blob: f67465832ed91a1852895434e6592870ae77eaec [file] [log] [blame]
/*
* include/proto/connection.h
* This file contains connection function prototypes
*
* Copyright (C) 2000-2012 Willy Tarreau - w@1wt.eu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _PROTO_CONNECTION_H
#define _PROTO_CONNECTION_H
#include <common/config.h>
#include <common/ist.h>
#include <common/memory.h>
#include <types/connection.h>
#include <types/listener.h>
#include <proto/fd.h>
#include <proto/obj_type.h>
#include <proto/task.h>
extern struct pool_head *pool_head_connection;
extern struct pool_head *pool_head_connstream;
extern struct xprt_ops *registered_xprt[XPRT_ENTRIES];
extern struct mux_proto_list mux_proto_list;
/* I/O callback for fd-based connections. It calls the read/write handlers
* provided by the connection's sock_ops.
*/
void conn_fd_handler(int fd);
/* receive a PROXY protocol header over a connection */
int conn_recv_proxy(struct connection *conn, int flag);
int make_proxy_line(char *buf, int buf_len, struct server *srv, struct connection *remote);
int make_proxy_line_v1(char *buf, int buf_len, struct sockaddr_storage *src, struct sockaddr_storage *dst);
int make_proxy_line_v2(char *buf, int buf_len, struct server *srv, struct connection *remote);
int conn_subscribe(struct connection *conn, int event_type, void *param);
int conn_unsubscribe(struct connection *conn, int event_type, void *param);
/* receive a NetScaler Client IP insertion header over a connection */
int conn_recv_netscaler_cip(struct connection *conn, int flag);
/* raw send() directly on the socket */
int conn_sock_send(struct connection *conn, const void *buf, int len, int flags);
/* drains any pending bytes from the socket */
int conn_sock_drain(struct connection *conn);
/* returns true is the transport layer is ready */
static inline int conn_xprt_ready(const struct connection *conn)
{
return (conn->flags & CO_FL_XPRT_READY);
}
/* returns true is the control layer is ready */
static inline int conn_ctrl_ready(const struct connection *conn)
{
return (conn->flags & CO_FL_CTRL_READY);
}
/* Calls the init() function of the transport layer if any and if not done yet,
* and sets the CO_FL_XPRT_READY flag to indicate it was properly initialized.
* Returns <0 in case of error.
*/
static inline int conn_xprt_init(struct connection *conn)
{
int ret = 0;
if (!conn_xprt_ready(conn) && conn->xprt && conn->xprt->init)
ret = conn->xprt->init(conn);
if (ret >= 0)
conn->flags |= CO_FL_XPRT_READY;
return ret;
}
/* Calls the close() function of the transport layer if any and if not done
* yet, and clears the CO_FL_XPRT_READY flag. However this is not done if the
* CO_FL_XPRT_TRACKED flag is set, which allows logs to take data from the
* transport layer very late if needed.
*/
static inline void conn_xprt_close(struct connection *conn)
{
if ((conn->flags & (CO_FL_XPRT_READY|CO_FL_XPRT_TRACKED)) == CO_FL_XPRT_READY) {
if (conn->xprt->close)
conn->xprt->close(conn);
conn->flags &= ~CO_FL_XPRT_READY;
}
}
/* Initializes the connection's control layer which essentially consists in
* registering the file descriptor for polling and setting the CO_FL_CTRL_READY
* flag. The caller is responsible for ensuring that the control layer is
* already assigned to the connection prior to the call.
*/
static inline void conn_ctrl_init(struct connection *conn)
{
if (!conn_ctrl_ready(conn)) {
int fd = conn->handle.fd;
fd_insert(fd, conn, conn_fd_handler, tid_bit);
/* mark the fd as ready so as not to needlessly poll at the beginning */
fd_may_recv(fd);
fd_may_send(fd);
conn->flags |= CO_FL_CTRL_READY;
}
}
/* Deletes the FD if the transport layer is already gone. Once done,
* it then removes the CO_FL_CTRL_READY flag.
*/
static inline void conn_ctrl_close(struct connection *conn)
{
if ((conn->flags & (CO_FL_XPRT_READY|CO_FL_CTRL_READY)) == CO_FL_CTRL_READY) {
fd_delete(conn->handle.fd);
conn->handle.fd = DEAD_FD_MAGIC;
conn->flags &= ~CO_FL_CTRL_READY;
}
}
/* If the connection still has a transport layer, then call its close() function
* if any, and delete the file descriptor if a control layer is set. This is
* used to close everything at once and atomically. However this is not done if
* the CO_FL_XPRT_TRACKED flag is set, which allows logs to take data from the
* transport layer very late if needed.
*/
static inline void conn_full_close(struct connection *conn)
{
conn_xprt_close(conn);
conn_ctrl_close(conn);
}
/* stop tracking a connection, allowing conn_full_close() to always
* succeed.
*/
static inline void conn_stop_tracking(struct connection *conn)
{
conn->flags &= ~CO_FL_XPRT_TRACKED;
}
/* Update polling on connection <c>'s file descriptor depending on its current
* state as reported in the connection's CO_FL_CURR_* flags, reports of EAGAIN
* in CO_FL_WAIT_*, and the sock layer expectations indicated by CO_FL_SOCK_*.
