| /* |
| * Stream management functions. |
| * |
| * Copyright 2000-2012 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include <fcntl.h> |
| |
| #include <common/cfgparse.h> |
| #include <common/config.h> |
| #include <common/buffer.h> |
| #include <common/debug.h> |
| #include <common/hathreads.h> |
| #include <common/htx.h> |
| #include <common/initcall.h> |
| #include <common/memory.h> |
| |
| #include <types/applet.h> |
| #include <types/capture.h> |
| #include <types/cli.h> |
| #include <types/filters.h> |
| #include <types/global.h> |
| #include <types/stats.h> |
| |
| #include <proto/acl.h> |
| #include <proto/action.h> |
| #include <proto/activity.h> |
| #include <proto/arg.h> |
| #include <proto/backend.h> |
| #include <proto/channel.h> |
| #include <proto/checks.h> |
| #include <proto/cli.h> |
| #include <proto/connection.h> |
| #include <proto/dict.h> |
| #include <proto/dns.h> |
| #include <proto/stats.h> |
| #include <proto/fd.h> |
| #include <proto/filters.h> |
| #include <proto/freq_ctr.h> |
| #include <proto/frontend.h> |
| #include <proto/hdr_idx.h> |
| #include <proto/hlua.h> |
| #include <proto/http_rules.h> |
| #include <proto/listener.h> |
| #include <proto/log.h> |
| #include <proto/raw_sock.h> |
| #include <proto/session.h> |
| #include <proto/stream.h> |
| #include <proto/pipe.h> |
| #include <proto/proto_http.h> |
| #include <proto/proxy.h> |
| #include <proto/queue.h> |
| #include <proto/server.h> |
| #include <proto/sample.h> |
| #include <proto/stick_table.h> |
| #include <proto/stream_interface.h> |
| #include <proto/task.h> |
| #include <proto/tcp_rules.h> |
| #include <proto/vars.h> |
| |
| DECLARE_POOL(pool_head_stream, "stream", sizeof(struct stream)); |
| |
| struct list streams = LIST_HEAD_INIT(streams); |
| __decl_spinlock(streams_lock); |
| |
| /* List of all use-service keywords. */ |
| static struct list service_keywords = LIST_HEAD_INIT(service_keywords); |
| |
| |
| /* Create a new stream for connection <conn>. Return < 0 on error. This is only |
| * valid right after the handshake, before the connection's data layer is |
| * initialized, because it relies on the session to be in conn->owner. |
| */ |
| int stream_create_from_cs(struct conn_stream *cs) |
| { |
| struct stream *strm; |
| |
| strm = stream_new(cs->conn->owner, &cs->obj_type); |
| if (strm == NULL) |
| return -1; |
| |
| task_wakeup(strm->task, TASK_WOKEN_INIT); |
| return 0; |
| } |
| |
| /* Callback used to wake up a stream when an input buffer is available. The |
| * stream <s>'s stream interfaces are checked for a failed buffer allocation |
| * as indicated by the presence of the SI_FL_RXBLK_ROOM flag and the lack of a |
| * buffer, and and input buffer is assigned there (at most one). The function |
| * returns 1 and wakes the stream up if a buffer was taken, otherwise zero. |
| * It's designed to be called from __offer_buffer(). |
| */ |
| int stream_buf_available(void *arg) |
| { |
| struct stream *s = arg; |
| |
| if (!s->req.buf.size && !s->req.pipe && (s->si[0].flags & SI_FL_RXBLK_BUFF) && |
| b_alloc_margin(&s->req.buf, global.tune.reserved_bufs)) |
| si_rx_buff_rdy(&s->si[0]); |
| else if (!s->res.buf.size && !s->res.pipe && (s->si[1].flags & SI_FL_RXBLK_BUFF) && |
| b_alloc_margin(&s->res.buf, 0)) |
| si_rx_buff_rdy(&s->si[1]); |
| else |
| return 0; |
| |
| task_wakeup(s->task, TASK_WOKEN_RES); |
| return 1; |
| |
| } |
| |
| /* This function is called from the session handler which detects the end of |
| * handshake, in order to complete initialization of a valid stream. It must be |
| * called with a completely initialized session. It returns the pointer to |
| * the newly created stream, or NULL in case of fatal error. The client-facing |
| * end point is assigned to <origin>, which must be valid. The stream's task |
| * is configured with a nice value inherited from the listener's nice if any. |
| * The task's context is set to the new stream, and its function is set to |
| * process_stream(). Target and analysers are null. |
| */ |
| struct stream *stream_new(struct session *sess, enum obj_type *origin) |
| { |
| struct stream *s; |
| struct task *t; |
| struct conn_stream *cs = objt_cs(origin); |
| struct appctx *appctx = objt_appctx(origin); |
| const struct cs_info *csinfo; |
| |
| if (unlikely((s = pool_alloc(pool_head_stream)) == NULL)) |
| goto out_fail_alloc; |
| |
| /* minimum stream initialization required for an embryonic stream is |
| * fairly low. We need very little to execute L4 ACLs, then we need a |
| * task to make the client-side connection live on its own. |
| * - flags |
| * - stick-entry tracking |
| */ |
| s->flags = 0; |
| s->logs.logwait = sess->fe->to_log; |
| s->logs.level = 0; |
| tv_zero(&s->logs.tv_request); |
| s->logs.t_queue = -1; |
| s->logs.t_connect = -1; |
| s->logs.t_data = -1; |
| s->logs.t_close = 0; |
| s->logs.bytes_in = s->logs.bytes_out = 0; |
| s->logs.prx_queue_pos = 0; /* we get the number of pending conns before us */ |
| s->logs.srv_queue_pos = 0; /* we will get this number soon */ |
| s->obj_type = OBJ_TYPE_STREAM; |
| |
| csinfo = si_get_cs_info(cs); |
| if (csinfo) { |
| s->logs.accept_date = csinfo->create_date; |
| s->logs.tv_accept = csinfo->tv_create; |
| s->logs.t_handshake = csinfo->t_handshake; |
| s->logs.t_idle = csinfo->t_idle; |
| } |
| else { |
| s->logs.accept_date = sess->accept_date; |
| s->logs.tv_accept = sess->tv_accept; |
| s->logs.t_handshake = sess->t_handshake; |
| s->logs.t_idle = -1; |
| } |
| |
| /* default logging function */ |
| s->do_log = strm_log; |
| |
| /* default error reporting function, may be changed by analysers */ |
| s->srv_error = default_srv_error; |
| |
| /* Initialise the current rule list pointer to NULL. We are sure that |
| * any rulelist match the NULL pointer. |
| */ |
| s->current_rule_list = NULL; |
| s->current_rule = NULL; |
| |
| /* Copy SC counters for the stream. We don't touch refcounts because |
| * any reference we have is inherited from the session. Since the stream |
| * doesn't exist without the session, the session's existence guarantees |
| * we don't lose the entry. During the store operation, the stream won't |
| * touch these ones. |
| */ |
| memcpy(s->stkctr, sess->stkctr, sizeof(s->stkctr)); |
| |
| s->sess = sess; |
| s->si[0].flags = SI_FL_NONE; |
| s->si[1].flags = SI_FL_ISBACK; |
| |
| s->uniq_id = _HA_ATOMIC_XADD(&global.req_count, 1); |
| |
| /* OK, we're keeping the stream, so let's properly initialize the stream */ |
| LIST_INIT(&s->back_refs); |
| |
| LIST_INIT(&s->buffer_wait.list); |
| s->buffer_wait.target = s; |
| s->buffer_wait.wakeup_cb = stream_buf_available; |
| |
| s->call_rate.curr_sec = s->call_rate.curr_ctr = s->call_rate.prev_ctr = 0; |
| s->pcli_next_pid = 0; |
| s->pcli_flags = 0; |
| s->unique_id = NULL; |
| |
| if ((t = task_new(tid_bit)) == NULL) |
| goto out_fail_alloc; |
| |
| s->task = t; |
| s->pending_events = 0; |
| t->process = process_stream; |
| t->context = s; |
| t->expire = TICK_ETERNITY; |
| if (sess->listener) |
| t->nice = sess->listener->nice; |
| |
| /* Note: initially, the stream's backend points to the frontend. |
| * This changes later when switching rules are executed or |
| * when the default backend is assigned. |
| */ |
| s->be = sess->fe; |
| s->req.buf = BUF_NULL; |
| s->res.buf = BUF_NULL; |
| s->req_cap = NULL; |
| s->res_cap = NULL; |
| |
| /* Initialise all the variables contexts even if not used. |
| * This permits to prune these contexts without errors. |
| */ |
| vars_init(&s->vars_txn, SCOPE_TXN); |
| vars_init(&s->vars_reqres, SCOPE_REQ); |
| |
| /* this part should be common with other protocols */ |
| if (si_reset(&s->si[0]) < 0) |
| goto out_fail_alloc; |
| si_set_state(&s->si[0], SI_ST_EST); |
| s->si[0].hcto = sess->fe->timeout.clientfin; |
| |
| if (cs && cs->conn->mux) { |
| if (cs->conn->mux->flags & MX_FL_CLEAN_ABRT) |
| s->si[0].flags |= SI_FL_CLEAN_ABRT; |
| if (cs->conn->mux->flags & MX_FL_HTX) |
| s->flags |= SF_HTX; |
| } |
| /* Set SF_HTX flag for HTX frontends. */ |
| if (sess->fe->mode == PR_MODE_HTTP && sess->fe->options2 & PR_O2_USE_HTX) |
| s->flags |= SF_HTX; |
| |
| /* attach the incoming connection to the stream interface now. */ |
| if (cs) |
| si_attach_cs(&s->si[0], cs); |
| else if (appctx) |
| si_attach_appctx(&s->si[0], appctx); |
| |
| if (likely(sess->fe->options2 & PR_O2_INDEPSTR)) |
| s->si[0].flags |= SI_FL_INDEP_STR; |
| |
| /* pre-initialize the other side's stream interface to an INIT state. The |
| * callbacks will be initialized before attempting to connect. |
| */ |
| if (si_reset(&s->si[1]) < 0) |
| goto out_fail_alloc_si1; |
| s->si[1].hcto = TICK_ETERNITY; |
| |
| if (likely(sess->fe->options2 & PR_O2_INDEPSTR)) |
| s->si[1].flags |= SI_FL_INDEP_STR; |
| |
| stream_init_srv_conn(s); |
| s->target = sess->listener ? sess->listener->default_target : NULL; |
| |
| s->pend_pos = NULL; |
| s->priority_class = 0; |
| s->priority_offset = 0; |
| |
| /* init store persistence */ |
| s->store_count = 0; |
| |
| channel_init(&s->req); |
| s->req.flags |= CF_READ_ATTACHED; /* the producer is already connected */ |
| s->req.analysers = sess->listener ? sess->listener->analysers : 0; |
| |
| if (!sess->fe->fe_req_ana) { |
| channel_auto_connect(&s->req); /* don't wait to establish connection */ |
| channel_auto_close(&s->req); /* let the producer forward close requests */ |
| } |
| |
| s->req.rto = sess->fe->timeout.client; |
| s->req.wto = TICK_ETERNITY; |
| s->req.rex = TICK_ETERNITY; |
| s->req.wex = TICK_ETERNITY; |
| s->req.analyse_exp = TICK_ETERNITY; |
| |
| channel_init(&s->res); |
| s->res.flags |= CF_ISRESP; |
| s->res.analysers = 0; |
| |
| if (sess->fe->options2 & PR_O2_NODELAY) { |
| s->req.flags |= CF_NEVER_WAIT; |
| s->res.flags |= CF_NEVER_WAIT; |
| } |
| |
| s->res.wto = sess->fe->timeout.client; |
| s->res.rto = TICK_ETERNITY; |
| s->res.rex = TICK_ETERNITY; |
| s->res.wex = TICK_ETERNITY; |
| s->res.analyse_exp = TICK_ETERNITY; |
| |
| s->txn = NULL; |
| s->hlua = NULL; |
| |
| s->dns_ctx.dns_requester = NULL; |
| s->dns_ctx.hostname_dn = NULL; |
| s->dns_ctx.hostname_dn_len = 0; |
| s->dns_ctx.parent = NULL; |
| |
| HA_SPIN_LOCK(STRMS_LOCK, &streams_lock); |
| LIST_ADDQ(&streams, &s->list); |
| HA_SPIN_UNLOCK(STRMS_LOCK, &streams_lock); |
| |
| if (flt_stream_init(s) < 0 || flt_stream_start(s) < 0) |
| goto out_fail_accept; |
| |
| s->si[1].l7_buffer = BUF_NULL; |
| /* finish initialization of the accepted file descriptor */ |
| if (appctx) |
| si_want_get(&s->si[0]); |
| |
| if (sess->fe->accept && sess->fe->accept(s) < 0) |
| goto out_fail_accept; |
| |
| /* it is important not to call the wakeup function directly but to |
| * pass through task_wakeup(), because this one knows how to apply |
| * priorities to tasks. Using multi thread we must be sure that |
| * stream is fully initialized before calling task_wakeup. So |
| * the caller must handle the task_wakeup |
| */ |
| return s; |
| |
| /* Error unrolling */ |
| out_fail_accept: |
| flt_stream_release(s, 0); |
| task_destroy(t); |
| tasklet_free(s->si[1].wait_event.tasklet); |
| LIST_DEL(&s->list); |
| out_fail_alloc_si1: |
| tasklet_free(s->si[0].wait_event.tasklet); |
| out_fail_alloc: |
| pool_free(pool_head_stream, s); |
| return NULL; |
| } |
| |
| /* |
| * frees the context associated to a stream. It must have been removed first. |
| */ |
| static void stream_free(struct stream *s) |
| { |
| struct session *sess = strm_sess(s); |
| struct proxy *fe = sess->fe; |
| struct bref *bref, *back; |
| struct conn_stream *cli_cs = objt_cs(s->si[0].end); |
| int must_free_sess; |
| int i; |
| |
| /* detach the stream from its own task before even releasing it so |
| * that walking over a task list never exhibits a dying stream. |
| */ |
| s->task->context = NULL; |
| __ha_barrier_store(); |
| |
| pendconn_free(s); |
| |
| if (objt_server(s->target)) { /* there may be requests left pending in queue */ |
| if (s->flags & SF_CURR_SESS) { |
| s->flags &= ~SF_CURR_SESS; |
| _HA_ATOMIC_SUB(&__objt_server(s->target)->cur_sess, 1); |
| } |
| if (may_dequeue_tasks(objt_server(s->target), s->be)) |
| process_srv_queue(objt_server(s->target)); |
| } |
| |
| if (unlikely(s->srv_conn)) { |
| /* the stream still has a reserved slot on a server, but |
| * it should normally be only the same as the one above, |
| * so this should not happen in fact. |
| */ |
| sess_change_server(s, NULL); |
| } |
| |
| if (s->req.pipe) |
| put_pipe(s->req.pipe); |
| |
| if (s->res.pipe) |
| put_pipe(s->res.pipe); |
| |
| /* We may still be present in the buffer wait queue */ |
| if (!LIST_ISEMPTY(&s->buffer_wait.list)) { |
| HA_SPIN_LOCK(BUF_WQ_LOCK, &buffer_wq_lock); |
| LIST_DEL(&s->buffer_wait.list); |
| LIST_INIT(&s->buffer_wait.list); |
| HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock); |
| } |
| if (s->req.buf.size || s->res.buf.size) { |
| b_drop(&s->req.buf); |
| b_drop(&s->res.buf); |
| offer_buffers(NULL, tasks_run_queue); |
| } |
| |
| pool_free(pool_head_uniqueid, s->unique_id); |
| s->unique_id = NULL; |
| |
| hlua_ctx_destroy(s->hlua); |
| s->hlua = NULL; |
| if (s->txn) |
| http_end_txn(s); |
| |
| /* ensure the client-side transport layer is destroyed */ |
| if (cli_cs) |
| cs_close(cli_cs); |
| |
| for (i = 0; i < s->store_count; i++) { |
| if (!s->store[i].ts) |
| continue; |
| stksess_free(s->store[i].table, s->store[i].ts); |
| s->store[i].ts = NULL; |
| } |
| |
| if (s->txn) { |
| pool_free(pool_head_hdr_idx, s->txn->hdr_idx.v); |
| pool_free(pool_head_http_txn, s->txn); |
| s->txn = NULL; |
| } |
| |
| if (s->dns_ctx.dns_requester) { |
| free(s->dns_ctx.hostname_dn); s->dns_ctx.hostname_dn = NULL; |
| s->dns_ctx.hostname_dn_len = 0; |
| dns_unlink_resolution(s->dns_ctx.dns_requester); |
| |
| pool_free(dns_requester_pool, s->dns_ctx.dns_requester); |
| s->dns_ctx.dns_requester = NULL; |
| } |
| |
| flt_stream_stop(s); |
| flt_stream_release(s, 0); |
| |
| if (fe) { |
| if (s->req_cap) { |
| struct cap_hdr *h; |
| for (h = fe->req_cap; h; h = h->next) |
| pool_free(h->pool, s->req_cap[h->index]); |
| } |
| |
| if (s->res_cap) { |
| struct cap_hdr *h; |
| for (h = fe->rsp_cap; h; h = h->next) |
| pool_free(h->pool, s->res_cap[h->index]); |
| } |
| |
| pool_free(fe->rsp_cap_pool, s->res_cap); |
| pool_free(fe->req_cap_pool, s->req_cap); |
| } |
| |
| /* Cleanup all variable contexts. */ |
| if (!LIST_ISEMPTY(&s->vars_txn.head)) |
| vars_prune(&s->vars_txn, s->sess, s); |
| if (!LIST_ISEMPTY(&s->vars_reqres.head)) |
| vars_prune(&s->vars_reqres, s->sess, s); |
| |
| stream_store_counters(s); |
| |
| HA_SPIN_LOCK(STRMS_LOCK, &streams_lock); |
| list_for_each_entry_safe(bref, back, &s->back_refs, users) { |
| /* we have to unlink all watchers. We must not relink them if |
| * this stream was the last one in the list. |
| */ |
| LIST_DEL(&bref->users); |
| LIST_INIT(&bref->users); |
| if (s->list.n != &streams) |
| LIST_ADDQ(&LIST_ELEM(s->list.n, struct stream *, list)->back_refs, &bref->users); |
| bref->ref = s->list.n; |
| } |
| LIST_DEL(&s->list); |
| HA_SPIN_UNLOCK(STRMS_LOCK, &streams_lock); |
| |
| /* applets do not release session yet */ |
| must_free_sess = objt_appctx(sess->origin) && sess->origin == s->si[0].end; |
| |
| |
| si_release_endpoint(&s->si[1]); |
| si_release_endpoint(&s->si[0]); |
| |
| tasklet_free(s->si[0].wait_event.tasklet); |
| tasklet_free(s->si[1].wait_event.tasklet); |
| |
| b_free(&s->si[1].l7_buffer); |
| if (must_free_sess) { |
| sess->origin = NULL; |
| session_free(sess); |
| } |
| |
| pool_free(pool_head_stream, s); |
| |
| /* We may want to free the maximum amount of pools if the proxy is stopping */ |
| if (fe && unlikely(fe->state == PR_STSTOPPED)) { |
| pool_flush(pool_head_buffer); |
