint = 0;
break;
}
return 1;
}
/* This function check the "argp" builded by another conversion function
* is in accord with the expected argp defined by the "mask". The fucntion
* returns true or false. It can be adjust the types if there compatibles.
*
* This function assumes thant the argp argument contains ARGM_NBARGS + 1
* entries.
*/
__LJMP int hlua_lua2arg_check(lua_State *L, int first, struct arg *argp,
unsigned int mask, struct proxy *p)
{
int min_arg;
int idx;
struct proxy *px;
char *sname, *pname;
idx = 0;
min_arg = ARGM(mask);
mask >>= ARGM_BITS;
while (1) {
/* Check oversize. */
if (idx >= ARGM_NBARGS && argp[idx].type != ARGT_STOP) {
WILL_LJMP(luaL_argerror(L, first + idx, "Malformed argument mask"));
}
/* Check for mandatory arguments. */
if (argp[idx].type == ARGT_STOP) {
if (idx < min_arg) {
/* If miss other argument than the first one, we return an error. */
if (idx > 0)
WILL_LJMP(luaL_argerror(L, first + idx, "Mandatory argument expected"));
/* If first argument have a certain type, some default values
* may be used. See the function smp_resolve_args().
*/
switch (mask & ARGT_MASK) {
case ARGT_FE:
if (!(p->cap & PR_CAP_FE))
WILL_LJMP(luaL_argerror(L, first + idx, "Mandatory argument expected"));
argp[idx].data.prx = p;
argp[idx].type = ARGT_FE;
argp[idx+1].type = ARGT_STOP;
break;
case ARGT_BE:
if (!(p->cap & PR_CAP_BE))
WILL_LJMP(luaL_argerror(L, first + idx, "Mandatory argument expected"));
argp[idx].data.prx = p;
argp[idx].type = ARGT_BE;
argp[idx+1].type = ARGT_STOP;
break;
case ARGT_TAB:
argp[idx].data.prx = p;
argp[idx].type = ARGT_TAB;
argp[idx+1].type = ARGT_STOP;
break;
default:
WILL_LJMP(luaL_argerror(L, first + idx, "Mandatory argument expected"));
break;
}
}
return 0;
}
/* Check for exceed the number of requiered argument. */
if ((mask & ARGT_MASK) == ARGT_STOP &&
argp[idx].type != ARGT_STOP) {
WILL_LJMP(luaL_argerror(L, first + idx, "Last argument expected"));
}
if ((mask & ARGT_MASK) == ARGT_STOP &&
argp[idx].type == ARGT_STOP) {
return 0;
}
/* Convert some argument types. */
switch (mask & ARGT_MASK) {
case ARGT_SINT:
if (argp[idx].type != ARGT_SINT)
WILL_LJMP(luaL_argerror(L, first + idx, "integer expected"));
argp[idx].type = ARGT_SINT;
break;
case ARGT_UINT:
if (argp[idx].type != ARGT_SINT)
WILL_LJMP(luaL_argerror(L, first + idx, "integer expected"));
argp[idx].type = ARGT_SINT;
break;
case ARGT_TIME:
if (argp[idx].type != ARGT_SINT)
WILL_LJMP(luaL_argerror(L, first + idx, "integer expected"));
argp[idx].type = ARGT_SINT;
break;
case ARGT_SIZE:
if (argp[idx].type != ARGT_SINT)
WILL_LJMP(luaL_argerror(L, first + idx, "integer expected"));
argp[idx].type = ARGT_SINT;
break;
case ARGT_FE:
if (argp[idx].type != ARGT_STR)
WILL_LJMP(luaL_argerror(L, first + idx, "string expected"));
memcpy(trash.str, argp[idx].data.str.str, argp[idx].data.str.len);
trash.str[argp[idx].data.str.len] = 0;
argp[idx].data.prx = findproxy(trash.str, PR_CAP_FE);
if (!argp[idx].data.prx)
WILL_LJMP(luaL_argerror(L, first + idx, "frontend doesn't exist"));
argp[idx].type = ARGT_FE;
break;
case ARGT_BE:
if (argp[idx].type != ARGT_STR)
WILL_LJMP(luaL_argerror(L, first + idx, "string expected"));
memcpy(trash.str, argp[idx].data.str.str, argp[idx].data.str.len);
trash.str[argp[idx].data.str.len] = 0;
argp[idx].data.prx = findproxy(trash.str, PR_CAP_BE);
if (!argp[idx].data.prx)
WILL_LJMP(luaL_argerror(L, first + idx, "backend doesn't exist"));
argp[idx].type = ARGT_BE;
break;
case ARGT_TAB:
if (argp[idx].type != ARGT_STR)
WILL_LJMP(luaL_argerror(L, first + idx, "string expected"));
memcpy(trash.str, argp[idx].data.str.str, argp[idx].data.str.len);
trash.str[argp[idx].data.str.len] = 0;
argp[idx].data.prx = find_stktable(trash.str);
if (!argp[idx].data.prx)
WILL_LJMP(luaL_argerror(L, first + idx, "table doesn't exist"));
argp[idx].type = ARGT_TAB;
break;
case ARGT_SRV:
if (argp[idx].type != ARGT_STR)
WILL_LJMP(luaL_argerror(L, first + idx, "string expected"));
memcpy(trash.str, argp[idx].data.str.str, argp[idx].data.str.len);
trash.str[argp[idx].data.str.len] = 0;
sname = strrchr(trash.str, '/');
if (sname) {
*sname++ = '\0';
pname = trash.str;
px = findproxy(pname, PR_CAP_BE);
if (!px)
WILL_LJMP(luaL_argerror(L, first + idx, "backend doesn't exist"));
}
else {
sname = trash.str;
px = p;
}
argp[idx].data.srv = findserver(px, sname);
if (!argp[idx].data.srv)
WILL_LJMP(luaL_argerror(L, first + idx, "server doesn't exist"));
argp[idx].type = ARGT_SRV;
break;
case ARGT_IPV4:
memcpy(trash.str, argp[idx].data.str.str, argp[idx].data.str.len);
trash.str[argp[idx].data.str.len] = 0;
if (inet_pton(AF_INET, trash.str, &argp[idx].data.ipv4))
WILL_LJMP(luaL_argerror(L, first + idx, "invalid IPv4 address"));
argp[idx].type = ARGT_IPV4;
break;
case ARGT_MSK4:
memcpy(trash.str, argp[idx].data.str.str, argp[idx].data.str.len);
trash.str[argp[idx].data.str.len] = 0;
if (!str2mask(trash.str, &argp[idx].data.ipv4))
WILL_LJMP(luaL_argerror(L, first + idx, "invalid IPv4 mask"));
argp[idx].type = ARGT_MSK4;
break;
case ARGT_IPV6:
memcpy(trash.str, argp[idx].data.str.str, argp[idx].data.str.len);
trash.str[argp[idx].data.str.len] = 0;
if (inet_pton(AF_INET6, trash.str, &argp[idx].data.ipv6))
WILL_LJMP(luaL_argerror(L, first + idx, "invalid IPv6 address"));
argp[idx].type = ARGT_IPV6;
break;
case ARGT_MSK6:
case ARGT_MAP:
case ARGT_REG:
case ARGT_USR:
WILL_LJMP(luaL_argerror(L, first + idx, "type not yet supported"));
break;
}
/* Check for type of argument. */
if ((mask & ARGT_MASK) != argp[idx].type) {
const char *msg = lua_pushfstring(L, "'%s' expected, got '%s'",
arg_type_names[(mask & ARGT_MASK)],
arg_type_names[argp[idx].type & ARGT_MASK]);
WILL_LJMP(luaL_argerror(L, first + idx, msg));
}
/* Next argument. */
mask >>= ARGT_BITS;
idx++;
}
}
/*
* The following functions are used to make correspondance between the the
* executed lua pointer and the "struct hlua *" that contain the context.
*
* - hlua_gethlua : return the hlua context associated with an lua_State.
* - hlua_sethlua : create the association between hlua context and lua_state.
*/
static inline struct hlua *hlua_gethlua(lua_State *L)
{
struct hlua **hlua = lua_getextraspace(L);
return *hlua;
}
static inline void hlua_sethlua(struct hlua *hlua)
{
struct hlua **hlua_store = lua_getextraspace(hlua->T);
*hlua_store = hlua;
}
/* This function just ensure that the yield will be always
* returned with a timeout and permit to set some flags
*/
__LJMP void hlua_yieldk(lua_State *L, int nresults, int ctx,
lua_KFunction k, int timeout, unsigned int flags)
{
struct hlua *hlua = hlua_gethlua(L);
/* Set the wake timeout. If timeout is required, we set
* the expiration time.
*/
hlua->wake_time = tick_first(timeout, hlua->expire);
hlua->flags |= flags;
/* Process the yield. */
WILL_LJMP(lua_yieldk(L, nresults, ctx, k));
}
/* This function initialises the Lua environment stored in the session.
* It must be called at the start of the session. This function creates
* an LUA coroutine. It can not be use to crete the main LUA context.
*/
int hlua_ctx_init(struct hlua *lua, struct task *task)
{
lua->Mref = LUA_REFNIL;
lua->flags = 0;
LIST_INIT(&lua->com);
lua->T = lua_newthread(gL.T);
if (!lua->T) {
lua->Tref = LUA_REFNIL;
return 0;
}
hlua_sethlua(lua);
lua->Tref = luaL_ref(gL.T, LUA_REGISTRYINDEX);
lua->task = task;
return 1;
}
/* Used to destroy the Lua coroutine when the attached session or task
* is destroyed. The destroy also the memory context. The struct "lua"
* is not freed.
*/
void hlua_ctx_destroy(struct hlua *lua)
{
if (!lua->T)
return;
/* Purge all the pending signals. */
hlua_com_purge(lua);
/* The thread is garbage collected by Lua. */
luaL_unref(lua->T, LUA_REGISTRYINDEX, lua->Mref);
luaL_unref(gL.T, LUA_REGISTRYINDEX, lua->Tref);
}
/* This function is used to restore the Lua context when a coroutine
* fails. This function copy the common memory between old coroutine
* and the new coroutine. The old coroutine is destroyed, and its
* replaced by the new coroutine.
* If the flag "keep_msg" is set, the last entry of the old is assumed
* as string error message and it is copied in the new stack.
*/
static int hlua_ctx_renew(struct hlua *lua, int keep_msg)
{
lua_State *T;
int new_ref;
/* Renew the main LUA stack doesn't have sense. */
if (lua == &gL)
return 0;
/* New Lua coroutine. */
T = lua_newthread(gL.T);
if (!T)
return 0;
/* Copy last error message. */
if (keep_msg)
lua_xmove(lua->T, T, 1);
/* Copy data between the coroutines. */
lua_rawgeti(lua->T, LUA_REGISTRYINDEX, lua->Mref);
lua_xmove(lua->T, T, 1);
new_ref = luaL_ref(T, LUA_REGISTRYINDEX); /* Valur poped. */
/* Destroy old data. */
luaL_unref(lua->T, LUA_REGISTRYINDEX, lua->Mref);
/* The thread is garbage collected by Lua. */
luaL_unref(gL.T, LUA_REGISTRYINDEX, lua->Tref);
/* Fill the struct with the new coroutine values. */
lua->Mref = new_ref;
lua->T = T;
lua->Tref = luaL_ref(gL.T, LUA_REGISTRYINDEX);
/* Set context. */
hlua_sethlua(lua);
return 1;
}
void hlua_hook(lua_State *L, lua_Debug *ar)
{
struct hlua *hlua = hlua_gethlua(L);
/* Lua cannot yield when its returning from a function,
* so, we can fix the interrupt hook to 1 instruction,
* expecting that the function is finnished.
*/
if (lua_gethookmask(L) & LUA_MASKRET) {
lua_sethook(hlua->T, hlua_hook, LUA_MASKCOUNT, 1);
return;
}
/* restore the interrupt condition. */
lua_sethook(hlua->T, hlua_hook, LUA_MASKCOUNT, hlua_nb_instruction);
/* If we interrupt the Lua processing in yieldable state, we yield.
* If the state is not yieldable, trying yield causes an error.
*/
if (lua_isyieldable(L))
WILL_LJMP(hlua_yieldk(L, 0, 0, NULL, TICK_ETERNITY, HLUA_CTRLYIELD));
/* If we cannot yield, update the clock and check the timeout. */
tv_update_date(0, 1);
if (tick_is_expired(hlua->expire, now_ms)) {
lua_pushfstring(L, "execution timeout");
WILL_LJMP(lua_error(L));
}
/* Try to interrupt the process at the end of the current
* unyieldable function.
*/
lua_sethook(hlua->T, hlua_hook, LUA_MASKRET|LUA_MASKCOUNT, hlua_nb_instruction);
}
/* This function start or resumes the Lua stack execution. If the flag
* "yield_allowed" if no set and the LUA stack execution returns a yield
* The function return an error.
*
* The function can returns 4 values:
* - HLUA_E_OK : The execution is terminated without any errors.
* - HLUA_E_AGAIN : The execution must continue at the next associated
* task wakeup.
* - HLUA_E_ERRMSG : An error has occured, an error message is set in
* the top of the stack.
* - HLUA_E_ERR : An error has occured without error message.
*
* If an error occured, the stack is renewed and it is ready to run new
* LUA code.
*/
static enum hlua_exec hlua_ctx_resume(struct hlua *lua, int yield_allowed)
{
int ret;
const char *msg;
HLUA_SET_RUN(lua);
/* If we want to resume the task, then check first the execution timeout.
* if it is reached, we can interrupt the Lua processing.
*/
if (tick_is_expired(lua->expire, now_ms))
goto timeout_reached;
resume_execution:
/* This hook interrupts the Lua processing each 'hlua_nb_instruction'
* instructions. it is used for preventing infinite loops.
*/
lua_sethook(lua->T, hlua_hook, LUA_MASKCOUNT, hlua_nb_instruction);
/* Remove all flags except the running flags. */
lua->flags = HLUA_RUN;
/* Call the function. */
ret = lua_resume(lua->T, gL.T, lua->nargs);
switch (ret) {
case LUA_OK:
ret = HLUA_E_OK;
break;
case LUA_YIELD:
/* Check if the execution timeout is expired. It it is the case, we
* break the Lua execution.
*/
if (tick_is_expired(lua->expire, now_ms)) {
timeout_reached:
lua_settop(lua->T, 0); /* Empty the stack. */
if (!lua_checkstack(lua->T, 1)) {
ret = HLUA_E_ERR;
break;
}
lua_pushfstring(lua->T, "execution timeout");
ret = HLUA_E_ERRMSG;
break;
}
/* Process the forced yield. if the general yield is not allowed or
* if no task were associated this the current Lua execution
* coroutine, we resume the execution. Else we want to return in the
* scheduler and we want to be waked up again, to continue the
* current Lua execution. So we schedule our own task.