* The connection flags are updated with the new flags at the end of the
* operation. Polling is totally disabled if an error was reported.
*/
void conn_update_sock_polling(struct connection *c);
/* Update polling on connection <c>'s file descriptor depending on its current
* state as reported in the connection's CO_FL_CURR_* flags, reports of EAGAIN
* in CO_FL_WAIT_*, and the upper layer expectations indicated by CO_FL_XPRT_*.
* The connection flags are updated with the new flags at the end of the
* operation. Polling is totally disabled if an error was reported.
*/
void conn_update_xprt_polling(struct connection *c);
/* Refresh the connection's polling flags from its file descriptor status.
* This should be called at the beginning of a connection handler. It does
* nothing if CO_FL_WILL_UPDATE is present, indicating that an upper caller
* has already done it.
*/
static inline void conn_refresh_polling_flags(struct connection *conn)
{
if (conn_ctrl_ready(conn) && !(conn->flags & CO_FL_WILL_UPDATE)) {
unsigned int flags = conn->flags;
flags &= ~(CO_FL_CURR_RD_ENA | CO_FL_CURR_WR_ENA | CO_FL_WAIT_ROOM);
if (fd_recv_active(conn->handle.fd))
flags |= CO_FL_CURR_RD_ENA;
if (fd_send_active(conn->handle.fd))
flags |= CO_FL_CURR_WR_ENA;
conn->flags = flags;
}
}
/* inspects c->flags and returns non-zero if XPRT ENA changes from the CURR ENA
* or if the WAIT flags are set with their respective ENA flags. Additionally,
* non-zero is also returned if an error was reported on the connection. This
* function is used quite often and is inlined. In order to proceed optimally
* with very little code and CPU cycles, the bits are arranged so that a change
* can be detected by a few left shifts, a xor, and a mask. These operations
* detect when W&D are both enabled for either direction, when C&D differ for
* either direction and when Error is set. The trick consists in first keeping
* only the bits we're interested in, since they don't collide when shifted,
* and to perform the AND at the end. In practice, the compiler is able to
* replace the last AND with a TEST in boolean conditions. This results in
* checks that are done in 4-6 cycles and less than 30 bytes.
*/
static inline unsigned int conn_xprt_polling_changes(const struct connection *c)
{
unsigned int f = c->flags;
f &= CO_FL_XPRT_WR_ENA | CO_FL_XPRT_RD_ENA | CO_FL_CURR_WR_ENA |
CO_FL_CURR_RD_ENA | CO_FL_ERROR;
f = (f ^ (f << 1)) & (CO_FL_CURR_WR_ENA|CO_FL_CURR_RD_ENA); /* test C ^ D */
return f & (CO_FL_CURR_WR_ENA | CO_FL_CURR_RD_ENA | CO_FL_ERROR);
}
/* inspects c->flags and returns non-zero if SOCK ENA changes from the CURR ENA
* or if the WAIT flags are set with their respective ENA flags. Additionally,
* non-zero is also returned if an error was reported on the connection. This
* function is used quite often and is inlined. In order to proceed optimally
* with very little code and CPU cycles, the bits are arranged so that a change
* can be detected by a few left shifts, a xor, and a mask. These operations
* detect when W&S are both enabled for either direction, when C&S differ for
* either direction and when Error is set. The trick consists in first keeping
* only the bits we're interested in, since they don't collide when shifted,
* and to perform the AND at the end. In practice, the compiler is able to
* replace the last AND with a TEST in boolean conditions. This results in
* checks that are done in 4-6 cycles and less than 30 bytes.
*/
static inline unsigned int conn_sock_polling_changes(const struct connection *c)
{
unsigned int f = c->flags;
f &= CO_FL_SOCK_WR_ENA | CO_FL_SOCK_RD_ENA | CO_FL_CURR_WR_ENA |
CO_FL_CURR_RD_ENA | CO_FL_ERROR;
f = (f ^ (f << 2)) & (CO_FL_CURR_WR_ENA|CO_FL_CURR_RD_ENA); /* test C ^ S */
return f & (CO_FL_CURR_WR_ENA | CO_FL_CURR_RD_ENA | CO_FL_ERROR);
}
/* Automatically updates polling on connection <c> depending on the XPRT flags
* if no handshake is in progress. It does nothing if CO_FL_WILL_UPDATE is
* present, indicating that an upper caller is going to do it again later.
*/
static inline void conn_cond_update_xprt_polling(struct connection *c)
{
if (!(c->flags & CO_FL_WILL_UPDATE))
if (!(c->flags & CO_FL_POLL_SOCK) && conn_xprt_polling_changes(c))
conn_update_xprt_polling(c);
}
/* Automatically updates polling on connection <c> depending on the SOCK flags
* if a handshake is in progress. It does nothing if CO_FL_WILL_UPDATE is
* present, indicating that an upper caller is going to do it again later.