| pool_flush(pool_head_http_txn); |
| pool_flush(pool_head_hdr_idx); |
| pool_flush(pool_head_requri); |
| pool_flush(pool_head_capture); |
| pool_flush(pool_head_stream); |
| pool_flush(pool_head_session); |
| pool_flush(pool_head_connection); |
| pool_flush(pool_head_pendconn); |
| pool_flush(fe->req_cap_pool); |
| pool_flush(fe->rsp_cap_pool); |
| } |
| } |
| |
| |
| /* Allocates a work buffer for stream <s>. It is meant to be called inside |
| * process_stream(). It will only allocate the side needed for the function |
| * to work fine, which is the response buffer so that an error message may be |
| * built and returned. Response buffers may be allocated from the reserve, this |
| * is critical to ensure that a response may always flow and will never block a |
| * server from releasing a connection. Returns 0 in case of failure, non-zero |
| * otherwise. |
| */ |
| static int stream_alloc_work_buffer(struct stream *s) |
| { |
| if (!LIST_ISEMPTY(&s->buffer_wait.list)) { |
| HA_SPIN_LOCK(BUF_WQ_LOCK, &buffer_wq_lock); |
| LIST_DEL(&s->buffer_wait.list); |
| LIST_INIT(&s->buffer_wait.list); |
| HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock); |
| } |
| |
| if (b_alloc_margin(&s->res.buf, 0)) |
| return 1; |
| |
| HA_SPIN_LOCK(BUF_WQ_LOCK, &buffer_wq_lock); |
| LIST_ADDQ(&buffer_wq, &s->buffer_wait.list); |
| HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock); |
| return 0; |
| } |
| |
| /* releases unused buffers after processing. Typically used at the end of the |
| * update() functions. It will try to wake up as many tasks/applets as the |
| * number of buffers that it releases. In practice, most often streams are |
| * blocked on a single buffer, so it makes sense to try to wake two up when two |
| * buffers are released at once. |
| */ |
| void stream_release_buffers(struct stream *s) |
| { |
| int offer = 0; |
| |
| if (c_size(&s->req) && c_empty(&s->req)) { |
| offer = 1; |
| b_free(&s->req.buf); |
| } |
| if (c_size(&s->res) && c_empty(&s->res)) { |
| offer = 1; |
| b_free(&s->res.buf); |
| } |
| |
| /* if we're certain to have at least 1 buffer available, and there is |
| * someone waiting, we can wake up a waiter and offer them. |
| */ |
| if (offer) |
| offer_buffers(s, tasks_run_queue); |
| } |
| |
| void stream_process_counters(struct stream *s) |
| { |
| struct session *sess = s->sess; |
| unsigned long long bytes; |
| void *ptr1,*ptr2; |
| struct stksess *ts; |
| int i; |
| |
| bytes = s->req.total - s->logs.bytes_in; |
| s->logs.bytes_in = s->req.total; |
| if (bytes) { |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_in, bytes); |
| _HA_ATOMIC_ADD(&s->be->be_counters.bytes_in, bytes); |
| |
| if (objt_server(s->target)) |
| _HA_ATOMIC_ADD(&objt_server(s->target)->counters.bytes_in, bytes); |
| |
| if (sess->listener && sess->listener->counters) |
| _HA_ATOMIC_ADD(&sess->listener->counters->bytes_in, bytes); |
| |
| for (i = 0; i < MAX_SESS_STKCTR; i++) { |
| struct stkctr *stkctr = &s->stkctr[i]; |
| |
| ts = stkctr_entry(stkctr); |
| if (!ts) { |
| stkctr = &sess->stkctr[i]; |
| ts = stkctr_entry(stkctr); |
| if (!ts) |
| continue; |
| } |
| |
| HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); |
| ptr1 = stktable_data_ptr(stkctr->table, ts, STKTABLE_DT_BYTES_IN_CNT); |
| if (ptr1) |
| stktable_data_cast(ptr1, bytes_in_cnt) += bytes; |
| |
| ptr2 = stktable_data_ptr(stkctr->table, ts, STKTABLE_DT_BYTES_IN_RATE); |
| if (ptr2) |
| update_freq_ctr_period(&stktable_data_cast(ptr2, bytes_in_rate), |
| stkctr->table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u, bytes); |
| HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| /* If data was modified, we need to touch to re-schedule sync */ |
| if (ptr1 || ptr2) |
| stktable_touch_local(stkctr->table, ts, 0); |
| } |
| } |
| |
| bytes = s->res.total - s->logs.bytes_out; |
| s->logs.bytes_out = s->res.total; |
| if (bytes) { |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_out, bytes); |
| _HA_ATOMIC_ADD(&s->be->be_counters.bytes_out, bytes); |
| |
| if (objt_server(s->target)) |
| _HA_ATOMIC_ADD(&objt_server(s->target)->counters.bytes_out, bytes); |
| |
| if (sess->listener && sess->listener->counters) |
| _HA_ATOMIC_ADD(&sess->listener->counters->bytes_out, bytes); |
| |
| for (i = 0; i < MAX_SESS_STKCTR; i++) { |
| struct stkctr *stkctr = &s->stkctr[i]; |
| |
| ts = stkctr_entry(stkctr); |
| if (!ts) { |
| stkctr = &sess->stkctr[i]; |
| ts = stkctr_entry(stkctr); |
| if (!ts) |
| continue; |
| } |
| |
| HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); |
| ptr1 = stktable_data_ptr(stkctr->table, ts, STKTABLE_DT_BYTES_OUT_CNT); |
| if (ptr1) |
| stktable_data_cast(ptr1, bytes_out_cnt) += bytes; |
| |
| ptr2 = stktable_data_ptr(stkctr->table, ts, STKTABLE_DT_BYTES_OUT_RATE); |
| if (ptr2) |
| update_freq_ctr_period(&stktable_data_cast(ptr2, bytes_out_rate), |
| stkctr->table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u, bytes); |
| HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| /* If data was modified, we need to touch to re-schedule sync */ |
| if (ptr1 || ptr2) |
| stktable_touch_local(stkctr->table, stkctr_entry(stkctr), 0); |
| } |
| } |
| } |
| |
| /* This function is called with (si->state == SI_ST_CON) meaning that a |
| * connection was attempted and that the file descriptor is already allocated. |
| * We must check for timeout, error and abort. Possible output states are |
| * SI_ST_CER (error), SI_ST_DIS (abort), and SI_ST_CON (no change). This only |
| * works with connection-based streams. We know that there were no I/O event |
| * when reaching this function. Timeouts and errors are *not* cleared. |
| */ |
| static void sess_update_st_con_tcp(struct stream *s) |
| { |
| struct stream_interface *si = &s->si[1]; |
| struct channel *req = &s->req; |
| struct channel *rep = &s->res; |
| |
| /* the client might want to abort */ |
| if ((rep->flags & CF_SHUTW) || |
| ((req->flags & CF_SHUTW_NOW) && |
| (channel_is_empty(req) || (s->be->options & PR_O_ABRT_CLOSE)))) { |
| si->flags |= SI_FL_NOLINGER; |
| si_shutw(si); |
| si->err_type |= SI_ET_CONN_ABRT; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| /* Note: state = SI_ST_DIS now */ |
| return; |
| } |
| |
| /* retryable error ? */ |
| if (si->flags & (SI_FL_EXP|SI_FL_ERR)) { |
| si_release_endpoint(si); |
| |
| if (!si->err_type) { |
| if (si->flags & SI_FL_ERR) |
| si->err_type = SI_ET_CONN_ERR; |
| else |
| si->err_type = SI_ET_CONN_TO; |
| } |
| |
| si->state = SI_ST_CER; |
| return; |
| } |
| } |
| |
| /* This function is called with (si->state == SI_ST_CER) meaning that a |
| * previous connection attempt has failed and that the file descriptor |
| * has already been released. Possible causes include asynchronous error |
| * notification and time out. Possible output states are SI_ST_CLO when |
| * retries are exhausted, SI_ST_TAR when a delay is wanted before a new |
| * connection attempt, SI_ST_ASS when it's wise to retry on the same server, |
| * and SI_ST_REQ when an immediate redispatch is wanted. The buffers are |
| * marked as in error state. Timeouts and errors are cleared before retrying. |
| */ |
| static void sess_update_st_cer(struct stream *s) |
| { |
| struct stream_interface *si = &s->si[1]; |
| struct conn_stream *cs = objt_cs(si->end); |
| struct connection *conn = cs_conn(cs); |
| |
| si->exp = TICK_ETERNITY; |
| si->flags &= ~SI_FL_EXP; |
| |
| /* we probably have to release last stream from the server */ |
| if (objt_server(s->target)) { |
| health_adjust(objt_server(s->target), HANA_STATUS_L4_ERR); |
| |
| if (s->flags & SF_CURR_SESS) { |
| s->flags &= ~SF_CURR_SESS; |
| _HA_ATOMIC_SUB(&__objt_server(s->target)->cur_sess, 1); |
| } |
| |
| if ((si->flags & SI_FL_ERR) && |
| conn && conn->err_code == CO_ER_SSL_MISMATCH_SNI) { |
| /* We tried to connect to a server which is configured |
| * with "verify required" and which doesn't have the |
| * "verifyhost" directive. The server presented a wrong |
| * certificate (a certificate for an unexpected name), |
| * which implies that we have used SNI in the handshake, |
| * and that the server doesn't have the associated cert |
| * and presented a default one. |
| * |
| * This is a serious enough issue not to retry. It's |
| * especially important because this wrong name might |
| * either be the result of a configuration error, and |
| * retrying will only hammer the server, or is caused |
| * by the use of a wrong SNI value, most likely |
| * provided by the client and we don't want to let the |
| * client provoke retries. |
| */ |
| si->conn_retries = 0; |
| } |
| } |
| |
| /* ensure that we have enough retries left */ |
| si->conn_retries--; |
| if (si->conn_retries < 0 || !(s->be->retry_type & PR_RE_CONN_FAILED)) { |
| if (!si->err_type) { |
| si->err_type = SI_ET_CONN_ERR; |
| } |
| |
| if (objt_server(s->target)) |
| _HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_conns, 1); |
| _HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1); |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(objt_server(s->target), s->be)) |
| process_srv_queue(objt_server(s->target)); |
| |
| /* shutw is enough so stop a connecting socket */ |
| si_shutw(si); |
| s->req.flags |= CF_WRITE_ERROR; |
| s->res.flags |= CF_READ_ERROR; |
| |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| stream_choose_redispatch(s); |
| |
| if (si->flags & SI_FL_ERR) { |
| /* The error was an asynchronous connection error, and we will |
| * likely have to retry connecting to the same server, most |
| * likely leading to the same result. To avoid this, we wait |
| * MIN(one second, connect timeout) before retrying. We don't |
| * do it when the failure happened on a reused connection |
| * though. |
| */ |
| |
| int delay = 1000; |
| |
| if (s->be->timeout.connect && s->be->timeout.connect < delay) |
| delay = s->be->timeout.connect; |
| |
| if (!si->err_type) |
| si->err_type = SI_ET_CONN_ERR; |
| |
| /* only wait when we're retrying on the same server */ |
| if ((si->state == SI_ST_ASS || |
| (s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_RR || |
| (s->be->srv_act <= 1)) && !(s->flags & SF_SRV_REUSED)) { |
| si->state = SI_ST_TAR; |
| si->exp = tick_add(now_ms, MS_TO_TICKS(delay)); |
| } |
| si->flags &= ~SI_FL_ERR; |
| } |
| } |
| |
| /* This function is called with (si->state == SI_ST_RDY) meaning that a |
| * connection was attempted, that the file descriptor is already allocated, |
| * and that it has succeeded. We must still check for errors and aborts. |
| * Possible output states are SI_ST_EST (established), SI_ST_CER (error), |
| * and SI_ST_DIS (abort). This only works with connection-based streams. |
| * Timeouts and errors are *not* cleared. |
| */ |
| static void sess_update_st_rdy_tcp(struct stream *s) |
| { |
| struct stream_interface *si = &s->si[1]; |
| struct channel *req = &s->req; |
| struct channel *rep = &s->res; |
| |
| /* We know the connection at least succeeded, though it could have |
| * since met an error for any other reason. At least it didn't time out |
| * eventhough the timeout might have been reported right after success. |
| * We need to take care of various situations here : |
| * - everything might be OK. We have to switch to established. |
| * - an I/O error might have been reported after a successful transfer, |
| * which is not retryable and needs to be logged correctly, and needs |
| * established as well |
| * - SI_ST_CON implies !CF_WROTE_DATA but not conversely as we could |
| * have validated a connection with incoming data (e.g. TCP with a |
| * banner protocol), or just a successful connect() probe. |
| * - the client might have requested a connection abort, this needs to |
| * be checked before we decide to retry anything. |
| */ |
| |
| /* it's still possible to handle client aborts or connection retries |
| * before any data were sent. |
| */ |
| if (!(req->flags & CF_WROTE_DATA)) { |
| /* client abort ? */ |
| if ((rep->flags & CF_SHUTW) || |
| ((req->flags & CF_SHUTW_NOW) && |
| (channel_is_empty(req) || (s->be->options & PR_O_ABRT_CLOSE)))) { |
| /* give up */ |
| si->flags |= SI_FL_NOLINGER; |
| si_shutw(si); |
| si->err_type |= SI_ET_CONN_ABRT; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* retryable error ? */ |
| if (si->flags & SI_FL_ERR) { |
| si_release_endpoint(si); |
| |
| if (!si->err_type) |
| si->err_type = SI_ET_CONN_ERR; |
| si->state = SI_ST_CER; |
| return; |
| } |
| } |
| |
| /* data were sent and/or we had no error, sess_establish() will |
| * now take over. |
| */ |
| si->err_type = SI_ET_NONE; |
| si->state = SI_ST_EST; |
| } |
| |
| /* |
| * This function handles the transition between the SI_ST_CON state and the |
| * SI_ST_EST state. It must only be called after switching from SI_ST_CON (or |
| * SI_ST_INI or SI_ST_RDY) to SI_ST_EST, but only when a ->proto is defined. |
| * Note that it will switch the interface to SI_ST_DIS if we already have |
| * the CF_SHUTR flag, it means we were able to forward the request, and |
| * receive the response, before process_stream() had the opportunity to |
| * make the switch from SI_ST_CON to SI_ST_EST. When that happens, we want |
| * to go through sess_establish() anyway, to make sure the analysers run. |
| * Timeouts are cleared. Error are reported on the channel so that analysers |
| * can handle them. |
| */ |
| static void sess_establish(struct stream *s) |
| { |
| struct stream_interface *si = &s->si[1]; |
| struct conn_stream *srv_cs = objt_cs(si->end); |
| struct connection *conn = srv_cs ? srv_cs->conn : objt_conn(si->end); |
| struct channel *req = &s->req; |
| struct channel *rep = &s->res; |
| |
| /* First, centralize the timers information, and clear any irrelevant |
| * timeout. |
| */ |
| s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->exp = TICK_ETERNITY; |
| si->flags &= ~SI_FL_EXP; |
| |
| /* errors faced after sending data need to be reported */ |
| if (si->flags & SI_FL_ERR && req->flags & CF_WROTE_DATA) { |
| /* Don't add CF_WRITE_ERROR if we're here because |
| * early data were rejected by the server, or |
| * http_wait_for_response() will never be called |
| * to send a 425. |
| */ |
| if (conn && conn->err_code != CO_ER_SSL_EARLY_FAILED) |
| req->flags |= CF_WRITE_ERROR; |
| rep->flags |= CF_READ_ERROR; |
| si->err_type = SI_ET_DATA_ERR; |
| } |
| |
| /* If the request channel is waiting for the connect(), we mark the read |
| * side as attached on the response channel and we wake up it once. So |
| * it will have a chance to forward data now. |
| */ |
| if (req->flags & CF_WAKE_CONNECT) { |
| req->flags |= CF_WAKE_ONCE; |
| req->flags &= ~CF_WAKE_CONNECT; |
| } |
| |
| if (objt_server(s->target)) |
| health_adjust(objt_server(s->target), HANA_STATUS_L4_OK); |
| |
| if (s->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */ |
| /* if the user wants to log as soon as possible, without counting |
| * bytes from the server, then this is the right moment. */ |
| if (!LIST_ISEMPTY(&strm_fe(s)->logformat) && !(s->logs.logwait & LW_BYTES)) { |
| /* note: no pend_pos here, session is established */ |
| s->logs.t_close = s->logs.t_connect; /* to get a valid end date */ |
| s->do_log(s); |
| } |
| } |
| else { |
| rep->flags |= CF_READ_DONTWAIT; /* a single read is enough to get response headers */ |
| } |
| |
| rep->analysers |= strm_fe(s)->fe_rsp_ana | s->be->be_rsp_ana; |
| |
| /* Be sure to filter response headers if the backend is an HTTP proxy |
| * and if there are filters attached to the stream. */ |
| if (s->be->mode == PR_MODE_HTTP && HAS_FILTERS(s)) |
| rep->analysers |= AN_RES_FLT_HTTP_HDRS; |
| |
| si_rx_endp_more(si); |
| rep->flags |= CF_READ_ATTACHED; /* producer is now attached */ |