*/
if (HLUA_IS_CTRLYIELDING(lua)) {
if (!yield_allowed || !lua->task)
goto resume_execution;
task_wakeup(lua->task, TASK_WOKEN_MSG);
}
if (!yield_allowed) {
lua_settop(lua->T, 0); /* Empty the stack. */
if (!lua_checkstack(lua->T, 1)) {
ret = HLUA_E_ERR;
break;
}
lua_pushfstring(lua->T, "yield not allowed");
ret = HLUA_E_ERRMSG;
break;
}
ret = HLUA_E_AGAIN;
break;
case LUA_ERRRUN:
lua->wake_time = TICK_ETERNITY;
if (!lua_checkstack(lua->T, 1)) {
ret = HLUA_E_ERR;
break;
}
msg = lua_tostring(lua->T, -1);
lua_settop(lua->T, 0); /* Empty the stack. */
lua_pop(lua->T, 1);
if (msg)
lua_pushfstring(lua->T, "runtime error: %s", msg);
else
lua_pushfstring(lua->T, "unknown runtime error");
ret = HLUA_E_ERRMSG;
break;
case LUA_ERRMEM:
lua->wake_time = TICK_ETERNITY;
lua_settop(lua->T, 0); /* Empty the stack. */
if (!lua_checkstack(lua->T, 1)) {
ret = HLUA_E_ERR;
break;
}
lua_pushfstring(lua->T, "out of memory error");
ret = HLUA_E_ERRMSG;
break;
case LUA_ERRERR:
lua->wake_time = TICK_ETERNITY;
if (!lua_checkstack(lua->T, 1)) {
ret = HLUA_E_ERR;
break;
}
msg = lua_tostring(lua->T, -1);
lua_settop(lua->T, 0); /* Empty the stack. */
lua_pop(lua->T, 1);
if (msg)
lua_pushfstring(lua->T, "message handler error: %s", msg);
else
lua_pushfstring(lua->T, "message handler error");
ret = HLUA_E_ERRMSG;
break;
default:
lua->wake_time = TICK_ETERNITY;
lua_settop(lua->T, 0); /* Empty the stack. */
if (!lua_checkstack(lua->T, 1)) {
ret = HLUA_E_ERR;
break;
}
lua_pushfstring(lua->T, "unknonwn error");
ret = HLUA_E_ERRMSG;
break;
}
switch (ret) {
case HLUA_E_AGAIN:
break;
case HLUA_E_ERRMSG:
hlua_com_purge(lua);
hlua_ctx_renew(lua, 1);
HLUA_CLR_RUN(lua);
break;
case HLUA_E_ERR:
HLUA_CLR_RUN(lua);
hlua_com_purge(lua);
hlua_ctx_renew(lua, 0);
break;
case HLUA_E_OK:
HLUA_CLR_RUN(lua);
hlua_com_purge(lua);
break;
}
return ret;
}
/* This function is an LUA binding. It provides a function
* for deleting ACL from a referenced ACL file.
*/
__LJMP static int hlua_del_acl(lua_State *L)
{
const char *name;
const char *key;
struct pat_ref *ref;
MAY_LJMP(check_args(L, 2, "del_acl"));
name = MAY_LJMP(luaL_checkstring(L, 1));
key = MAY_LJMP(luaL_checkstring(L, 2));
ref = pat_ref_lookup(name);
if (!ref)
WILL_LJMP(luaL_error(L, "'del_acl': unkown acl file '%s'", name));
pat_ref_delete(ref, key);
return 0;
}
/* This function is an LUA binding. It provides a function
* for deleting map entry from a referenced map file.
*/
static int hlua_del_map(lua_State *L)
{
const char *name;
const char *key;
struct pat_ref *ref;
MAY_LJMP(check_args(L, 2, "del_map"));
name = MAY_LJMP(luaL_checkstring(L, 1));
key = MAY_LJMP(luaL_checkstring(L, 2));
ref = pat_ref_lookup(name);
if (!ref)
WILL_LJMP(luaL_error(L, "'del_map': unkown acl file '%s'", name));
pat_ref_delete(ref, key);
return 0;
}
/* This function is an LUA binding. It provides a function
* for adding ACL pattern from a referenced ACL file.
*/
static int hlua_add_acl(lua_State *L)
{
const char *name;
const char *key;
struct pat_ref *ref;
MAY_LJMP(check_args(L, 2, "add_acl"));
name = MAY_LJMP(luaL_checkstring(L, 1));
key = MAY_LJMP(luaL_checkstring(L, 2));
ref = pat_ref_lookup(name);
if (!ref)
WILL_LJMP(luaL_error(L, "'add_acl': unkown acl file '%s'", name));
if (pat_ref_find_elt(ref, key) == NULL)
pat_ref_add(ref, key, NULL, NULL);
return 0;
}
/* This function is an LUA binding. It provides a function
* for setting map pattern and sample from a referenced map
* file.
*/
static int hlua_set_map(lua_State *L)
{
const char *name;
const char *key;
const char *value;
struct pat_ref *ref;
MAY_LJMP(check_args(L, 3, "set_map"));
name = MAY_LJMP(luaL_checkstring(L, 1));
key = MAY_LJMP(luaL_checkstring(L, 2));
value = MAY_LJMP(luaL_checkstring(L, 3));
ref = pat_ref_lookup(name);
if (!ref)
WILL_LJMP(luaL_error(L, "'set_map': unkown map file '%s'", name));
if (pat_ref_find_elt(ref, key) != NULL)
pat_ref_set(ref, key, value, NULL);
else
pat_ref_add(ref, key, value, NULL);
return 0;
}
/* A class is a lot of memory that contain data. This data can be a table,
* an integer or user data. This data is associated with a metatable. This
* metatable have an original version registred in the global context with
* the name of the object (_G[<name>] = <metable> ).
*
* A metable is a table that modify the standard behavior of a standard
* access to the associated data. The entries of this new metatable are
* defined as is:
*
* http://lua-users.org/wiki/MetatableEvents
*
* __index
*
* we access an absent field in a table, the result is nil. This is
* true, but it is not the whole truth. Actually, such access triggers
* the interpreter to look for an __index metamethod: If there is no
* such method, as usually happens, then the access results in nil;
* otherwise, the metamethod will provide the result.
*
* Control 'prototype' inheritance. When accessing "myTable[key]" and
* the key does not appear in the table, but the metatable has an __index
* property:
*
* - if the value is a function, the function is called, passing in the
* table and the key; the return value of that function is returned as
* the result.
*
* - if the value is another table, the value of the key in that table is
* asked for and returned (and if it doesn't exist in that table, but that
* table's metatable has an __index property, then it continues on up)
*
* - Use "rawget(myTable,key)" to skip this metamethod.
*
* http://www.lua.org/pil/13.4.1.html
*
* __newindex
*
* Like __index, but control property assignment.
*
* __mode - Control weak references. A string value with one or both
* of the characters 'k' and 'v' which specifies that the the
* keys and/or values in the table are weak references.
*
* __call - Treat a table like a function. When a table is followed by
* parenthesis such as "myTable( 'foo' )" and the metatable has
* a __call key pointing to a function, that function is invoked
* (passing any specified arguments) and the return value is
* returned.
*
* __metatable - Hide the metatable. When "getmetatable( myTable )" is
* called, if the metatable for myTable has a __metatable
* key, the value of that key is returned instead of the
* actual metatable.
*
* __tostring - Control string representation. When the builtin
* "tostring( myTable )" function is called, if the metatable
* for myTable has a __tostring property set to a function,
* that function is invoked (passing myTable to it) and the
* return value is used as the string representation.
*
* __len - Control table length. When the table length is requested using
* the length operator ( '#' ), if the metatable for myTable has
* a __len key pointing to a function, that function is invoked
* (passing myTable to it) and the return value used as the value
* of "#myTable".
*
* __gc - Userdata finalizer code. When userdata is set to be garbage
* collected, if the metatable has a __gc field pointing to a
* function, that function is first invoked, passing the userdata
* to it. The __gc metamethod is not called for tables.
* (See http://lua-users.org/lists/lua-l/2006-11/msg00508.html)
*
* Special metamethods for redefining standard operators:
* http://www.lua.org/pil/13.1.html
*
* __add "+"
* __sub "-"
* __mul "*"
* __div "/"
* __unm "!"
* __pow "^"
* __concat ".."
*
* Special methods for redfining standar relations
* http://www.lua.org/pil/13.2.html
*
* __eq "=="
* __lt "<"
* __le "<="
*/
/*
*
*
* Class Socket
*
*
*/
__LJMP static struct hlua_socket *hlua_checksocket(lua_State *L, int ud)
{
return (struct hlua_socket *)MAY_LJMP(hlua_checkudata(L, ud, class_socket_ref));
}
/* This function is the handler called for each I/O on the established
* connection. It is used for notify space avalaible to send or data
* received.
*/
static void hlua_socket_handler(struct stream_interface *si)
{
struct appctx *appctx = objt_appctx(si->end);
struct connection *c = objt_conn(si_opposite(si)->end);
/* Wakeup the main session if the client connection is closed. */
if (!c || channel_output_closed(si_ic(si)) || channel_input_closed(si_oc(si))) {
if (appctx->ctx.hlua.socket) {
appctx->ctx.hlua.socket->s = NULL;
appctx->ctx.hlua.socket = NULL;
}
si_shutw(si);
si_shutr(si);
si_ic(si)->flags |= CF_READ_NULL;
hlua_com_wake(&appctx->ctx.hlua.wake_on_read);
hlua_com_wake(&appctx->ctx.hlua.wake_on_write);
return;
}
if (!(c->flags & CO_FL_CONNECTED))
return;
/* This function is called after the connect. */
appctx->ctx.hlua.connected = 1;
/* Wake the tasks which wants to write if the buffer have avalaible space. */
if (channel_may_recv(si_oc(si)))
hlua_com_wake(&appctx->ctx.hlua.wake_on_write);
/* Wake the tasks which wants to read if the buffer contains data. */
if (channel_is_empty(si_ic(si)))
hlua_com_wake(&appctx->ctx.hlua.wake_on_read);
}
/* This function is called when the "struct session" is destroyed.
* Remove the link from the object to this session.
* Wake all the pending signals.
*/
static void hlua_socket_release(struct stream_interface *si)
{
struct appctx *appctx = objt_appctx(si->end);
/* Remove my link in the original object. */
if (appctx->ctx.hlua.socket)
appctx->ctx.hlua.socket->s = NULL;
/* Wake all the task waiting for me. */
hlua_com_wake(&appctx->ctx.hlua.wake_on_read);
hlua_com_wake(&appctx->ctx.hlua.wake_on_write);
}
/* If the garbage collectio of the object is launch, nobody
* uses this object. If the session does not exists, just quit.
* Send the shutdown signal to the session. In some cases,
* pending signal can rest in the read and write lists. destroy
* it.
*/
__LJMP static int hlua_socket_gc(lua_State *L)
{
struct hlua_socket *socket;
struct appctx *appctx;
MAY_LJMP(check_args(L, 1, "__gc"));
socket = MAY_LJMP(hlua_checksocket(L, 1));
if (!socket->s)
return 0;
/* Remove all reference between the Lua stack and the coroutine session. */
appctx = objt_appctx(socket->s->si[0].end);
session_shutdown(socket->s, SN_ERR_KILLED);
socket->s = NULL;
appctx->ctx.hlua.socket = NULL;
return 0;
}
/* The close function send shutdown signal and break the
* links between the session and the object.
*/
__LJMP static int hlua_socket_close(lua_State *L)
{
struct hlua_socket *socket;
struct appctx *appctx;
MAY_LJMP(check_args(L, 1, "close"));
socket = MAY_LJMP(hlua_checksocket(L, 1));
if (!socket->s)
return 0;
/* Close the session and remove the associated stop task. */
session_shutdown(socket->s, SN_ERR_KILLED);
appctx = objt_appctx(socket->s->si[0].end);
appctx->ctx.hlua.socket = NULL;
socket->s = NULL;
return 0;
}
/* This Lua function assumes that the stack contain three parameters.
* 1 - USERDATA containing a struct socket
* 2 - INTEGER with values of the macro defined below
* If the integer is -1, we must read at most one line.
* If the integer is -2, we ust read all the data until the
* end of the stream.
* If the integer is positive value, we must read a number of
* bytes corresponding to this value.
*/
#define HLSR_READ_LINE (-1)
#define HLSR_READ_ALL (-2)
__LJMP static int hlua_socket_receive_yield(struct lua_State *L, int status, lua_KContext ctx)
{
struct hlua_socket *socket = MAY_LJMP(hlua_checksocket(L, 1));
int wanted = lua_tointeger(L, 2);
struct hlua *hlua = hlua_gethlua(L);
struct appctx *appctx;
int len;
int nblk;
char *blk1;
int len1;
char *blk2;
int len2;
int skip_at_end = 0;
struct channel *oc;
/* Check if this lua stack is schedulable. */
if (!hlua || !hlua->task)
WILL_LJMP(luaL_error(L, "The 'receive' function is only allowed in "
"'frontend', 'backend' or 'task'"));
/* check for connection closed. If some data where read, return it. */
if (!socket->s)
goto connection_closed;
oc = &socket->s->res;
if (wanted == HLSR_READ_LINE) {
/* Read line. */
nblk = bo_getline_nc(oc, &blk1, &len1, &blk2, &len2);
if (nblk < 0) /* Connection close. */
goto connection_closed;
if (nblk == 0) /* No data avalaible. */
goto connection_empty;
/* remove final \r\n. */
if (nblk == 1) {
if (blk1[len1-1] == '\n') {
len1--;
skip_at_end++;
if (blk1[len1-1] == '\r') {
len1--;
skip_at_end++;
}
}
}
else {
if (blk2[len2-1] == '\n') {
len2--;
skip_at_end++;
if (blk2[len2-1] == '\r') {
len2--;
skip_at_end++;
}
}
}
}
else if (wanted == HLSR_READ_ALL) {
/* Read all the available data. */
nblk = bo_getblk_nc(oc, &blk1, &len1, &blk2, &len2);
if (nblk < 0) /* Connection close. */
goto connection_closed;
if (nblk == 0) /* No data avalaible. */
goto connection_empty;
}
else {
/* Read a block of data. */
nblk = bo_getblk_nc(oc, &blk1, &len1, &blk2, &len2);
if (nblk < 0) /* Connection close. */
goto connection_closed;
if (nblk == 0) /* No data avalaible. */
goto connection_empty;
if (len1 > wanted) {
nblk = 1;
len1 = wanted;
} if (nblk == 2 && len1 + len2 > wanted)
len2 = wanted - len1;
}
len = len1;
luaL_addlstring(&socket->b, blk1, len1);
if (nblk == 2) {
len += len2;
luaL_addlstring(&socket->b, blk2, len2);
}
/* Consume data. */
bo_skip(oc, len + skip_at_end);
/* Don't wait anything. */
si_update(&socket->s->si[0]);
/* If the pattern reclaim to read all the data
* in the connection, got out.
*/
if (wanted == HLSR_READ_ALL)
goto connection_empty;
else if (wanted >= 0 && len < wanted)
goto connection_empty;
/* Return result. */
luaL_pushresult(&socket->b);
return 1;
connection_closed:
/* If the buffer containds data. */
if (socket->b.n > 0) {
luaL_pushresult(&socket->b);
return 1;
}
lua_pushnil(L);
lua_pushstring(L, "connection closed.");
return 2;
connection_empty:
appctx = objt_appctx(socket->s->si[0].end);
if (!hlua_com_new(hlua, &appctx->ctx.hlua.wake_on_read))
WILL_LJMP(luaL_error(L, "out of memory"));
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_socket_receive_yield, TICK_ETERNITY, 0));
return 0;
}
/* This Lus function gets two parameters. The first one can be string
* or a number. If the string is "*l", the user require one line. If
* the string is "*a", the user require all the content of the stream.
* If the value is a number, the user require a number of bytes equal
* to the value. The default value is "*l" (a line).
*
* This paraeter with a variable type is converted in integer. This
* integer takes this values:
* -1 : read a line
* -2 : read all the stream
* >0 : amount if bytes.
*
* The second parameter is optinal. It contains a string that must be
* concatenated with the read data.