*/
static inline void conn_cond_update_sock_polling(struct connection *c)
{
if (!(c->flags & CO_FL_WILL_UPDATE))
if ((c->flags & CO_FL_POLL_SOCK) && conn_sock_polling_changes(c))
conn_update_sock_polling(c);
}
/* Stop all polling on the fd. This might be used when an error is encountered
* for example. It does not propage the change to the fd layer if
* CO_FL_WILL_UPDATE is present, indicating that an upper caller is going to do
* it later.
*/
static inline void conn_stop_polling(struct connection *c)
{
c->flags &= ~(CO_FL_CURR_RD_ENA | CO_FL_CURR_WR_ENA |
CO_FL_SOCK_RD_ENA | CO_FL_SOCK_WR_ENA |
CO_FL_XPRT_RD_ENA | CO_FL_XPRT_WR_ENA);
if (!(c->flags & CO_FL_WILL_UPDATE) && conn_ctrl_ready(c))
fd_stop_both(c->handle.fd);
}
/* Automatically update polling on connection <c> depending on the XPRT and
* SOCK flags, and on whether a handshake is in progress or not. This may be
* called at any moment when there is a doubt about the effectiveness of the
* polling state, for instance when entering or leaving the handshake state.
* It does nothing if CO_FL_WILL_UPDATE is present, indicating that an upper
* caller is going to do it again later.
*/
static inline void conn_cond_update_polling(struct connection *c)
{
if (unlikely(c->flags & CO_FL_ERROR))
conn_stop_polling(c);
else if (!(c->flags & CO_FL_WILL_UPDATE)) {
if (!(c->flags & CO_FL_POLL_SOCK) && conn_xprt_polling_changes(c))
conn_update_xprt_polling(c);
else if ((c->flags & CO_FL_POLL_SOCK) && conn_sock_polling_changes(c))
conn_update_sock_polling(c);
}
}
/***** Event manipulation primitives for use by DATA I/O callbacks *****/
/* The __conn_* versions do not propagate to lower layers and are only meant
* to be used by handlers called by the connection handler. The other ones
* may be used anywhere.
*/
static inline void __conn_xprt_want_recv(struct connection *c)
{
c->flags |= CO_FL_XPRT_RD_ENA;
}
static inline void __conn_xprt_stop_recv(struct connection *c)
{
c->flags &= ~CO_FL_XPRT_RD_ENA;
}
/* this one is used only to stop speculative recv(). It doesn't stop it if the
* fd is already polled in order to avoid expensive polling status changes.
* Since it might require the upper layer to re-enable reading, we'll return 1
* if we've really stopped something otherwise zero.
*/
static inline int __conn_xprt_done_recv(struct connection *c)
{
if (!conn_ctrl_ready(c) || !fd_recv_polled(c->handle.fd)) {
c->flags &= ~CO_FL_XPRT_RD_ENA;
return 1;
}
return 0;
}
static inline void __conn_xprt_want_send(struct connection *c)
{
c->flags |= CO_FL_XPRT_WR_ENA;
}
static inline void __conn_xprt_stop_send(struct connection *c)
{
c->flags &= ~CO_FL_XPRT_WR_ENA;
}
static inline void __conn_xprt_stop_both(struct connection *c)
{
c->flags &= ~(CO_FL_XPRT_WR_ENA | CO_FL_XPRT_RD_ENA);
}
static inline void conn_xprt_want_recv(struct connection *c)
{
__conn_xprt_want_recv(c);
conn_cond_update_xprt_polling(c);
}
static inline void conn_xprt_stop_recv(struct connection *c)
{
__conn_xprt_stop_recv(c);
conn_cond_update_xprt_polling(c);
}
static inline void conn_xprt_want_send(struct connection *c)
{
__conn_xprt_want_send(c);
conn_cond_update_xprt_polling(c);
}
static inline void conn_xprt_stop_send(struct connection *c)
{
__conn_xprt_stop_send(c);
conn_cond_update_xprt_polling(c);
}
static inline void conn_xprt_stop_both(struct connection *c)
{
__conn_xprt_stop_both(c);
conn_cond_update_xprt_polling(c);
}
/***** Event manipulation primitives for use by handshake I/O callbacks *****/
/* The __conn_* versions do not propagate to lower layers and are only meant
* to be used by handlers called by the connection handler. The other ones
* may be used anywhere.
*/
static inline void __conn_sock_want_recv(struct connection *c)
{
c->flags |= CO_FL_SOCK_RD_ENA;
}
static inline void __conn_sock_stop_recv(struct connection *c)
{
c->flags &= ~CO_FL_SOCK_RD_ENA;
}
static inline void __conn_sock_want_send(struct connection *c)
{
c->flags |= CO_FL_SOCK_WR_ENA;
}
static inline void __conn_sock_stop_send(struct connection *c)
{
c->flags &= ~CO_FL_SOCK_WR_ENA;
}
static inline void __conn_sock_stop_both(struct connection *c)
{
c->flags &= ~(CO_FL_SOCK_WR_ENA | CO_FL_SOCK_RD_ENA);
}
static inline void conn_sock_want_recv(struct connection *c)
{
__conn_sock_want_recv(c);
conn_cond_update_sock_polling(c);
}
static inline void conn_sock_stop_recv(struct connection *c)
{
__conn_sock_stop_recv(c);
conn_cond_update_sock_polling(c);
}
static inline void conn_sock_want_send(struct connection *c)
{
__conn_sock_want_send(c);
conn_cond_update_sock_polling(c);
}
static inline void conn_sock_stop_send(struct connection *c)
{
__conn_sock_stop_send(c);
conn_cond_update_sock_polling(c);
}
static inline void conn_sock_stop_both(struct connection *c)
{
__conn_sock_stop_both(c);
conn_cond_update_sock_polling(c);
}
/* read shutdown, called from the rcv_buf/rcv_pipe handlers when
* detecting an end of connection.