| if (objt_cs(si->end)) { |
| /* real connections have timeouts */ |
| req->wto = s->be->timeout.server; |
| rep->rto = s->be->timeout.server; |
| /* The connection is now established, try to read data from the |
| * underlying layer, and subscribe to recv events. We use a |
| * delayed recv here to give a chance to the data to flow back |
| * by the time we process other tasks. |
| */ |
| si_chk_rcv(si); |
| } |
| req->wex = TICK_ETERNITY; |
| /* If we managed to get the whole response, and we don't have anything |
| * left to send, or can't, switch to SI_ST_DIS now. */ |
| if (rep->flags & (CF_SHUTR | CF_SHUTW)) |
| si->state = SI_ST_DIS; |
| } |
| |
| /* Check if the connection request is in such a state that it can be aborted. */ |
| static int check_req_may_abort(struct channel *req, struct stream *s) |
| { |
| return ((req->flags & (CF_READ_ERROR)) || |
| ((req->flags & (CF_SHUTW_NOW|CF_SHUTW)) && /* empty and client aborted */ |
| (channel_is_empty(req) || (s->be->options & PR_O_ABRT_CLOSE)))); |
| } |
| |
| /* Update back stream interface status for input states SI_ST_ASS, SI_ST_QUE, |
| * SI_ST_TAR. Other input states are simply ignored. |
| * Possible output states are SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ, SI_ST_CON |
| * and SI_ST_EST. Flags must have previously been updated for timeouts and other |
| * conditions. |
| */ |
| static void sess_update_stream_int(struct stream *s) |
| { |
| struct server *srv = objt_server(s->target); |
| struct stream_interface *si = &s->si[1]; |
| struct channel *req = &s->req; |
| |
| DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%lu rqt=%lu rph=%lu rpt=%lu cs=%d ss=%d\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, &s->res, |
| req->rex, s->res.wex, |
| req->flags, s->res.flags, |
| ci_data(req), co_data(req), ci_data(&s->res), co_data(&s->res), s->si[0].state, s->si[1].state); |
| |
| if (si->state == SI_ST_ASS) { |
| /* Server assigned to connection request, we have to try to connect now */ |
| int conn_err; |
| |
| /* Before we try to initiate the connection, see if the |
| * request may be aborted instead. |
| */ |
| if (check_req_may_abort(req, s)) { |
| si->err_type |= SI_ET_CONN_ABRT; |
| goto abort_connection; |
| } |
| |
| conn_err = connect_server(s); |
| srv = objt_server(s->target); |
| |
| if (conn_err == SF_ERR_NONE) { |
| /* state = SI_ST_CON or SI_ST_EST now */ |
| if (srv) |
| srv_inc_sess_ctr(srv); |
| if (srv) |
| srv_set_sess_last(srv); |
| return; |
| } |
| |
| /* We have received a synchronous error. We might have to |
| * abort, retry immediately or redispatch. |
| */ |
| if (conn_err == SF_ERR_INTERNAL) { |
| if (!si->err_type) { |
| si->err_type = SI_ET_CONN_OTHER; |
| } |
| |
| if (srv) |
| srv_inc_sess_ctr(srv); |
| if (srv) |
| srv_set_sess_last(srv); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.failed_conns, 1); |
| _HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1); |
| |
| /* release other streams waiting for this server */ |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(srv, s->be)) |
| process_srv_queue(srv); |
| |
| /* Failed and not retryable. */ |
| si_shutr(si); |
| si_shutw(si); |
| req->flags |= CF_WRITE_ERROR; |
| |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| |
| /* we may need to know the position in the queue for logging */ |
| pendconn_cond_unlink(s->pend_pos); |
| |
| /* no stream was ever accounted for this server */ |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* We are facing a retryable error, but we don't want to run a |
| * turn-around now, as the problem is likely a source port |
| * allocation problem, so we want to retry now. |
| */ |
| si->state = SI_ST_CER; |
| si->flags &= ~SI_FL_ERR; |
| sess_update_st_cer(s); |
| /* now si->state is one of SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ */ |
| return; |
| } |
| else if (si->state == SI_ST_QUE) { |
| /* connection request was queued, check for any update */ |
| if (!pendconn_dequeue(s)) { |
| /* The connection is not in the queue anymore. Either |
| * we have a server connection slot available and we |
| * go directly to the assigned state, or we need to |
| * load-balance first and go to the INI state. |
| */ |
| si->exp = TICK_ETERNITY; |
| if (unlikely(!(s->flags & SF_ASSIGNED))) |
| si->state = SI_ST_REQ; |
| else { |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->state = SI_ST_ASS; |
| } |
| return; |
| } |
| |
| /* Connection request still in queue... */ |
| if (si->flags & SI_FL_EXP) { |
| /* ... and timeout expired */ |
| si->exp = TICK_ETERNITY; |
| si->flags &= ~SI_FL_EXP; |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| |
| /* we may need to know the position in the queue for logging */ |
| pendconn_cond_unlink(s->pend_pos); |
| |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.failed_conns, 1); |
| _HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1); |
| si_shutr(si); |
| si_shutw(si); |
| req->flags |= CF_WRITE_TIMEOUT; |
| if (!si->err_type) |
| si->err_type = SI_ET_QUEUE_TO; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* Connection remains in queue, check if we have to abort it */ |
| if (check_req_may_abort(req, s)) { |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| |
| /* we may need to know the position in the queue for logging */ |
| pendconn_cond_unlink(s->pend_pos); |
| |
| si->err_type |= SI_ET_QUEUE_ABRT; |
| goto abort_connection; |
| } |
| |
| /* Nothing changed */ |
| return; |
| } |
| else if (si->state == SI_ST_TAR) { |
| /* Connection request might be aborted */ |
| if (check_req_may_abort(req, s)) { |
| si->err_type |= SI_ET_CONN_ABRT; |
| goto abort_connection; |
| } |
| |
| if (!(si->flags & SI_FL_EXP)) |
| return; /* still in turn-around */ |
| |
| si->flags &= ~SI_FL_EXP; |
| si->exp = TICK_ETERNITY; |
| |
| /* we keep trying on the same server as long as the stream is |
| * marked "assigned". |
| * FIXME: Should we force a redispatch attempt when the server is down ? |
| */ |
| if (s->flags & SF_ASSIGNED) |
| si->state = SI_ST_ASS; |
| else |
| si->state = SI_ST_REQ; |
| return; |
| } |
| return; |
| |
| abort_connection: |
| /* give up */ |
| si->exp = TICK_ETERNITY; |
| si->flags &= ~SI_FL_EXP; |
| si_shutr(si); |
| si_shutw(si); |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* Set correct stream termination flags in case no analyser has done it. It |
| * also counts a failed request if the server state has not reached the request |
| * stage. |
| */ |
| static void sess_set_term_flags(struct stream *s) |
| { |
| if (!(s->flags & SF_FINST_MASK)) { |
| if (s->si[1].state == SI_ST_INI) { |
| /* anything before REQ in fact */ |
| _HA_ATOMIC_ADD(&strm_fe(s)->fe_counters.failed_req, 1); |
| if (strm_li(s) && strm_li(s)->counters) |
| _HA_ATOMIC_ADD(&strm_li(s)->counters->failed_req, 1); |
| |
| s->flags |= SF_FINST_R; |
| } |
| else if (s->si[1].state == SI_ST_QUE) |
| s->flags |= SF_FINST_Q; |
| else if (si_state_in(s->si[1].state, SI_SB_REQ|SI_SB_TAR|SI_SB_ASS|SI_SB_CON|SI_SB_CER|SI_SB_RDY)) |
| s->flags |= SF_FINST_C; |
| else if (s->si[1].state == SI_ST_EST || s->si[1].prev_state == SI_ST_EST) |
| s->flags |= SF_FINST_D; |
| else |
| s->flags |= SF_FINST_L; |
| } |
| } |
| |
| /* This function initiates a server connection request on a stream interface |
| * already in SI_ST_REQ state. Upon success, the state goes to SI_ST_ASS for |
| * a real connection to a server, indicating that a server has been assigned, |
| * or SI_ST_EST for a successful connection to an applet. It may also return |
| * SI_ST_QUE, or SI_ST_CLO upon error. |
| */ |
| static void sess_prepare_conn_req(struct stream *s) |
| { |
| struct stream_interface *si = &s->si[1]; |
| |
| DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%lu rqt=%lu rph=%lu rpt=%lu cs=%d ss=%d\n", |
| now_ms, __FUNCTION__, |
| s, |
| &s->req, &s->res, |
| s->req.rex, s->res.wex, |
| s->req.flags, s->res.flags, |
| ci_data(&s->req), co_data(&s->req), ci_data(&s->res), co_data(&s->res), s->si[0].state, s->si[1].state); |
| |
| if (si->state != SI_ST_REQ) |
| return; |
| |
| if (unlikely(obj_type(s->target) == OBJ_TYPE_APPLET)) { |
| /* the applet directly goes to the EST state */ |
| struct appctx *appctx = objt_appctx(si->end); |
| |
| if (!appctx || appctx->applet != __objt_applet(s->target)) |
| appctx = si_register_handler(si, objt_applet(s->target)); |
| |
| if (!appctx) { |
| /* No more memory, let's immediately abort. Force the |
| * error code to ignore the ERR_LOCAL which is not a |
| * real error. |
| */ |
| s->flags &= ~(SF_ERR_MASK | SF_FINST_MASK); |
| |
| si_shutr(si); |
| si_shutw(si); |
| s->req.flags |= CF_WRITE_ERROR; |
| si->err_type = SI_ET_CONN_RES; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| if (tv_iszero(&s->logs.tv_request)) |
| s->logs.tv_request = now; |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->state = SI_ST_EST; |
| si->err_type = SI_ET_NONE; |
| be_set_sess_last(s->be); |
| /* let sess_establish() finish the job */ |
| return; |
| } |
| |
| /* Try to assign a server */ |
| if (srv_redispatch_connect(s) != 0) { |
| /* We did not get a server. Either we queued the |
| * connection request, or we encountered an error. |
| */ |
| if (si->state == SI_ST_QUE) |
| return; |
| |
| /* we did not get any server, let's check the cause */ |
| si_shutr(si); |
| si_shutw(si); |
| s->req.flags |= CF_WRITE_ERROR; |
| if (!si->err_type) |
| si->err_type = SI_ET_CONN_OTHER; |
| si->state = SI_ST_CLO; |
| if (s->srv_error) |
| s->srv_error(s, si); |
| return; |
| } |
| |
| /* The server is assigned */ |
| s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| si->state = SI_ST_ASS; |
| be_set_sess_last(s->be); |
| } |
| |
| /* This function parses the use-service action ruleset. It executes |
| * the associated ACL and set an applet as a stream or txn final node. |
| * it returns ACT_RET_ERR if an error occurs, the proxy left in |
| * consistent state. It returns ACT_RET_STOP in succes case because |
| * use-service must be a terminal action. Returns ACT_RET_YIELD |
| * if the initialisation function require more data. |
| */ |
| enum act_return process_use_service(struct act_rule *rule, struct proxy *px, |
| struct session *sess, struct stream *s, int flags) |
| |
| { |
| struct appctx *appctx; |
| |
| /* Initialises the applet if it is required. */ |
| if (flags & ACT_FLAG_FIRST) { |
| /* Register applet. this function schedules the applet. */ |
| s->target = &rule->applet.obj_type; |
| if (unlikely(!si_register_handler(&s->si[1], objt_applet(s->target)))) |
| return ACT_RET_ERR; |
| |
| /* Initialise the context. */ |
| appctx = si_appctx(&s->si[1]); |
| memset(&appctx->ctx, 0, sizeof(appctx->ctx)); |
| appctx->rule = rule; |
| } |
| else |
| appctx = si_appctx(&s->si[1]); |
| |
| /* Stops the applet sheduling, in case of the init function miss |
| * some data. |
| */ |
| si_stop_get(&s->si[1]); |
| |
| /* Call initialisation. */ |
| if (rule->applet.init) |
| switch (rule->applet.init(appctx, px, s)) { |
| case 0: return ACT_RET_ERR; |
| case 1: break; |
| default: return ACT_RET_YIELD; |
| } |
| |
| if (rule->from != ACT_F_HTTP_REQ) { |
| if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */ |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.intercepted_req, 1); |
| |
| /* The flag SF_ASSIGNED prevent from server assignment. */ |
| s->flags |= SF_ASSIGNED; |
| } |
| |
| /* Now we can schedule the applet. */ |
| si_cant_get(&s->si[1]); |
| appctx_wakeup(appctx); |
| return ACT_RET_STOP; |
| } |
| |
| /* This stream analyser checks the switching rules and changes the backend |
| * if appropriate. The default_backend rule is also considered, then the |
| * target backend's forced persistence rules are also evaluated last if any. |
| * It returns 1 if the processing can continue on next analysers, or zero if it |
| * either needs more data or wants to immediately abort the request. |
| */ |
| static int process_switching_rules(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct persist_rule *prst_rule; |
| struct session *sess = s->sess; |
| struct proxy *fe = sess->fe; |
| |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| ci_data(req), |
| req->analysers); |
| |
| /* now check whether we have some switching rules for this request */ |
| if (!(s->flags & SF_BE_ASSIGNED)) { |
| struct switching_rule *rule; |
| |
| list_for_each_entry(rule, &fe->switching_rules, list) { |
| int ret = 1; |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| /* If the backend name is dynamic, try to resolve the name. |
| * If we can't resolve the name, or if any error occurs, break |
| * the loop and fallback to the default backend. |
| */ |
| struct proxy *backend = NULL; |
| |
| if (rule->dynamic) { |
| struct buffer *tmp; |
| |
| tmp = alloc_trash_chunk(); |
| if (!tmp) |
| goto sw_failed; |
| |
| if (build_logline(s, tmp->area, tmp->size, &rule->be.expr)) |
| backend = proxy_be_by_name(tmp->area); |
| |
| free_trash_chunk(tmp); |
| tmp = NULL; |
| |
| if (!backend) |
| break; |
| } |
| else |
| backend = rule->be.backend; |
| |
| if (!stream_set_backend(s, backend)) |
| goto sw_failed; |
| break; |
| } |
| } |
| |
| /* To ensure correct connection accounting on the backend, we |
| * have to assign one if it was not set (eg: a listen). This |
| * measure also takes care of correctly setting the default |
| * backend if any. |
| */ |
| if (!(s->flags & SF_BE_ASSIGNED)) |
| if (!stream_set_backend(s, fe->defbe.be ? fe->defbe.be : s->be)) |
| goto sw_failed; |
| } |
| |
| /* we don't want to run the TCP or HTTP filters again if the backend has not changed */ |
| if (fe == s->be) { |
| s->req.analysers &= ~AN_REQ_INSPECT_BE; |
| s->req.analysers &= ~AN_REQ_HTTP_PROCESS_BE; |
| s->req.analysers &= ~AN_REQ_FLT_START_BE; |
| } |
| |
| /* as soon as we know the backend, we must check if we have a matching forced or ignored |
| * persistence rule, and report that in the stream. |
| */ |
| list_for_each_entry(prst_rule, &s->be->persist_rules, list) { |
| int ret = 1; |
| |
| if (prst_rule->cond) { |
| ret = acl_exec_cond(prst_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (prst_rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| /* no rule, or the rule matches */ |
| if (prst_rule->type == PERSIST_TYPE_FORCE) { |
| s->flags |= SF_FORCE_PRST; |
| } else { |
| s->flags |= SF_IGNORE_PRST; |
| } |
| break; |
| } |
| } |
| |
| return 1; |
| |
| sw_failed: |
| /* immediately abort this request in case of allocation failure */ |
| channel_abort(&s->req); |
| channel_abort(&s->res); |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_RESOURCE; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_R; |
| |
| if (s->txn) |
| s->txn->status = 500; |
| s->req.analysers &= AN_REQ_FLT_END; |
| s->req.analyse_exp = TICK_ETERNITY; |
| return 0; |
| } |
| |
| /* This stream analyser works on a request. It applies all use-server rules on |
| * it then returns 1. The data must already be present in the buffer otherwise |
| * they won't match. It always returns 1. |
| */ |
| static int process_server_rules(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct proxy *px = s->be; |
| struct session *sess = s->sess; |
| struct server_rule *rule; |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%lu analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| c_data(req), |
| req->analysers); |
| |
| if (!(s->flags & SF_ASSIGNED)) { |
| list_for_each_entry(rule, &px->server_rules, list) { |
| int ret; |
| |
| ret = acl_exec_cond(rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| |
| if (ret) { |
| struct server *srv = rule->srv.ptr; |
| |
| if ((srv->cur_state != SRV_ST_STOPPED) || |
| (px->options & PR_O_PERSIST) || |