*/
__LJMP static int hlua_socket_receive(struct lua_State *L)
{
int wanted = HLSR_READ_LINE;
const char *pattern;
int type;
char *error;
size_t len;
struct hlua_socket *socket;
if (lua_gettop(L) < 1 || lua_gettop(L) > 3)
WILL_LJMP(luaL_error(L, "The 'receive' function requires between 1 and 3 arguments."));
socket = MAY_LJMP(hlua_checksocket(L, 1));
/* check for pattern. */
if (lua_gettop(L) >= 2) {
type = lua_type(L, 2);
if (type == LUA_TSTRING) {
pattern = lua_tostring(L, 2);
if (strcmp(pattern, "*a") == 0)
wanted = HLSR_READ_ALL;
else if (strcmp(pattern, "*l") == 0)
wanted = HLSR_READ_LINE;
else {
wanted = strtoll(pattern, &error, 10);
if (*error != '\0')
WILL_LJMP(luaL_error(L, "Unsupported pattern."));
}
}
else if (type == LUA_TNUMBER) {
wanted = lua_tointeger(L, 2);
if (wanted < 0)
WILL_LJMP(luaL_error(L, "Unsupported size."));
}
}
/* Set pattern. */
lua_pushinteger(L, wanted);
lua_replace(L, 2);
/* init bufffer, and fiil it wih prefix. */
luaL_buffinit(L, &socket->b);
/* Check prefix. */
if (lua_gettop(L) >= 3) {
if (lua_type(L, 3) != LUA_TSTRING)
WILL_LJMP(luaL_error(L, "Expect a 'string' for the prefix"));
pattern = lua_tolstring(L, 3, &len);
luaL_addlstring(&socket->b, pattern, len);
}
return __LJMP(hlua_socket_receive_yield(L, 0, 0));
}
/* Write the Lua input string in the output buffer.
* This fucntion returns a yield if no space are available.
*/
static int hlua_socket_write_yield(struct lua_State *L,int status, lua_KContext ctx)
{
struct hlua_socket *socket;
struct hlua *hlua = hlua_gethlua(L);
struct appctx *appctx;
size_t buf_len;
const char *buf;
int len;
int send_len;
int sent;
/* Check if this lua stack is schedulable. */
if (!hlua || !hlua->task)
WILL_LJMP(luaL_error(L, "The 'write' function is only allowed in "
"'frontend', 'backend' or 'task'"));
/* Get object */
socket = MAY_LJMP(hlua_checksocket(L, 1));
buf = MAY_LJMP(luaL_checklstring(L, 2, &buf_len));
sent = MAY_LJMP(luaL_checkinteger(L, 3));
/* Check for connection close. */
if (!socket->s || channel_output_closed(&socket->s->req)) {
lua_pushinteger(L, -1);
return 1;
}
/* Update the input buffer data. */
buf += sent;
send_len = buf_len - sent;
/* All the data are sent. */
if (sent >= buf_len)
return 1; /* Implicitly return the length sent. */
/* Check if the buffer is avalaible because HAProxy doesn't allocate
* the request buffer if its not required.
*/
if (socket->s->req.buf->size == 0) {
if (!session_alloc_recv_buffer(&socket->s->req)) {
socket->s->si[0].flags |= SI_FL_WAIT_ROOM;
goto hlua_socket_write_yield_return;
}
}
/* Check for avalaible space. */
len = buffer_total_space(socket->s->req.buf);
if (len <= 0)
goto hlua_socket_write_yield_return;
/* send data */
if (len < send_len)
send_len = len;
len = bi_putblk(&socket->s->req, buf+sent, send_len);
/* "Not enough space" (-1), "Buffer too little to contain
* the data" (-2) are not expected because the available length
* is tested.
* Other unknown error are also not expected.
*/
if (len <= 0) {
if (len == -1)
socket->s->req.flags |= CF_WAKE_WRITE;
MAY_LJMP(hlua_socket_close(L));
lua_pop(L, 1);
lua_pushinteger(L, -1);
return 1;
}
/* update buffers. */
si_update(&socket->s->si[0]);
socket->s->req.rex = TICK_ETERNITY;
socket->s->res.wex = TICK_ETERNITY;
/* Update length sent. */
lua_pop(L, 1);
lua_pushinteger(L, sent + len);
/* All the data buffer is sent ? */
if (sent + len >= buf_len)
return 1;
hlua_socket_write_yield_return:
appctx = objt_appctx(socket->s->si[0].end);
if (!hlua_com_new(hlua, &appctx->ctx.hlua.wake_on_write))
WILL_LJMP(luaL_error(L, "out of memory"));
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_socket_write_yield, TICK_ETERNITY, 0));
return 0;
}
/* This function initiate the send of data. It just check the input
* parameters and push an integer in the Lua stack that contain the
* amount of data writed in the buffer. This is used by the function
* "hlua_socket_write_yield" that can yield.
*
* The Lua function gets between 3 and 4 parameters. The first one is
* the associated object. The second is a string buffer. The third is
* a facultative integer that represents where is the buffer position
* of the start of the data that can send. The first byte is the
* position "1". The default value is "1". The fourth argument is a
* facultative integer that represents where is the buffer position
* of the end of the data that can send. The default is the last byte.
*/
static int hlua_socket_send(struct lua_State *L)
{
int i;
int j;
const char *buf;
size_t buf_len;
/* Check number of arguments. */
if (lua_gettop(L) < 2 || lua_gettop(L) > 4)
WILL_LJMP(luaL_error(L, "'send' needs between 2 and 4 arguments"));
/* Get the string. */
buf = MAY_LJMP(luaL_checklstring(L, 2, &buf_len));
/* Get and check j. */
if (lua_gettop(L) == 4) {
j = MAY_LJMP(luaL_checkinteger(L, 4));
if (j < 0)
j = buf_len + j + 1;
if (j > buf_len)
j = buf_len + 1;
lua_pop(L, 1);
}
else
j = buf_len;
/* Get and check i. */
if (lua_gettop(L) == 3) {
i = MAY_LJMP(luaL_checkinteger(L, 3));
if (i < 0)
i = buf_len + i + 1;
if (i > buf_len)
i = buf_len + 1;
lua_pop(L, 1);
} else
i = 1;
/* Check bth i and j. */
if (i > j) {
lua_pushinteger(L, 0);
return 1;
}
if (i == 0 && j == 0) {
lua_pushinteger(L, 0);
return 1;
}
if (i == 0)
i = 1;
if (j == 0)
j = 1;
/* Pop the string. */
lua_pop(L, 1);
/* Update the buffer length. */
buf += i - 1;
buf_len = j - i + 1;
lua_pushlstring(L, buf, buf_len);
/* This unsigned is used to remember the amount of sent data. */
lua_pushinteger(L, 0);
return MAY_LJMP(hlua_socket_write_yield(L, 0, 0));
}
#define SOCKET_INFO_EXPANDED_FORM "[0000:0000:0000:0000:0000:0000:0000:0000]:12345"
static char _socket_info_expanded_form[] = SOCKET_INFO_EXPANDED_FORM;
#define SOCKET_INFO_MAX_LEN (sizeof(_socket_info_expanded_form))
__LJMP static inline int hlua_socket_info(struct lua_State *L, struct sockaddr_storage *addr)
{
static char buffer[SOCKET_INFO_MAX_LEN];
int ret;
int len;
char *p;
ret = addr_to_str(addr, buffer+1, SOCKET_INFO_MAX_LEN-1);
if (ret <= 0) {
lua_pushnil(L);
return 1;
}
if (ret == AF_UNIX) {
lua_pushstring(L, buffer+1);
return 1;
}
else if (ret == AF_INET6) {
buffer[0] = '[';
len = strlen(buffer);
buffer[len] = ']';
len++;
buffer[len] = ':';
len++;
p = buffer;
}
else if (ret == AF_INET) {
p = buffer + 1;
len = strlen(p);
p[len] = ':';
len++;
}
else {
lua_pushnil(L);
return 1;
}
if (port_to_str(addr, p + len, SOCKET_INFO_MAX_LEN-1 - len) <= 0) {
lua_pushnil(L);
return 1;
}
lua_pushstring(L, p);
return 1;
}
/* Returns information about the peer of the connection. */
__LJMP static int hlua_socket_getpeername(struct lua_State *L)
{
struct hlua_socket *socket;
struct connection *conn;
MAY_LJMP(check_args(L, 1, "getpeername"));
socket = MAY_LJMP(hlua_checksocket(L, 1));
/* Check if the tcp object is avalaible. */
if (!socket->s) {
lua_pushnil(L);
return 1;
}
conn = objt_conn(socket->s->si[1].end);
if (!conn) {
lua_pushnil(L);
return 1;
}
if (!(conn->flags & CO_FL_ADDR_TO_SET)) {
unsigned int salen = sizeof(conn->addr.to);
if (getpeername(conn->t.sock.fd, (struct sockaddr *)&conn->addr.to, &salen) == -1) {
lua_pushnil(L);
return 1;
}
conn->flags |= CO_FL_ADDR_TO_SET;
}
return MAY_LJMP(hlua_socket_info(L, &conn->addr.to));
}
/* Returns information about my connection side. */
static int hlua_socket_getsockname(struct lua_State *L)
{
struct hlua_socket *socket;
struct connection *conn;
MAY_LJMP(check_args(L, 1, "getsockname"));
socket = MAY_LJMP(hlua_checksocket(L, 1));
/* Check if the tcp object is avalaible. */
if (!socket->s) {
lua_pushnil(L);
return 1;
}
conn = objt_conn(socket->s->si[1].end);
if (!conn) {
lua_pushnil(L);
return 1;
}
if (!(conn->flags & CO_FL_ADDR_FROM_SET)) {
unsigned int salen = sizeof(conn->addr.from);
if (getsockname(conn->t.sock.fd, (struct sockaddr *)&conn->addr.from, &salen) == -1) {
lua_pushnil(L);
return 1;
}
conn->flags |= CO_FL_ADDR_FROM_SET;
}
return hlua_socket_info(L, &conn->addr.from);
}
/* This struct define the applet. */
static struct si_applet update_applet = {
.obj_type = OBJ_TYPE_APPLET,
.name = "<LUA_TCP>",
.fct = hlua_socket_handler,
.release = hlua_socket_release,
};
__LJMP static int hlua_socket_connect_yield(struct lua_State *L, int status, lua_KContext ctx)
{
struct hlua_socket *socket = MAY_LJMP(hlua_checksocket(L, 1));
struct hlua *hlua = hlua_gethlua(L);
struct appctx *appctx;
/* Check for connection close. */
if (!hlua || !socket->s || channel_output_closed(&socket->s->req)) {
lua_pushnil(L);
lua_pushstring(L, "Can't connect");
return 2;
}
appctx = objt_appctx(socket->s->si[0].end);
/* Check for connection established. */
if (appctx->ctx.hlua.connected) {
lua_pushinteger(L, 1);
return 1;
}
if (!hlua_com_new(hlua, &appctx->ctx.hlua.wake_on_write))
WILL_LJMP(luaL_error(L, "out of memory error"));
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_socket_connect_yield, TICK_ETERNITY, 0));
return 0;
}
/* This function fail or initite the connection. */
__LJMP static int hlua_socket_connect(struct lua_State *L)
{
struct hlua_socket *socket;
int port;
const char *ip;
struct connection *conn;
struct hlua *hlua;
struct appctx *appctx;
MAY_LJMP(check_args(L, 3, "connect"));
/* Get args. */
socket = MAY_LJMP(hlua_checksocket(L, 1));
ip = MAY_LJMP(luaL_checkstring(L, 2));
port = MAY_LJMP(luaL_checkinteger(L, 3));
conn = si_alloc_conn(&socket->s->si[1], 0);
if (!conn)
WILL_LJMP(luaL_error(L, "connect: internal error"));
/* Parse ip address. */
conn->addr.to.ss_family = AF_UNSPEC;
if (!str2ip2(ip, &conn->addr.to, 0))
WILL_LJMP(luaL_error(L, "connect: cannot parse ip address '%s'", ip));
/* Set port. */
if (conn->addr.to.ss_family == AF_INET)
((struct sockaddr_in *)&conn->addr.to)->sin_port = htons(port);
else if (conn->addr.to.ss_family == AF_INET6)
((struct sockaddr_in6 *)&conn->addr.to)->sin6_port = htons(port);
/* it is important not to call the wakeup function directly but to
* pass through task_wakeup(), because this one knows how to apply
* priorities to tasks.
*/
task_wakeup(socket->s->task, TASK_WOKEN_INIT);
hlua = hlua_gethlua(L);
appctx = objt_appctx(socket->s->si[0].end);
if (!hlua_com_new(hlua, &appctx->ctx.hlua.wake_on_write))
WILL_LJMP(luaL_error(L, "out of memory"));
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_socket_connect_yield, TICK_ETERNITY, 0));
return 0;
}
#ifdef USE_OPENSSL
__LJMP static int hlua_socket_connect_ssl(struct lua_State *L)
{
struct hlua_socket *socket;
MAY_LJMP(check_args(L, 3, "connect_ssl"));
socket = MAY_LJMP(hlua_checksocket(L, 1));
socket->s->target = &socket_ssl.obj_type;
return MAY_LJMP(hlua_socket_connect(L));
}
#endif
__LJMP static int hlua_socket_setoption(struct lua_State *L)
{
return 0;
}
__LJMP static int hlua_socket_settimeout(struct lua_State *L)
{
struct hlua_socket *socket;
int tmout;
MAY_LJMP(check_args(L, 2, "settimeout"));
socket = MAY_LJMP(hlua_checksocket(L, 1));
tmout = MAY_LJMP(luaL_checkinteger(L, 2)) * 1000;
socket->s->req.rto = tmout;
socket->s->req.wto = tmout;
socket->s->res.rto = tmout;
socket->s->res.wto = tmout;
return 0;
}
__LJMP static int hlua_socket_new(lua_State *L)
{
struct hlua_socket *socket;
struct appctx *appctx;
/* Check stack size. */
if (!lua_checkstack(L, 3)) {
hlua_pusherror(L, "socket: full stack");
goto out_fail_conf;
}
/* Create the object: obj[0] = userdata. */
lua_newtable(L);
socket = MAY_LJMP(lua_newuserdata(L, sizeof(*socket)));
lua_rawseti(L, -2, 0);
memset(socket, 0, sizeof(*socket));
/* Check if the various memory pools are intialized. */
if (!pool2_session || !pool2_buffer) {
hlua_pusherror(L, "socket: uninitialized pools.");
goto out_fail_conf;
}
/* Pop a class session metatable and affect it to the userdata. */
lua_rawgeti(L, LUA_REGISTRYINDEX, class_socket_ref);
lua_setmetatable(L, -2);
/*
*
* Get memory for the request.
*
*/
socket->s = pool_alloc2(pool2_session);
if (!socket->s) {
hlua_pusherror(L, "socket: out of memory");
goto out_fail_conf;
}
socket->s->task = task_new();
if (!socket->s->task) {
hlua_pusherror(L, "socket: out of memory");
goto out_free_session;
}
socket->s->req.buf = pool_alloc2(pool2_buffer);
if (!socket->s->req.buf) {
hlua_pusherror(L, "socket: out of memory");
goto out_fail_req_buf;
}
socket->s->res.buf = pool_alloc2(pool2_buffer);
if (!socket->s->res.buf) {
hlua_pusherror(L, "socket: out of memory");
goto out_fail_rep_buf;
}
/* Configura empty Lua for the session. */
socket->s->hlua.T = NULL;
socket->s->hlua.Tref = LUA_REFNIL;
socket->s->hlua.Mref = LUA_REFNIL;
socket->s->hlua.nargs = 0;
socket->s->hlua.flags = 0;
LIST_INIT(&socket->s->hlua.com);
/* session initialisation. */
session_init_srv_conn(socket->s);
/*
*
* Configure the associated task.