*/
static inline void conn_sock_read0(struct connection *c)
{
c->flags |= CO_FL_SOCK_RD_SH;
__conn_sock_stop_recv(c);
/* we don't risk keeping ports unusable if we found the
* zero from the other side.
*/
if (conn_ctrl_ready(c))
fdtab[c->handle.fd].linger_risk = 0;
}
/* write shutdown, indication that the upper layer is not willing to send
* anything anymore and wants to close after pending data are sent. The
* <clean> argument will allow not to perform the socket layer shutdown if
* equal to 0.
*/
static inline void conn_sock_shutw(struct connection *c, int clean)
{
c->flags |= CO_FL_SOCK_WR_SH;
conn_refresh_polling_flags(c);
__conn_sock_stop_send(c);
conn_cond_update_sock_polling(c);
/* don't perform a clean shutdown if we're going to reset or
* if the shutr was already received.
*/
if (conn_ctrl_ready(c) && !(c->flags & CO_FL_SOCK_RD_SH) && clean)
shutdown(c->handle.fd, SHUT_WR);
}
static inline void conn_xprt_shutw(struct connection *c)
{
__conn_xprt_stop_send(c);
/* clean data-layer shutdown */
if (c->xprt && c->xprt->shutw)
c->xprt->shutw(c, 1);
}
static inline void conn_xprt_shutw_hard(struct connection *c)
{
__conn_xprt_stop_send(c);
/* unclean data-layer shutdown */
if (c->xprt && c->xprt->shutw)
c->xprt->shutw(c, 0);
}
/* shut read */
static inline void cs_shutr(struct conn_stream *cs, enum cs_shr_mode mode)
{
/* clean data-layer shutdown */
if (cs->conn->mux && cs->conn->mux->shutr)
cs->conn->mux->shutr(cs, mode);
cs->flags |= (mode == CS_SHR_DRAIN) ? CS_FL_SHRD : CS_FL_SHRR;
}
/* shut write */
static inline void cs_shutw(struct conn_stream *cs, enum cs_shw_mode mode)
{
/* clean data-layer shutdown */
if (cs->conn->mux && cs->conn->mux->shutw)
cs->conn->mux->shutw(cs, mode);
cs->flags |= (mode == CS_SHW_NORMAL) ? CS_FL_SHWN : CS_FL_SHWS;
}
/* completely close a conn_stream (but do not detach it) */
static inline void cs_close(struct conn_stream *cs)
{
cs_shutw(cs, CS_SHW_SILENT);
cs_shutr(cs, CS_SHR_RESET);
cs->flags = CS_FL_NONE;
}
/* sets CS_FL_ERROR or CS_FL_ERR_PENDING on the cs */
static inline void cs_set_error(struct conn_stream *cs)
{
if (cs->flags & CS_FL_EOS)
cs->flags |= CS_FL_ERROR;
else
cs->flags |= CS_FL_REOS | CS_FL_ERR_PENDING;
}
/* detect sock->data read0 transition */
static inline int conn_xprt_read0_pending(struct connection *c)
{
return (c->flags & CO_FL_SOCK_RD_SH) != 0;
}
/* prepares a connection to work with protocol <proto> and transport <xprt>.
* The transport's is initialized as well, and the mux and its context are
* cleared. The target is not reinitialized and it is recommended that it is
* set prior to calling this function so that the function may make use of it
* in the future to refine the mux choice if needed.
*/
static inline void conn_prepare(struct connection *conn, const struct protocol *proto, const struct xprt_ops *xprt)
{
conn->ctrl = proto;
conn->xprt = xprt;
conn->mux = NULL;
conn->xprt_st = 0;
conn->xprt_ctx = NULL;
conn->ctx = NULL;
}
/*
* Initializes all required fields for a new conn_strema.
*/
static inline void cs_init(struct conn_stream *cs, struct connection *conn)
{
cs->obj_type = OBJ_TYPE_CS;
cs->flags = CS_FL_NONE;
cs->conn = conn;
}
/* Initializes all required fields for a new connection. Note that it does the
* minimum acceptable initialization for a connection that already exists and
* is about to be reused. It also leaves the addresses untouched, which makes
* it usable across connection retries to reset a connection to a known state.