| (s->flags & SF_FORCE_PRST)) { |
| s->flags |= SF_DIRECT | SF_ASSIGNED; |
| s->target = &srv->obj_type; |
| break; |
| } |
| /* if the server is not UP, let's go on with next rules |
| * just in case another one is suited. |
| */ |
| } |
| } |
| } |
| |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| |
| static inline void sticking_rule_find_target(struct stream *s, |
| struct stktable *t, struct stksess *ts) |
| { |
| struct proxy *px = s->be; |
| struct eb32_node *node; |
| struct dict_entry *de; |
| void *ptr; |
| struct server *srv; |
| |
| /* Look for the server name previously stored in <t> stick-table */ |
| HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock); |
| ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_NAME); |
| de = stktable_data_cast(ptr, server_name); |
| HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| if (de) { |
| struct ebpt_node *name; |
| |
| name = ebis_lookup(&px->conf.used_server_name, de->value.key); |
| if (name) { |
| srv = container_of(name, struct server, conf.name); |
| goto found; |
| } |
| } |
| |
| /* Look for the server ID */ |
| HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock); |
| ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_ID); |
| node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, server_id)); |
| HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| if (!node) |
| return; |
| |
| srv = container_of(node, struct server, conf.id); |
| found: |
| if ((srv->cur_state != SRV_ST_STOPPED) || |
| (px->options & PR_O_PERSIST) || (s->flags & SF_FORCE_PRST)) { |
| s->flags |= SF_DIRECT | SF_ASSIGNED; |
| s->target = &srv->obj_type; |
| } |
| } |
| |
| /* This stream analyser works on a request. It applies all sticking rules on |
| * it then returns 1. The data must already be present in the buffer otherwise |
| * they won't match. It always returns 1. |
| */ |
| static int process_sticking_rules(struct stream *s, struct channel *req, int an_bit) |
| { |
| struct proxy *px = s->be; |
| struct session *sess = s->sess; |
| struct sticking_rule *rule; |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| req, |
| req->rex, req->wex, |
| req->flags, |
| ci_data(req), |
| req->analysers); |
| |
| list_for_each_entry(rule, &px->sticking_rules, list) { |
| int ret = 1 ; |
| int i; |
| |
| /* Only the first stick store-request of each table is applied |
| * and other ones are ignored. The purpose is to allow complex |
| * configurations which look for multiple entries by decreasing |
| * order of precision and to stop at the first which matches. |
| * An example could be a store of the IP address from an HTTP |
| * header first, then from the source if not found. |
| */ |
| if (rule->flags & STK_IS_STORE) { |
| for (i = 0; i < s->store_count; i++) { |
| if (rule->table.t == s->store[i].table) |
| break; |
| } |
| |
| if (i != s->store_count) |
| continue; |
| } |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| struct stktable_key *key; |
| |
| key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->expr, NULL); |
| if (!key) |
| continue; |
| |
| if (rule->flags & STK_IS_MATCH) { |
| struct stksess *ts; |
| |
| if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) { |
| if (!(s->flags & SF_ASSIGNED)) |
| sticking_rule_find_target(s, rule->table.t, ts); |
| stktable_touch_local(rule->table.t, ts, 1); |
| } |
| } |
| if (rule->flags & STK_IS_STORE) { |
| if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { |
| struct stksess *ts; |
| |
| ts = stksess_new(rule->table.t, key); |
| if (ts) { |
| s->store[s->store_count].table = rule->table.t; |
| s->store[s->store_count++].ts = ts; |
| } |
| } |
| } |
| } |
| } |
| |
| req->analysers &= ~an_bit; |
| req->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| |
| /* This stream analyser works on a response. It applies all store rules on it |
| * then returns 1. The data must already be present in the buffer otherwise |
| * they won't match. It always returns 1. |
| */ |
| static int process_store_rules(struct stream *s, struct channel *rep, int an_bit) |
| { |
| struct proxy *px = s->be; |
| struct session *sess = s->sess; |
| struct sticking_rule *rule; |
| int i; |
| int nbreq = s->store_count; |
| |
| DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", |
| now_ms, __FUNCTION__, |
| s, |
| rep, |
| rep->rex, rep->wex, |
| rep->flags, |
| ci_data(rep), |
| rep->analysers); |
| |
| list_for_each_entry(rule, &px->storersp_rules, list) { |
| int ret = 1 ; |
| |
| /* Only the first stick store-response of each table is applied |
| * and other ones are ignored. The purpose is to allow complex |
| * configurations which look for multiple entries by decreasing |
| * order of precision and to stop at the first which matches. |
| * An example could be a store of a set-cookie value, with a |
| * fallback to a parameter found in a 302 redirect. |
| * |
| * The store-response rules are not allowed to override the |
| * store-request rules for the same table, but they may coexist. |
| * Thus we can have up to one store-request entry and one store- |
| * response entry for the same table at any time. |
| */ |
| for (i = nbreq; i < s->store_count; i++) { |
| if (rule->table.t == s->store[i].table) |
| break; |
| } |
| |
| /* skip existing entries for this table */ |
| if (i < s->store_count) |
| continue; |
| |
| if (rule->cond) { |
| ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); |
| ret = acl_pass(ret); |
| if (rule->cond->pol == ACL_COND_UNLESS) |
| ret = !ret; |
| } |
| |
| if (ret) { |
| struct stktable_key *key; |
| |
| key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->expr, NULL); |
| if (!key) |
| continue; |
| |
| if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { |
| struct stksess *ts; |
| |
| ts = stksess_new(rule->table.t, key); |
| if (ts) { |
| s->store[s->store_count].table = rule->table.t; |
| s->store[s->store_count++].ts = ts; |
| } |
| } |
| } |
| } |
| |
| /* process store request and store response */ |
| for (i = 0; i < s->store_count; i++) { |
| struct stksess *ts; |
| void *ptr; |
| struct dict_entry *de; |
| |
| if (objt_server(s->target) && objt_server(s->target)->flags & SRV_F_NON_STICK) { |
| stksess_free(s->store[i].table, s->store[i].ts); |
| s->store[i].ts = NULL; |
| continue; |
| } |
| |
| ts = stktable_set_entry(s->store[i].table, s->store[i].ts); |
| if (ts != s->store[i].ts) { |
| /* the entry already existed, we can free ours */ |
| stksess_free(s->store[i].table, s->store[i].ts); |
| } |
| s->store[i].ts = NULL; |
| |
| HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); |
| ptr = __stktable_data_ptr(s->store[i].table, ts, STKTABLE_DT_SERVER_ID); |
| stktable_data_cast(ptr, server_id) = __objt_server(s->target)->puid; |
| HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); |
| de = dict_insert(&server_name_dict, __objt_server(s->target)->id); |
| if (de) { |
| ptr = __stktable_data_ptr(s->store[i].table, ts, STKTABLE_DT_SERVER_NAME); |
| stktable_data_cast(ptr, server_name) = de; |
| } |
| HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| stktable_touch_local(s->store[i].table, ts, 1); |
| } |
| s->store_count = 0; /* everything is stored */ |
| |
| rep->analysers &= ~an_bit; |
| rep->analyse_exp = TICK_ETERNITY; |
| return 1; |
| } |
| |
| /* This macro is very specific to the function below. See the comments in |
| * process_stream() below to understand the logic and the tests. |
| */ |
| #define UPDATE_ANALYSERS(real, list, back, flag) { \ |
| list = (((list) & ~(flag)) | ~(back)) & (real); \ |
| back = real; \ |
| if (!(list)) \ |
| break; \ |
| if (((list) ^ ((list) & ((list) - 1))) < (flag)) \ |
| continue; \ |
| } |
| |
| /* These 2 following macros call an analayzer for the specified channel if the |
| * right flag is set. The first one is used for "filterable" analyzers. If a |
| * stream has some registered filters, pre and post analyaze callbacks are |
| * called. The second are used for other analyzers (AN_REQ/RES_FLT_* and |
| * AN_REQ/RES_HTTP_XFER_BODY) */ |
| #define FLT_ANALYZE(strm, chn, fun, list, back, flag, ...) \ |
| { \ |
| if ((list) & (flag)) { \ |
| if (HAS_FILTERS(strm)) { \ |
| if (!flt_pre_analyze((strm), (chn), (flag))) \ |
| break; \ |
| if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \ |
| break; \ |
| if (!flt_post_analyze((strm), (chn), (flag))) \ |
| break; \ |
| } \ |
| else { \ |
| if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \ |
| break; \ |
| } \ |
| UPDATE_ANALYSERS((chn)->analysers, (list), \ |
| (back), (flag)); \ |
| } \ |
| } |
| |
| #define ANALYZE(strm, chn, fun, list, back, flag, ...) \ |
| { \ |
| if ((list) & (flag)) { \ |
| if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \ |
| break; \ |
| UPDATE_ANALYSERS((chn)->analysers, (list), \ |
| (back), (flag)); \ |
| } \ |
| } |
| |
| /* Processes the client, server, request and response jobs of a stream task, |
| * then puts it back to the wait queue in a clean state, or cleans up its |
| * resources if it must be deleted. Returns in <next> the date the task wants |
| * to be woken up, or TICK_ETERNITY. In order not to call all functions for |
| * nothing too many times, the request and response buffers flags are monitored |
| * and each function is called only if at least another function has changed at |
| * least one flag it is interested in. |
| */ |
| struct task *process_stream(struct task *t, void *context, unsigned short state) |
| { |
| struct server *srv; |
| struct stream *s = context; |
| struct session *sess = s->sess; |
| unsigned int rqf_last, rpf_last; |
| unsigned int rq_prod_last, rq_cons_last; |
| unsigned int rp_cons_last, rp_prod_last; |
| unsigned int req_ana_back; |
| struct channel *req, *res; |
| struct stream_interface *si_f, *si_b; |
| unsigned int rate; |
| |
| activity[tid].stream++; |
| |
| req = &s->req; |
| res = &s->res; |
| |
| si_f = &s->si[0]; |
| si_b = &s->si[1]; |
| |
| /* First, attempt to receive pending data from I/O layers */ |
| si_sync_recv(si_f); |
| si_sync_recv(si_b); |
| |
| rate = update_freq_ctr(&s->call_rate, 1); |
| if (rate >= 100000 && s->call_rate.prev_ctr) { // make sure to wait at least a full second |
| stream_dump_and_crash(&s->obj_type, read_freq_ctr(&s->call_rate)); |
| } |
| |
| //DPRINTF(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__, |
| // si_f->state, si_b->state, si_b->err_type, req->flags, res->flags); |
| |
| /* this data may be no longer valid, clear it */ |
| if (s->txn) |
| memset(&s->txn->auth, 0, sizeof(s->txn->auth)); |
| |
| /* This flag must explicitly be set every time */ |
| req->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE); |
| res->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE); |
| |
| /* Keep a copy of req/rep flags so that we can detect shutdowns */ |
| rqf_last = req->flags & ~CF_MASK_ANALYSER; |
| rpf_last = res->flags & ~CF_MASK_ANALYSER; |
| |
| /* we don't want the stream interface functions to recursively wake us up */ |
| si_f->flags |= SI_FL_DONT_WAKE; |
| si_b->flags |= SI_FL_DONT_WAKE; |
| |
| /* update pending events */ |
| s->pending_events |= (state & TASK_WOKEN_ANY); |
| |
| /* 1a: Check for low level timeouts if needed. We just set a flag on |
| * stream interfaces when their timeouts have expired. |
| */ |
| if (unlikely(s->pending_events & TASK_WOKEN_TIMER)) { |
| si_check_timeouts(si_f); |
| si_check_timeouts(si_b); |
| |
| /* check channel timeouts, and close the corresponding stream interfaces |
| * for future reads or writes. Note: this will also concern upper layers |
| * but we do not touch any other flag. We must be careful and correctly |
| * detect state changes when calling them. |
| */ |
| |
| channel_check_timeouts(req); |
| |
| if (unlikely((req->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) { |
| si_b->flags |= SI_FL_NOLINGER; |
| si_shutw(si_b); |
| } |
| |
| if (unlikely((req->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) { |
| if (si_f->flags & SI_FL_NOHALF) |
| si_f->flags |= SI_FL_NOLINGER; |
| si_shutr(si_f); |
| } |
| |
| channel_check_timeouts(res); |
| |
| if (unlikely((res->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) { |
| si_f->flags |= SI_FL_NOLINGER; |
| si_shutw(si_f); |
| } |
| |
| if (unlikely((res->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) { |
| if (si_b->flags & SI_FL_NOHALF) |
| si_b->flags |= SI_FL_NOLINGER; |
| si_shutr(si_b); |
| } |
| |
| if (HAS_FILTERS(s)) |
| flt_stream_check_timeouts(s); |
| |
| /* Once in a while we're woken up because the task expires. But |
| * this does not necessarily mean that a timeout has been reached. |
| * So let's not run a whole stream processing if only an expiration |
| * timeout needs to be refreshed. |
| */ |
| if (!((req->flags | res->flags) & |
| (CF_SHUTR|CF_READ_ACTIVITY|CF_READ_TIMEOUT|CF_SHUTW| |
| CF_WRITE_ACTIVITY|CF_WRITE_TIMEOUT|CF_ANA_TIMEOUT)) && |
| !((si_f->flags | si_b->flags) & (SI_FL_EXP|SI_FL_ERR)) && |
| ((s->pending_events & TASK_WOKEN_ANY) == TASK_WOKEN_TIMER)) { |
| si_f->flags &= ~SI_FL_DONT_WAKE; |
| si_b->flags &= ~SI_FL_DONT_WAKE; |
| goto update_exp_and_leave; |
| } |
| } |
| |
| resync_stream_interface: |
| /* below we may emit error messages so we have to ensure that we have |
| * our buffers properly allocated. |
| */ |
| if (!stream_alloc_work_buffer(s)) { |
| /* No buffer available, we've been subscribed to the list of |
| * buffer waiters, let's wait for our turn. |
| */ |
| si_f->flags &= ~SI_FL_DONT_WAKE; |
| si_b->flags &= ~SI_FL_DONT_WAKE; |
| goto update_exp_and_leave; |
| } |
| |
| /* 1b: check for low-level errors reported at the stream interface. |
| * First we check if it's a retryable error (in which case we don't |
| * want to tell the buffer). Otherwise we report the error one level |
| * upper by setting flags into the buffers. Note that the side towards |
| * the client cannot have connect (hence retryable) errors. Also, the |
| * connection setup code must be able to deal with any type of abort. |
| */ |
| srv = objt_server(s->target); |
| if (unlikely(si_f->flags & SI_FL_ERR)) { |
| if (si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS)) { |
| si_shutr(si_f); |
| si_shutw(si_f); |
| si_report_error(si_f); |
| if (!(req->analysers) && !(res->analysers)) { |
| _HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1); |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_CLICL; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_D; |
| } |
| } |
| } |
| |
| if (unlikely(si_b->flags & SI_FL_ERR)) { |
| if (si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS)) { |
| si_shutr(si_b); |
| si_shutw(si_b); |
| si_report_error(si_b); |
| _HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.failed_resp, 1); |
| if (!(req->analysers) && !(res->analysers)) { |
| _HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1); |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_SRVCL; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= SF_FINST_D; |
| } |
| } |
| /* note: maybe we should process connection errors here ? */ |
| } |
| |
| if (si_state_in(si_b->state, SI_SB_CON|SI_SB_RDY)) { |
| /* we were trying to establish a connection on the server side, |
| * maybe it succeeded, maybe it failed, maybe we timed out, ... |
| */ |
| if (si_b->state == SI_ST_RDY) |
| sess_update_st_rdy_tcp(s); |
| else if (si_b->state == SI_ST_CON) |
| sess_update_st_con_tcp(s); |
| |
| if (si_b->state == SI_ST_CER) |
| sess_update_st_cer(s); |
| else if (si_b->state == SI_ST_EST) |
| sess_establish(s); |
| |
| /* state is now one of SI_ST_CON (still in progress), SI_ST_EST |
| * (established), SI_ST_DIS (abort), SI_ST_CLO (last error), |
| * SI_ST_ASS/SI_ST_TAR/SI_ST_REQ for retryable errors. |
| */ |
| } |
| |