*
*/
/* This is the dedicated function to process the session. This function
* is able to establish the conection, process the timeouts, etc ...
*/
socket->s->task->process = process_session;
/* Back reference to session. This is used by process_session(). */
socket->s->task->context = socket->s;
/* The priority of the task is normal. */
socket->s->task->nice = 0;
/* Init the next run to eternity. Later in this function, this task is
* waked.
*/
socket->s->task->expire = TICK_ETERNITY;
/*
*
* Initialize the attached buffers
*
*/
socket->s->req.buf->size = global.tune.bufsize;
socket->s->res.buf->size = global.tune.bufsize;
/*
*
* Initialize channels.
*
*/
/* This function reset the struct. It must be called
* before the configuration.
*/
channel_init(&socket->s->req);
channel_init(&socket->s->res);
socket->s->res.flags |= CF_ISRESP;
socket->s->req.analysers = 0;
socket->s->req.rto = socket_proxy.timeout.client;
socket->s->req.wto = socket_proxy.timeout.server;
socket->s->req.rex = TICK_ETERNITY;
socket->s->req.wex = TICK_ETERNITY;
socket->s->req.analyse_exp = TICK_ETERNITY;
socket->s->res.analysers = 0;
socket->s->res.rto = socket_proxy.timeout.server;
socket->s->res.wto = socket_proxy.timeout.client;
socket->s->res.rex = TICK_ETERNITY;
socket->s->res.wex = TICK_ETERNITY;
socket->s->res.analyse_exp = TICK_ETERNITY;
/*
*
* Configure the session.
*
*/
/* The session dont have listener. The listener is used with real
* proxies.
*/
socket->s->listener = NULL;
/* The flags are initialized to 0. Values are setted later. */
socket->s->flags = 0;
/* Assign the configured proxy to the new session. */
socket->s->be = &socket_proxy;
socket->s->fe = &socket_proxy;
/* XXX: Set namy variables */
socket->s->store_count = 0;
memset(socket->s->stkctr, 0, sizeof(socket->s->stkctr));
/* Configure logs. */
socket->s->logs.logwait = 0;
socket->s->logs.level = 0;
socket->s->logs.accept_date = date; /* user-visible date for logging */
socket->s->logs.tv_accept = now; /* corrected date for internal use */
socket->s->do_log = NULL;
/* Function used if an error is occured. */
socket->s->srv_error = default_srv_error;
/* Init the list of buffers. */
LIST_INIT(&socket->s->buffer_wait);
/* Dont configure the unique ID. */
socket->s->uniq_id = 0;
socket->s->unique_id = NULL;
/* XXX: ? */
socket->s->pend_pos = NULL;
/* XXX: See later. */
socket->s->txn.sessid = NULL;
socket->s->txn.srv_cookie = NULL;
socket->s->txn.cli_cookie = NULL;
socket->s->txn.uri = NULL;
socket->s->txn.req.cap = NULL;
socket->s->txn.rsp.cap = NULL;
socket->s->txn.hdr_idx.v = NULL;
socket->s->txn.hdr_idx.size = 0;
socket->s->txn.hdr_idx.used = 0;
/* Configure "left" stream interface as applet. This "si" produce
* and use the data received from the server. The applet is initialized
* and is attached to the stream interface.
*/
/* The data producer is already connected. It is the applet. */
socket->s->req.flags = CF_READ_ATTACHED;
channel_auto_connect(&socket->s->req); /* don't wait to establish connection */
channel_auto_close(&socket->s->req); /* let the producer forward close requests */
socket->s->si[0].flags = SI_FL_NONE;
si_reset(&socket->s->si[0]);
si_set_state(&socket->s->si[0], SI_ST_EST); /* connection established (resource exists) */
appctx = stream_int_register_handler(&socket->s->si[0], &update_applet);
if (!appctx)
goto out_fail_conn1;
appctx->ctx.hlua.socket = socket;
appctx->ctx.hlua.connected = 0;
LIST_INIT(&appctx->ctx.hlua.wake_on_write);
LIST_INIT(&appctx->ctx.hlua.wake_on_read);
/* Configure "right" stream interface. this "si" is used to connect
* and retrieve data from the server. The connection is initialized
* with the "struct server".
*/
socket->s->si[1].flags = SI_FL_ISBACK;
si_reset(&socket->s->si[1]);
si_set_state(&socket->s->si[1], SI_ST_INI);
socket->s->si[1].conn_retries = socket_proxy.conn_retries;
/* Force destination server. */
socket->s->flags |= SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET | SN_BE_ASSIGNED;
socket->s->target = &socket_tcp.obj_type;
/* This session is added to te lists of alive sessions. */
LIST_ADDQ(&sessions, &socket->s->list);
/* XXX: I think that this list is used by stats. */
LIST_INIT(&socket->s->back_refs);
/* Update statistics counters. */
socket_proxy.feconn++; /* beconn will be increased later */
jobs++;
totalconn++;
/* Return yield waiting for connection. */
return 1;
out_fail_conn1:
pool_free2(pool2_buffer, socket->s->res.buf);
out_fail_rep_buf:
pool_free2(pool2_buffer, socket->s->req.buf);
out_fail_req_buf:
task_free(socket->s->task);
out_free_session:
pool_free2(pool2_session, socket->s);
out_fail_conf:
WILL_LJMP(lua_error(L));
return 0;
}
/*
*
*
* Class Channel
*
*
*/
/* Returns the struct hlua_channel join to the class channel in the
* stack entry "ud" or throws an argument error.
*/
__LJMP static struct channel *hlua_checkchannel(lua_State *L, int ud)
{
return (struct channel *)MAY_LJMP(hlua_checkudata(L, ud, class_channel_ref));
}
/* Pushes the channel onto the top of the stack. If the stask does not have a
* free slots, the function fails and returns 0;
*/
static int hlua_channel_new(lua_State *L, struct channel *channel)
{
/* Check stack size. */
if (!lua_checkstack(L, 3))
return 0;
lua_newtable(L);
lua_pushlightuserdata(L, channel);
lua_rawseti(L, -2, 0);
/* Pop a class sesison metatable and affect it to the userdata. */
lua_rawgeti(L, LUA_REGISTRYINDEX, class_channel_ref);
lua_setmetatable(L, -2);
return 1;
}
/* Duplicate all the data present in the input channel and put it
* in a string LUA variables. Returns -1 and push a nil value in
* the stack if the channel is closed and all the data are consumed,
* returns 0 if no data are available, otherwise it returns the length
* of the builded string.
*/
static inline int _hlua_channel_dup(struct channel *chn, lua_State *L)
{
char *blk1;
char *blk2;
int len1;
int len2;
int ret;
luaL_Buffer b;
ret = bi_getblk_nc(chn, &blk1, &len1, &blk2, &len2);
if (unlikely(ret == 0))
return 0;
if (unlikely(ret < 0)) {
lua_pushnil(L);
return -1;
}
luaL_buffinit(L, &b);
luaL_addlstring(&b, blk1, len1);
if (unlikely(ret == 2))
luaL_addlstring(&b, blk2, len2);
luaL_pushresult(&b);
if (unlikely(ret == 2))
return len1 + len2;
return len1;
}
/* "_hlua_channel_dup" wrapper. If no data are available, it returns
* a yield. This function keep the data in the buffer.
*/
__LJMP static int hlua_channel_dup_yield(lua_State *L, int status, lua_KContext ctx)
{
struct channel *chn;
chn = MAY_LJMP(hlua_checkchannel(L, 1));
if (_hlua_channel_dup(chn, L) == 0)
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_channel_dup_yield, TICK_ETERNITY, 0));
return 1;
}
/* Check arguments for the function "hlua_channel_dup_yield". */
__LJMP static int hlua_channel_dup(lua_State *L)
{
MAY_LJMP(check_args(L, 1, "dup"));
MAY_LJMP(hlua_checkchannel(L, 1));
return MAY_LJMP(hlua_channel_dup_yield(L, 0, 0));
}
/* "_hlua_channel_dup" wrapper. If no data are available, it returns
* a yield. This function consumes the data in the buffer. It returns
* a string containing the data or a nil pointer if no data are available
* and the channel is closed.
*/
__LJMP static int hlua_channel_get_yield(lua_State *L, int status, lua_KContext ctx)
{
struct channel *chn;
int ret;
chn = MAY_LJMP(hlua_checkchannel(L, 1));
ret = _hlua_channel_dup(chn, L);
if (unlikely(ret == 0))
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_channel_get_yield, TICK_ETERNITY, 0));
if (unlikely(ret == -1))
return 1;
chn->buf->i -= ret;
return 1;
}
/* Check arguments for the fucntion "hlua_channel_get_yield". */
__LJMP static int hlua_channel_get(lua_State *L)
{
MAY_LJMP(check_args(L, 1, "get"));
MAY_LJMP(hlua_checkchannel(L, 1));
return MAY_LJMP(hlua_channel_get_yield(L, 0, 0));
}
/* This functions consumes and returns one line. If the channel is closed,
* and the last data does not contains a final '\n', the data are returned
* without the final '\n'. When no more data are avalaible, it returns nil
* value.
*/
__LJMP static int hlua_channel_getline_yield(lua_State *L, int status, lua_KContext ctx)
{
char *blk1;
char *blk2;
int len1;
int len2;
int len;
struct channel *chn;
int ret;
luaL_Buffer b;
chn = MAY_LJMP(hlua_checkchannel(L, 1));
ret = bi_getline_nc(chn, &blk1, &len1, &blk2, &len2);
if (ret == 0)
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_channel_getline_yield, TICK_ETERNITY, 0));
if (ret == -1) {
lua_pushnil(L);
return 1;
}
luaL_buffinit(L, &b);
luaL_addlstring(&b, blk1, len1);
len = len1;
if (unlikely(ret == 2)) {
luaL_addlstring(&b, blk2, len2);
len += len2;
}
luaL_pushresult(&b);
buffer_replace2(chn->buf, chn->buf->p, chn->buf->p + len, NULL, 0);
return 1;
}
/* Check arguments for the fucntion "hlua_channel_getline_yield". */
__LJMP static int hlua_channel_getline(lua_State *L)
{
MAY_LJMP(check_args(L, 1, "getline"));
MAY_LJMP(hlua_checkchannel(L, 1));
return MAY_LJMP(hlua_channel_getline_yield(L, 0, 0));
}
/* This function takes a string as input, and append it at the
* input side of channel. If the data is too big, but a space
* is probably available after sending some data, the function
* yield. If the data is bigger than the buffer, or if the
* channel is closed, it returns -1. otherwise, it returns the
* amount of data writed.
*/
__LJMP static int hlua_channel_append_yield(lua_State *L, int status, lua_KContext ctx)
{
struct channel *chn = MAY_LJMP(hlua_checkchannel(L, 1));
size_t len;
const char *str = MAY_LJMP(luaL_checklstring(L, 2, &len));
int l = MAY_LJMP(luaL_checkinteger(L, 3));
int ret;
int max;
max = channel_recv_limit(chn) - buffer_len(chn->buf);
if (max > len - l)
max = len - l;
ret = bi_putblk(chn, str + l, max);
if (ret == -2 || ret == -3) {
lua_pushinteger(L, -1);
return 1;
}
if (ret == -1) {
chn->flags |= CF_WAKE_WRITE;
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_channel_append_yield, TICK_ETERNITY, 0));
}
l += ret;
lua_pop(L, 1);
lua_pushinteger(L, l);
max = channel_recv_limit(chn) - buffer_len(chn->buf);
if (max == 0 && chn->buf->o == 0) {
/* There are no space avalaible, and the output buffer is empty.
* in this case, we cannot add more data, so we cannot yield,
* we return the amount of copyied data.
*/
return 1;
}
if (l < len)
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_channel_append_yield, TICK_ETERNITY, 0));
return 1;
}
/* just a wrapper of "hlua_channel_append_yield". It returns the length
* of the writed string, or -1 if the channel is closed or if the
* buffer size is too little for the data.
*/
__LJMP static int hlua_channel_append(lua_State *L)
{
size_t len;
MAY_LJMP(check_args(L, 2, "append"));
MAY_LJMP(hlua_checkchannel(L, 1));
MAY_LJMP(luaL_checklstring(L, 2, &len));
MAY_LJMP(luaL_checkinteger(L, 3));
lua_pushinteger(L, 0);
return MAY_LJMP(hlua_channel_append_yield(L, 0, 0));
}
/* just a wrapper of "hlua_channel_append_yield". This wrapper starts
* his process by cleaning the buffer. The result is a replacement
* of the current data. It returns the length of the writed string,
* or -1 if the channel is closed or if the buffer size is too
* little for the data.
*/
__LJMP static int hlua_channel_set(lua_State *L)
{
struct channel *chn;
MAY_LJMP(check_args(L, 2, "set"));
chn = MAY_LJMP(hlua_checkchannel(L, 1));
lua_pushinteger(L, 0);
chn->buf->i = 0;
return MAY_LJMP(hlua_channel_append_yield(L, 0, 0));
}
/* Append data in the output side of the buffer. This data is immediatly
* sent. The fcuntion returns the ammount of data writed. If the buffer
* cannot contains the data, the function yield. The function returns -1
* if the channel is closed.
*/
__LJMP static int hlua_channel_send_yield(lua_State *L, int status, lua_KContext ctx)
{
struct channel *chn = MAY_LJMP(hlua_checkchannel(L, 1));
size_t len;
const char *str = MAY_LJMP(luaL_checklstring(L, 2, &len));
int l = MAY_LJMP(luaL_checkinteger(L, 3));
int max;
struct hlua *hlua = hlua_gethlua(L);
if (unlikely(channel_output_closed(chn))) {
lua_pushinteger(L, -1);
return 1;
}
/* Check if the buffer is avalaible because HAProxy doesn't allocate
* the request buffer if its not required.
*/
if (chn->buf->size == 0) {
if (!session_alloc_recv_buffer(chn)) {
chn_prod(chn)->flags |= SI_FL_WAIT_ROOM;
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_channel_send_yield, TICK_ETERNITY, 0));
}
}
/* the writed data will be immediatly sent, so we can check
* the avalaible space without taking in account the reserve.
* The reserve is guaranted for the processing of incoming
* data, because the buffer will be flushed.
*/
max = chn->buf->size - buffer_len(chn->buf);
/* If there are no space avalaible, and the output buffer is empty.
* in this case, we cannot add more data, so we cannot yield,
* we return the amount of copyied data.
*/
if (max == 0 && chn->buf->o == 0)
return 1;
/* Adjust the real required length. */
if (max > len - l)
max = len - l;
/* The buffer avalaible size may be not contiguous. This test
* detects a non contiguous buffer and realign it.
*/
if (bi_space_for_replace(chn->buf) < max)
buffer_slow_realign(chn->buf);
/* Copy input data in the buffer. */
max = buffer_replace2(chn->buf, chn->buf->p, chn->buf->p, str + l, max);
/* buffer replace considers that the input part is filled.
* so, I must forward these new data in the output part.
*/
b_adv(chn->buf, max);
l += max;
lua_pop(L, 1);
lua_pushinteger(L, l);
/* If there are no space avalaible, and the output buffer is empty.
* in this case, we cannot add more data, so we cannot yield,
* we return the amount of copyied data.
*/
max = chn->buf->size - buffer_len(chn->buf);
if (max == 0 && chn->buf->o == 0)
return 1;
if (l < len) {
/* If we are waiting for space in the response buffer, we
* must set the flag WAKERESWR. This flag required the task
* wake up if any activity is detected on the response buffer.