*/
static inline void conn_init(struct connection *conn)
{
conn->obj_type = OBJ_TYPE_CONN;
conn->flags = CO_FL_NONE;
conn->tmp_early_data = -1;
conn->sent_early_data = 0;
conn->mux = NULL;
conn->ctx = NULL;
conn->owner = NULL;
conn->send_proxy_ofs = 0;
conn->handle.fd = DEAD_FD_MAGIC;
conn->err_code = CO_ER_NONE;
conn->target = NULL;
conn->xprt_done_cb = NULL;
conn->destroy_cb = NULL;
conn->proxy_netns = NULL;
LIST_INIT(&conn->list);
LIST_INIT(&conn->session_list);
conn->send_wait = NULL;
conn->recv_wait = NULL;
conn->idle_time = 0;
}
/* sets <owner> as the connection's owner */
static inline void conn_set_owner(struct connection *conn, void *owner, void (*cb)(struct connection *))
{
conn->owner = owner;
conn->destroy_cb = cb;
}
/* registers <cb> as a callback to notify for transport's readiness or failure */
static inline void conn_set_xprt_done_cb(struct connection *conn, int (*cb)(struct connection *))
{
conn->xprt_done_cb = cb;
}
/* unregisters the callback to notify for transport's readiness or failure */
static inline void conn_clear_xprt_done_cb(struct connection *conn)
{
conn->xprt_done_cb = NULL;
}
/* Tries to allocate a new connection and initialized its main fields. The
* connection is returned on success, NULL on failure. The connection must
* be released using pool_free() or conn_free().
*/
static inline struct connection *conn_new()
{
struct connection *conn;
conn = pool_alloc(pool_head_connection);
if (likely(conn != NULL))
conn_init(conn);
return conn;
}
/* Releases a conn_stream previously allocated by cs_new(), as well as any
* buffer it would still hold.
*/
static inline void cs_free(struct conn_stream *cs)
{
pool_free(pool_head_connstream, cs);
}
/* Tries to allocate a new conn_stream and initialize its main fields. If
* <conn> is NULL, then a new connection is allocated on the fly, initialized,
* and assigned to cs->conn ; this connection will then have to be released
* using pool_free() or conn_free(). The conn_stream is initialized and added
* to the mux's stream list on success, then returned. On failure, nothing is
* allocated and NULL is returned.
*/
static inline struct conn_stream *cs_new(struct connection *conn)
{
struct conn_stream *cs;
cs = pool_alloc(pool_head_connstream);
if (!likely(cs))
return NULL;
if (!conn) {
conn = conn_new();
if (!likely(conn)) {
cs_free(cs);
return NULL;
}
conn_init(conn);
}
cs_init(cs, conn);
return cs;
}
/* Retrieves any valid conn_stream from this connection, preferably the first
* valid one. The purpose is to be able to figure one other end of a private
* connection for purposes like source binding or proxy protocol header
* emission. In such cases, any conn_stream is expected to be valid so the
* mux is encouraged to return the first one it finds. If the connection has
* no mux or the mux has no get_first_cs() method or the mux has no valid
* conn_stream, NULL is returned. The output pointer is purposely marked
* const to discourage the caller from modifying anything there.
*/
static inline const struct conn_stream *cs_get_first(const struct connection *conn)
{
if (!conn || !conn->mux || !conn->mux->get_first_cs)
return NULL;
return conn->mux->get_first_cs(conn);
}
static inline void conn_force_unsubscribe(struct connection *conn)
{
if (conn->recv_wait) {
conn->recv_wait->events &= ~SUB_RETRY_RECV;
conn->recv_wait = NULL;
}
if (conn->send_wait) {
conn->send_wait->events &= ~SUB_RETRY_SEND;
conn->send_wait = NULL;
}
}
/* Releases a connection previously allocated by conn_new() */
static inline void conn_free(struct connection *conn)
{
/* Remove ourself from the session's connections list, if any. */
if (!LIST_ISEMPTY(&conn->session_list)) {
struct session *sess = conn->owner;
sess->resp_conns--;
LIST_DEL(&conn->session_list);
}
/* By convention we always place a NULL where the ctx points to if the
* mux is null. It may have been used to store the connection as a
* stream_interface's end point for example.
*/
if (conn->ctx != NULL && conn->mux == NULL)
*(void **)conn->ctx = NULL;
/* The connection is currently in the server's idle list, so tell it
* there's one less connection available in that list.