| rq_prod_last = si_f->state; |
| rq_cons_last = si_b->state; |
| rp_cons_last = si_f->state; |
| rp_prod_last = si_b->state; |
| |
| /* Check for connection closure */ |
| |
| DPRINTF(stderr, |
| "[%u] %s:%d: task=%p s=%p, sfl=0x%08x, rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%lu rqt=%lu rph=%lu rpt=%lu cs=%d ss=%d, cet=0x%x set=0x%x retr=%d\n", |
| now_ms, __FUNCTION__, __LINE__, |
| t, |
| s, s->flags, |
| req, res, |
| req->rex, res->wex, |
| req->flags, res->flags, |
| ci_data(req), co_data(req), ci_data(res), co_data(res), si_f->state, si_b->state, |
| si_f->err_type, si_b->err_type, |
| si_b->conn_retries); |
| |
| /* nothing special to be done on client side */ |
| if (unlikely(si_f->state == SI_ST_DIS)) |
| si_f->state = SI_ST_CLO; |
| |
| /* When a server-side connection is released, we have to count it and |
| * check for pending connections on this server. |
| */ |
| if (unlikely(si_b->state == SI_ST_DIS)) { |
| si_b->state = SI_ST_CLO; |
| srv = objt_server(s->target); |
| if (srv) { |
| if (s->flags & SF_CURR_SESS) { |
| s->flags &= ~SF_CURR_SESS; |
| _HA_ATOMIC_SUB(&srv->cur_sess, 1); |
| } |
| sess_change_server(s, NULL); |
| if (may_dequeue_tasks(srv, s->be)) |
| process_srv_queue(srv); |
| } |
| } |
| |
| /* |
| * Note: of the transient states (REQ, CER, DIS), only REQ may remain |
| * at this point. |
| */ |
| |
| resync_request: |
| /* Analyse request */ |
| if (((req->flags & ~rqf_last) & CF_MASK_ANALYSER) || |
| ((req->flags ^ rqf_last) & CF_MASK_STATIC) || |
| (req->analysers && (req->flags & CF_SHUTW)) || |
| si_f->state != rq_prod_last || |
| si_b->state != rq_cons_last || |
| s->pending_events & TASK_WOKEN_MSG) { |
| unsigned int flags = req->flags; |
| |
| if (si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) { |
| int max_loops = global.tune.maxpollevents; |
| unsigned int ana_list; |
| unsigned int ana_back; |
| |
| /* it's up to the analysers to stop new connections, |
| * disable reading or closing. Note: if an analyser |
| * disables any of these bits, it is responsible for |
| * enabling them again when it disables itself, so |
| * that other analysers are called in similar conditions. |
| */ |
| channel_auto_read(req); |
| channel_auto_connect(req); |
| channel_auto_close(req); |
| |
| /* We will call all analysers for which a bit is set in |
| * req->analysers, following the bit order from LSB |
| * to MSB. The analysers must remove themselves from |
| * the list when not needed. Any analyser may return 0 |
| * to break out of the loop, either because of missing |
| * data to take a decision, or because it decides to |
| * kill the stream. We loop at least once through each |
| * analyser, and we may loop again if other analysers |
| * are added in the middle. |
| * |
| * We build a list of analysers to run. We evaluate all |
| * of these analysers in the order of the lower bit to |
| * the higher bit. This ordering is very important. |
| * An analyser will often add/remove other analysers, |
| * including itself. Any changes to itself have no effect |
| * on the loop. If it removes any other analysers, we |
| * want those analysers not to be called anymore during |
| * this loop. If it adds an analyser that is located |
| * after itself, we want it to be scheduled for being |
| * processed during the loop. If it adds an analyser |
| * which is located before it, we want it to switch to |
| * it immediately, even if it has already been called |
| * once but removed since. |
| * |
| * In order to achieve this, we compare the analyser |
| * list after the call with a copy of it before the |
| * call. The work list is fed with analyser bits that |
| * appeared during the call. Then we compare previous |
| * work list with the new one, and check the bits that |
| * appeared. If the lowest of these bits is lower than |
| * the current bit, it means we have enabled a previous |
| * analyser and must immediately loop again. |
| */ |
| |
| ana_list = ana_back = req->analysers; |
| while (ana_list && max_loops--) { |
| /* Warning! ensure that analysers are always placed in ascending order! */ |
| ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_FE); |
| FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_FE); |
| FLT_ANALYZE(s, req, http_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_HTTP); |
| FLT_ANALYZE(s, req, http_wait_for_request_body, ana_list, ana_back, AN_REQ_HTTP_BODY); |
| FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE, sess->fe); |
| FLT_ANALYZE(s, req, process_switching_rules, ana_list, ana_back, AN_REQ_SWITCHING_RULES); |
| ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_BE); |
| FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_BE); |
| FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE, s->be); |
| FLT_ANALYZE(s, req, http_process_tarpit, ana_list, ana_back, AN_REQ_HTTP_TARPIT); |
| FLT_ANALYZE(s, req, process_server_rules, ana_list, ana_back, AN_REQ_SRV_RULES); |
| FLT_ANALYZE(s, req, http_process_request, ana_list, ana_back, AN_REQ_HTTP_INNER); |
| FLT_ANALYZE(s, req, tcp_persist_rdp_cookie, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE); |
| FLT_ANALYZE(s, req, process_sticking_rules, ana_list, ana_back, AN_REQ_STICKING_RULES); |
| ANALYZE (s, req, flt_analyze_http_headers, ana_list, ana_back, AN_REQ_FLT_HTTP_HDRS); |
| ANALYZE (s, req, http_request_forward_body, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY); |
| ANALYZE (s, req, pcli_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_CLI); |
| ANALYZE (s, req, flt_xfer_data, ana_list, ana_back, AN_REQ_FLT_XFER_DATA); |
| ANALYZE (s, req, flt_end_analyze, ana_list, ana_back, AN_REQ_FLT_END); |
| break; |
| } |
| } |
| |
| rq_prod_last = si_f->state; |
| rq_cons_last = si_b->state; |
| req->flags &= ~CF_WAKE_ONCE; |
| rqf_last = req->flags; |
| |
| if ((req->flags ^ flags) & (CF_SHUTR|CF_SHUTW)) |
| goto resync_request; |
| } |
| |
| /* we'll monitor the request analysers while parsing the response, |
| * because some response analysers may indirectly enable new request |
| * analysers (eg: HTTP keep-alive). |
| */ |
| req_ana_back = req->analysers; |
| |
| resync_response: |
| /* Analyse response */ |
| |
| if (((res->flags & ~rpf_last) & CF_MASK_ANALYSER) || |
| (res->flags ^ rpf_last) & CF_MASK_STATIC || |
| (res->analysers && (res->flags & CF_SHUTW)) || |
| si_f->state != rp_cons_last || |
| si_b->state != rp_prod_last || |
| s->pending_events & TASK_WOKEN_MSG) { |
| unsigned int flags = res->flags; |
| |
| if (si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) { |
| int max_loops = global.tune.maxpollevents; |
| unsigned int ana_list; |
| unsigned int ana_back; |
| |
| /* it's up to the analysers to stop disable reading or |
| * closing. Note: if an analyser disables any of these |
| * bits, it is responsible for enabling them again when |
| * it disables itself, so that other analysers are called |
| * in similar conditions. |
| */ |
| channel_auto_read(res); |
| channel_auto_close(res); |
| |
| /* We will call all analysers for which a bit is set in |
| * res->analysers, following the bit order from LSB |
| * to MSB. The analysers must remove themselves from |
| * the list when not needed. Any analyser may return 0 |
| * to break out of the loop, either because of missing |
| * data to take a decision, or because it decides to |
| * kill the stream. We loop at least once through each |
| * analyser, and we may loop again if other analysers |
| * are added in the middle. |
| */ |
| |
| ana_list = ana_back = res->analysers; |
| while (ana_list && max_loops--) { |
| /* Warning! ensure that analysers are always placed in ascending order! */ |
| ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_FE); |
| ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_BE); |
| FLT_ANALYZE(s, res, tcp_inspect_response, ana_list, ana_back, AN_RES_INSPECT); |
| FLT_ANALYZE(s, res, http_wait_for_response, ana_list, ana_back, AN_RES_WAIT_HTTP); |
| FLT_ANALYZE(s, res, process_store_rules, ana_list, ana_back, AN_RES_STORE_RULES); |
| FLT_ANALYZE(s, res, http_process_res_common, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE, s->be); |
| ANALYZE (s, res, flt_analyze_http_headers, ana_list, ana_back, AN_RES_FLT_HTTP_HDRS); |
| ANALYZE (s, res, http_response_forward_body, ana_list, ana_back, AN_RES_HTTP_XFER_BODY); |
| ANALYZE (s, res, pcli_wait_for_response, ana_list, ana_back, AN_RES_WAIT_CLI); |
| ANALYZE (s, res, flt_xfer_data, ana_list, ana_back, AN_RES_FLT_XFER_DATA); |
| ANALYZE (s, res, flt_end_analyze, ana_list, ana_back, AN_RES_FLT_END); |
| break; |
| } |
| } |
| |
| rp_cons_last = si_f->state; |
| rp_prod_last = si_b->state; |
| res->flags &= ~CF_WAKE_ONCE; |
| rpf_last = res->flags; |
| |
| if ((res->flags ^ flags) & (CF_SHUTR|CF_SHUTW)) |
| goto resync_response; |
| } |
| |
| /* maybe someone has added some request analysers, so we must check and loop */ |
| if (req->analysers & ~req_ana_back) |
| goto resync_request; |
| |
| if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER) |
| goto resync_request; |
| |
| /* FIXME: here we should call protocol handlers which rely on |
| * both buffers. |
| */ |
| |
| |
| /* |
| * Now we propagate unhandled errors to the stream. Normally |
| * we're just in a data phase here since it means we have not |
| * seen any analyser who could set an error status. |
| */ |
| srv = objt_server(s->target); |
| if (unlikely(!(s->flags & SF_ERR_MASK))) { |
| if (req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) { |
| /* Report it if the client got an error or a read timeout expired */ |
| req->analysers = 0; |
| if (req->flags & CF_READ_ERROR) { |
| _HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1); |
| s->flags |= SF_ERR_CLICL; |
| } |
| else if (req->flags & CF_READ_TIMEOUT) { |
| _HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1); |
| s->flags |= SF_ERR_CLITO; |
| } |
| else if (req->flags & CF_WRITE_ERROR) { |
| _HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1); |
| s->flags |= SF_ERR_SRVCL; |
| } |
| else { |
| _HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1); |
| s->flags |= SF_ERR_SRVTO; |
| } |
| sess_set_term_flags(s); |
| |
| /* Abort the request if a client error occurred while |
| * the backend stream-interface is in the SI_ST_INI |
| * state. It is switched into the SI_ST_CLO state and |
| * the request channel is erased. */ |
| if (si_b->state == SI_ST_INI) { |
| si_b->state = SI_ST_CLO; |
| channel_abort(req); |
| if (IS_HTX_STRM(s)) |
| channel_htx_erase(req, htxbuf(&req->buf)); |
| else |
| channel_erase(req); |
| } |
| } |
| else if (res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) { |
| /* Report it if the server got an error or a read timeout expired */ |
| res->analysers = 0; |
| if (res->flags & CF_READ_ERROR) { |
| _HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1); |
| s->flags |= SF_ERR_SRVCL; |
| } |
| else if (res->flags & CF_READ_TIMEOUT) { |
| _HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1); |
| s->flags |= SF_ERR_SRVTO; |
| } |
| else if (res->flags & CF_WRITE_ERROR) { |
| _HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1); |
| s->flags |= SF_ERR_CLICL; |
| } |
| else { |
| _HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); |
| if (srv) |
| _HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1); |
| s->flags |= SF_ERR_CLITO; |
| } |
| sess_set_term_flags(s); |
| } |
| } |
| |
| /* |
| * Here we take care of forwarding unhandled data. This also includes |
| * connection establishments and shutdown requests. |
| */ |
| |
| |
| /* If noone is interested in analysing data, it's time to forward |
| * everything. We configure the buffer to forward indefinitely. |
| * Note that we're checking CF_SHUTR_NOW as an indication of a possible |
| * recent call to channel_abort(). |
| */ |
| if (unlikely((!req->analysers || (req->analysers == AN_REQ_FLT_END && !(req->flags & CF_FLT_ANALYZE))) && |
| !(req->flags & (CF_SHUTW|CF_SHUTR_NOW)) && |
| (si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) && |
| (req->to_forward != CHN_INFINITE_FORWARD))) { |
| /* This buffer is freewheeling, there's no analyser |
| * attached to it. If any data are left in, we'll permit them to |
| * move. |
| */ |
| channel_auto_read(req); |
| channel_auto_connect(req); |
| channel_auto_close(req); |
| |
| if (IS_HTX_STRM(s)) { |
| struct htx *htx = htxbuf(&req->buf); |
| |
| /* We'll let data flow between the producer (if still connected) |
| * to the consumer. |
| */ |
| co_set_data(req, htx->data); |
| if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW))) |
| channel_htx_forward_forever(req, htx); |
| } |
| else { |
| /* We'll let data flow between the producer (if still connected) |
| * to the consumer (which might possibly not be connected yet). |
| */ |
| c_adv(req, ci_data(req)); |
| if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW))) |
| channel_forward_forever(req); |
| |
| /* Just in order to support fetching HTTP contents after start |
| * of forwarding when the HTTP forwarding analyser is not used, |
| * we simply reset msg->sov so that HTTP rewinding points to the |
| * headers. |
| */ |
| if (s->txn) |
| s->txn->req.sov = s->txn->req.eoh + s->txn->req.eol - co_data(req); |
| } |
| } |
| |
| /* check if it is wise to enable kernel splicing to forward request data */ |
| if (!(req->flags & (CF_KERN_SPLICING|CF_SHUTR)) && |
| req->to_forward && |
| (global.tune.options & GTUNE_USE_SPLICE) && |
| (objt_cs(si_f->end) && __objt_cs(si_f->end)->conn->xprt && __objt_cs(si_f->end)->conn->xprt->rcv_pipe && |
| __objt_cs(si_f->end)->conn->mux && __objt_cs(si_f->end)->conn->mux->rcv_pipe) && |
| (objt_cs(si_b->end) && __objt_cs(si_b->end)->conn->xprt && __objt_cs(si_b->end)->conn->xprt->snd_pipe && |
| __objt_cs(si_b->end)->conn->mux && __objt_cs(si_b->end)->conn->mux->snd_pipe) && |
| (pipes_used < global.maxpipes) && |
| (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) || |
| (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && |
| (req->flags & CF_STREAMER_FAST)))) { |
| req->flags |= CF_KERN_SPLICING; |
| } |
| |
| /* reflect what the L7 analysers have seen last */ |
| rqf_last = req->flags; |
| |
| /* it's possible that an upper layer has requested a connection setup or abort. |
| * There are 2 situations where we decide to establish a new connection : |
| * - there are data scheduled for emission in the buffer |
| * - the CF_AUTO_CONNECT flag is set (active connection) |
| */ |
| if (si_b->state == SI_ST_INI) { |
| if (!(req->flags & CF_SHUTW)) { |
| if ((req->flags & CF_AUTO_CONNECT) || !channel_is_empty(req)) { |
| /* If we have an appctx, there is no connect method, so we |
| * immediately switch to the connected state, otherwise we |
| * perform a connection request. |
| */ |
| si_b->state = SI_ST_REQ; /* new connection requested */ |
| si_b->conn_retries = s->be->conn_retries; |
| if ((s->be->retry_type &~ PR_RE_CONN_FAILED) && |
| (s->be->mode == PR_MODE_HTTP) && |
| !(si_b->flags & SI_FL_D_L7_RETRY)) |
| si_b->flags |= SI_FL_L7_RETRY; |
| } |
| } |
| else { |
| si_release_endpoint(si_b); |
| si_b->state = SI_ST_CLO; /* shutw+ini = abort */ |
| channel_shutw_now(req); /* fix buffer flags upon abort */ |
| channel_shutr_now(res); |
| } |
| } |
| |
| |
| /* we may have a pending connection request, or a connection waiting |
| * for completion. |
| */ |
| if (si_state_in(si_b->state, SI_SB_REQ|SI_SB_QUE|SI_SB_TAR|SI_SB_ASS)) { |
| /* prune the request variables and swap to the response variables. */ |
| if (s->vars_reqres.scope != SCOPE_RES) { |
| if (!LIST_ISEMPTY(&s->vars_reqres.head)) |
| vars_prune(&s->vars_reqres, s->sess, s); |
| vars_init(&s->vars_reqres, SCOPE_RES); |
| } |
| |