*/
if (chn->flags & CF_ISRESP)
HLUA_SET_WAKERESWR(hlua);
else
HLUA_SET_WAKEREQWR(hlua);
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_channel_send_yield, TICK_ETERNITY, 0));
}
return 1;
}
/* Just a wraper of "_hlua_channel_send". This wrapper permits
* yield the LUA process, and resume it without checking the
* input arguments.
*/
__LJMP static int hlua_channel_send(lua_State *L)
{
MAY_LJMP(check_args(L, 2, "send"));
lua_pushinteger(L, 0);
return MAY_LJMP(hlua_channel_send_yield(L, 0, 0));
}
/* This function forward and amount of butes. The data pass from
* the input side of the buffer to the output side, and can be
* forwarded. This function never fails.
*
* The Lua function takes an amount of bytes to be forwarded in
* imput. It returns the number of bytes forwarded.
*/
__LJMP static int hlua_channel_forward_yield(lua_State *L, int status, lua_KContext ctx)
{
struct channel *chn;
int len;
int l;
int max;
struct hlua *hlua = hlua_gethlua(L);
chn = MAY_LJMP(hlua_checkchannel(L, 1));
len = MAY_LJMP(luaL_checkinteger(L, 2));
l = MAY_LJMP(luaL_checkinteger(L, -1));
max = len - l;
if (max > chn->buf->i)
max = chn->buf->i;
channel_forward(chn, max);
l += max;
lua_pop(L, 1);
lua_pushinteger(L, l);
/* Check if it miss bytes to forward. */
if (l < len) {
/* The the input channel or the output channel are closed, we
* must return the amount of data forwarded.
*/
if (channel_input_closed(chn) || channel_output_closed(chn))
return 1;
/* If we are waiting for space data in the response buffer, we
* must set the flag WAKERESWR. This flag required the task
* wake up if any activity is detected on the response buffer.
*/
if (chn->flags & CF_ISRESP)
HLUA_SET_WAKERESWR(hlua);
else
HLUA_SET_WAKEREQWR(hlua);
/* Otherwise, we can yield waiting for new data in the inpout side. */
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_channel_forward_yield, TICK_ETERNITY, 0));
}
return 1;
}
/* Just check the input and prepare the stack for the previous
* function "hlua_channel_forward_yield"
*/
__LJMP static int hlua_channel_forward(lua_State *L)
{
MAY_LJMP(check_args(L, 2, "forward"));
MAY_LJMP(hlua_checkchannel(L, 1));
MAY_LJMP(luaL_checkinteger(L, 2));
lua_pushinteger(L, 0);
return MAY_LJMP(hlua_channel_forward_yield(L, 0, 0));
}
/* Just returns the number of bytes available in the input
* side of the buffer. This function never fails.
*/
__LJMP static int hlua_channel_get_in_len(lua_State *L)
{
struct channel *chn;
MAY_LJMP(check_args(L, 1, "get_in_len"));
chn = MAY_LJMP(hlua_checkchannel(L, 1));
lua_pushinteger(L, chn->buf->i);
return 1;
}
/* Just returns the number of bytes available in the output
* side of the buffer. This function never fails.
*/
__LJMP static int hlua_channel_get_out_len(lua_State *L)
{
struct channel *chn;
MAY_LJMP(check_args(L, 1, "get_out_len"));
chn = MAY_LJMP(hlua_checkchannel(L, 1));
lua_pushinteger(L, chn->buf->o);
return 1;
}
/*
*
*
* Class Fetches
*
*
*/
/* Returns a struct hlua_session if the stack entry "ud" is
* a class session, otherwise it throws an error.
*/
__LJMP static struct hlua_smp *hlua_checkfetches(lua_State *L, int ud)
{
return (struct hlua_smp *)MAY_LJMP(hlua_checkudata(L, ud, class_fetches_ref));
}
/* This function creates and push in the stack a fetch object according
* with a current TXN.
*/
static int hlua_fetches_new(lua_State *L, struct hlua_txn *txn, int stringsafe)
{
struct hlua_smp *hs;
/* Check stack size. */
if (!lua_checkstack(L, 3))
return 0;
/* Create the object: obj[0] = userdata.
* Note that the base of the Fetches object is the
* transaction object.
*/
lua_newtable(L);
hs = lua_newuserdata(L, sizeof(struct hlua_smp));
lua_rawseti(L, -2, 0);
hs->s = txn->s;
hs->p = txn->p;
hs->l7 = txn->l7;
hs->stringsafe = stringsafe;
/* Pop a class sesison metatable and affect it to the userdata. */
lua_rawgeti(L, LUA_REGISTRYINDEX, class_fetches_ref);
lua_setmetatable(L, -2);
return 1;
}
/* This function is an LUA binding. It is called with each sample-fetch.
* It uses closure argument to store the associated sample-fetch. It
* returns only one argument or throws an error. An error is thrown
* only if an error is encountered during the argument parsing. If
* the "sample-fetch" function fails, nil is returned.
*/
__LJMP static int hlua_run_sample_fetch(lua_State *L)
{
struct hlua_smp *s;
struct sample_fetch *f;
struct arg args[ARGM_NBARGS + 1];
int i;
struct sample smp;
/* Get closure arguments. */
f = (struct sample_fetch *)lua_touserdata(L, lua_upvalueindex(1));
/* Get traditionnal arguments. */
s = MAY_LJMP(hlua_checkfetches(L, 1));
/* Get extra arguments. */
for (i = 0; i < lua_gettop(L) - 1; i++) {
if (i >= ARGM_NBARGS)
break;
hlua_lua2arg(L, i + 2, &args[i]);
}
args[i].type = ARGT_STOP;
/* Check arguments. */
MAY_LJMP(hlua_lua2arg_check(L, 2, args, f->arg_mask, s->p));
/* Run the special args checker. */
if (f->val_args && !f->val_args(args, NULL)) {
lua_pushfstring(L, "error in arguments");
WILL_LJMP(lua_error(L));
}
/* Initialise the sample. */
memset(&smp, 0, sizeof(smp));
/* Run the sample fetch process. */
if (!f->process(s->p, s->s, s->l7, 0, args, &smp, f->kw, f->private)) {
if (s->stringsafe)
lua_pushstring(L, "");
else
lua_pushnil(L);
return 1;
}
/* Convert the returned sample in lua value. */
if (s->stringsafe)
hlua_smp2lua_str(L, &smp);
else
hlua_smp2lua(L, &smp);
return 1;
}
/*
*
*
* Class Converters
*
*
*/
/* Returns a struct hlua_session if the stack entry "ud" is
* a class session, otherwise it throws an error.
*/
__LJMP static struct hlua_smp *hlua_checkconverters(lua_State *L, int ud)
{
return (struct hlua_smp *)MAY_LJMP(hlua_checkudata(L, ud, class_converters_ref));
}
/* This function creates and push in the stack a Converters object
* according with a current TXN.
*/
static int hlua_converters_new(lua_State *L, struct hlua_txn *txn, int stringsafe)
{
struct hlua_smp *hs;
/* Check stack size. */
if (!lua_checkstack(L, 3))
return 0;
/* Create the object: obj[0] = userdata.
* Note that the base of the Converters object is the
* same than the TXN object.
*/
lua_newtable(L);
hs = lua_newuserdata(L, sizeof(struct hlua_txn));
lua_rawseti(L, -2, 0);
hs->s = txn->s;
hs->p = txn->p;
hs->l7 = txn->l7;
hs->stringsafe = stringsafe;
/* Pop a class session metatable and affect it to the table. */
lua_rawgeti(L, LUA_REGISTRYINDEX, class_converters_ref);
lua_setmetatable(L, -2);
return 1;
}
/* This function is an LUA binding. It is called with each converter.
* It uses closure argument to store the associated converter. It
* returns only one argument or throws an error. An error is thrown
* only if an error is encountered during the argument parsing. If
* the converter function function fails, nil is returned.
*/
__LJMP static int hlua_run_sample_conv(lua_State *L)
{
struct hlua_smp *sc;
struct sample_conv *conv;
struct arg args[ARGM_NBARGS + 1];
int i;
struct sample smp;
/* Get closure arguments. */
conv = (struct sample_conv *)lua_touserdata(L, lua_upvalueindex(1));
/* Get traditionnal arguments. */
sc = MAY_LJMP(hlua_checkconverters(L, 1));
/* Get extra arguments. */
for (i = 0; i < lua_gettop(L) - 2; i++) {
if (i >= ARGM_NBARGS)
break;
hlua_lua2arg(L, i + 3, &args[i]);
}
args[i].type = ARGT_STOP;
/* Check arguments. */
MAY_LJMP(hlua_lua2arg_check(L, 3, args, conv->arg_mask, sc->p));
/* Run the special args checker. */
if (conv->val_args && !conv->val_args(args, conv, "", 0, NULL)) {
hlua_pusherror(L, "error in arguments");
WILL_LJMP(lua_error(L));
}
/* Initialise the sample. */
if (!hlua_lua2smp(L, 2, &smp)) {
hlua_pusherror(L, "error in the input argument");
WILL_LJMP(lua_error(L));
}
/* Apply expected cast. */
if (!sample_casts[smp.type][conv->in_type]) {
hlua_pusherror(L, "invalid input argument: cannot cast '%s' to '%s'",
smp_to_type[smp.type], smp_to_type[conv->in_type]);
WILL_LJMP(lua_error(L));
}
if (sample_casts[smp.type][conv->in_type] != c_none &&
!sample_casts[smp.type][conv->in_type](&smp)) {
hlua_pusherror(L, "error during the input argument casting");
WILL_LJMP(lua_error(L));
}
/* Run the sample conversion process. */
if (!conv->process(sc->s, args, &smp, conv->private)) {
if (sc->stringsafe)
lua_pushstring(L, "");
else
lua_pushnil(L);
return 1;
}
/* Convert the returned sample in lua value. */
if (sc->stringsafe)
hlua_smp2lua_str(L, &smp);
else
hlua_smp2lua(L, &smp);
return 1;
}
/*
*
*
* Class TXN
*
*
*/
/* Returns a struct hlua_session if the stack entry "ud" is
* a class session, otherwise it throws an error.
*/
__LJMP static struct hlua_txn *hlua_checktxn(lua_State *L, int ud)
{
return (struct hlua_txn *)MAY_LJMP(hlua_checkudata(L, ud, class_txn_ref));
}
__LJMP static int hlua_set_priv(lua_State *L)
{
struct hlua *hlua;
MAY_LJMP(check_args(L, 2, "set_priv"));
/* It is useles to retrieve the session, but this function
* runs only in a session context.
*/
MAY_LJMP(hlua_checktxn(L, 1));
hlua = hlua_gethlua(L);
/* Remove previous value. */
if (hlua->Mref != -1)
luaL_unref(L, hlua->Mref, LUA_REGISTRYINDEX);
/* Get and store new value. */
lua_pushvalue(L, 2); /* Copy the element 2 at the top of the stack. */
hlua->Mref = luaL_ref(L, LUA_REGISTRYINDEX); /* pop the previously pushed value. */
return 0;
}
__LJMP static int hlua_get_priv(lua_State *L)
{
struct hlua *hlua;
MAY_LJMP(check_args(L, 1, "get_priv"));
/* It is useles to retrieve the session, but this function
* runs only in a session context.
*/
MAY_LJMP(hlua_checktxn(L, 1));
hlua = hlua_gethlua(L);
/* Push configuration index in the stack. */
lua_rawgeti(L, LUA_REGISTRYINDEX, hlua->Mref);
return 1;
}
/* Create stack entry containing a class TXN. This function
* return 0 if the stack does not contains free slots,
* otherwise it returns 1.
*/
static int hlua_txn_new(lua_State *L, struct session *s, struct proxy *p, void *l7)
{
struct hlua_txn *hs;
/* Check stack size. */
if (!lua_checkstack(L, 3))
return 0;
/* NOTE: The allocation never fails. The failure
* throw an error, and the function never returns.
* if the throw is not avalaible, the process is aborted.
*/
/* Create the object: obj[0] = userdata. */
lua_newtable(L);
hs = lua_newuserdata(L, sizeof(struct hlua_txn));
lua_rawseti(L, -2, 0);
hs->s = s;
hs->p = p;
hs->l7 = l7;
/* Create the "f" field that contains a list of fetches. */
lua_pushstring(L, "f");
if (!hlua_fetches_new(L, hs, 0))
return 0;
lua_settable(L, -3);
/* Create the "sf" field that contains a list of stringsafe fetches. */
lua_pushstring(L, "sf");
if (!hlua_fetches_new(L, hs, 1))
return 0;
lua_settable(L, -3);
/* Create the "c" field that contains a list of converters. */
lua_pushstring(L, "c");
if (!hlua_converters_new(L, hs, 0))
return 0;
lua_settable(L, -3);
/* Create the "sc" field that contains a list of stringsafe converters. */
lua_pushstring(L, "sc");
if (!hlua_converters_new(L, hs, 1))
return 0;
lua_settable(L, -3);
/* Create the "req" field that contains the request channel object. */
lua_pushstring(L, "req");
if (!hlua_channel_new(L, &s->req))
return 0;
lua_settable(L, -3);
/* Create the "res" field that contains the response channel object. */
lua_pushstring(L, "res");
if (!hlua_channel_new(L, &s->res))
return 0;
lua_settable(L, -3);
/* Pop a class sesison metatable and affect it to the userdata. */
lua_rawgeti(L, LUA_REGISTRYINDEX, class_txn_ref);
lua_setmetatable(L, -2);
return 1;
}
/* This function is an Lua binding that send pending data
* to the client, and close the stream interface.
*/
__LJMP static int hlua_txn_close(lua_State *L)
{
struct hlua_txn *s;
struct channel *ic, *oc;
MAY_LJMP(check_args(L, 1, "close"));
s = MAY_LJMP(hlua_checktxn(L, 1));
ic = &s->s->req;
oc = &s->s->res;
channel_abort(ic);
channel_auto_close(ic);
channel_erase(ic);
channel_auto_read(oc);
channel_auto_close(oc);
channel_shutr_now(oc);
return 0;
}
/* This function is an LUA binding. It creates ans returns
* an array of HTTP headers. This function does not fails.
*/
static int hlua_session_get_headers(lua_State *L)
{
struct hlua_txn *s = MAY_LJMP(hlua_checktxn(L, 1));
struct session *sess = s->s;
const char *cur_ptr, *cur_next, *p;
int old_idx, cur_idx;
struct hdr_idx_elem *cur_hdr;
const char *hn, *hv;
int hnl, hvl;
/* Create the table. */
lua_newtable(L);
/* Build array of headers. */
old_idx = 0;
cur_next = sess->req.buf->p + hdr_idx_first_pos(&sess->txn.hdr_idx);
while (1) {
cur_idx = sess->txn.hdr_idx.v[old_idx].next;
if (!cur_idx)
break;
old_idx = cur_idx;
cur_hdr = &sess->txn.hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_next = cur_ptr + cur_hdr->len + cur_hdr->cr + 1;
/* Now we have one full header at cur_ptr of len cur_hdr->len,
* and the next header starts at cur_next. We'll check
* this header in the list as well as against the default
* rule.