*/
if (conn->idle_time > 0) {
struct server *srv = __objt_server(conn->target);
srv->curr_idle_conns--;
}
conn_force_unsubscribe(conn);
LIST_DEL(&conn->list);
LIST_INIT(&conn->list);
pool_free(pool_head_connection, conn);
}
/* Release a conn_stream */
static inline void cs_destroy(struct conn_stream *cs)
{
if (cs->conn->mux)
cs->conn->mux->detach(cs);
else {
/* It's too early to have a mux, let's just destroy
* the connection
*/
struct connection *conn = cs->conn;
conn_stop_tracking(conn);
conn_full_close(conn);
if (conn->destroy_cb)
conn->destroy_cb(conn);
conn_free(conn);
}
cs_free(cs);
}
/* Returns the conn from a cs. If cs is NULL, returns NULL */
static inline struct connection *cs_conn(const struct conn_stream *cs)
{
return cs ? cs->conn : NULL;
}
/* Retrieves the connection's source address */
static inline void conn_get_from_addr(struct connection *conn)
{
if (conn->flags & CO_FL_ADDR_FROM_SET)
return;
if (!conn_ctrl_ready(conn) || !conn->ctrl->get_src)
return;
if (conn->ctrl->get_src(conn->handle.fd, (struct sockaddr *)&conn->addr.from,
sizeof(conn->addr.from),
obj_type(conn->target) != OBJ_TYPE_LISTENER) == -1)
return;
conn->flags |= CO_FL_ADDR_FROM_SET;
}
/* Retrieves the connection's original destination address */
static inline void conn_get_to_addr(struct connection *conn)
{
if (conn->flags & CO_FL_ADDR_TO_SET)
return;
if (!conn_ctrl_ready(conn) || !conn->ctrl->get_dst)
return;
if (conn->ctrl->get_dst(conn->handle.fd, (struct sockaddr *)&conn->addr.to,
sizeof(conn->addr.to),
obj_type(conn->target) != OBJ_TYPE_LISTENER) == -1)
return;
conn->flags |= CO_FL_ADDR_TO_SET;
}
/* Sets the TOS header in IPv4 and the traffic class header in IPv6 packets
* (as per RFC3260 #4 and BCP37 #4.2 and #5.2). The connection is tested and if
* it is null, nothing is done.
*/
static inline void conn_set_tos(const struct connection *conn, int tos)
{
if (!conn || !conn_ctrl_ready(conn))
return;
#ifdef IP_TOS
if (conn->addr.from.ss_family == AF_INET)
setsockopt(conn->handle.fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos));
#endif
#ifdef IPV6_TCLASS
if (conn->addr.from.ss_family == AF_INET6) {
if (IN6_IS_ADDR_V4MAPPED(&((struct sockaddr_in6 *)&conn->addr.from)->sin6_addr))
/* v4-mapped addresses need IP_TOS */
setsockopt(conn->handle.fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos));
else
setsockopt(conn->handle.fd, IPPROTO_IPV6, IPV6_TCLASS, &tos, sizeof(tos));
}
#endif
}
/* Sets the netfilter mark on the connection's socket. The connection is tested
* and if it is null, nothing is done.
*/
static inline void conn_set_mark(const struct connection *conn, int mark)
{
if (!conn || !conn_ctrl_ready(conn))
return;
#ifdef SO_MARK
setsockopt(conn->handle.fd, SOL_SOCKET, SO_MARK, &mark, sizeof(mark));
#endif
}
/* Sets adjust the TCP quick-ack feature on the connection's socket. The
* connection is tested and if it is null, nothing is done.
*/
static inline void conn_set_quickack(const struct connection *conn, int value)
{
if (!conn || !conn_ctrl_ready(conn))
return;
#ifdef TCP_QUICKACK
setsockopt(conn->handle.fd, IPPROTO_TCP, TCP_QUICKACK, &value, sizeof(value));
#endif
}
/* Attaches a conn_stream to a data layer and sets the relevant callbacks */
static inline void cs_attach(struct conn_stream *cs, void *data, const struct data_cb *data_cb)
{
cs->data_cb = data_cb;
cs->data = data;
}
static inline struct wait_event *wl_set_waitcb(struct wait_event *wl, struct task *(*cb)(struct task *, void *, unsigned short), void *ctx)
{
if (!wl->task->process) {
wl->task->process = cb;
wl->task->context = ctx;
}
return wl;
}
/* Installs the connection's mux layer for upper context <ctx>.
* Returns < 0 on error.
*/
static inline int conn_install_mux(struct connection *conn, const struct mux_ops *mux,
void *ctx, struct proxy *prx, struct session *sess)
{
conn->mux = mux;
conn->ctx = ctx;
return mux->init ? mux->init(conn, prx, sess) : 0;
}
/* returns a human-readable error code for conn->err_code, or NULL if the code
* is unknown.
*/
static inline const char *conn_err_code_str(struct connection *c)
{
switch (c->err_code) {
case CO_ER_NONE: return "Success";
case CO_ER_CONF_FDLIM: return "Reached configured maxconn value";
case CO_ER_PROC_FDLIM: return "Too many sockets on the process";
case CO_ER_SYS_FDLIM: return "Too many sockets on the system";
case CO_ER_SYS_MEMLIM: return "Out of system buffers";
case CO_ER_NOPROTO: return "Protocol or address family not supported";
case CO_ER_SOCK_ERR: return "General socket error";
case CO_ER_PORT_RANGE: return "Source port range exhausted";
case CO_ER_CANT_BIND: return "Can't bind to source address";
case CO_ER_FREE_PORTS: return "Out of local source ports on the system";
case CO_ER_ADDR_INUSE: return "Local source address already in use";
case CO_ER_PRX_EMPTY: return "Connection closed while waiting for PROXY protocol header";
case CO_ER_PRX_ABORT: return "Connection error while waiting for PROXY protocol header";
case CO_ER_PRX_TIMEOUT: return "Timeout while waiting for PROXY protocol header";
case CO_ER_PRX_TRUNCATED: return "Truncated PROXY protocol header received";
case CO_ER_PRX_NOT_HDR: return "Received something which does not look like a PROXY protocol header";
case CO_ER_PRX_BAD_HDR: return "Received an invalid PROXY protocol header";
case CO_ER_PRX_BAD_PROTO: return "Received an unhandled protocol in the PROXY protocol header";
case CO_ER_CIP_EMPTY: return "Connection closed while waiting for NetScaler Client IP header";
case CO_ER_CIP_ABORT: return "Connection error while waiting for NetScaler Client IP header";
case CO_ER_CIP_TRUNCATED: return "Truncated NetScaler Client IP header received";
case CO_ER_CIP_BAD_MAGIC: return "Received an invalid NetScaler Client IP magic number";
case CO_ER_CIP_BAD_PROTO: return "Received an unhandled protocol in the NetScaler Client IP header";
case CO_ER_SSL_EMPTY: return "Connection closed during SSL handshake";
case CO_ER_SSL_ABORT: return "Connection error during SSL handshake";
case CO_ER_SSL_TIMEOUT: return "Timeout during SSL handshake";
case CO_ER_SSL_TOO_MANY: return "Too many SSL connections";
case CO_ER_SSL_NO_MEM: return "Out of memory when initializing an SSL connection";
case CO_ER_SSL_RENEG: return "Rejected a client-initiated SSL renegociation attempt";
case CO_ER_SSL_CA_FAIL: return "SSL client CA chain cannot be verified";
case CO_ER_SSL_CRT_FAIL: return "SSL client certificate not trusted";
case CO_ER_SSL_MISMATCH: return "Server presented an SSL certificate different from the configured one";
case CO_ER_SSL_MISMATCH_SNI: return "Server presented an SSL certificate different from the expected one";
case CO_ER_SSL_HANDSHAKE: return "SSL handshake failure";
case CO_ER_SSL_HANDSHAKE_HB: return "SSL handshake failure after heartbeat";
case CO_ER_SSL_KILLED_HB: return "Stopped a TLSv1 heartbeat attack (CVE-2014-0160)";
case CO_ER_SSL_NO_TARGET: return "Attempt to use SSL on an unknown target (internal error)";
}
return NULL;
}
static inline const char *conn_get_ctrl_name(const struct connection *conn)
{
if (!conn_ctrl_ready(conn))
return "NONE";
return conn->ctrl->name;
}
static inline const char *conn_get_xprt_name(const struct connection *conn)
{
if (!conn_xprt_ready(conn))
return "NONE";
return conn->xprt->name;
}
static inline const char *conn_get_mux_name(const struct connection *conn)
{
if (!conn->mux)
return "NONE";
return conn->mux->name;
}
static inline const char *cs_get_data_name(const struct conn_stream *cs)
{
if (!cs->data_cb)
return "NONE";
return cs->data_cb->name;
}
/* registers pointer to transport layer <id> (XPRT_*) */
static inline void xprt_register(int id, struct xprt_ops *xprt)
{
if (id >= XPRT_ENTRIES)
return;
registered_xprt[id] = xprt;
}
/* returns pointer to transport layer <id> (XPRT_*) or NULL if not registered */
static inline struct xprt_ops *xprt_get(int id)
{
if (id >= XPRT_ENTRIES)
return NULL;
return registered_xprt[id];
}
static inline int conn_get_alpn(const struct connection *conn, const char **str, int *len)
{
if (!conn_xprt_ready(conn) || !conn->xprt->get_alpn)
return 0;
return conn->xprt->get_alpn(conn, str, len);
}
/* registers proto mux list <list>. Modifies the list element! */
static inline void register_mux_proto(struct mux_proto_list *list)
{
LIST_ADDQ(&mux_proto_list.list, &list->list);
}
/* unregisters proto mux list <list> */
static inline void unregister_mux_proto(struct mux_proto_list *list)
{
LIST_DEL(&list->list);
LIST_INIT(&list->list);
}
static inline struct mux_proto_list *get_mux_proto(const struct ist proto)
{
struct mux_proto_list *item;
list_for_each_entry(item, &mux_proto_list.list, list) {
if (isteq(proto, item->token))
return item;
}
return NULL;
}
/* Lists the known proto mux on <out> */
static inline void list_mux_proto(FILE *out)
{
struct mux_proto_list *item;
struct ist proto;
char *mode, *side;
fprintf(out, "Available multiplexer protocols :\n"
"(protocols marked as <default> cannot be specified using 'proto' keyword)\n");
list_for_each_entry(item, &mux_proto_list.list, list) {
proto = item->token;
if (item->mode == PROTO_MODE_ANY)
mode = "TCP|HTTP";
else if (item->mode == PROTO_MODE_TCP)
mode = "TCP";
else if (item->mode == PROTO_MODE_HTTP)
mode = "HTTP";
else if (item->mode == PROTO_MODE_HTX)
mode = "HTX";
else if (item->mode == (PROTO_MODE_HTTP | PROTO_MODE_HTX))
mode = "HTTP|HTX";
else
mode = "NONE";
if (item->side == PROTO_SIDE_BOTH)
side = "FE|BE";
else if (item->side == PROTO_SIDE_FE)
side = "FE";
else if (item->side == PROTO_SIDE_BE)
side = "BE";
else
side = "NONE";
fprintf(out, " %15s : mode=%-10s side=%s\n",
(proto.len ? proto.ptr : "<default>"), mode, side);
}
}
/* returns the first mux entry in the list matching the exact same <mux_proto>
* and compatible with the <proto_side> (FE or BE) and the <proto_mode> (TCP or
* HTTP). <mux_proto> can be empty. Will fall back to the first compatible mux
* with exactly the same <proto_mode> or with an empty name. May return
* null if the code improperly registered the default mux to use as a fallback.
*/
static inline const struct mux_proto_list *conn_get_best_mux_entry(
const struct ist mux_proto,
int proto_side, int proto_mode)
{
struct mux_proto_list *item;
struct mux_proto_list *fallback = NULL;
list_for_each_entry(item, &mux_proto_list.list, list) {
if (!(item->side & proto_side) || !(item->mode & proto_mode))
continue;
if (istlen(mux_proto) && isteq(mux_proto, item->token))
return item;
else if (!istlen(item->token)) {
if (!fallback || (item->mode == proto_mode && fallback->mode != proto_mode))
fallback = item;
}
}
return fallback;
}
/* returns the first mux in the list matching the exact same <mux_proto> and
* compatible with the <proto_side> (FE or BE) and the <proto_mode> (TCP or
* HTTP). <mux_proto> can be empty. Will fall back to the first compatible mux
* with exactly the same <proto_mode> or with an empty name. May return
* null if the code improperly registered the default mux to use as a fallback.
*/
static inline const struct mux_ops *conn_get_best_mux(struct connection *conn,
const struct ist mux_proto,
int proto_side, int proto_mode)
{
const struct mux_proto_list *item;
item = conn_get_best_mux_entry(mux_proto, proto_side, proto_mode);
return item ? item->mux : NULL;
}
/* returns 0 if the connection is valid and is a frontend connection, otherwise
* returns 1 indicating it's a backend connection. And uninitialized connection
* also returns 1 to better handle the usage in the middle of initialization.
*/
static inline int conn_is_back(const struct connection *conn)
{
return !objt_listener(conn->target);
}
/* returns a pointer to the proxy associated with this connection. For a front
* connection it returns a pointer to the frontend ; for a back connection, it
* returns a pointer to the backend.
*/
static inline struct proxy *conn_get_proxy(const struct connection *conn)
{
struct listener *l;
struct server *s;
/* check if it's a frontend connection */
l = objt_listener(conn->target);
if (l)
return l->bind_conf->frontend;
/* check if it's a backend connection */
s = objt_server(conn->target);
if (s)
return s->proxy;
return objt_proxy(conn->target);
}
/* installs the best mux for incoming connection <conn> using the upper context
* <ctx>. If the mux protocol is forced, we use it to find the best
* mux. Otherwise we use the ALPN name, if any. Returns < 0 on error.
*/
static inline int conn_install_mux_fe(struct connection *conn, void *ctx)
{
struct bind_conf *bind_conf = __objt_listener(conn->target)->bind_conf;
const struct mux_ops *mux_ops;
if (bind_conf->mux_proto)
mux_ops = bind_conf->mux_proto->mux;
else {
struct ist mux_proto;
const char *alpn_str = NULL;
int alpn_len = 0;
int mode;
if (bind_conf->frontend->mode == PR_MODE_TCP)
mode = PROTO_MODE_TCP;
else if (bind_conf->frontend->options2 & PR_O2_USE_HTX)
mode = PROTO_MODE_HTX;
else
mode = PROTO_MODE_HTTP;
conn_get_alpn(conn, &alpn_str, &alpn_len);
mux_proto = ist2(alpn_str, alpn_len);
mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_FE, mode);
if (!mux_ops)
return -1;
}
return conn_install_mux(conn, mux_ops, ctx, bind_conf->frontend, conn->owner);
}
/* installs the best mux for outgoing connection <conn> using the upper context
* <ctx>. If the mux protocol is forced, we use it to find the best mux. Returns
* < 0 on error.
*/
static inline int conn_install_mux_be(struct connection *conn, void *ctx, struct session *sess)
{
struct server *srv = objt_server(conn->target);
struct proxy *prx = objt_proxy(conn->target);
const struct mux_ops *mux_ops;
if (srv)
prx = srv->proxy;
if (!prx) // target must be either proxy or server
return -1;
if (srv && srv->mux_proto)
mux_ops = srv->mux_proto->mux;
else {
struct ist mux_proto;
const char *alpn_str = NULL;
int alpn_len = 0;
int mode;
if (prx->mode == PR_MODE_TCP)
mode = PROTO_MODE_TCP;
else if (prx->options2 & PR_O2_USE_HTX)
mode = PROTO_MODE_HTX;
else
mode = PROTO_MODE_HTTP;
conn_get_alpn(conn, &alpn_str, &alpn_len);
mux_proto = ist2(alpn_str, alpn_len);
mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_BE, mode);
if (!mux_ops)
return -1;
}
return conn_install_mux(conn, mux_ops, ctx, prx, sess);
}
#endif /* _PROTO_CONNECTION_H */
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/