| do { |
| /* nb: step 1 might switch from QUE to ASS, but we first want |
| * to give a chance to step 2 to perform a redirect if needed. |
| */ |
| if (si_b->state != SI_ST_REQ) |
| sess_update_stream_int(s); |
| if (si_b->state == SI_ST_REQ) |
| sess_prepare_conn_req(s); |
| |
| /* applets directly go to the ESTABLISHED state. Similarly, |
| * servers experience the same fate when their connection |
| * is reused. |
| */ |
| if (unlikely(si_b->state == SI_ST_EST)) |
| sess_establish(s); |
| |
| /* Now we can add the server name to a header (if requested) */ |
| /* check for HTTP mode and proxy server_name_hdr_name != NULL */ |
| if (si_state_in(si_b->state, SI_SB_CON|SI_SB_RDY|SI_SB_EST) && |
| (s->be->server_id_hdr_name != NULL) && |
| (s->be->mode == PR_MODE_HTTP) && |
| objt_server(s->target)) { |
| http_send_name_header(s, s->be, objt_server(s->target)->id); |
| } |
| |
| srv = objt_server(s->target); |
| if (si_b->state == SI_ST_ASS && srv && srv->rdr_len && (s->flags & SF_REDIRECTABLE)) |
| http_perform_server_redirect(s, si_b); |
| } while (si_b->state == SI_ST_ASS); |
| } |
| |
| /* Let's see if we can send the pending request now */ |
| si_sync_send(si_b); |
| |
| /* |
| * Now forward all shutdown requests between both sides of the request buffer |
| */ |
| |
| /* first, let's check if the request buffer needs to shutdown(write), which may |
| * happen either because the input is closed or because we want to force a close |
| * once the server has begun to respond. If a half-closed timeout is set, we adjust |
| * the other side's timeout as well. |
| */ |
| if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) == |
| (CF_AUTO_CLOSE|CF_SHUTR))) { |
| channel_shutw_now(req); |
| } |
| |
| /* shutdown(write) pending */ |
| if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW && |
| channel_is_empty(req))) { |
| if (req->flags & CF_READ_ERROR) |
| si_b->flags |= SI_FL_NOLINGER; |
| si_shutw(si_b); |
| } |
| |
| /* shutdown(write) done on server side, we must stop the client too */ |
| if (unlikely((req->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW && |
| !req->analysers)) |
| channel_shutr_now(req); |
| |
| /* shutdown(read) pending */ |
| if (unlikely((req->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) { |
| if (si_f->flags & SI_FL_NOHALF) |
| si_f->flags |= SI_FL_NOLINGER; |
| si_shutr(si_f); |
| } |
| |
| /* Benchmarks have shown that it's optimal to do a full resync now */ |
| if (si_f->state == SI_ST_DIS || |
| si_state_in(si_b->state, SI_SB_RDY|SI_SB_DIS) || |
| (si_f->flags & SI_FL_ERR && si_f->state != SI_ST_CLO) || |
| (si_b->flags & SI_FL_ERR && si_b->state != SI_ST_CLO)) |
| goto resync_stream_interface; |
| |
| /* otherwise we want to check if we need to resync the req buffer or not */ |
| if ((req->flags ^ rqf_last) & (CF_SHUTR|CF_SHUTW)) |
| goto resync_request; |
| |
| /* perform output updates to the response buffer */ |
| |
| /* If noone is interested in analysing data, it's time to forward |
| * everything. We configure the buffer to forward indefinitely. |
| * Note that we're checking CF_SHUTR_NOW as an indication of a possible |
| * recent call to channel_abort(). |
| */ |
| if (unlikely((!res->analysers || (res->analysers == AN_RES_FLT_END && !(res->flags & CF_FLT_ANALYZE))) && |
| !(res->flags & (CF_SHUTW|CF_SHUTR_NOW)) && |
| si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO) && |
| (res->to_forward != CHN_INFINITE_FORWARD))) { |
| /* This buffer is freewheeling, there's no analyser |
| * attached to it. If any data are left in, we'll permit them to |
| * move. |
| */ |
| channel_auto_read(res); |
| channel_auto_close(res); |
| |
| if (IS_HTX_STRM(s)) { |
| struct htx *htx = htxbuf(&res->buf); |
| |
| /* We'll let data flow between the producer (if still connected) |
| * to the consumer. |
| */ |
| co_set_data(res, htx->data); |
| if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW))) |
| channel_htx_forward_forever(res, htx); |
| } |
| else { |
| /* We'll let data flow between the producer (if still connected) |
| * to the consumer. |
| */ |
| c_adv(res, ci_data(res)); |
| if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW))) |
| channel_forward_forever(res); |
| |
| /* Just in order to support fetching HTTP contents after start |
| * of forwarding when the HTTP forwarding analyser is not used, |
| * we simply reset msg->sov so that HTTP rewinding points to the |
| * headers. |
| */ |
| if (s->txn) |
| s->txn->rsp.sov = s->txn->rsp.eoh + s->txn->rsp.eol - co_data(res); |
| } |
| |
| /* if we have no analyser anymore in any direction and have a |
| * tunnel timeout set, use it now. Note that we must respect |
| * the half-closed timeouts as well. |
| */ |
| if (!req->analysers && s->be->timeout.tunnel) { |
| req->rto = req->wto = res->rto = res->wto = |
| s->be->timeout.tunnel; |
| |
| if ((req->flags & CF_SHUTR) && tick_isset(sess->fe->timeout.clientfin)) |
| res->wto = sess->fe->timeout.clientfin; |
| if ((req->flags & CF_SHUTW) && tick_isset(s->be->timeout.serverfin)) |
| res->rto = s->be->timeout.serverfin; |
| if ((res->flags & CF_SHUTR) && tick_isset(s->be->timeout.serverfin)) |
| req->wto = s->be->timeout.serverfin; |
| if ((res->flags & CF_SHUTW) && tick_isset(sess->fe->timeout.clientfin)) |
| req->rto = sess->fe->timeout.clientfin; |
| |
| req->rex = tick_add(now_ms, req->rto); |
| req->wex = tick_add(now_ms, req->wto); |
| res->rex = tick_add(now_ms, res->rto); |
| res->wex = tick_add(now_ms, res->wto); |
| } |
| } |
| |
| /* check if it is wise to enable kernel splicing to forward response data */ |
| if (!(res->flags & (CF_KERN_SPLICING|CF_SHUTR)) && |
| res->to_forward && |
| (global.tune.options & GTUNE_USE_SPLICE) && |
| (objt_cs(si_f->end) && __objt_cs(si_f->end)->conn->xprt && __objt_cs(si_f->end)->conn->xprt->snd_pipe && |
| __objt_cs(si_f->end)->conn->mux && __objt_cs(si_f->end)->conn->mux->snd_pipe) && |
| (objt_cs(si_b->end) && __objt_cs(si_b->end)->conn->xprt && __objt_cs(si_b->end)->conn->xprt->rcv_pipe && |
| __objt_cs(si_b->end)->conn->mux && __objt_cs(si_b->end)->conn->mux->rcv_pipe) && |
| (pipes_used < global.maxpipes) && |
| (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) || |
| (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && |
| (res->flags & CF_STREAMER_FAST)))) { |
| res->flags |= CF_KERN_SPLICING; |
| } |
| |
| /* reflect what the L7 analysers have seen last */ |
| rpf_last = res->flags; |
| |
| /* Let's see if we can send the pending response now */ |
| si_sync_send(si_f); |
| |
| /* |
| * Now forward all shutdown requests between both sides of the buffer |
| */ |
| |
| /* |
| * FIXME: this is probably where we should produce error responses. |
| */ |
| |
| /* first, let's check if the response buffer needs to shutdown(write) */ |
| if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) == |
| (CF_AUTO_CLOSE|CF_SHUTR))) { |
| channel_shutw_now(res); |
| } |
| |
| /* shutdown(write) pending */ |
| if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW && |
| channel_is_empty(res))) { |
| si_shutw(si_f); |
| } |
| |
| /* shutdown(write) done on the client side, we must stop the server too */ |
| if (unlikely((res->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW) && |
| !res->analysers) |
| channel_shutr_now(res); |
| |
| /* shutdown(read) pending */ |
| if (unlikely((res->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) { |
| if (si_b->flags & SI_FL_NOHALF) |
| si_b->flags |= SI_FL_NOLINGER; |
| si_shutr(si_b); |
| } |
| |
| if (si_f->state == SI_ST_DIS || |
| si_state_in(si_b->state, SI_SB_RDY|SI_SB_DIS) || |
| (si_f->flags & SI_FL_ERR && si_f->state != SI_ST_CLO) || |
| (si_b->flags & SI_FL_ERR && si_b->state != SI_ST_CLO)) |
| goto resync_stream_interface; |
| |
| if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER) |
| goto resync_request; |
| |
| if ((res->flags ^ rpf_last) & CF_MASK_STATIC) |
| goto resync_response; |
| |
| if (((req->flags ^ rqf_last) | (res->flags ^ rpf_last)) & CF_MASK_ANALYSER) |
| goto resync_request; |
| |
| /* we're interested in getting wakeups again */ |
| si_f->flags &= ~SI_FL_DONT_WAKE; |
| si_b->flags &= ~SI_FL_DONT_WAKE; |
| |
| /* This is needed only when debugging is enabled, to indicate |
| * client-side or server-side close. Please note that in the unlikely |
| * event where both sides would close at once, the sequence is reported |
| * on the server side first. |
| */ |
| if (unlikely((global.mode & MODE_DEBUG) && |
| (!(global.mode & MODE_QUIET) || |
| (global.mode & MODE_VERBOSE)))) { |
| if (si_b->state == SI_ST_CLO && |
| si_b->prev_state == SI_ST_EST) { |
| chunk_printf(&trash, "%08x:%s.srvcls[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| objt_cs(si_f->end) ? (unsigned short)objt_cs(si_f->end)->conn->handle.fd : -1, |
| objt_cs(si_b->end) ? (unsigned short)objt_cs(si_b->end)->conn->handle.fd : -1); |
| shut_your_big_mouth_gcc(write(1, trash.area, trash.data)); |
| } |
| |
| if (si_f->state == SI_ST_CLO && |
| si_f->prev_state == SI_ST_EST) { |
| chunk_printf(&trash, "%08x:%s.clicls[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| objt_cs(si_f->end) ? (unsigned short)objt_cs(si_f->end)->conn->handle.fd : -1, |
| objt_cs(si_b->end) ? (unsigned short)objt_cs(si_b->end)->conn->handle.fd : -1); |
| shut_your_big_mouth_gcc(write(1, trash.area, trash.data)); |
| } |
| } |
| |
| if (likely((si_f->state != SI_ST_CLO) || !si_state_in(si_b->state, SI_SB_INI|SI_SB_CLO))) { |
| if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) && !(s->flags & SF_IGNORE)) |
| stream_process_counters(s); |
| |
| si_update_both(si_f, si_b); |
| |
| /* Trick: if a request is being waiting for the server to respond, |
| * and if we know the server can timeout, we don't want the timeout |
| * to expire on the client side first, but we're still interested |
| * in passing data from the client to the server (eg: POST). Thus, |
| * we can cancel the client's request timeout if the server's |
| * request timeout is set and the server has not yet sent a response. |
| */ |
| |
| if ((res->flags & (CF_AUTO_CLOSE|CF_SHUTR)) == 0 && |
| (tick_isset(req->wex) || tick_isset(res->rex))) { |
| req->flags |= CF_READ_NOEXP; |
| req->rex = TICK_ETERNITY; |
| } |
| |
| /* Reset pending events now */ |
| s->pending_events = 0; |
| |
| update_exp_and_leave: |
| /* Note: please ensure that if you branch here you disable SI_FL_DONT_WAKE */ |
| t->expire = tick_first((tick_is_expired(t->expire, now_ms) ? 0 : t->expire), |
| tick_first(tick_first(req->rex, req->wex), |
| tick_first(res->rex, res->wex))); |
| if (!req->analysers) |
| req->analyse_exp = TICK_ETERNITY; |
| |
| if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) && |
| (!tick_isset(req->analyse_exp) || tick_is_expired(req->analyse_exp, now_ms))) |
| req->analyse_exp = tick_add(now_ms, 5000); |
| |
| t->expire = tick_first(t->expire, req->analyse_exp); |
| |
| t->expire = tick_first(t->expire, res->analyse_exp); |
| |
| if (si_f->exp) |
| t->expire = tick_first(t->expire, si_f->exp); |
| |
| if (si_b->exp) |
| t->expire = tick_first(t->expire, si_b->exp); |
| |
| DPRINTF(stderr, |
| "[%u] queuing with exp=%u req->rex=%u req->wex=%u req->ana_exp=%u" |
| " rep->rex=%u rep->wex=%u, si[0].exp=%u, si[1].exp=%u, cs=%d, ss=%d\n", |
| now_ms, t->expire, req->rex, req->wex, req->analyse_exp, |
| res->rex, res->wex, si_f->exp, si_b->exp, si_f->state, si_b->state); |
| |
| s->pending_events &= ~(TASK_WOKEN_TIMER | TASK_WOKEN_RES); |
| stream_release_buffers(s); |
| return t; /* nothing more to do */ |
| } |
| |
| if (s->flags & SF_BE_ASSIGNED) |
| _HA_ATOMIC_SUB(&s->be->beconn, 1); |
| |
| if (unlikely((global.mode & MODE_DEBUG) && |
| (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { |
| chunk_printf(&trash, "%08x:%s.closed[%04x:%04x]\n", |
| s->uniq_id, s->be->id, |
| objt_cs(si_f->end) ? (unsigned short)objt_cs(si_f->end)->conn->handle.fd : -1, |
| objt_cs(si_b->end) ? (unsigned short)objt_cs(si_b->end)->conn->handle.fd : -1); |
| shut_your_big_mouth_gcc(write(1, trash.area, trash.data)); |
| } |
| |
| s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now); |
| if (!(s->flags & SF_IGNORE)) |
| stream_process_counters(s); |
| |
| if (s->txn && s->txn->status) { |
| int n; |
| |
| n = s->txn->status / 100; |
| if (n < 1 || n > 5) |
| n = 0; |
| |
| if (sess->fe->mode == PR_MODE_HTTP) { |
| _HA_ATOMIC_ADD(&sess->fe->fe_counters.p.http.rsp[n], 1); |
| } |
| if ((s->flags & SF_BE_ASSIGNED) && |
| (s->be->mode == PR_MODE_HTTP)) { |
| _HA_ATOMIC_ADD(&s->be->be_counters.p.http.rsp[n], 1); |
| _HA_ATOMIC_ADD(&s->be->be_counters.p.http.cum_req, 1); |
| } |
| } |
| |
| /* let's do a final log if we need it */ |
| if (!LIST_ISEMPTY(&sess->fe->logformat) && s->logs.logwait && |
| !(s->flags & SF_MONITOR) && |
| (!(sess->fe->options & PR_O_NULLNOLOG) || req->total)) { |
| /* we may need to know the position in the queue */ |
| pendconn_free(s); |
| s->do_log(s); |
| } |
| |
| /* update time stats for this stream */ |
| stream_update_time_stats(s); |
| |
| /* the task MUST not be in the run queue anymore */ |
| stream_free(s); |
| task_destroy(t); |
| return NULL; |
| } |
| |
| /* Update the stream's backend and server time stats */ |
| void stream_update_time_stats(struct stream *s) |
| { |
| int t_request; |
| int t_queue; |
| int t_connect; |
| int t_data; |
| int t_close; |
| struct server *srv; |
| |
| t_request = 0; |
| t_queue = s->logs.t_queue; |
| t_connect = s->logs.t_connect; |
| t_close = s->logs.t_close; |
| t_data = s->logs.t_data; |
| |
| if (s->be->mode != PR_MODE_HTTP) |
| t_data = t_connect; |
| |
| if (t_connect < 0 || t_data < 0) |
| return; |
| |
| if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept)) |
| t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request); |
| |
| t_data -= t_connect; |
| t_connect -= t_queue; |
| t_queue -= t_request; |
| |
| srv = objt_server(s->target); |
| if (srv) { |
| swrate_add(&srv->counters.q_time, TIME_STATS_SAMPLES, t_queue); |
| swrate_add(&srv->counters.c_time, TIME_STATS_SAMPLES, t_connect); |
| swrate_add(&srv->counters.d_time, TIME_STATS_SAMPLES, t_data); |
| swrate_add(&srv->counters.t_time, TIME_STATS_SAMPLES, t_close); |
| HA_ATOMIC_UPDATE_MAX(&srv->counters.qtime_max, t_queue); |
| HA_ATOMIC_UPDATE_MAX(&srv->counters.ctime_max, t_connect); |
| HA_ATOMIC_UPDATE_MAX(&srv->counters.dtime_max, t_data); |
| HA_ATOMIC_UPDATE_MAX(&srv->counters.ttime_max, t_close); |
| } |
| swrate_add(&s->be->be_counters.q_time, TIME_STATS_SAMPLES, t_queue); |
| swrate_add(&s->be->be_counters.c_time, TIME_STATS_SAMPLES, t_connect); |
| swrate_add(&s->be->be_counters.d_time, TIME_STATS_SAMPLES, t_data); |
| swrate_add(&s->be->be_counters.t_time, TIME_STATS_SAMPLES, t_close); |
| HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.qtime_max, t_queue); |
| HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ctime_max, t_connect); |
| HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.dtime_max, t_data); |
| HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ttime_max, t_close); |
| } |
| |
| /* |
| * This function adjusts sess->srv_conn and maintains the previous and new |
| * server's served stream counts. Setting newsrv to NULL is enough to release |
| * current connection slot. This function also notifies any LB algo which might |
| * expect to be informed about any change in the number of active streams on a |
| * server. |
| */ |
| void sess_change_server(struct stream *sess, struct server *newsrv) |
| { |
| if (sess->srv_conn == newsrv) |
| return; |
| |
| if (sess->srv_conn) { |
| _HA_ATOMIC_SUB(&sess->srv_conn->served, 1); |
| _HA_ATOMIC_SUB(&sess->srv_conn->proxy->served, 1); |
| __ha_barrier_atomic_store(); |