*/
/* look for ': *'. */
hn = cur_ptr;
for (p = cur_ptr; p < cur_ptr + cur_hdr->len && *p != ':'; p++);
if (p >= cur_ptr+cur_hdr->len)
continue;
hnl = p - hn;
p++;
while (p < cur_ptr+cur_hdr->len && ( *p == ' ' || *p == '\t' ))
p++;
if (p >= cur_ptr+cur_hdr->len)
continue;
hv = p;
hvl = cur_ptr+cur_hdr->len-p;
/* Push values in the table. */
lua_pushlstring(L, hn, hnl);
lua_pushlstring(L, hv, hvl);
lua_settable(L, -3);
}
return 1;
}
__LJMP static int hlua_sleep_yield(lua_State *L, int status, lua_KContext ctx)
{
int wakeup_ms = lua_tointeger(L, -1);
if (now_ms < wakeup_ms)
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_sleep_yield, wakeup_ms, 0));
return 0;
}
__LJMP static int hlua_sleep(lua_State *L)
{
unsigned int delay;
unsigned int wakeup_ms;
MAY_LJMP(check_args(L, 1, "sleep"));
delay = MAY_LJMP(luaL_checkinteger(L, 1)) * 1000;
wakeup_ms = tick_add(now_ms, delay);
lua_pushinteger(L, wakeup_ms);
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_sleep_yield, wakeup_ms, 0));
return 0;
}
__LJMP static int hlua_msleep(lua_State *L)
{
unsigned int delay;
unsigned int wakeup_ms;
MAY_LJMP(check_args(L, 1, "msleep"));
delay = MAY_LJMP(luaL_checkinteger(L, 1));
wakeup_ms = tick_add(now_ms, delay);
lua_pushinteger(L, wakeup_ms);
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_sleep_yield, wakeup_ms, 0));
return 0;
}
/* This functionis an LUA binding. it permits to give back
* the hand at the HAProxy scheduler. It is used when the
* LUA processing consumes a lot of time.
*/
__LJMP static int hlua_yield_yield(lua_State *L, int status, lua_KContext ctx)
{
return 0;
}
__LJMP static int hlua_yield(lua_State *L)
{
WILL_LJMP(hlua_yieldk(L, 0, 0, hlua_yield_yield, TICK_ETERNITY, HLUA_CTRLYIELD));
return 0;
}
/* This function change the nice of the currently executed
* task. It is used set low or high priority at the current
* task.
*/
__LJMP static int hlua_set_nice(lua_State *L)
{
struct hlua *hlua;
int nice;
MAY_LJMP(check_args(L, 1, "set_nice"));
hlua = hlua_gethlua(L);
nice = MAY_LJMP(luaL_checkinteger(L, 1));
/* If he task is not set, I'm in a start mode. */
if (!hlua || !hlua->task)
return 0;
if (nice < -1024)
nice = -1024;
else if (nice > 1024)
nice = 1024;
hlua->task->nice = nice;
return 0;
}
/* This function is used as a calback of a task. It is called by the
* HAProxy task subsystem when the task is awaked. The LUA runtime can
* return an E_AGAIN signal, the emmiter of this signal must set a
* signal to wake the task.
*/
static struct task *hlua_process_task(struct task *task)
{
struct hlua *hlua = task->context;
enum hlua_exec status;
/* We need to remove the task from the wait queue before executing
* the Lua code because we don't know if it needs to wait for
* another timer or not in the case of E_AGAIN.
*/
task_delete(task);
/* If it is the first call to the task, we must initialize the
* execution timeouts.
*/
if (!HLUA_IS_RUNNING(hlua))
hlua->expire = tick_add(now_ms, hlua_timeout_task);
/* Execute the Lua code. */
status = hlua_ctx_resume(hlua, 1);
switch (status) {
/* finished or yield */
case HLUA_E_OK:
hlua_ctx_destroy(hlua);
task_delete(task);
task_free(task);
break;
case HLUA_E_AGAIN: /* co process or timeout wake me later. */
if (hlua->wake_time != TICK_ETERNITY)
task_schedule(task, hlua->wake_time);
break;
/* finished with error. */
case HLUA_E_ERRMSG:
send_log(NULL, LOG_ERR, "Lua task: %s.", lua_tostring(hlua->T, -1));
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua task: %s.\n", lua_tostring(hlua->T, -1));
hlua_ctx_destroy(hlua);
task_delete(task);
task_free(task);
break;
case HLUA_E_ERR:
default:
send_log(NULL, LOG_ERR, "Lua task: unknown error.");
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua task: unknown error.\n");
hlua_ctx_destroy(hlua);
task_delete(task);
task_free(task);
break;
}
return NULL;
}
/* This function is an LUA binding that register LUA function to be
* executed after the HAProxy configuration parsing and before the
* HAProxy scheduler starts. This function expect only one LUA
* argument that is a function. This function returns nothing, but
* throws if an error is encountered.
*/
__LJMP static int hlua_register_init(lua_State *L)
{
struct hlua_init_function *init;
int ref;
MAY_LJMP(check_args(L, 1, "register_init"));
ref = MAY_LJMP(hlua_checkfunction(L, 1));
init = malloc(sizeof(*init));
if (!init)
WILL_LJMP(luaL_error(L, "lua out of memory error."));
init->function_ref = ref;
LIST_ADDQ(&hlua_init_functions, &init->l);
return 0;
}
/* This functio is an LUA binding. It permits to register a task
* executed in parallel of the main HAroxy activity. The task is
* created and it is set in the HAProxy scheduler. It can be called
* from the "init" section, "post init" or during the runtime.
*
* Lua prototype:
*
* <none> core.register_task(<function>)
*/
static int hlua_register_task(lua_State *L)
{
struct hlua *hlua;
struct task *task;
int ref;
MAY_LJMP(check_args(L, 1, "register_task"));
ref = MAY_LJMP(hlua_checkfunction(L, 1));
hlua = malloc(sizeof(*hlua));
if (!hlua)
WILL_LJMP(luaL_error(L, "lua out of memory error."));
task = task_new();
task->context = hlua;
task->process = hlua_process_task;
if (!hlua_ctx_init(hlua, task))
WILL_LJMP(luaL_error(L, "lua out of memory error."));
/* Restore the function in the stack. */
lua_rawgeti(hlua->T, LUA_REGISTRYINDEX, ref);
hlua->nargs = 0;
/* Schedule task. */
task_schedule(task, now_ms);
return 0;
}
/* Wrapper called by HAProxy to execute an LUA converter. This wrapper
* doesn't allow "yield" functions because the HAProxy engine cannot
* resume converters.
*/
static int hlua_sample_conv_wrapper(struct session *session, const struct arg *arg_p,
struct sample *smp, void *private)
{
struct hlua_function *fcn = (struct hlua_function *)private;
/* In the execution wrappers linked with a session, the
* Lua context can be not initialized. This behavior
* permits to save performances because a systematic
* Lua initialization cause 5% performances loss.
*/
if (!session->hlua.T && !hlua_ctx_init(&session->hlua, session->task)) {
send_log(session->be, LOG_ERR, "Lua converter '%s': can't initialize Lua context.", fcn->name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua converter '%s': can't initialize Lua context.\n", fcn->name);
return 0;
}
/* If it is the first run, initialize the data for the call. */
if (!HLUA_IS_RUNNING(&session->hlua)) {
/* Check stack available size. */
if (!lua_checkstack(session->hlua.T, 1)) {
send_log(session->be, LOG_ERR, "Lua converter '%s': full stack.", fcn->name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua converter '%s': full stack.\n", fcn->name);
return 0;
}
/* Restore the function in the stack. */
lua_rawgeti(session->hlua.T, LUA_REGISTRYINDEX, fcn->function_ref);
/* convert input sample and pust-it in the stack. */
if (!lua_checkstack(session->hlua.T, 1)) {
send_log(session->be, LOG_ERR, "Lua converter '%s': full stack.", fcn->name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua converter '%s': full stack.\n", fcn->name);
return 0;
}
hlua_smp2lua(session->hlua.T, smp);
session->hlua.nargs = 2;
/* push keywords in the stack. */
if (arg_p) {
for (; arg_p->type != ARGT_STOP; arg_p++) {
if (!lua_checkstack(session->hlua.T, 1)) {
send_log(session->be, LOG_ERR, "Lua converter '%s': full stack.", fcn->name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua converter '%s': full stack.\n", fcn->name);
return 0;
}
hlua_arg2lua(session->hlua.T, arg_p);
session->hlua.nargs++;
}
}
/* We must initialize the execution timeouts. */
session->hlua.expire = tick_add(now_ms, hlua_timeout_session);
/* Set the currently running flag. */
HLUA_SET_RUN(&session->hlua);
}
/* Execute the function. */
switch (hlua_ctx_resume(&session->hlua, 0)) {
/* finished. */
case HLUA_E_OK:
/* Convert the returned value in sample. */
hlua_lua2smp(session->hlua.T, -1, smp);
lua_pop(session->hlua.T, 1);
return 1;
/* yield. */
case HLUA_E_AGAIN:
send_log(session->be, LOG_ERR, "Lua converter '%s': cannot use yielded functions.", fcn->name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua converter '%s': cannot use yielded functions.\n", fcn->name);
return 0;
/* finished with error. */
case HLUA_E_ERRMSG:
/* Display log. */
send_log(session->be, LOG_ERR, "Lua converter '%s': %s.", fcn->name, lua_tostring(session->hlua.T, -1));
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua converter '%s': %s.\n", fcn->name, lua_tostring(session->hlua.T, -1));
lua_pop(session->hlua.T, 1);
return 0;
case HLUA_E_ERR:
/* Display log. */
send_log(session->be, LOG_ERR, "Lua converter '%s' returns an unknown error.", fcn->name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua converter '%s' returns an unknown error.\n", fcn->name);
default:
return 0;
}
}
/* Wrapper called by HAProxy to execute a sample-fetch. this wrapper
* doesn't allow "yield" functions because the HAProxy engine cannot
* resume sample-fetches.
*/
static int hlua_sample_fetch_wrapper(struct proxy *px, struct session *s, void *l7,
unsigned int opt, const struct arg *arg_p,
struct sample *smp, const char *kw, void *private)
{
struct hlua_function *fcn = (struct hlua_function *)private;
/* In the execution wrappers linked with a session, the
* Lua context can be not initialized. This behavior
* permits to save performances because a systematic
* Lua initialization cause 5% performances loss.
*/
if (!s->hlua.T && !hlua_ctx_init(&s->hlua, s->task)) {
send_log(s->be, LOG_ERR, "Lua sample-fetch '%s': can't initialize Lua context.", fcn->name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua sample-fetch '%s': can't initialize Lua context.\n", fcn->name);
return 0;
}
/* If it is the first run, initialize the data for the call. */
if (!HLUA_IS_RUNNING(&s->hlua)) {
/* Check stack available size. */
if (!lua_checkstack(s->hlua.T, 2)) {
send_log(px, LOG_ERR, "Lua sample-fetch '%s': full stack.", fcn->name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua sample-fetch '%s': full stack.\n", fcn->name);
return 0;
}
/* Restore the function in the stack. */
lua_rawgeti(s->hlua.T, LUA_REGISTRYINDEX, fcn->function_ref);
/* push arguments in the stack. */
if (!hlua_txn_new(s->hlua.T, s, px, l7)) {
send_log(px, LOG_ERR, "Lua sample-fetch '%s': full stack.", fcn->name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua sample-fetch '%s': full stack.\n", fcn->name);
return 0;
}
s->hlua.nargs = 1;
/* push keywords in the stack. */
for (; arg_p && arg_p->type != ARGT_STOP; arg_p++) {
/* Check stack available size. */
if (!lua_checkstack(s->hlua.T, 1)) {
send_log(px, LOG_ERR, "Lua sample-fetch '%s': full stack.", fcn->name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua sample-fetch '%s': full stack.\n", fcn->name);
return 0;
}
if (!lua_checkstack(s->hlua.T, 1)) {
send_log(px, LOG_ERR, "Lua sample-fetch '%s': full stack.", fcn->name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua sample-fetch '%s': full stack.\n", fcn->name);
return 0;
}
hlua_arg2lua(s->hlua.T, arg_p);
s->hlua.nargs++;
}
/* We must initialize the execution timeouts. */
s->hlua.expire = tick_add(now_ms, hlua_timeout_session);
/* Set the currently running flag. */
HLUA_SET_RUN(&s->hlua);
}
/* Execute the function. */
switch (hlua_ctx_resume(&s->hlua, 0)) {
/* finished. */
case HLUA_E_OK:
/* Convert the returned value in sample. */
hlua_lua2smp(s->hlua.T, -1, smp);
lua_pop(s->hlua.T, 1);
/* Set the end of execution flag. */
smp->flags &= ~SMP_F_MAY_CHANGE;
return 1;
/* yield. */
case HLUA_E_AGAIN:
send_log(px, LOG_ERR, "Lua sample-fetch '%s': cannot use yielded functions.", fcn->name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua sample-fetch '%s': cannot use yielded functions.\n", fcn->name);
return 0;
/* finished with error. */
case HLUA_E_ERRMSG:
/* Display log. */
send_log(px, LOG_ERR, "Lua sample-fetch '%s': %s.", fcn->name, lua_tostring(s->hlua.T, -1));
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua sample-fetch '%s': %s.\n", fcn->name, lua_tostring(s->hlua.T, -1));
lua_pop(s->hlua.T, 1);
return 0;
case HLUA_E_ERR:
/* Display log. */
send_log(px, LOG_ERR, "Lua sample-fetch '%s' returns an unknown error.", fcn->name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua sample-fetch '%s': returns an unknown error.\n", fcn->name);
default:
return 0;
}
}
/* This function is an LUA binding used for registering
* "sample-conv" functions. It expects a converter name used
* in the haproxy configuration file, and an LUA function.
*/
__LJMP static int hlua_register_converters(lua_State *L)
{
struct sample_conv_kw_list *sck;
const char *name;
int ref;
int len;
struct hlua_function *fcn;
MAY_LJMP(check_args(L, 2, "register_converters"));
/* First argument : converter name. */
name = MAY_LJMP(luaL_checkstring(L, 1));
/* Second argument : lua function. */
ref = MAY_LJMP(hlua_checkfunction(L, 2));
/* Allocate and fill the sample fetch keyword struct. */
sck = malloc(sizeof(struct sample_conv_kw_list) +
sizeof(struct sample_conv) * 2);
if (!sck)
WILL_LJMP(luaL_error(L, "lua out of memory error."));
fcn = malloc(sizeof(*fcn));
if (!fcn)
WILL_LJMP(luaL_error(L, "lua out of memory error."));
/* Fill fcn. */
fcn->name = strdup(name);
if (!fcn->name)
WILL_LJMP(luaL_error(L, "lua out of memory error."));
fcn->function_ref = ref;
/* List head */
sck->list.n = sck->list.p = NULL;
/* converter keyword. */
len = strlen("lua.") + strlen(name) + 1;
sck->kw[0].kw = malloc(len);
if (!sck->kw[0].kw)
WILL_LJMP(luaL_error(L, "lua out of memory error."));
snprintf((char *)sck->kw[0].kw, len, "lua.%s", name);
sck->kw[0].process = hlua_sample_conv_wrapper;
sck->kw[0].arg_mask = ARG5(0,STR,STR,STR,STR,STR);
sck->kw[0].val_args = NULL;
sck->kw[0].in_type = SMP_T_STR;
sck->kw[0].out_type = SMP_T_STR;
sck->kw[0].private = fcn;
/* End of array. */
memset(&sck->kw[1], 0, sizeof(struct sample_conv));
/* Register this new converter */
sample_register_convs(sck);
return 0;
}
/* This fucntion is an LUA binding used for registering
* "sample-fetch" functions. It expects a converter name used
* in the haproxy configuration file, and an LUA function.
*/
__LJMP static int hlua_register_fetches(lua_State *L)
{
const char *name;
int ref;
int len;
struct sample_fetch_kw_list *sfk;
struct hlua_function *fcn;
MAY_LJMP(check_args(L, 2, "register_fetches"));
/* First argument : sample-fetch name. */
name = MAY_LJMP(luaL_checkstring(L, 1));
/* Second argument : lua function. */
ref = MAY_LJMP(hlua_checkfunction(L, 2));
/* Allocate and fill the sample fetch keyword struct. */
sfk = malloc(sizeof(struct sample_fetch_kw_list) +
sizeof(struct sample_fetch) * 2);
if (!sfk)
WILL_LJMP(luaL_error(L, "lua out of memory error."));
fcn = malloc(sizeof(*fcn));
if (!fcn)
WILL_LJMP(luaL_error(L, "lua out of memory error."));
/* Fill fcn. */
fcn->name = strdup(name);
if (!fcn->name)
WILL_LJMP(luaL_error(L, "lua out of memory error."));
fcn->function_ref = ref;
/* List head */
sfk->list.n = sfk->list.p = NULL;
/* sample-fetch keyword. */
len = strlen("lua.") + strlen(name) + 1;
sfk->kw[0].kw = malloc(len);
if (!sfk->kw[0].kw)
return luaL_error(L, "lua out of memory error.");
snprintf((char *)sfk->kw[0].kw, len, "lua.%s", name);
sfk->kw[0].process = hlua_sample_fetch_wrapper;
sfk->kw[0].arg_mask = ARG5(0,STR,STR,STR,STR,STR);
sfk->kw[0].val_args = NULL;
sfk->kw[0].out_type = SMP_T_STR;
sfk->kw[0].use = SMP_USE_HTTP_ANY;
sfk->kw[0].val = 0;
sfk->kw[0].private = fcn;
/* End of array. */
memset(&sfk->kw[1], 0, sizeof(struct sample_fetch));
/* Register this new fetch. */
sample_register_fetches(sfk);
return 0;
}
/* global {tcp|http}-request parser. Return 1 in succes case, else return 0. */
static int hlua_parse_rule(const char **args, int *cur_arg, struct proxy *px,
struct hlua_rule **rule_p, char **err)
{
struct hlua_rule *rule;
/* Memory for the rule. */
rule = malloc(sizeof(*rule));
if (!rule) {
memprintf(err, "out of memory error");
return 0;
}
*rule_p = rule;
/* The requiered arg is a function name. */
if (!args[*cur_arg]) {
memprintf(err, "expect Lua function name");
return 0;
}
/* Lookup for the symbol, and check if it is a function. */
lua_getglobal(gL.T, args[*cur_arg]);
if (lua_isnil(gL.T, -1)) {
lua_pop(gL.T, 1);
memprintf(err, "Lua function '%s' not found", args[*cur_arg]);
return 0;
}
if (!lua_isfunction(gL.T, -1)) {
lua_pop(gL.T, 1);
memprintf(err, "'%s' is not a function", args[*cur_arg]);
return 0;
}
/* Reference the Lua function and store the reference. */
rule->fcn.function_ref = luaL_ref(gL.T, LUA_REGISTRYINDEX);
rule->fcn.name = strdup(args[*cur_arg]);
if (!rule->fcn.name) {
memprintf(err, "out of memory error.");
return 0;
}
(*cur_arg)++;
/* TODO: later accept arguments. */
rule->args = NULL;
return 1;
}
/* This function is a wrapper to execute each LUA function declared
* as an action wrapper during the initialisation period. This function
* return 1 if the processing is finished (with oe without error) and
* return 0 if the function must be called again because the LUA
* returns a yield.
*/
static int hlua_request_act_wrapper(struct hlua_rule *rule, struct proxy *px,
struct session *s, struct http_txn *http_txn,
unsigned int analyzer)
{
char **arg;
/* In the execution wrappers linked with a session, the
* Lua context can be not initialized. This behavior
* permits to save performances because a systematic
* Lua initialization cause 5% performances loss.
*/
if (!s->hlua.T && !hlua_ctx_init(&s->hlua, s->task)) {
send_log(px, LOG_ERR, "Lua action '%s': can't initialize Lua context.", rule->fcn.name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua action '%s': can't initialize Lua context.\n", rule->fcn.name);
return 0;
}
/* If it is the first run, initialize the data for the call. */
if (!HLUA_IS_RUNNING(&s->hlua)) {
/* Check stack available size. */
if (!lua_checkstack(s->hlua.T, 1)) {
send_log(px, LOG_ERR, "Lua function '%s': full stack.", rule->fcn.name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua function '%s': full stack.\n", rule->fcn.name);
return 0;
}
/* Restore the function in the stack. */
lua_rawgeti(s->hlua.T, LUA_REGISTRYINDEX, rule->fcn.function_ref);
/* Create and and push object session in the stack. */
if (!hlua_txn_new(s->hlua.T, s, px, http_txn)) {
send_log(px, LOG_ERR, "Lua function '%s': full stack.", rule->fcn.name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua function '%s': full stack.\n", rule->fcn.name);
return 0;
}
s->hlua.nargs = 1;
/* push keywords in the stack. */
for (arg = rule->args; arg && *arg; arg++) {
if (!lua_checkstack(s->hlua.T, 1)) {
send_log(px, LOG_ERR, "Lua function '%s': full stack.", rule->fcn.name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua function '%s': full stack.\n", rule->fcn.name);
return 0;
}
lua_pushstring(s->hlua.T, *arg);
s->hlua.nargs++;
}
/* We must initialize the execution timeouts. */
s->hlua.expire = tick_add(now_ms, hlua_timeout_session);
/* Set the currently running flag. */
HLUA_SET_RUN(&s->hlua);
}
/* Execute the function. */
switch (hlua_ctx_resume(&s->hlua, 1)) {
/* finished. */
case HLUA_E_OK:
return 1;
/* yield. */
case HLUA_E_AGAIN:
/* Set timeout in the required channel. */
if (s->hlua.wake_time != TICK_ETERNITY) {
if (analyzer & (AN_REQ_INSPECT_FE|AN_REQ_HTTP_PROCESS_FE))
s->req.analyse_exp = s->hlua.wake_time;
else if (analyzer & (AN_RES_INSPECT|AN_RES_HTTP_PROCESS_BE))
s->res.analyse_exp = s->hlua.wake_time;
}
/* Some actions can be wake up when a "write" event
* is detected on a response channel. This is useful
* only for actions targetted on the requests.
*/
if (HLUA_IS_WAKERESWR(&s->hlua)) {
s->res.flags |= CF_WAKE_WRITE;
if ((analyzer & (AN_REQ_INSPECT_FE|AN_REQ_HTTP_PROCESS_FE)))
s->res.analysers |= analyzer;
}
if (HLUA_IS_WAKEREQWR(&s->hlua))
s->req.flags |= CF_WAKE_WRITE;
return 0;
/* finished with error. */
case HLUA_E_ERRMSG:
/* Display log. */
send_log(px, LOG_ERR, "Lua function '%s': %s.", rule->fcn.name, lua_tostring(s->hlua.T, -1));
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua function '%s': %s.\n", rule->fcn.name, lua_tostring(s->hlua.T, -1));
lua_pop(s->hlua.T, 1);
return 1;
case HLUA_E_ERR:
/* Display log. */
send_log(px, LOG_ERR, "Lua function '%s' return an unknown error.", rule->fcn.name);
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))
Alert("Lua function '%s' return an unknown error.\n", rule->fcn.name);
default:
return 1;
}
}
/* Lua execution wrapper for "tcp-request". This function uses
* "hlua_request_act_wrapper" for executing the LUA code.
*/
int hlua_tcp_req_act_wrapper(struct tcp_rule *tcp_rule, struct proxy *px,
struct session *s)
{
return hlua_request_act_wrapper((struct hlua_rule *)tcp_rule->act_prm.data,
px, s, NULL, AN_REQ_INSPECT_FE);
}
/* Lua execution wrapper for "tcp-response". This function uses
* "hlua_request_act_wrapper" for executing the LUA code.
*/
int hlua_tcp_res_act_wrapper(struct tcp_rule *tcp_rule, struct proxy *px,
struct session *s)
{
return hlua_request_act_wrapper((struct hlua_rule *)tcp_rule->act_prm.data,
px, s, NULL, AN_RES_INSPECT);
}
/* Lua execution wrapper for http-request.
* This function uses "hlua_request_act_wrapper" for executing
* the LUA code.
*/
int hlua_http_req_act_wrapper(struct http_req_rule *rule, struct proxy *px,
struct session *s, struct http_txn *http_txn)
{
return hlua_request_act_wrapper((struct hlua_rule *)rule->arg.data, px,
s, http_txn, AN_REQ_HTTP_PROCESS_FE);
}
/* Lua execution wrapper for http-response.
* This function uses "hlua_request_act_wrapper" for executing
* the LUA code.
*/
int hlua_http_res_act_wrapper(struct http_res_rule *rule, struct proxy *px,
struct session *s, struct http_txn *http_txn)
{
return hlua_request_act_wrapper((struct hlua_rule *)rule->arg.data, px,
s, http_txn, AN_RES_HTTP_PROCESS_BE);
}
/* tcp-request <*> configuration wrapper. */
static int tcp_req_action_register_lua(const char **args, int *cur_arg, struct proxy *px,
struct tcp_rule *rule, char **err)
{
if (!hlua_parse_rule(args, cur_arg, px, (struct hlua_rule **)&rule->act_prm.data, err))
return 0;
rule->action = TCP_ACT_CUSTOM;
rule->action_ptr = hlua_tcp_req_act_wrapper;
return 1;
}
/* tcp-response <*> configuration wrapper. */
static int tcp_res_action_register_lua(const char **args, int *cur_arg, struct proxy *px,
struct tcp_rule *rule, char **err)
{
if (!hlua_parse_rule(args, cur_arg, px, (struct hlua_rule **)&rule->act_prm.data, err))
return 0;
rule->action = TCP_ACT_CUSTOM;
rule->action_ptr = hlua_tcp_res_act_wrapper;
return 1;
}
/* http-request <*> configuration wrapper. */
static int http_req_action_register_lua(const char **args, int *cur_arg, struct proxy *px,
struct http_req_rule *rule, char **err)
{
if (!hlua_parse_rule(args, cur_arg, px, (struct hlua_rule **)&rule->arg.data, err))
return -1;
rule->action = HTTP_REQ_ACT_CUSTOM_CONT;
rule->action_ptr = hlua_http_req_act_wrapper;
return 1;
}
/* http-response <*> configuration wrapper. */
static int http_res_action_register_lua(const char **args, int *cur_arg, struct proxy *px,
struct http_res_rule *rule, char **err)
{
if (!hlua_parse_rule(args, cur_arg, px, (struct hlua_rule **)&rule->arg.data, err))
return -1;
rule->action = HTTP_RES_ACT_CUSTOM_CONT;
rule->action_ptr = hlua_http_res_act_wrapper;
return 1;
}
static int hlua_read_timeout(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err, unsigned int *timeout)
{
const char *error;
error = parse_time_err(args[1], timeout, TIME_UNIT_MS);
if (error && *error != '\0') {
memprintf(err, "%s: invalid timeout", args[0]);
return -1;
}
return 0;
}
static int hlua_session_timeout(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
return hlua_read_timeout(args, section_type, curpx, defpx,
file, line, err, &hlua_timeout_session);
}
static int hlua_task_timeout(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
return hlua_read_timeout(args, section_type, curpx, defpx,
file, line, err, &hlua_timeout_task);
}
static int hlua_forced_yield(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
char *error;
hlua_nb_instruction = strtoll(args[1], &error, 10);
if (*error != '\0') {
memprintf(err, "%s: invalid number", args[0]);
return -1;
}
return 0;
}
/* This function is called by the main configuration key "lua-load". It loads and
* execute an lua file during the parsing of the HAProxy configuration file. It is
* the main lua entry point.
*
* This funtion runs with the HAProxy keywords API. It returns -1 if an error is
* occured, otherwise it returns 0.
*
* In some error case, LUA set an error message in top of the stack. This function
* returns this error message in the HAProxy logs and pop it from the stack.
*/
static int hlua_load(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
int error;
/* Just load and compile the file. */
error = luaL_loadfile(gL.T, args[1]);
if (error) {
memprintf(err, "error in lua file '%s': %s", args[1], lua_tostring(gL.T, -1));
lua_pop(gL.T, 1);
return -1;
}
/* If no syntax error where detected, execute the code. */
error = lua_pcall(gL.T, 0, LUA_MULTRET, 0);
switch (error) {
case LUA_OK:
break;
case LUA_ERRRUN:
memprintf(err, "lua runtime error: %s\n", lua_tostring(gL.T, -1));
lua_pop(gL.T, 1);
return -1;
case LUA_ERRMEM:
memprintf(err, "lua out of memory error\n");
return -1;
case LUA_ERRERR:
memprintf(err, "lua message handler error: %s\n", lua_tostring(gL.T, -1));
lua_pop(gL.T, 1);
return -1;
case LUA_ERRGCMM:
memprintf(err, "lua garbage collector error: %s\n", lua_tostring(gL.T, -1));
lua_pop(gL.T, 1);
return -1;
default:
memprintf(err, "lua unknonwn error: %s\n", lua_tostring(gL.T, -1));
lua_pop(gL.T, 1);
return -1;
}
return 0;
}
/* configuration keywords declaration */
static struct cfg_kw_list cfg_kws = {{ },{
{ CFG_GLOBAL, "lua-load", hlua_load },
{ CFG_GLOBAL, "tune.lua.session-timeout", hlua_session_timeout },
{ CFG_GLOBAL, "tune.lua.task-timeout", hlua_task_timeout },
{ CFG_GLOBAL, "tune.lua.forced-yield", hlua_forced_yield },
{ 0, NULL, NULL },
}};
static struct http_req_action_kw_list http_req_kws = {"lua", { }, {
{ "lua", http_req_action_register_lua },
{ NULL, NULL }
}};
static struct http_res_action_kw_list http_res_kws = {"lua", { }, {
{ "lua", http_res_action_register_lua },
{ NULL, NULL }
}};
static struct tcp_action_kw_list tcp_req_cont_kws = {"lua", { }, {
{ "lua", tcp_req_action_register_lua },
{ NULL, NULL }
}};
static struct tcp_action_kw_list tcp_res_cont_kws = {"lua", { }, {
{ "lua", tcp_res_action_register_lua },
{ NULL, NULL }
}};
int hlua_post_init()
{
struct hlua_init_function *init;
const char *msg;
enum hlua_exec ret;
list_for_each_entry(init, &hlua_init_functions, l) {
lua_rawgeti(gL.T, LUA_REGISTRYINDEX, init->function_ref);
ret = hlua_ctx_resume(&gL, 0);
switch (ret) {
case HLUA_E_OK:
lua_pop(gL.T, -1);
return 1;
case HLUA_E_AGAIN:
Alert("lua init: yield not allowed.\n");
return 0;
case HLUA_E_ERRMSG:
msg = lua_tostring(gL.T, -1);
Alert("lua init: %s.\n", msg);
return 0;
case HLUA_E_ERR:
default:
Alert("lua init: unknown runtime error.\n");
return 0;
}
}
return 1;
}
void hlua_init(void)
{
int i;
int idx;
struct sample_fetch *sf;
struct sample_conv *sc;
char *p;
#ifdef USE_OPENSSL
char *args[4];
struct srv_kw *kw;
int tmp_error;
char *error;
#endif
/* Initialise com signals pool session. */
pool2_hlua_com = create_pool("hlua_com", sizeof(struct hlua_com), MEM_F_SHARED);
/* Initialise sleep pool. */
pool2_hlua_sleep = create_pool("hlua_sleep", sizeof(struct hlua_sleep), MEM_F_SHARED);
/* Register configuration keywords. */
cfg_register_keywords(&cfg_kws);
/* Register custom HTTP rules. */
http_req_keywords_register(&http_req_kws);
http_res_keywords_register(&http_res_kws);
tcp_req_cont_keywords_register(&tcp_req_cont_kws);
tcp_res_cont_keywords_register(&tcp_res_cont_kws);
/* Init main lua stack. */
gL.Mref = LUA_REFNIL;
gL.flags = 0;
LIST_INIT(&gL.com);
gL.T = luaL_newstate();
hlua_sethlua(&gL);
gL.Tref = LUA_REFNIL;
gL.task = NULL;
/* Initialise lua. */
luaL_openlibs(gL.T);
/*
*
* Create "core" object.
*
*/
/* This table entry is the object "core" base. */
lua_newtable(gL.T);
/* Push the loglevel constants. */
for (i = 0; i < NB_LOG_LEVELS; i++)
hlua_class_const_int(gL.T, log_levels[i], i);
/* Register special functions. */
hlua_class_function(gL.T, "register_init", hlua_register_init);
hlua_class_function(gL.T, "register_task", hlua_register_task);
hlua_class_function(gL.T, "register_fetches", hlua_register_fetches);
hlua_class_function(gL.T, "register_converters", hlua_register_converters);
hlua_class_function(gL.T, "yield", hlua_yield);
hlua_class_function(gL.T, "set_nice", hlua_set_nice);
hlua_class_function(gL.T, "sleep", hlua_sleep);
hlua_class_function(gL.T, "msleep", hlua_msleep);
hlua_class_function(gL.T, "add_acl", hlua_add_acl);
hlua_class_function(gL.T, "del_acl", hlua_del_acl);
hlua_class_function(gL.T, "set_map", hlua_set_map);
hlua_class_function(gL.T, "del_map", hlua_del_map);
hlua_class_function(gL.T, "tcp", hlua_socket_new);
lua_setglobal(gL.T, "core");
/*
*
* Register class Channel
*
*/
/* Create and fill the metatable. */
lua_newtable(gL.T);
/* Create and fille the __index entry. */
lua_pushstring(gL.T, "__index");
lua_newtable(gL.T);
/* Register . */
hlua_class_function(gL.T, "get", hlua_channel_get);
hlua_class_function(gL.T, "dup", hlua_channel_dup);
hlua_class_function(gL.T, "getline", hlua_channel_getline);
hlua_class_function(gL.T, "set", hlua_channel_set);
hlua_class_function(gL.T, "append", hlua_channel_append);
hlua_class_function(gL.T, "send", hlua_channel_send);
hlua_class_function(gL.T, "forward", hlua_channel_forward);
hlua_class_function(gL.T, "get_in_len", hlua_channel_get_in_len);
hlua_class_function(gL.T, "get_out_len", hlua_channel_get_out_len);
lua_settable(gL.T, -3);
/* Register previous table in the registry with reference and named entry. */
lua_pushvalue(gL.T, -1); /* Copy the -1 entry and push it on the stack. */
lua_setfield(gL.T, LUA_REGISTRYINDEX, CLASS_CHANNEL); /* register class session. */
class_channel_ref = luaL_ref(gL.T, LUA_REGISTRYINDEX); /* reference class session. */
/*
*
* Register class Fetches
*
*/
/* Create and fill the metatable. */
lua_newtable(gL.T);
/* Create and fille the __index entry. */
lua_pushstring(gL.T, "__index");
lua_newtable(gL.T);
/* Browse existing fetches and create the associated
* object method.
*/
sf = NULL;
while ((sf = sample_fetch_getnext(sf, &idx)) != NULL) {
/* Dont register the keywork if the arguments check function are
* not safe during the runtime.
*/
if ((sf->val_args != NULL) &&
(sf->val_args != val_payload_lv) &&
(sf->val_args != val_hdr))
continue;
/* gL.Tua doesn't support '.' and '-' in the function names, replace it
* by an underscore.
*/
strncpy(trash.str, sf->kw, trash.size);
trash.str[trash.size - 1] = '\0';
for (p = trash.str; *p; p++)
if (*p == '.' || *p == '-' || *p == '+')
*p = '_';
/* Register the function. */
lua_pushstring(gL.T, trash.str);
lua_pushlightuserdata(gL.T, sf);
lua_pushcclosure(gL.T, hlua_run_sample_fetch, 1);
lua_settable(gL.T, -3);
}
lua_settable(gL.T, -3);
/* Register previous table in the registry with reference and named entry. */
lua_pushvalue(gL.T, -1); /* Copy the -1 entry and push it on the stack. */
lua_setfield(gL.T, LUA_REGISTRYINDEX, CLASS_FETCHES); /* register class session. */
class_fetches_ref = luaL_ref(gL.T, LUA_REGISTRYINDEX); /* reference class session. */
/*
*
* Register class Converters
*
*/
/* Create and fill the metatable. */
lua_newtable(gL.T);
/* Create and fill the __index entry. */
lua_pushstring(gL.T, "__index");
lua_newtable(gL.T);
/* Browse existing converters and create the associated
* object method.
*/
sc = NULL;
while ((sc = sample_conv_getnext(sc, &idx)) != NULL) {
/* Dont register the keywork if the arguments check function are
* not safe during the runtime.
*/
if (sc->val_args != NULL)
continue;
/* gL.Tua doesn't support '.' and '-' in the function names, replace it
* by an underscore.
*/
strncpy(trash.str, sc->kw, trash.size);
trash.str[trash.size - 1] = '\0';
for (p = trash.str; *p; p++)
if (*p == '.' || *p == '-' || *p == '+')
*p = '_';
/* Register the function. */
lua_pushstring(gL.T, trash.str);
lua_pushlightuserdata(gL.T, sc);
lua_pushcclosure(gL.T, hlua_run_sample_conv, 1);
lua_settable(gL.T, -3);
}
lua_settable(gL.T, -3);
/* Register previous table in the registry with reference and named entry. */
lua_pushvalue(gL.T, -1); /* Copy the -1 entry and push it on the stack. */
lua_setfield(gL.T, LUA_REGISTRYINDEX, CLASS_CONVERTERS); /* register class session. */
class_converters_ref = luaL_ref(gL.T, LUA_REGISTRYINDEX); /* reference class session. */
/*
*
* Register class TXN
*
*/
/* Create and fill the metatable. */
lua_newtable(gL.T);
/* Create and fille the __index entry. */
lua_pushstring(gL.T, "__index");
lua_newtable(gL.T);
/* Register Lua functions. */
hlua_class_function(gL.T, "get_headers", hlua_session_get_headers);
hlua_class_function(gL.T, "set_priv", hlua_set_priv);
hlua_class_function(gL.T, "get_priv", hlua_get_priv);
hlua_class_function(gL.T, "close", hlua_txn_close);
lua_settable(gL.T, -3);
/* Register previous table in the registry with reference and named entry. */
lua_pushvalue(gL.T, -1); /* Copy the -1 entry and push it on the stack. */
lua_setfield(gL.T, LUA_REGISTRYINDEX, CLASS_TXN); /* register class session. */
class_txn_ref = luaL_ref(gL.T, LUA_REGISTRYINDEX); /* reference class session. */
/*
*
* Register class Socket
*
*/
/* Create and fill the metatable. */
lua_newtable(gL.T);
/* Create and fille the __index entry. */
lua_pushstring(gL.T, "__index");
lua_newtable(gL.T);
#ifdef USE_OPENSSL
hlua_class_function(gL.T, "connect_ssl", hlua_socket_connect_ssl);
#endif
hlua_class_function(gL.T, "connect", hlua_socket_connect);
hlua_class_function(gL.T, "send", hlua_socket_send);
hlua_class_function(gL.T, "receive", hlua_socket_receive);
hlua_class_function(gL.T, "close", hlua_socket_close);
hlua_class_function(gL.T, "getpeername", hlua_socket_getpeername);
hlua_class_function(gL.T, "getsockname", hlua_socket_getsockname);
hlua_class_function(gL.T, "setoption", hlua_socket_setoption);
hlua_class_function(gL.T, "settimeout", hlua_socket_settimeout);
lua_settable(gL.T, -3); /* Push the last 2 entries in the table at index -3 */
/* Register the garbage collector entry. */
lua_pushstring(gL.T, "__gc");
lua_pushcclosure(gL.T, hlua_socket_gc, 0);
lua_settable(gL.T, -3); /* Push the last 2 entries in the table at index -3 */
/* Register previous table in the registry with reference and named entry. */
lua_pushvalue(gL.T, -1); /* Copy the -1 entry and push it on the stack. */
lua_pushvalue(gL.T, -1); /* Copy the -1 entry and push it on the stack. */
lua_setfield(gL.T, LUA_REGISTRYINDEX, CLASS_SOCKET); /* register class socket. */
class_socket_ref = luaL_ref(gL.T, LUA_REGISTRYINDEX); /* reference class socket. */
/* Proxy and server configuration initialisation. */
memset(&socket_proxy, 0, sizeof(socket_proxy));
init_new_proxy(&socket_proxy);
socket_proxy.parent = NULL;
socket_proxy.last_change = now.tv_sec;
socket_proxy.id = "LUA-SOCKET";
socket_proxy.cap = PR_CAP_FE | PR_CAP_BE;
socket_proxy.maxconn = 0;
socket_proxy.accept = NULL;
socket_proxy.options2 |= PR_O2_INDEPSTR;
socket_proxy.srv = NULL;
socket_proxy.conn_retries = 0;
socket_proxy.timeout.connect = 5000; /* By default the timeout connection is 5s. */
/* Init TCP server: unchanged parameters */
memset(&socket_tcp, 0, sizeof(socket_tcp));
socket_tcp.next = NULL;
socket_tcp.proxy = &socket_proxy;
socket_tcp.obj_type = OBJ_TYPE_SERVER;
LIST_INIT(&socket_tcp.actconns);
LIST_INIT(&socket_tcp.pendconns);
socket_tcp.state = SRV_ST_RUNNING; /* early server setup */
socket_tcp.last_change = 0;
socket_tcp.id = "LUA-TCP-CONN";
socket_tcp.check.state &= ~CHK_ST_ENABLED; /* Disable health checks. */
socket_tcp.agent.state &= ~CHK_ST_ENABLED; /* Disable health checks. */
socket_tcp.pp_opts = 0; /* Remove proxy protocol. */
/* XXX: Copy default parameter from default server,
* but the default server is not initialized.
*/
socket_tcp.maxqueue = socket_proxy.defsrv.maxqueue;
socket_tcp.minconn = socket_proxy.defsrv.minconn;
socket_tcp.maxconn = socket_proxy.defsrv.maxconn;
socket_tcp.slowstart = socket_proxy.defsrv.slowstart;
socket_tcp.onerror = socket_proxy.defsrv.onerror;
socket_tcp.onmarkeddown = socket_proxy.defsrv.onmarkeddown;
socket_tcp.onmarkedup = socket_proxy.defsrv.onmarkedup;
socket_tcp.consecutive_errors_limit = socket_proxy.defsrv.consecutive_errors_limit;
socket_tcp.uweight = socket_proxy.defsrv.iweight;
socket_tcp.iweight = socket_proxy.defsrv.iweight;
socket_tcp.check.status = HCHK_STATUS_INI;
socket_tcp.check.rise = socket_proxy.defsrv.check.rise;
socket_tcp.check.fall = socket_proxy.defsrv.check.fall;
socket_tcp.check.health = socket_tcp.check.rise; /* socket, but will fall down at first failure */
socket_tcp.check.server = &socket_tcp;
socket_tcp.agent.status = HCHK_STATUS_INI;
socket_tcp.agent.rise = socket_proxy.defsrv.agent.rise;
socket_tcp.agent.fall = socket_proxy.defsrv.agent.fall;
socket_tcp.agent.health = socket_tcp.agent.rise; /* socket, but will fall down at first failure */
socket_tcp.agent.server = &socket_tcp;
socket_tcp.xprt = &raw_sock;
#ifdef USE_OPENSSL
/* Init TCP server: unchanged parameters */
memset(&socket_ssl, 0, sizeof(socket_ssl));
socket_ssl.next = NULL;
socket_ssl.proxy = &socket_proxy;
socket_ssl.obj_type = OBJ_TYPE_SERVER;
LIST_INIT(&socket_ssl.actconns);
LIST_INIT(&socket_ssl.pendconns);
socket_ssl.state = SRV_ST_RUNNING; /* early server setup */
socket_ssl.last_change = 0;
socket_ssl.id = "LUA-SSL-CONN";
socket_ssl.check.state &= ~CHK_ST_ENABLED; /* Disable health checks. */
socket_ssl.agent.state &= ~CHK_ST_ENABLED; /* Disable health checks. */
socket_ssl.pp_opts = 0; /* Remove proxy protocol. */
/* XXX: Copy default parameter from default server,
* but the default server is not initialized.
*/
socket_ssl.maxqueue = socket_proxy.defsrv.maxqueue;
socket_ssl.minconn = socket_proxy.defsrv.minconn;
socket_ssl.maxconn = socket_proxy.defsrv.maxconn;
socket_ssl.slowstart = socket_proxy.defsrv.slowstart;
socket_ssl.onerror = socket_proxy.defsrv.onerror;
socket_ssl.onmarkeddown = socket_proxy.defsrv.onmarkeddown;
socket_ssl.onmarkedup = socket_proxy.defsrv.onmarkedup;
socket_ssl.consecutive_errors_limit = socket_proxy.defsrv.consecutive_errors_limit;
socket_ssl.uweight = socket_proxy.defsrv.iweight;
socket_ssl.iweight = socket_proxy.defsrv.iweight;
socket_ssl.check.status = HCHK_STATUS_INI;
socket_ssl.check.rise = socket_proxy.defsrv.check.rise;
socket_ssl.check.fall = socket_proxy.defsrv.check.fall;
socket_ssl.check.health = socket_ssl.check.rise; /* socket, but will fall down at first failure */
socket_ssl.check.server = &socket_ssl;
socket_ssl.agent.status = HCHK_STATUS_INI;
socket_ssl.agent.rise = socket_proxy.defsrv.agent.rise;
socket_ssl.agent.fall = socket_proxy.defsrv.agent.fall;
socket_ssl.agent.health = socket_ssl.agent.rise; /* socket, but will fall down at first failure */
socket_ssl.agent.server = &socket_ssl;
socket_ssl.xprt = &raw_sock;
args[0] = "ssl";
args[1] = "verify";
args[2] = "none";
args[3] = NULL;
for (idx = 0; idx < 3; idx++) {
if ((kw = srv_find_kw(args[idx])) != NULL) { /* Maybe it's registered server keyword */
/*
*
* If the keyword is not known, we can search in the registered
* server keywords. This is usefull to configure special SSL
* features like client certificates and ssl_verify.
*
*/
tmp_error = kw->parse(args, &idx, &socket_proxy, &socket_ssl, &error);
if (tmp_error != 0) {
fprintf(stderr, "INTERNAL ERROR: %s\n", error);
abort(); /* This must be never arrives because the command line
not editable by the user. */
}
idx += kw->skip;
}
}
/* Initialize SSL server. */
if (socket_ssl.xprt == &ssl_sock) {
socket_ssl.use_ssl = 1;
ssl_sock_prepare_srv_ctx(&socket_ssl, &socket_proxy);
}
#endif
}