| if (sess->srv_conn->proxy->lbprm.server_drop_conn) |
| sess->srv_conn->proxy->lbprm.server_drop_conn(sess->srv_conn); |
| stream_del_srv_conn(sess); |
| } |
| |
| if (newsrv) { |
| _HA_ATOMIC_ADD(&newsrv->served, 1); |
| _HA_ATOMIC_ADD(&newsrv->proxy->served, 1); |
| __ha_barrier_atomic_store(); |
| if (newsrv->proxy->lbprm.server_take_conn) |
| newsrv->proxy->lbprm.server_take_conn(newsrv); |
| stream_add_srv_conn(sess, newsrv); |
| } |
| } |
| |
| /* Handle server-side errors for default protocols. It is called whenever a a |
| * connection setup is aborted or a request is aborted in queue. It sets the |
| * stream termination flags so that the caller does not have to worry about |
| * them. It's installed as ->srv_error for the server-side stream_interface. |
| */ |
| void default_srv_error(struct stream *s, struct stream_interface *si) |
| { |
| int err_type = si->err_type; |
| int err = 0, fin = 0; |
| |
| if (err_type & SI_ET_QUEUE_ABRT) { |
| err = SF_ERR_CLICL; |
| fin = SF_FINST_Q; |
| } |
| else if (err_type & SI_ET_CONN_ABRT) { |
| err = SF_ERR_CLICL; |
| fin = SF_FINST_C; |
| } |
| else if (err_type & SI_ET_QUEUE_TO) { |
| err = SF_ERR_SRVTO; |
| fin = SF_FINST_Q; |
| } |
| else if (err_type & SI_ET_QUEUE_ERR) { |
| err = SF_ERR_SRVCL; |
| fin = SF_FINST_Q; |
| } |
| else if (err_type & SI_ET_CONN_TO) { |
| err = SF_ERR_SRVTO; |
| fin = SF_FINST_C; |
| } |
| else if (err_type & SI_ET_CONN_ERR) { |
| err = SF_ERR_SRVCL; |
| fin = SF_FINST_C; |
| } |
| else if (err_type & SI_ET_CONN_RES) { |
| err = SF_ERR_RESOURCE; |
| fin = SF_FINST_C; |
| } |
| else /* SI_ET_CONN_OTHER and others */ { |
| err = SF_ERR_INTERNAL; |
| fin = SF_FINST_C; |
| } |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= err; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= fin; |
| } |
| |
| /* kill a stream and set the termination flags to <why> (one of SF_ERR_*) */ |
| void stream_shutdown(struct stream *stream, int why) |
| { |
| if (stream->req.flags & (CF_SHUTW|CF_SHUTW_NOW)) |
| return; |
| |
| channel_shutw_now(&stream->req); |
| channel_shutr_now(&stream->res); |
| stream->task->nice = 1024; |
| if (!(stream->flags & SF_ERR_MASK)) |
| stream->flags |= why; |
| task_wakeup(stream->task, TASK_WOKEN_OTHER); |
| } |
| |
| /* Appends a dump of the state of stream <s> into buffer <buf> which must have |
| * preliminary be prepared by its caller, with each line prepended by prefix |
| * <pfx>, and each line terminated by character <eol>. |
| */ |
| void stream_dump(struct buffer *buf, const struct stream *s, const char *pfx, char eol) |
| { |
| const struct conn_stream *csf, *csb; |
| const struct connection *cof, *cob; |
| const struct appctx *acf, *acb; |
| const struct server *srv; |
| const char *src = "unknown"; |
| const char *dst = "unknown"; |
| char pn[INET6_ADDRSTRLEN]; |
| const struct channel *req, *res; |
| const struct stream_interface *si_f, *si_b; |
| |
| if (!s) { |
| chunk_appendf(buf, "%sstrm=%p%c", pfx, s, eol); |
| return; |
| } |
| |
| if (s->obj_type != OBJ_TYPE_STREAM) { |
| chunk_appendf(buf, "%sstrm=%p [invalid type=%d(%s)]%c", |
| pfx, s, s->obj_type, obj_type_name(&s->obj_type), eol); |
| return; |
| } |
| |
| si_f = &s->si[0]; |
| si_b = &s->si[1]; |
| req = &s->req; |
| res = &s->res; |
| |
| csf = objt_cs(si_f->end); |
| cof = cs_conn(csf); |
| acf = objt_appctx(si_f->end); |
| if (cof && addr_to_str(&cof->addr.from, pn, sizeof(pn)) >= 0) |
| src = pn; |
| else if (acf) |
| src = acf->applet->name; |
| |
| csb = objt_cs(si_b->end); |
| cob = cs_conn(csb); |
| acb = objt_appctx(si_b->end); |
| srv = objt_server(s->target); |
| if (srv) |
| dst = srv->id; |
| else if (acb) |
| dst = acb->applet->name; |
| |
| chunk_appendf(buf, |
| "%sstrm=%p src=%s fe=%s be=%s dst=%s%c" |
| "%srqf=%x rqa=%x rpf=%x rpa=%x sif=%s,%x sib=%s,%x%c" |
| "%saf=%p,%u csf=%p,%x%c" |
| "%sab=%p,%u csb=%p,%x%c" |
| "%scof=%p,%x:%s(%p)/%s(%p)/%s(%d)%c" |
| "%scob=%p,%x:%s(%p)/%s(%p)/%s(%d)%c" |
| "", |
| pfx, s, src, s->sess->fe->id, s->be->id, dst, eol, |
| pfx, req->flags, req->analysers, res->flags, res->analysers, |
| si_state_str(si_f->state), si_f->flags, |
| si_state_str(si_b->state), si_b->flags, eol, |
| pfx, acf, acf ? acf->st0 : 0, csf, csf ? csf->flags : 0, eol, |
| pfx, acb, acb ? acb->st0 : 0, csb, csb ? csb->flags : 0, eol, |
| pfx, cof, cof ? cof->flags : 0, conn_get_mux_name(cof), cof?cof->ctx:0, conn_get_xprt_name(cof), |
| cof ? cof->xprt_ctx : 0, conn_get_ctrl_name(cof), cof ? cof->handle.fd : 0, eol, |
| pfx, cob, cob ? cob->flags : 0, conn_get_mux_name(cob), cob?cob->ctx:0, conn_get_xprt_name(cob), |
| cob ? cob->xprt_ctx : 0, conn_get_ctrl_name(cob), cob ? cob->handle.fd : 0, eol); |
| } |
| |
| /* dumps an error message for type <type> at ptr <ptr> related to stream <s>, |
| * having reached loop rate <rate>, then aborts hoping to retrieve a core. |
| */ |
| void stream_dump_and_crash(enum obj_type *obj, int rate) |
| { |
| const struct stream *s; |
| char *msg = NULL; |
| const void *ptr; |
| |
| ptr = s = objt_stream(obj); |
| if (!s) { |
| const struct appctx *appctx = objt_appctx(obj); |
| if (!appctx) |
| return; |
| ptr = appctx; |
| s = si_strm(appctx->owner); |
| if (!s) |
| return; |
| } |
| |
| chunk_reset(&trash); |
| stream_dump(&trash, s, "", ' '); |
| |
| chunk_appendf(&trash, "filters={"); |
| if (HAS_FILTERS(s)) { |
| struct filter *filter; |
| |
| list_for_each_entry(filter, &s->strm_flt.filters, list) { |
| if (filter->list.p != &s->strm_flt.filters) |
| chunk_appendf(&trash, ", "); |
| chunk_appendf(&trash, "%p=\"%s\"", filter, FLT_ID(filter)); |
| } |
| } |
| chunk_appendf(&trash, "}"); |
| |
| memprintf(&msg, |
| "A bogus %s [%p] is spinning at %d calls per second and refuses to die, " |
| "aborting now! Please report this error to developers " |
| "[%s]\n", |
| obj_type_name(obj), ptr, rate, trash.area); |
| |
| ha_alert("%s", msg); |
| send_log(NULL, LOG_EMERG, "%s", msg); |
| abort(); |
| } |
| |
| /************************************************************************/ |
| /* All supported ACL keywords must be declared here. */ |
| /************************************************************************/ |
| |
| /* 0=OK, <0=Alert, >0=Warning */ |
| static enum act_parse_ret stream_parse_use_service(const char **args, int *cur_arg, |
| struct proxy *px, struct act_rule *rule, |
| char **err) |
| { |
| struct action_kw *kw; |
| |
| /* Check if the service name exists. */ |
| if (*(args[*cur_arg]) == 0) { |
| memprintf(err, "'%s' expects a service name.", args[0]); |
| return ACT_RET_PRS_ERR; |
| } |
| |
| /* lookup for keyword corresponding to a service. */ |
| kw = action_lookup(&service_keywords, args[*cur_arg]); |
| if (!kw) { |
| memprintf(err, "'%s' unknown service name.", args[1]); |
| return ACT_RET_PRS_ERR; |
| } |
| (*cur_arg)++; |
| |
| /* executes specific rule parser. */ |
| rule->kw = kw; |
| if (kw->parse((const char **)args, cur_arg, px, rule, err) == ACT_RET_PRS_ERR) |
| return ACT_RET_PRS_ERR; |
| |
| /* Register processing function. */ |
| rule->action_ptr = process_use_service; |
| rule->action = ACT_CUSTOM; |
| |
| return ACT_RET_PRS_OK; |
| } |
| |
| void service_keywords_register(struct action_kw_list *kw_list) |
| { |
| LIST_ADDQ(&service_keywords, &kw_list->list); |
| } |
| |
| /* Lists the known services on <out> */ |
| void list_services(FILE *out) |
| { |
| struct action_kw_list *kw_list; |
| int found = 0; |
| int i; |
| |
| fprintf(out, "Available services :"); |
| list_for_each_entry(kw_list, &service_keywords, list) { |
| for (i = 0; kw_list->kw[i].kw != NULL; i++) { |
| if (!found) |
| fputc('\n', out); |
| found = 1; |
| fprintf(out, "\t%s\n", kw_list->kw[i].kw); |
| } |
| } |
| if (!found) |
| fprintf(out, " none\n"); |
| } |
| |
| /* This function dumps a complete stream state onto the stream interface's |
| * read buffer. The stream has to be set in strm. It returns 0 if the output |
| * buffer is full and it needs to be called again, otherwise non-zero. It is |
| * designed to be called from stats_dump_strm_to_buffer() below. |
| */ |
| static int stats_dump_full_strm_to_buffer(struct stream_interface *si, struct stream *strm) |
| { |
| struct appctx *appctx = __objt_appctx(si->end); |
| struct tm tm; |
| extern const char *monthname[12]; |
| char pn[INET6_ADDRSTRLEN]; |
| struct conn_stream *cs; |
| struct connection *conn; |
| struct appctx *tmpctx; |
| |
| chunk_reset(&trash); |
| |
| if (appctx->ctx.sess.section > 0 && appctx->ctx.sess.uid != strm->uniq_id) { |
| /* stream changed, no need to go any further */ |
| chunk_appendf(&trash, " *** session terminated while we were watching it ***\n"); |
| if (ci_putchk(si_ic(si), &trash) == -1) |
| goto full; |
| goto done; |
| } |
| |
| switch (appctx->ctx.sess.section) { |
| case 0: /* main status of the stream */ |
| appctx->ctx.sess.uid = strm->uniq_id; |
| appctx->ctx.sess.section = 1; |
| /* fall through */ |
| |
| case 1: |
| get_localtime(strm->logs.accept_date.tv_sec, &tm); |
| chunk_appendf(&trash, |
| "%p: [%02d/%s/%04d:%02d:%02d:%02d.%06d] id=%u proto=%s", |
| strm, |
| tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900, |
| tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(strm->logs.accept_date.tv_usec), |
| strm->uniq_id, |
| strm_li(strm) ? strm_li(strm)->proto->name : "?"); |
| |
| conn = objt_conn(strm_orig(strm)); |
| switch (conn ? addr_to_str(&conn->addr.from, pn, sizeof(pn)) : AF_UNSPEC) { |
| case AF_INET: |
| case AF_INET6: |
| chunk_appendf(&trash, " source=%s:%d\n", |
| pn, get_host_port(&conn->addr.from)); |
| break; |
| case AF_UNIX: |
| chunk_appendf(&trash, " source=unix:%d\n", strm_li(strm)->luid); |
| break; |
| default: |
| /* no more information to print right now */ |
| chunk_appendf(&trash, "\n"); |
| break; |
| } |
| |
| chunk_appendf(&trash, |
| " flags=0x%x, conn_retries=%d, srv_conn=%p, pend_pos=%p waiting=%d\n", |
| strm->flags, strm->si[1].conn_retries, strm->srv_conn, strm->pend_pos, |
| !LIST_ISEMPTY(&strm->buffer_wait.list)); |
| |
| chunk_appendf(&trash, |
| " frontend=%s (id=%u mode=%s), listener=%s (id=%u)", |
| strm_fe(strm)->id, strm_fe(strm)->uuid, strm_fe(strm)->mode ? "http" : "tcp", |
| strm_li(strm) ? strm_li(strm)->name ? strm_li(strm)->name : "?" : "?", |
| strm_li(strm) ? strm_li(strm)->luid : 0); |
| |
| if (conn) |
| conn_get_to_addr(conn); |
| |
| switch (conn ? addr_to_str(&conn->addr.to, pn, sizeof(pn)) : AF_UNSPEC) { |
| case AF_INET: |
| case AF_INET6: |
| chunk_appendf(&trash, " addr=%s:%d\n", |
| pn, get_host_port(&conn->addr.to)); |
| break; |
| case AF_UNIX: |
| chunk_appendf(&trash, " addr=unix:%d\n", strm_li(strm)->luid); |
| break; |
| default: |
| /* no more information to print right now */ |
| chunk_appendf(&trash, "\n"); |
| break; |
| } |
| |
| if (strm->be->cap & PR_CAP_BE) |
| chunk_appendf(&trash, |
| " backend=%s (id=%u mode=%s)", |
| strm->be->id, |
| strm->be->uuid, strm->be->mode ? "http" : "tcp"); |
| else |
| chunk_appendf(&trash, " backend=<NONE> (id=-1 mode=-)"); |
| |
| cs = objt_cs(strm->si[1].end); |
| conn = cs_conn(cs); |
| |
| if (conn) |
| conn_get_from_addr(conn); |
| |
| switch (conn ? addr_to_str(&conn->addr.from, pn, sizeof(pn)) : AF_UNSPEC) { |
| case AF_INET: |
| case AF_INET6: |
| chunk_appendf(&trash, " addr=%s:%d\n", |
| pn, get_host_port(&conn->addr.from)); |
| break; |
| case AF_UNIX: |
| chunk_appendf(&trash, " addr=unix\n"); |
| break; |
| default: |
| /* no more information to print right now */ |
| chunk_appendf(&trash, "\n"); |
| break; |
| } |
| |
| if (strm->be->cap & PR_CAP_BE) |
| chunk_appendf(&trash, |
| " server=%s (id=%u)", |
| objt_server(strm->target) ? objt_server(strm->target)->id : "<none>", |
| objt_server(strm->target) ? objt_server(strm->target)->puid : 0); |
| else |
| chunk_appendf(&trash, " server=<NONE> (id=-1)"); |
| |
| if (conn) |
| conn_get_to_addr(conn); |
| |
| switch (conn ? addr_to_str(&conn->addr.to, pn, sizeof(pn)) : AF_UNSPEC) { |
| case AF_INET: |
| case AF_INET6: |
| chunk_appendf(&trash, " addr=%s:%d\n", |
| pn, get_host_port(&conn->addr.to)); |
| break; |
| case AF_UNIX: |
| chunk_appendf(&trash, " addr=unix\n"); |
| break; |
| default: |
| /* no more information to print right now */ |
| chunk_appendf(&trash, "\n"); |
| break; |
| } |
| |
| chunk_appendf(&trash, |
| " task=%p (state=0x%02x nice=%d calls=%u rate=%u exp=%s tmask=0x%lx%s", |
| strm->task, |
| strm->task->state, |
| strm->task->nice, strm->task->calls, read_freq_ctr(&strm->call_rate), |
| strm->task->expire ? |
| tick_is_expired(strm->task->expire, now_ms) ? "<PAST>" : |
| human_time(TICKS_TO_MS(strm->task->expire - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>", |
| strm->task->thread_mask, |
| task_in_rq(strm->task) ? ", running" : ""); |
| |
| chunk_appendf(&trash, |
| " age=%s)\n", |
| human_time(now.tv_sec - strm->logs.accept_date.tv_sec, 1)); |
| |
| if (strm->txn) |
| chunk_appendf(&trash, |
| " txn=%p flags=0x%x meth=%d status=%d req.st=%s rsp.st=%s\n" |
| " req.f=0x%02x blen=%llu chnk=%llu next=%u\n" |
| " rsp.f=0x%02x blen=%llu chnk=%llu next=%u\n", |
| strm->txn, strm->txn->flags, strm->txn->meth, strm->txn->status, |
| h1_msg_state_str(strm->txn->req.msg_state), h1_msg_state_str(strm->txn->rsp.msg_state), |
| strm->txn->req.flags, strm->txn->req.body_len, strm->txn->req.chunk_len, strm->txn->req.next, |
| strm->txn->rsp.flags, strm->txn->rsp.body_len, strm->txn->rsp.chunk_len, strm->txn->rsp.next); |
| |
| chunk_appendf(&trash, |
| " si[0]=%p (state=%s flags=0x%02x endp0=%s:%p exp=%s et=0x%03x sub=%d)\n", |
| &strm->si[0], |
| si_state_str(strm->si[0].state), |
| strm->si[0].flags, |
| obj_type_name(strm->si[0].end), |
| obj_base_ptr(strm->si[0].end), |
| strm->si[0].exp ? |
| tick_is_expired(strm->si[0].exp, now_ms) ? "<PAST>" : |
| human_time(TICKS_TO_MS(strm->si[0].exp - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>", |
| strm->si[0].err_type, strm->si[0].wait_event.events); |
| |
| chunk_appendf(&trash, |
| " si[1]=%p (state=%s flags=0x%02x endp1=%s:%p exp=%s et=0x%03x sub=%d)\n", |
| &strm->si[1], |
| si_state_str(strm->si[1].state), |
| strm->si[1].flags, |
| obj_type_name(strm->si[1].end), |
| obj_base_ptr(strm->si[1].end), |
| strm->si[1].exp ? |
| tick_is_expired(strm->si[1].exp, now_ms) ? "<PAST>" : |
| human_time(TICKS_TO_MS(strm->si[1].exp - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>", |
| strm->si[1].err_type, strm->si[1].wait_event.events); |
| |
| if ((cs = objt_cs(strm->si[0].end)) != NULL) { |
| conn = cs->conn; |
| |
| chunk_appendf(&trash, |
| " co0=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n", |
| conn, |
| conn_get_ctrl_name(conn), |
| conn_get_xprt_name(conn), |
| conn_get_mux_name(conn), |
| cs_get_data_name(cs), |
| obj_type_name(conn->target), |
| obj_base_ptr(conn->target)); |
| |
| chunk_appendf(&trash, |
| " flags=0x%08x fd=%d fd.state=%02x fd.cache=%d updt=%d fd.tmask=0x%lx\n", |
| conn->flags, |
| conn->handle.fd, |
| conn->handle.fd >= 0 ? fdtab[conn->handle.fd].state : 0, |
| conn->handle.fd >= 0 ? fdtab[conn->handle.fd].cache.next >= -2 : 0, |
| conn->handle.fd >= 0 ? !!(fdtab[conn->handle.fd].update_mask & tid_bit) : 0, |
| conn->handle.fd >= 0 ? fdtab[conn->handle.fd].thread_mask: 0); |
| |
| chunk_appendf(&trash, " cs=%p csf=0x%08x ctx=%p\n", cs, cs->flags, cs->ctx); |
| } |
| else if ((tmpctx = objt_appctx(strm->si[0].end)) != NULL) { |
| chunk_appendf(&trash, |
| " app0=%p st0=%d st1=%d st2=%d applet=%s tmask=0x%lx nice=%d calls=%u rate=%u cpu=%llu lat=%llu\n", |
| tmpctx, |
| tmpctx->st0, |
| tmpctx->st1, |
| tmpctx->st2, |
| tmpctx->applet->name, |
| tmpctx->thread_mask, |
| tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate), |
| (unsigned long long)tmpctx->t->cpu_time, (unsigned long long)tmpctx->t->lat_time); |
| } |
| |
| if ((cs = objt_cs(strm->si[1].end)) != NULL) { |
| conn = cs->conn; |
| |
| chunk_appendf(&trash, |
| " co1=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n", |
| conn, |
| conn_get_ctrl_name(conn), |
| conn_get_xprt_name(conn), |
| conn_get_mux_name(conn), |
| cs_get_data_name(cs), |
| obj_type_name(conn->target), |
| obj_base_ptr(conn->target)); |
| |
| chunk_appendf(&trash, |
| " flags=0x%08x fd=%d fd.state=%02x fd.cache=%d updt=%d fd.tmask=0x%lx\n", |
| conn->flags, |
| conn->handle.fd, |
| conn->handle.fd >= 0 ? fdtab[conn->handle.fd].state : 0, |
| conn->handle.fd >= 0 ? fdtab[conn->handle.fd].cache.next >= -2 : 0, |
| conn->handle.fd >= 0 ? !!(fdtab[conn->handle.fd].update_mask & tid_bit) : 0, |
| conn->handle.fd >= 0 ? fdtab[conn->handle.fd].thread_mask: 0); |
| |
| chunk_appendf(&trash, " cs=%p csf=0x%08x ctx=%p\n", cs, cs->flags, cs->ctx); |
| } |
| else if ((tmpctx = objt_appctx(strm->si[1].end)) != NULL) { |
| chunk_appendf(&trash, |
| " app1=%p st0=%d st1=%d st2=%d applet=%s tmask=0x%lx nice=%d calls=%u rate=%u cpu=%llu lat=%llu\n", |
| tmpctx, |
| tmpctx->st0, |
| tmpctx->st1, |
| tmpctx->st2, |
| tmpctx->applet->name, |
| tmpctx->thread_mask, |
| tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate), |
| (unsigned long long)tmpctx->t->cpu_time, (unsigned long long)tmpctx->t->lat_time); |
| } |
| |
| chunk_appendf(&trash, |
| " req=%p (f=0x%06x an=0x%x pipe=%d tofwd=%d total=%lld)\n" |
| " an_exp=%s", |
| &strm->req, |
| strm->req.flags, strm->req.analysers, |
| strm->req.pipe ? strm->req.pipe->data : 0, |
| strm->req.to_forward, strm->req.total, |
| strm->req.analyse_exp ? |
| human_time(TICKS_TO_MS(strm->req.analyse_exp - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>"); |
| |
| chunk_appendf(&trash, |
| " rex=%s", |
| strm->req.rex ? |
| human_time(TICKS_TO_MS(strm->req.rex - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>"); |
| |
| chunk_appendf(&trash, |
| " wex=%s\n" |
| " buf=%p data=%p o=%u p=%u req.next=%d i=%u size=%u\n", |
| strm->req.wex ? |
| human_time(TICKS_TO_MS(strm->req.wex - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>", |
| &strm->req.buf, |
| b_orig(&strm->req.buf), (unsigned int)co_data(&strm->req), |
| (unsigned int)ci_head_ofs(&strm->req), |
| strm->txn ? strm->txn->req.next : 0, (unsigned int)ci_data(&strm->req), |
| (unsigned int)strm->req.buf.size); |
| |
| if (IS_HTX_STRM(strm)) { |
| struct htx *htx = htxbuf(&strm->req.buf); |
| |
| chunk_appendf(&trash, |
| " htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n", |
| htx, htx->flags, htx->size, htx->data, htx->used, |
| (htx->tail >= htx->head) ? "NO" : "YES", |
| (unsigned long long)htx->extra); |
| } |
| |
| chunk_appendf(&trash, |
| " res=%p (f=0x%06x an=0x%x pipe=%d tofwd=%d total=%lld)\n" |
| " an_exp=%s", |
| &strm->res, |
| strm->res.flags, strm->res.analysers, |
| strm->res.pipe ? strm->res.pipe->data : 0, |
| strm->res.to_forward, strm->res.total, |
| strm->res.analyse_exp ? |
| human_time(TICKS_TO_MS(strm->res.analyse_exp - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>"); |
| |
| chunk_appendf(&trash, |
| " rex=%s", |
| strm->res.rex ? |
| human_time(TICKS_TO_MS(strm->res.rex - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>"); |
| |
| chunk_appendf(&trash, |
| " wex=%s\n" |
| " buf=%p data=%p o=%u p=%u rsp.next=%d i=%u size=%u\n", |
| strm->res.wex ? |
| human_time(TICKS_TO_MS(strm->res.wex - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>", |
| &strm->res.buf, |
| b_orig(&strm->res.buf), (unsigned int)co_data(&strm->res), |
| (unsigned int)ci_head_ofs(&strm->res), |
| strm->txn ? strm->txn->rsp.next : 0, (unsigned int)ci_data(&strm->res), |
| (unsigned int)strm->res.buf.size); |
| |
| if (IS_HTX_STRM(strm)) { |
| struct htx *htx = htxbuf(&strm->res.buf); |
| |
| chunk_appendf(&trash, |
| " htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n", |
| htx, htx->flags, htx->size, htx->data, htx->used, |
| (htx->tail >= htx->head) ? "NO" : "YES", |
| (unsigned long long)htx->extra); |
| } |
| |
| if (ci_putchk(si_ic(si), &trash) == -1) |
| goto full; |
| |
| /* use other states to dump the contents */ |
| } |
| /* end of dump */ |
| done: |
| appctx->ctx.sess.uid = 0; |
| appctx->ctx.sess.section = 0; |
| return 1; |
| full: |
| return 0; |
| } |
| |
| |
| static int cli_parse_show_sess(char **args, char *payload, struct appctx *appctx, void *private) |
| { |
| if (!cli_has_level(appctx, ACCESS_LVL_OPER)) |
| return 1; |
| |
| if (*args[2] && strcmp(args[2], "all") == 0) |
| appctx->ctx.sess.target = (void *)-1; |
| else if (*args[2]) |
| appctx->ctx.sess.target = (void *)strtoul(args[2], NULL, 0); |
| else |
| appctx->ctx.sess.target = NULL; |
| appctx->ctx.sess.section = 0; /* start with stream status */ |
| appctx->ctx.sess.pos = 0; |
| |
| /* we need to put an end marker into the streams list. We're just moving |
| * ourselves there, so that once we found ourselves we know we've reached |
| * the end. Without this we can run forever if new streams arrive faster |
| * than we can dump them. |
| */ |
| HA_SPIN_LOCK(STRMS_LOCK, &streams_lock); |
| LIST_DEL(&si_strm(appctx->owner)->list); |
| LIST_ADDQ(&streams, &si_strm(appctx->owner)->list); |
| HA_SPIN_UNLOCK(STRMS_LOCK, &streams_lock); |
| return 0; |
| } |
| |
| /* This function dumps all streams' states onto the stream interface's |
| * read buffer. It returns 0 if the output buffer is full and it needs |
| * to be called again, otherwise non-zero. It proceeds in an isolated |
| * thread so there is no thread safety issue here. |
| */ |
| static int cli_io_handler_dump_sess(struct appctx *appctx) |
| { |
| struct stream_interface *si = appctx->owner; |
| struct connection *conn; |
| |
| thread_isolate(); |
| |
| if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW))) { |
| /* If we're forced to shut down, we might have to remove our |
| * reference to the last stream being dumped. |
| */ |
| if (appctx->st2 == STAT_ST_LIST) { |
| if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users)) { |
| LIST_DEL(&appctx->ctx.sess.bref.users); |
| LIST_INIT(&appctx->ctx.sess.bref.users); |
| } |
| } |
| goto done; |
| } |
| |
| chunk_reset(&trash); |
| |
| switch (appctx->st2) { |
| case STAT_ST_INIT: |
| /* the function had not been called yet, let's prepare the |
| * buffer for a response. We initialize the current stream |
| * pointer to the first in the global list. When a target |
| * stream is being destroyed, it is responsible for updating |
| * this pointer. We know we have reached the end when this |
| * pointer points back to the head of the streams list. |
| */ |
| LIST_INIT(&appctx->ctx.sess.bref.users); |
| appctx->ctx.sess.bref.ref = streams.n; |
| appctx->st2 = STAT_ST_LIST; |
| /* fall through */ |
| |
| case STAT_ST_LIST: |
| /* first, let's detach the back-ref from a possible previous stream */ |
| if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users)) { |
| LIST_DEL(&appctx->ctx.sess.bref.users); |
| LIST_INIT(&appctx->ctx.sess.bref.users); |
| } |
| |
| /* and start from where we stopped, never going further than ourselves */ |
| while (appctx->ctx.sess.bref.ref != si_strm(appctx->owner)->list.n) { |
| char pn[INET6_ADDRSTRLEN]; |
| struct stream *curr_strm; |
| |
| curr_strm = LIST_ELEM(appctx->ctx.sess.bref.ref, struct stream *, list); |
| |
| if (appctx->ctx.sess.target) { |
| if (appctx->ctx.sess.target != (void *)-1 && appctx->ctx.sess.target != curr_strm) |
| goto next_sess; |
| |
| LIST_ADDQ(&curr_strm->back_refs, &appctx->ctx.sess.bref.users); |
| /* call the proper dump() function and return if we're missing space */ |
| if (!stats_dump_full_strm_to_buffer(si, curr_strm)) |
| goto full; |
| |
| /* stream dump complete */ |
| LIST_DEL(&appctx->ctx.sess.bref.users); |
| LIST_INIT(&appctx->ctx.sess.bref.users); |
| if (appctx->ctx.sess.target != (void *)-1) { |
| appctx->ctx.sess.target = NULL; |
| break; |
| } |
| else |
| goto next_sess; |
| } |
| |
| chunk_appendf(&trash, |
| "%p: proto=%s", |
| curr_strm, |
| strm_li(curr_strm) ? strm_li(curr_strm)->proto->name : "?"); |
| |
| conn = objt_conn(strm_orig(curr_strm)); |
| switch (conn ? addr_to_str(&conn->addr.from, pn, sizeof(pn)) : AF_UNSPEC) { |
| case AF_INET: |
| case AF_INET6: |
| chunk_appendf(&trash, |
| " src=%s:%d fe=%s be=%s srv=%s", |
| pn, |
| get_host_port(&conn->addr.from), |
| strm_fe(curr_strm)->id, |
| (curr_strm->be->cap & PR_CAP_BE) ? curr_strm->be->id : "<NONE>", |
| objt_server(curr_strm->target) ? objt_server(curr_strm->target)->id : "<none>" |
| ); |
| break; |
| case AF_UNIX: |
| chunk_appendf(&trash, |
| " src=unix:%d fe=%s be=%s srv=%s", |
| strm_li(curr_strm)->luid, |
| strm_fe(curr_strm)->id, |
| (curr_strm->be->cap & PR_CAP_BE) ? curr_strm->be->id : "<NONE>", |
| objt_server(curr_strm->target) ? objt_server(curr_strm->target)->id : "<none>" |
| ); |
| break; |
| } |
| |
| chunk_appendf(&trash, |
| " ts=%02x age=%s calls=%u rate=%u cpu=%llu lat=%llu", |
| curr_strm->task->state, |
| human_time(now.tv_sec - curr_strm->logs.tv_accept.tv_sec, 1), |
| curr_strm->task->calls, read_freq_ctr(&curr_strm->call_rate), |
| (unsigned long long)curr_strm->task->cpu_time, (unsigned long long)curr_strm->task->lat_time); |
| |
| chunk_appendf(&trash, |
| " rq[f=%06xh,i=%u,an=%02xh,rx=%s", |
| curr_strm->req.flags, |
| (unsigned int)ci_data(&curr_strm->req), |
| curr_strm->req.analysers, |
| curr_strm->req.rex ? |
| human_time(TICKS_TO_MS(curr_strm->req.rex - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| chunk_appendf(&trash, |
| ",wx=%s", |
| curr_strm->req.wex ? |
| human_time(TICKS_TO_MS(curr_strm->req.wex - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| chunk_appendf(&trash, |
| ",ax=%s]", |
| curr_strm->req.analyse_exp ? |
| human_time(TICKS_TO_MS(curr_strm->req.analyse_exp - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| chunk_appendf(&trash, |
| " rp[f=%06xh,i=%u,an=%02xh,rx=%s", |
| curr_strm->res.flags, |
| (unsigned int)ci_data(&curr_strm->res), |
| curr_strm->res.analysers, |
| curr_strm->res.rex ? |
| human_time(TICKS_TO_MS(curr_strm->res.rex - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| chunk_appendf(&trash, |
| ",wx=%s", |
| curr_strm->res.wex ? |
| human_time(TICKS_TO_MS(curr_strm->res.wex - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| chunk_appendf(&trash, |
| ",ax=%s]", |
| curr_strm->res.analyse_exp ? |
| human_time(TICKS_TO_MS(curr_strm->res.analyse_exp - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| conn = cs_conn(objt_cs(curr_strm->si[0].end)); |
| chunk_appendf(&trash, |
| " s0=[%d,%1xh,fd=%d,ex=%s]", |
| curr_strm->si[0].state, |
| curr_strm->si[0].flags, |
| conn ? conn->handle.fd : -1, |
| curr_strm->si[0].exp ? |
| human_time(TICKS_TO_MS(curr_strm->si[0].exp - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| conn = cs_conn(objt_cs(curr_strm->si[1].end)); |
| chunk_appendf(&trash, |
| " s1=[%d,%1xh,fd=%d,ex=%s]", |
| curr_strm->si[1].state, |
| curr_strm->si[1].flags, |
| conn ? conn->handle.fd : -1, |
| curr_strm->si[1].exp ? |
| human_time(TICKS_TO_MS(curr_strm->si[1].exp - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| |
| chunk_appendf(&trash, |
| " exp=%s", |
| curr_strm->task->expire ? |
| human_time(TICKS_TO_MS(curr_strm->task->expire - now_ms), |
| TICKS_TO_MS(1000)) : ""); |
| if (task_in_rq(curr_strm->task)) |
| chunk_appendf(&trash, " run(nice=%d)", curr_strm->task->nice); |
| |
| chunk_appendf(&trash, "\n"); |
| |
| if (ci_putchk(si_ic(si), &trash) == -1) { |
| /* let's try again later from this stream. We add ourselves into |
| * this stream's users so that it can remove us upon termination. |
| */ |
| LIST_ADDQ(&curr_strm->back_refs, &appctx->ctx.sess.bref.users); |
| goto full; |
| } |
| |
| next_sess: |
| appctx->ctx.sess.bref.ref = curr_strm->list.n; |
| } |
| |
| if (appctx->ctx.sess.target && appctx->ctx.sess.target != (void *)-1) { |
| /* specified stream not found */ |
| if (appctx->ctx.sess.section > 0) |
| chunk_appendf(&trash, " *** session terminated while we were watching it ***\n"); |
| else |
| chunk_appendf(&trash, "Session not found.\n"); |
| |
| if (ci_putchk(si_ic(si), &trash) == -1) |
| goto full; |
| |
| appctx->ctx.sess.target = NULL; |
| appctx->ctx.sess.uid = 0; |
| goto done; |
| } |
| /* fall through */ |
| |
| default: |
| appctx->st2 = STAT_ST_FIN; |
| goto done; |
| } |
| done: |
| thread_release(); |
| return 1; |
| full: |
| thread_release(); |
| si_rx_room_blk(si); |
| return 0; |
| } |
| |
| static void cli_release_show_sess(struct appctx *appctx) |
| { |
| if (appctx->st2 == STAT_ST_LIST) { |
| HA_SPIN_LOCK(STRMS_LOCK, &streams_lock); |
| if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users)) |
| LIST_DEL(&appctx->ctx.sess.bref.users); |
| HA_SPIN_UNLOCK(STRMS_LOCK, &streams_lock); |
| } |
| } |
| |
| /* Parses the "shutdown session" directive, it always returns 1 */ |
| static int cli_parse_shutdown_session(char **args, char *payload, struct appctx *appctx, void *private) |
| { |
| struct stream *strm, *ptr; |
| |
| if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) |
| return 1; |
| |
| if (!*args[2]) { |
| appctx->ctx.cli.severity = LOG_ERR; |
| appctx->ctx.cli.msg = "Session pointer expected (use 'show sess').\n"; |
| appctx->st0 = CLI_ST_PRINT; |
| return 1; |
| } |
| |
| ptr = (void *)strtoul(args[2], NULL, 0); |
| |
| /* first, look for the requested stream in the stream table */ |
| list_for_each_entry(strm, &streams, list) { |
| if (strm == ptr) |
| break; |
| } |
| |
| /* do we have the stream ? */ |
| if (strm != ptr) { |
| appctx->ctx.cli.severity = LOG_ERR; |
| appctx->ctx.cli.msg = "No such session (use 'show sess').\n"; |
| appctx->st0 = CLI_ST_PRINT; |
| return 1; |
| } |
| |
| stream_shutdown(strm, SF_ERR_KILLED); |
| return 1; |
| } |
| |
| /* Parses the "shutdown session server" directive, it always returns 1 */ |
| static int cli_parse_shutdown_sessions_server(char **args, char *payload, struct appctx *appctx, void *private) |
| { |
| struct server *sv; |
| struct stream *strm, *strm_bck; |
| |
| if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) |
| return 1; |
| |
| sv = cli_find_server(appctx, args[3]); |
| if (!sv) |
| return 1; |
| |
| /* kill all the stream that are on this server */ |
| HA_SPIN_LOCK(SERVER_LOCK, &sv->lock); |
| list_for_each_entry_safe(strm, strm_bck, &sv->actconns, by_srv) |
| if (strm->srv_conn == sv) |
| stream_shutdown(strm, SF_ERR_KILLED); |
| HA_SPIN_UNLOCK(SERVER_LOCK, &sv->lock); |
| return 1; |
| } |
| |
| /* register cli keywords */ |
| static struct cli_kw_list cli_kws = {{ },{ |
| { { "show", "sess", NULL }, "show sess [id] : report the list of current sessions or dump this session", cli_parse_show_sess, cli_io_handler_dump_sess, cli_release_show_sess }, |
| { { "shutdown", "session", NULL }, "shutdown session : kill a specific session", cli_parse_shutdown_session, NULL, NULL }, |
| { { "shutdown", "sessions", "server" }, "shutdown sessions server : kill sessions on a server", cli_parse_shutdown_sessions_server, NULL, NULL }, |
| {{},} |
| }}; |
| |
| INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws); |
| |
| /* main configuration keyword registration. */ |
| static struct action_kw_list stream_tcp_keywords = { ILH, { |
| { "use-service", stream_parse_use_service }, |
| { /* END */ } |
| }}; |
| |
| INITCALL1(STG_REGISTER, tcp_req_cont_keywords_register, &stream_tcp_keywords); |
| |
| static struct action_kw_list stream_http_keywords = { ILH, { |
| { "use-service", stream_parse_use_service }, |
| { /* END */ } |
| }}; |
| |
| INITCALL1(STG_REGISTER, http_req_keywords_register, &stream_http_keywords); |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |