blob: a27949d5f1959d0a7bf419280b317660a4793ceb [file] [log] [blame]
/*
* SSL/TLS transport layer over SOCK_STREAM sockets
*
* Copyright (C) 2012 EXCELIANCE, Emeric Brun <ebrun@exceliance.fr>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Acknowledgement:
* We'd like to specially thank the Stud project authors for a very clean
* and well documented code which helped us understand how the OpenSSL API
* ought to be used in non-blocking mode. This is one difficult part which
* is not easy to get from the OpenSSL doc, and reading the Stud code made
* it much more obvious than the examples in the OpenSSL package. Keep up
* the good works, guys !
*
* Stud is an extremely efficient and scalable SSL/TLS proxy which combines
* particularly well with haproxy. For more info about this project, visit :
* https://github.com/bumptech/stud
*
*/
/* Note: do NOT include openssl/xxx.h here, do it in openssl-compat.h */
#define _GNU_SOURCE
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <netdb.h>
#include <netinet/tcp.h>
#include <import/ebpttree.h>
#include <import/ebsttree.h>
#include <import/lru.h>
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/arg.h>
#include <haproxy/base64.h>
#include <haproxy/channel.h>
#include <haproxy/chunk.h>
#include <haproxy/cli.h>
#include <haproxy/connection.h>
#include <haproxy/conn_stream.h>
#include <haproxy/cs_utils.h>
#include <haproxy/dynbuf.h>
#include <haproxy/errors.h>
#include <haproxy/fd.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/frontend.h>
#include <haproxy/global.h>
#include <haproxy/http_rules.h>
#include <haproxy/log.h>
#include <haproxy/openssl-compat.h>
#include <haproxy/pattern-t.h>
#include <haproxy/proto_tcp.h>
#include <haproxy/proxy.h>
#include <haproxy/server.h>
#include <haproxy/shctx.h>
#include <haproxy/ssl_ckch.h>
#include <haproxy/ssl_crtlist.h>
#include <haproxy/ssl_sock.h>
#include <haproxy/ssl_utils.h>
#include <haproxy/sample.h>
#include <haproxy/stats.h>
#include <haproxy/stream-t.h>
#include <haproxy/task.h>
#include <haproxy/ticks.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
#include <haproxy/vars.h>
#include <haproxy/xprt_quic.h>
#include <haproxy/xxhash.h>
#include <haproxy/istbuf.h>
/* ***** READ THIS before adding code here! *****
*
* Due to API incompatibilities between multiple OpenSSL versions and their
* derivatives, it's often tempting to add macros to (re-)define certain
* symbols. Please do not do this here, and do it in common/openssl-compat.h
* exclusively so that the whole code consistently uses the same macros.
*
* Whenever possible if a macro is missing in certain versions, it's better
* to conditionally define it in openssl-compat.h than using lots of ifdefs.
*/
int nb_engines = 0;
static struct eb_root cert_issuer_tree = EB_ROOT; /* issuers tree from "issuers-chain-path" */
struct global_ssl global_ssl = {
#ifdef LISTEN_DEFAULT_CIPHERS
.listen_default_ciphers = LISTEN_DEFAULT_CIPHERS,
#endif
#ifdef CONNECT_DEFAULT_CIPHERS
.connect_default_ciphers = CONNECT_DEFAULT_CIPHERS,
#endif
#ifdef HAVE_SSL_CTX_SET_CIPHERSUITES
.listen_default_ciphersuites = LISTEN_DEFAULT_CIPHERSUITES,
.connect_default_ciphersuites = CONNECT_DEFAULT_CIPHERSUITES,
#endif
.listen_default_ssloptions = BC_SSL_O_NONE,
.connect_default_ssloptions = SRV_SSL_O_NONE,
.listen_default_sslmethods.flags = MC_SSL_O_ALL,
.listen_default_sslmethods.min = CONF_TLSV_NONE,
.listen_default_sslmethods.max = CONF_TLSV_NONE,
.connect_default_sslmethods.flags = MC_SSL_O_ALL,
.connect_default_sslmethods.min = CONF_TLSV_NONE,
.connect_default_sslmethods.max = CONF_TLSV_NONE,
#ifdef DEFAULT_SSL_MAX_RECORD
.max_record = DEFAULT_SSL_MAX_RECORD,
#endif
.hard_max_record = 0,
.default_dh_param = SSL_DEFAULT_DH_PARAM,
.ctx_cache = DEFAULT_SSL_CTX_CACHE,
.capture_buffer_size = 0,
.extra_files = SSL_GF_ALL,
.extra_files_noext = 0,
#ifdef HAVE_SSL_KEYLOG
.keylog = 0
#endif
};
static BIO_METHOD *ha_meth;
DECLARE_STATIC_POOL(ssl_sock_ctx_pool, "ssl_sock_ctx_pool", sizeof(struct ssl_sock_ctx));
DECLARE_STATIC_POOL(ssl_sock_client_sni_pool, "ssl_sock_client_sni_pool", TLSEXT_MAXLEN_host_name + 1);
/* ssl stats module */
enum {
SSL_ST_SESS,
SSL_ST_REUSED_SESS,
SSL_ST_FAILED_HANDSHAKE,
SSL_ST_STATS_COUNT /* must be the last member of the enum */
};
static struct name_desc ssl_stats[] = {
[SSL_ST_SESS] = { .name = "ssl_sess",
.desc = "Total number of ssl sessions established" },
[SSL_ST_REUSED_SESS] = { .name = "ssl_reused_sess",
.desc = "Total number of ssl sessions reused" },
[SSL_ST_FAILED_HANDSHAKE] = { .name = "ssl_failed_handshake",
.desc = "Total number of failed handshake" },
};
static struct ssl_counters {
long long sess;
long long reused_sess;
long long failed_handshake;
} ssl_counters;
static void ssl_fill_stats(void *data, struct field *stats)
{
struct ssl_counters *counters = data;
stats[SSL_ST_SESS] = mkf_u64(FN_COUNTER, counters->sess);
stats[SSL_ST_REUSED_SESS] = mkf_u64(FN_COUNTER, counters->reused_sess);
stats[SSL_ST_FAILED_HANDSHAKE] = mkf_u64(FN_COUNTER, counters->failed_handshake);
}
static struct stats_module ssl_stats_module = {
.name = "ssl",
.fill_stats = ssl_fill_stats,
.stats = ssl_stats,
.stats_count = SSL_ST_STATS_COUNT,
.counters = &ssl_counters,
.counters_size = sizeof(ssl_counters),
.domain_flags = MK_STATS_PROXY_DOMAIN(STATS_PX_CAP_FE|STATS_PX_CAP_LI|STATS_PX_CAP_BE|STATS_PX_CAP_SRV),
.clearable = 1,
};
INITCALL1(STG_REGISTER, stats_register_module, &ssl_stats_module);
/* CLI context for "show tls-keys" */
struct show_keys_ctx {
struct tls_keys_ref *next_ref; /* next reference to be dumped */
int names_only; /* non-zero = only show file names */
int next_index; /* next index to be dumped */
int dump_entries; /* dump entries also */
enum {
SHOW_KEYS_INIT = 0,
SHOW_KEYS_LIST,
SHOW_KEYS_DONE,
} state; /* phase of the current dump */
};
/* ssl_sock_io_cb is exported to see it resolved in "show fd" */
struct task *ssl_sock_io_cb(struct task *, void *, unsigned int);
static int ssl_sock_handshake(struct connection *conn, unsigned int flag);
/* Methods to implement OpenSSL BIO */
static int ha_ssl_write(BIO *h, const char *buf, int num)
{
struct buffer tmpbuf;
struct ssl_sock_ctx *ctx;
int ret;
ctx = BIO_get_data(h);
tmpbuf.size = num;
tmpbuf.area = (void *)(uintptr_t)buf;
tmpbuf.data = num;
tmpbuf.head = 0;
ret = ctx->xprt->snd_buf(ctx->conn, ctx->xprt_ctx, &tmpbuf, num, 0);
if (ret == 0 && !(ctx->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH))) {
BIO_set_retry_write(h);
ret = -1;
} else if (ret == 0)
BIO_clear_retry_flags(h);
return ret;
}
static int ha_ssl_gets(BIO *h, char *buf, int size)
{
return 0;
}
static int ha_ssl_puts(BIO *h, const char *str)
{
return ha_ssl_write(h, str, strlen(str));
}
static int ha_ssl_read(BIO *h, char *buf, int size)
{
struct buffer tmpbuf;
struct ssl_sock_ctx *ctx;
int ret;
ctx = BIO_get_data(h);
tmpbuf.size = size;
tmpbuf.area = buf;
tmpbuf.data = 0;
tmpbuf.head = 0;
ret = ctx->xprt->rcv_buf(ctx->conn, ctx->xprt_ctx, &tmpbuf, size, 0);
if (ret == 0 && !(ctx->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH))) {
BIO_set_retry_read(h);
ret = -1;
} else if (ret == 0)
BIO_clear_retry_flags(h);
return ret;
}
static long ha_ssl_ctrl(BIO *h, int cmd, long arg1, void *arg2)
{
int ret = 0;
switch (cmd) {
case BIO_CTRL_DUP:
case BIO_CTRL_FLUSH:
ret = 1;
break;
}
return ret;
}
static int ha_ssl_new(BIO *h)
{
BIO_set_init(h, 1);
BIO_set_data(h, NULL);
BIO_clear_flags(h, ~0);
return 1;
}
static int ha_ssl_free(BIO *data)
{
return 1;
}
#if defined(USE_THREAD) && (HA_OPENSSL_VERSION_NUMBER < 0x10100000L)
static HA_RWLOCK_T *ssl_rwlocks;
unsigned long ssl_id_function(void)
{
return (unsigned long)tid;
}
void ssl_locking_function(int mode, int n, const char * file, int line)
{
if (mode & CRYPTO_LOCK) {
if (mode & CRYPTO_READ)
HA_RWLOCK_RDLOCK(SSL_LOCK, &ssl_rwlocks[n]);
else
HA_RWLOCK_WRLOCK(SSL_LOCK, &ssl_rwlocks[n]);
}
else {
if (mode & CRYPTO_READ)
HA_RWLOCK_RDUNLOCK(SSL_LOCK, &ssl_rwlocks[n]);
else
HA_RWLOCK_WRUNLOCK(SSL_LOCK, &ssl_rwlocks[n]);
}
}
static int ssl_locking_init(void)
{
int i;
ssl_rwlocks = malloc(sizeof(HA_RWLOCK_T)*CRYPTO_num_locks());
if (!ssl_rwlocks)
return -1;
for (i = 0 ; i < CRYPTO_num_locks() ; i++)
HA_RWLOCK_INIT(&ssl_rwlocks[i]);
CRYPTO_set_id_callback(ssl_id_function);
CRYPTO_set_locking_callback(ssl_locking_function);
return 0;
}
#endif
__decl_thread(HA_SPINLOCK_T ckch_lock);
/* mimic what X509_STORE_load_locations do with store_ctx */
static int ssl_set_cert_crl_file(X509_STORE *store_ctx, char *path)
{
X509_STORE *store = NULL;
struct cafile_entry *ca_e = ssl_store_get_cafile_entry(path, 0);
if (ca_e)
store = ca_e->ca_store;
if (store_ctx && store) {
int i;
X509_OBJECT *obj;
STACK_OF(X509_OBJECT) *objs = X509_STORE_get0_objects(store);
for (i = 0; i < sk_X509_OBJECT_num(objs); i++) {
obj = sk_X509_OBJECT_value(objs, i);
switch (X509_OBJECT_get_type(obj)) {
case X509_LU_X509:
X509_STORE_add_cert(store_ctx, X509_OBJECT_get0_X509(obj));
break;
case X509_LU_CRL:
X509_STORE_add_crl(store_ctx, X509_OBJECT_get0_X509_CRL(obj));
break;
default:
break;
}
}
return 1;
}
return 0;
}
/* SSL_CTX_load_verify_locations substitute, internally call X509_STORE_load_locations */
static int ssl_set_verify_locations_file(SSL_CTX *ctx, char *path)
{
X509_STORE *store_ctx = SSL_CTX_get_cert_store(ctx);
return ssl_set_cert_crl_file(store_ctx, path);
}
/*
Extract CA_list from CA_file already in tree.
Duplicate ca_name is tracking with ebtree. It's simplify openssl compatibility.
Return a shared ca_list: SSL_dup_CA_list must be used before set it on SSL_CTX.
*/
static STACK_OF(X509_NAME)* ssl_get_client_ca_file(char *path)
{
struct ebmb_node *eb;
struct cafile_entry *ca_e;
eb = ebst_lookup(&cafile_tree, path);
if (!eb)
return NULL;
ca_e = ebmb_entry(eb, struct cafile_entry, node);
if (ca_e->ca_list == NULL) {
int i;
unsigned long key;
struct eb_root ca_name_tree = EB_ROOT;
struct eb64_node *node, *back;
struct {
struct eb64_node node;
X509_NAME *xname;
} *ca_name;
STACK_OF(X509_OBJECT) *objs;
STACK_OF(X509_NAME) *skn;
X509 *x;
X509_NAME *xn;
skn = sk_X509_NAME_new_null();
/* take x509 from cafile_tree */
objs = X509_STORE_get0_objects(ca_e->ca_store);
for (i = 0; i < sk_X509_OBJECT_num(objs); i++) {
x = X509_OBJECT_get0_X509(sk_X509_OBJECT_value(objs, i));
if (!x)
continue;
xn = X509_get_subject_name(x);
if (!xn)
continue;
/* Check for duplicates. */
key = X509_NAME_hash(xn);
for (node = eb64_lookup(&ca_name_tree, key), ca_name = NULL;
node && ca_name == NULL;
node = eb64_next(node)) {
ca_name = container_of(node, typeof(*ca_name), node);
if (X509_NAME_cmp(xn, ca_name->xname) != 0)
ca_name = NULL;
}
/* find a duplicate */
if (ca_name)
continue;
ca_name = calloc(1, sizeof *ca_name);
xn = X509_NAME_dup(xn);
if (!ca_name ||
!xn ||
!sk_X509_NAME_push(skn, xn)) {
free(ca_name);
X509_NAME_free(xn);
sk_X509_NAME_pop_free(skn, X509_NAME_free);
sk_X509_NAME_free(skn);
skn = NULL;
break;
}
ca_name->node.key = key;
ca_name->xname = xn;
eb64_insert(&ca_name_tree, &ca_name->node);
}
ca_e->ca_list = skn;
/* remove temporary ca_name tree */
node = eb64_first(&ca_name_tree);
while (node) {
ca_name = container_of(node, typeof(*ca_name), node);
back = eb64_next(node);
eb64_delete(node);
free(ca_name);
node = back;
}
}
return ca_e->ca_list;
}
struct pool_head *pool_head_ssl_capture __read_mostly = NULL;
int ssl_capture_ptr_index = -1;
int ssl_app_data_index = -1;
#ifdef USE_QUIC
int ssl_qc_app_data_index = -1;
#endif /* USE_QUIC */
#ifdef HAVE_SSL_KEYLOG
int ssl_keylog_index = -1;
struct pool_head *pool_head_ssl_keylog __read_mostly = NULL;
struct pool_head *pool_head_ssl_keylog_str __read_mostly = NULL;
#endif
int ssl_client_crt_ref_index = -1;
/* Used to store the client's SNI in case of ClientHello callback error */
int ssl_client_sni_index = -1;
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
struct list tlskeys_reference = LIST_HEAD_INIT(tlskeys_reference);
#endif
#if defined(USE_ENGINE) && !defined(OPENSSL_NO_ENGINE)
unsigned int openssl_engines_initialized;
struct list openssl_engines = LIST_HEAD_INIT(openssl_engines);
struct ssl_engine_list {
struct list list;
ENGINE *e;
};
#endif
#ifdef HAVE_SSL_PROVIDERS
struct list openssl_providers = LIST_HEAD_INIT(openssl_providers);
struct ssl_provider_list {
struct list list;
OSSL_PROVIDER *provider;
};
#endif
#ifndef OPENSSL_NO_DH
static int ssl_dh_ptr_index = -1;
static HASSL_DH *global_dh = NULL;
static HASSL_DH *local_dh_1024 = NULL;
static HASSL_DH *local_dh_2048 = NULL;
static HASSL_DH *local_dh_4096 = NULL;
#if (HA_OPENSSL_VERSION_NUMBER < 0x3000000fL)
static DH *ssl_get_tmp_dh_cbk(SSL *ssl, int export, int keylen);
#else
static void ssl_sock_set_tmp_dh_from_pkey(SSL_CTX *ctx, EVP_PKEY *pkey);
#endif
#endif /* OPENSSL_NO_DH */
#if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES)
/* X509V3 Extensions that will be added on generated certificates */
#define X509V3_EXT_SIZE 5
static char *x509v3_ext_names[X509V3_EXT_SIZE] = {
"basicConstraints",
"nsComment",
"subjectKeyIdentifier",
"authorityKeyIdentifier",
"keyUsage",
};
static char *x509v3_ext_values[X509V3_EXT_SIZE] = {
"CA:FALSE",
"\"OpenSSL Generated Certificate\"",
"hash",
"keyid,issuer:always",
"nonRepudiation,digitalSignature,keyEncipherment"
};
/* LRU cache to store generated certificate */
static struct lru64_head *ssl_ctx_lru_tree = NULL;
static unsigned int ssl_ctx_lru_seed = 0;
static unsigned int ssl_ctx_serial;
__decl_rwlock(ssl_ctx_lru_rwlock);
#endif // SSL_CTRL_SET_TLSEXT_HOSTNAME
/* The order here matters for picking a default context,
* keep the most common keytype at the bottom of the list
*/
const char *SSL_SOCK_KEYTYPE_NAMES[] = {
"dsa",
"ecdsa",
"rsa"
};
static struct shared_context *ssl_shctx = NULL; /* ssl shared session cache */
static struct eb_root *sh_ssl_sess_tree; /* ssl shared session tree */
/* Dedicated callback functions for heartbeat and clienthello.
*/
#ifdef TLS1_RT_HEARTBEAT
static void ssl_sock_parse_heartbeat(struct connection *conn, int write_p, int version,
int content_type, const void *buf, size_t len,
SSL *ssl);
#endif
static void ssl_sock_parse_clienthello(struct connection *conn, int write_p, int version,
int content_type, const void *buf, size_t len,
SSL *ssl);
#ifdef HAVE_SSL_KEYLOG
static void ssl_init_keylog(struct connection *conn, int write_p, int version,
int content_type, const void *buf, size_t len,
SSL *ssl);
#endif
/* List head of all registered SSL/TLS protocol message callbacks. */
struct list ssl_sock_msg_callbacks = LIST_HEAD_INIT(ssl_sock_msg_callbacks);
/* Registers the function <func> in order to be called on SSL/TLS protocol
* message processing. It will return 0 if the function <func> is not set
* or if it fails to allocate memory.
*/
int ssl_sock_register_msg_callback(ssl_sock_msg_callback_func func)
{
struct ssl_sock_msg_callback *cbk;
if (!func)
return 0;
cbk = calloc(1, sizeof(*cbk));
if (!cbk) {
ha_alert("out of memory in ssl_sock_register_msg_callback().\n");
return 0;
}
cbk->func = func;
LIST_APPEND(&ssl_sock_msg_callbacks, &cbk->list);
return 1;
}
/* Used to register dedicated SSL/TLS protocol message callbacks.
*/
static int ssl_sock_register_msg_callbacks(void)
{
#ifdef TLS1_RT_HEARTBEAT
if (!ssl_sock_register_msg_callback(ssl_sock_parse_heartbeat))
return ERR_ABORT;
#endif
if (global_ssl.capture_buffer_size > 0) {
if (!ssl_sock_register_msg_callback(ssl_sock_parse_clienthello))
return ERR_ABORT;
}
#ifdef HAVE_SSL_KEYLOG
if (global_ssl.keylog > 0) {
if (!ssl_sock_register_msg_callback(ssl_init_keylog))
return ERR_ABORT;
}
#endif
return ERR_NONE;
}
/* Used to free all SSL/TLS protocol message callbacks that were
* registered by using ssl_sock_register_msg_callback().
*/
static void ssl_sock_unregister_msg_callbacks(void)
{
struct ssl_sock_msg_callback *cbk, *cbkback;
list_for_each_entry_safe(cbk, cbkback, &ssl_sock_msg_callbacks, list) {
LIST_DELETE(&cbk->list);
free(cbk);
}
}
static struct ssl_sock_ctx *ssl_sock_get_ctx(struct connection *conn)
{
if (!conn || conn->xprt != xprt_get(XPRT_SSL) || !conn->xprt_ctx)
return NULL;
return (struct ssl_sock_ctx *)conn->xprt_ctx;
}
SSL *ssl_sock_get_ssl_object(struct connection *conn)
{
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
return ctx ? ctx->ssl : NULL;
}
/*
* This function gives the detail of the SSL error. It is used only
* if the debug mode and the verbose mode are activated. It dump all
* the SSL error until the stack was empty.
*/
static forceinline void ssl_sock_dump_errors(struct connection *conn)
{
unsigned long ret;
if (unlikely(global.mode & MODE_DEBUG)) {
while(1) {
const char *func = NULL;
ERR_peek_error_func(&func);
ret = ERR_get_error();
if (ret == 0)
return;
fprintf(stderr, "fd[%#x] OpenSSL error[0x%lx] %s: %s\n",
conn_fd(conn), ret,
func, ERR_reason_error_string(ret));
}
}
}
#if defined(USE_ENGINE) && !defined(OPENSSL_NO_ENGINE)
int ssl_init_single_engine(const char *engine_id, const char *def_algorithms)
{
int err_code = ERR_ABORT;
ENGINE *engine;
struct ssl_engine_list *el;
/* grab the structural reference to the engine */
engine = ENGINE_by_id(engine_id);
if (engine == NULL) {
ha_alert("ssl-engine %s: failed to get structural reference\n", engine_id);
goto fail_get;
}
if (!ENGINE_init(engine)) {
/* the engine couldn't initialise, release it */
ha_alert("ssl-engine %s: failed to initialize\n", engine_id);
goto fail_init;
}
if (ENGINE_set_default_string(engine, def_algorithms) == 0) {
ha_alert("ssl-engine %s: failed on ENGINE_set_default_string\n", engine_id);
goto fail_set_method;
}
el = calloc(1, sizeof(*el));
if (!el)
goto fail_alloc;
el->e = engine;
LIST_INSERT(&openssl_engines, &el->list);
nb_engines++;
if (global_ssl.async)
global.ssl_used_async_engines = nb_engines;
return 0;
fail_alloc:
fail_set_method:
/* release the functional reference from ENGINE_init() */
ENGINE_finish(engine);
fail_init:
/* release the structural reference from ENGINE_by_id() */
ENGINE_free(engine);
fail_get:
return err_code;
}
#endif
#ifdef HAVE_SSL_PROVIDERS
int ssl_init_provider(const char *provider_name)
{
int err_code = ERR_ABORT;
struct ssl_provider_list *prov = NULL;
prov = calloc(1, sizeof(*prov));
if (!prov) {
ha_alert("ssl-provider %s: memory allocation failure\n", provider_name);
goto error;
}
if ((prov->provider = OSSL_PROVIDER_load(NULL, provider_name)) == NULL) {
ha_alert("ssl-provider %s: unknown provider\n", provider_name);
goto error;
}
LIST_INSERT(&openssl_providers, &prov->list);
return 0;
error:
ha_free(&prov);
return err_code;
}
#endif /* HAVE_SSL_PROVIDERS */
#ifdef SSL_MODE_ASYNC
/*
* openssl async fd handler
*/
void ssl_async_fd_handler(int fd)
{
struct ssl_sock_ctx *ctx = fdtab[fd].owner;
/* fd is an async enfine fd, we must stop
* to poll this fd until it is requested
*/
fd_stop_recv(fd);
fd_cant_recv(fd);
/* crypto engine is available, let's notify the associated
* connection that it can pursue its processing.
*/
tasklet_wakeup(ctx->wait_event.tasklet);
}
/*
* openssl async delayed SSL_free handler
*/
void ssl_async_fd_free(int fd)
{
SSL *ssl = fdtab[fd].owner;
OSSL_ASYNC_FD all_fd[32];
size_t num_all_fds = 0;
int i;
/* We suppose that the async job for a same SSL *
* are serialized. So if we are awake it is
* because the running job has just finished
* and we can remove all async fds safely
*/
SSL_get_all_async_fds(ssl, NULL, &num_all_fds);
if (num_all_fds > 32) {
send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n");
return;
}
SSL_get_all_async_fds(ssl, all_fd, &num_all_fds);
for (i=0 ; i < num_all_fds ; i++)
fd_stop_both(all_fd[i]);
/* Now we can safely call SSL_free, no more pending job in engines */
SSL_free(ssl);
_HA_ATOMIC_DEC(&global.sslconns);
_HA_ATOMIC_DEC(&jobs);
}
/*
* function used to manage a returned SSL_ERROR_WANT_ASYNC
* and enable/disable polling for async fds
*/
static inline void ssl_async_process_fds(struct ssl_sock_ctx *ctx)
{
OSSL_ASYNC_FD add_fd[32];
OSSL_ASYNC_FD del_fd[32];
SSL *ssl = ctx->ssl;
size_t num_add_fds = 0;
size_t num_del_fds = 0;
int i;
SSL_get_changed_async_fds(ssl, NULL, &num_add_fds, NULL,
&num_del_fds);
if (num_add_fds > 32 || num_del_fds > 32) {
send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n");
return;
}
SSL_get_changed_async_fds(ssl, add_fd, &num_add_fds, del_fd, &num_del_fds);
/* We remove unused fds from the fdtab */
for (i=0 ; i < num_del_fds ; i++)
fd_stop_both(del_fd[i]);
/* We add new fds to the fdtab */
for (i=0 ; i < num_add_fds ; i++) {
fd_insert(add_fd[i], ctx, ssl_async_fd_handler, tid_bit);
}
num_add_fds = 0;
SSL_get_all_async_fds(ssl, NULL, &num_add_fds);
if (num_add_fds > 32) {
send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n");
return;
}
/* We activate the polling for all known async fds */
SSL_get_all_async_fds(ssl, add_fd, &num_add_fds);
for (i=0 ; i < num_add_fds ; i++) {
fd_want_recv(add_fd[i]);
/* To ensure that the fd cache won't be used
* We'll prefer to catch a real RD event
* because handling an EAGAIN on this fd will
* result in a context switch and also
* some engines uses a fd in blocking mode.
*/
fd_cant_recv(add_fd[i]);
}
}
#endif
#if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP && !defined HAVE_ASN1_TIME_TO_TM)
/*
* This function returns the number of seconds elapsed
* since the Epoch, 1970-01-01 00:00:00 +0000 (UTC) and the
* date presented un ASN1_GENERALIZEDTIME.
*
* In parsing error case, it returns -1.
*/
static long asn1_generalizedtime_to_epoch(ASN1_GENERALIZEDTIME *d)
{
long epoch;
char *p, *end;
const unsigned short month_offset[12] = {
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
};
unsigned long year, month;
if (!d || (d->type != V_ASN1_GENERALIZEDTIME)) return -1;
p = (char *)d->data;
end = p + d->length;
if (end - p < 4) return -1;
year = 1000 * (p[0] - '0') + 100 * (p[1] - '0') + 10 * (p[2] - '0') + p[3] - '0';
p += 4;
if (end - p < 2) return -1;
month = 10 * (p[0] - '0') + p[1] - '0';
if (month < 1 || month > 12) return -1;
/* Compute the number of seconds since 1 jan 1970 and the beginning of current month
We consider leap years and the current month (<marsh or not) */
epoch = ( ((year - 1970) * 365)
+ ((year - (month < 3)) / 4 - (year - (month < 3)) / 100 + (year - (month < 3)) / 400)
- ((1970 - 1) / 4 - (1970 - 1) / 100 + (1970 - 1) / 400)
+ month_offset[month-1]
) * 24 * 60 * 60;
p += 2;
if (end - p < 2) return -1;
/* Add the number of seconds of completed days of current month */
epoch += (10 * (p[0] - '0') + p[1] - '0' - 1) * 24 * 60 * 60;
p += 2;
if (end - p < 2) return -1;
/* Add the completed hours of the current day */
epoch += (10 * (p[0] - '0') + p[1] - '0') * 60 * 60;
p += 2;
if (end - p < 2) return -1;
/* Add the completed minutes of the current hour */
epoch += (10 * (p[0] - '0') + p[1] - '0') * 60;
p += 2;
if (p == end) return -1;
/* Test if there is available seconds */
if (p[0] < '0' || p[0] > '9')
goto nosec;
if (end - p < 2) return -1;
/* Add the seconds of the current minute */
epoch += 10 * (p[0] - '0') + p[1] - '0';
p += 2;
if (p == end) return -1;
/* Ignore seconds float part if present */
if (p[0] == '.') {
do {
if (++p == end) return -1;
} while (p[0] >= '0' && p[0] <= '9');
}
nosec:
if (p[0] == 'Z') {
if (end - p != 1) return -1;
return epoch;
}
else if (p[0] == '+') {
if (end - p != 5) return -1;
/* Apply timezone offset */
return epoch - ((10 * (p[1] - '0') + p[2] - '0') * 60 * 60 + (10 * (p[3] - '0') + p[4] - '0')) * 60;
}
else if (p[0] == '-') {
if (end - p != 5) return -1;
/* Apply timezone offset */
return epoch + ((10 * (p[1] - '0') + p[2] - '0') * 60 * 60 + (10 * (p[3] - '0') + p[4] - '0')) * 60;
}
return -1;
}
#endif
#if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP)
/*
* struct alignment works here such that the key.key is the same as key_data
* Do not change the placement of key_data
*/
struct certificate_ocsp {
struct ebmb_node key;
unsigned char key_data[OCSP_MAX_CERTID_ASN1_LENGTH];
unsigned int key_length;
struct buffer response;
int refcount;
long expire;
};
struct ocsp_cbk_arg {
int is_single;
int single_kt;
union {
struct certificate_ocsp *s_ocsp;
/*
* m_ocsp will have multiple entries dependent on key type
* Entry 0 - DSA
* Entry 1 - ECDSA
* Entry 2 - RSA
*/
struct certificate_ocsp *m_ocsp[SSL_SOCK_NUM_KEYTYPES];
};
};
static struct eb_root cert_ocsp_tree = EB_ROOT_UNIQUE;
/* This function starts to check if the OCSP response (in DER format) contained
* in chunk 'ocsp_response' is valid (else exits on error).
* If 'cid' is not NULL, it will be compared to the OCSP certificate ID
* contained in the OCSP Response and exits on error if no match.
* If it's a valid OCSP Response:
* If 'ocsp' is not NULL, the chunk is copied in the OCSP response's container
* pointed by 'ocsp'.
* If 'ocsp' is NULL, the function looks up into the OCSP response's
* containers tree (using as index the ASN1 form of the OCSP Certificate ID extracted
* from the response) and exits on error if not found. Finally, If an OCSP response is
* already present in the container, it will be overwritten.
*
* Note: OCSP response containing more than one OCSP Single response is not
* considered valid.
*
* Returns 0 on success, 1 in error case.
*/
static int ssl_sock_load_ocsp_response(struct buffer *ocsp_response,
struct certificate_ocsp *ocsp,
OCSP_CERTID *cid, char **err)
{
OCSP_RESPONSE *resp;
OCSP_BASICRESP *bs = NULL;
OCSP_SINGLERESP *sr;
OCSP_CERTID *id;
unsigned char *p = (unsigned char *) ocsp_response->area;
int rc , count_sr;
ASN1_GENERALIZEDTIME *revtime, *thisupd, *nextupd = NULL;
int reason;
int ret = 1;
#ifdef HAVE_ASN1_TIME_TO_TM
struct tm nextupd_tm = {0};
#endif
resp = d2i_OCSP_RESPONSE(NULL, (const unsigned char **)&p,
ocsp_response->data);
if (!resp) {
memprintf(err, "Unable to parse OCSP response");
goto out;
}
rc = OCSP_response_status(resp);
if (rc != OCSP_RESPONSE_STATUS_SUCCESSFUL) {
memprintf(err, "OCSP response status not successful");
goto out;
}
bs = OCSP_response_get1_basic(resp);
if (!bs) {
memprintf(err, "Failed to get basic response from OCSP Response");
goto out;
}
count_sr = OCSP_resp_count(bs);
if (count_sr > 1) {
memprintf(err, "OCSP response ignored because contains multiple single responses (%d)", count_sr);
goto out;
}
sr = OCSP_resp_get0(bs, 0);
if (!sr) {
memprintf(err, "Failed to get OCSP single response");
goto out;
}
id = (OCSP_CERTID*)OCSP_SINGLERESP_get0_id(sr);
rc = OCSP_single_get0_status(sr, &reason, &revtime, &thisupd, &nextupd);
if (rc != V_OCSP_CERTSTATUS_GOOD && rc != V_OCSP_CERTSTATUS_REVOKED) {
memprintf(err, "OCSP single response: certificate status is unknown");
goto out;
}
if (!nextupd) {
memprintf(err, "OCSP single response: missing nextupdate");
goto out;
}
rc = OCSP_check_validity(thisupd, nextupd, OCSP_MAX_RESPONSE_TIME_SKEW, -1);
if (!rc) {
memprintf(err, "OCSP single response: no longer valid.");
goto out;
}
if (cid) {
if (OCSP_id_cmp(id, cid)) {
memprintf(err, "OCSP single response: Certificate ID does not match certificate and issuer");
goto out;
}
}
if (!ocsp) {
unsigned char key[OCSP_MAX_CERTID_ASN1_LENGTH];
unsigned char *p;
rc = i2d_OCSP_CERTID(id, NULL);
if (!rc) {
memprintf(err, "OCSP single response: Unable to encode Certificate ID");
goto out;
}
if (rc > OCSP_MAX_CERTID_ASN1_LENGTH) {
memprintf(err, "OCSP single response: Certificate ID too long");
goto out;
}
p = key;
memset(key, 0, OCSP_MAX_CERTID_ASN1_LENGTH);
i2d_OCSP_CERTID(id, &p);
ocsp = (struct certificate_ocsp *)ebmb_lookup(&cert_ocsp_tree, key, OCSP_MAX_CERTID_ASN1_LENGTH);
if (!ocsp) {
memprintf(err, "OCSP single response: Certificate ID does not match any certificate or issuer");
goto out;
}
}
/* According to comments on "chunk_dup", the
previous chunk buffer will be freed */
if (!chunk_dup(&ocsp->response, ocsp_response)) {
memprintf(err, "OCSP response: Memory allocation error");
goto out;
}
#ifdef HAVE_ASN1_TIME_TO_TM
if (ASN1_TIME_to_tm(nextupd, &nextupd_tm) == 0) {
memprintf(err, "OCSP single response: Invalid \"Next Update\" time");
goto out;
}
ocsp->expire = my_timegm(&nextupd_tm) - OCSP_MAX_RESPONSE_TIME_SKEW;
#else
ocsp->expire = asn1_generalizedtime_to_epoch(nextupd) - OCSP_MAX_RESPONSE_TIME_SKEW;
if (ocsp->expire < 0) {
memprintf(err, "OCSP single response: Invalid \"Next Update\" time");
goto out;
}
#endif
ret = 0;
out:
ERR_clear_error();
if (bs)
OCSP_BASICRESP_free(bs);
if (resp)
OCSP_RESPONSE_free(resp);
return ret;
}
/*
* External function use to update the OCSP response in the OCSP response's
* containers tree. The chunk 'ocsp_response' must contain the OCSP response
* to update in DER format.
*
* Returns 0 on success, 1 in error case.
*/
int ssl_sock_update_ocsp_response(struct buffer *ocsp_response, char **err)
{
return ssl_sock_load_ocsp_response(ocsp_response, NULL, NULL, err);
}
#endif
/*
* Initialize an HMAC context <hctx> using the <key> and <md> parameters.
* Returns -1 in case of error, 1 otherwise.
*/
static int ssl_hmac_init(MAC_CTX *hctx, unsigned char *key, int key_len, const EVP_MD *md)
{
#ifdef HAVE_OSSL_PARAM
OSSL_PARAM params[3];
params[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, key, key_len);
params[1] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, (char*)EVP_MD_name(md), 0);
params[2] = OSSL_PARAM_construct_end();
if (EVP_MAC_CTX_set_params(hctx, params) == 0)
return -1; /* error in mac initialisation */
#else
HMAC_Init_ex(hctx, key, key_len, md, NULL);
#endif
return 1;
}
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
static int ssl_tlsext_ticket_key_cb(SSL *s, unsigned char key_name[16], unsigned char *iv, EVP_CIPHER_CTX *ectx, MAC_CTX *hctx, int enc)
{
struct tls_keys_ref *ref;
union tls_sess_key *keys;
struct connection *conn;
int head;
int i;
int ret = -1; /* error by default */
conn = SSL_get_ex_data(s, ssl_app_data_index);
ref = __objt_listener(conn->target)->bind_conf->keys_ref;
HA_RWLOCK_RDLOCK(TLSKEYS_REF_LOCK, &ref->lock);
keys = ref->tlskeys;
head = ref->tls_ticket_enc_index;
if (enc) {
memcpy(key_name, keys[head].name, 16);
if(!RAND_pseudo_bytes(iv, EVP_MAX_IV_LENGTH))
goto end;
if (ref->key_size_bits == 128) {
if(!EVP_EncryptInit_ex(ectx, EVP_aes_128_cbc(), NULL, keys[head].key_128.aes_key, iv))
goto end;
if (ssl_hmac_init(hctx, keys[head].key_128.hmac_key, 16, TLS_TICKET_HASH_FUNCT()) < 0)
goto end;
ret = 1;
}
else if (ref->key_size_bits == 256 ) {
if(!EVP_EncryptInit_ex(ectx, EVP_aes_256_cbc(), NULL, keys[head].key_256.aes_key, iv))
goto end;
if (ssl_hmac_init(hctx, keys[head].key_256.hmac_key, 32, TLS_TICKET_HASH_FUNCT()) < 0)
goto end;
ret = 1;
}
} else {
for (i = 0; i < TLS_TICKETS_NO; i++) {
if (!memcmp(key_name, keys[(head + i) % TLS_TICKETS_NO].name, 16))
goto found;
}
ret = 0;
goto end;
found:
if (ref->key_size_bits == 128) {
if (ssl_hmac_init(hctx, keys[(head + i) % TLS_TICKETS_NO].key_128.hmac_key, 16, TLS_TICKET_HASH_FUNCT()) < 0)
goto end;
if(!EVP_DecryptInit_ex(ectx, EVP_aes_128_cbc(), NULL, keys[(head + i) % TLS_TICKETS_NO].key_128.aes_key, iv))
goto end;
/* 2 for key renewal, 1 if current key is still valid */
ret = i ? 2 : 1;
}
else if (ref->key_size_bits == 256) {
if (ssl_hmac_init(hctx, keys[(head + i) % TLS_TICKETS_NO].key_256.hmac_key, 32, TLS_TICKET_HASH_FUNCT()) < 0)
goto end;
if(!EVP_DecryptInit_ex(ectx, EVP_aes_256_cbc(), NULL, keys[(head + i) % TLS_TICKETS_NO].key_256.aes_key, iv))
goto end;
/* 2 for key renewal, 1 if current key is still valid */
ret = i ? 2 : 1;
}
}
end:
HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock);
return ret;
}
struct tls_keys_ref *tlskeys_ref_lookup(const char *filename)
{
struct tls_keys_ref *ref;
list_for_each_entry(ref, &tlskeys_reference, list)
if (ref->filename && strcmp(filename, ref->filename) == 0)
return ref;
return NULL;
}
struct tls_keys_ref *tlskeys_ref_lookupid(int unique_id)
{
struct tls_keys_ref *ref;
list_for_each_entry(ref, &tlskeys_reference, list)
if (ref->unique_id == unique_id)
return ref;
return NULL;
}
/* Update the key into ref: if keysize doesn't
* match existing ones, this function returns -1
* else it returns 0 on success.
*/
int ssl_sock_update_tlskey_ref(struct tls_keys_ref *ref,
struct buffer *tlskey)
{
if (ref->key_size_bits == 128) {
if (tlskey->data != sizeof(struct tls_sess_key_128))
return -1;
}
else if (ref->key_size_bits == 256) {
if (tlskey->data != sizeof(struct tls_sess_key_256))
return -1;
}
else
return -1;
HA_RWLOCK_WRLOCK(TLSKEYS_REF_LOCK, &ref->lock);
memcpy((char *) (ref->tlskeys + ((ref->tls_ticket_enc_index + 2) % TLS_TICKETS_NO)),
tlskey->area, tlskey->data);
ref->tls_ticket_enc_index = (ref->tls_ticket_enc_index + 1) % TLS_TICKETS_NO;
HA_RWLOCK_WRUNLOCK(TLSKEYS_REF_LOCK, &ref->lock);
return 0;
}
int ssl_sock_update_tlskey(char *filename, struct buffer *tlskey, char **err)
{
struct tls_keys_ref *ref = tlskeys_ref_lookup(filename);
if(!ref) {
memprintf(err, "Unable to locate the referenced filename: %s", filename);
return 1;
}
if (ssl_sock_update_tlskey_ref(ref, tlskey) < 0) {
memprintf(err, "Invalid key size");
return 1;
}
return 0;
}
/* This function finalize the configuration parsing. Its set all the
* automatic ids. It's called just after the basic checks. It returns
* 0 on success otherwise ERR_*.
*/
static int tlskeys_finalize_config(void)
{
int i = 0;
struct tls_keys_ref *ref, *ref2, *ref3;
struct list tkr = LIST_HEAD_INIT(tkr);
list_for_each_entry(ref, &tlskeys_reference, list) {
if (ref->unique_id == -1) {
/* Look for the first free id. */
while (1) {
list_for_each_entry(ref2, &tlskeys_reference, list) {
if (ref2->unique_id == i) {
i++;
break;
}
}
if (&ref2->list == &tlskeys_reference)
break;
}
/* Uses the unique id and increment it for the next entry. */
ref->unique_id = i;
i++;
}
}
/* This sort the reference list by id. */
list_for_each_entry_safe(ref, ref2, &tlskeys_reference, list) {
LIST_DELETE(&ref->list);
list_for_each_entry(ref3, &tkr, list) {
if (ref->unique_id < ref3->unique_id) {
LIST_APPEND(&ref3->list, &ref->list);
break;
}
}
if (&ref3->list == &tkr)
LIST_APPEND(&tkr, &ref->list);
}
/* swap root */
LIST_INSERT(&tkr, &tlskeys_reference);
LIST_DELETE(&tkr);
return ERR_NONE;
}
#endif /* SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB */
#ifndef OPENSSL_NO_OCSP
int ocsp_ex_index = -1;
int ssl_sock_get_ocsp_arg_kt_index(int evp_keytype)
{
switch (evp_keytype) {
case EVP_PKEY_RSA:
return 2;
case EVP_PKEY_DSA:
return 0;
case EVP_PKEY_EC:
return 1;
}
return -1;
}
/*
* Callback used to set OCSP status extension content in server hello.
*/
int ssl_sock_ocsp_stapling_cbk(SSL *ssl, void *arg)
{
struct certificate_ocsp *ocsp;
struct ocsp_cbk_arg *ocsp_arg;
char *ssl_buf;
SSL_CTX *ctx;
EVP_PKEY *ssl_pkey;
int key_type;
int index;
ctx = SSL_get_SSL_CTX(ssl);
if (!ctx)
return SSL_TLSEXT_ERR_NOACK;
ocsp_arg = SSL_CTX_get_ex_data(ctx, ocsp_ex_index);
if (!ocsp_arg)
return SSL_TLSEXT_ERR_NOACK;
ssl_pkey = SSL_get_privatekey(ssl);
if (!ssl_pkey)
return SSL_TLSEXT_ERR_NOACK;
key_type = EVP_PKEY_base_id(ssl_pkey);
if (ocsp_arg->is_single && ocsp_arg->single_kt == key_type)
ocsp = ocsp_arg->s_ocsp;
else {
/* For multiple certs per context, we have to find the correct OCSP response based on
* the certificate type
*/
index = ssl_sock_get_ocsp_arg_kt_index(key_type);
if (index < 0)
return SSL_TLSEXT_ERR_NOACK;
ocsp = ocsp_arg->m_ocsp[index];
}
if (!ocsp ||
!ocsp->response.area ||
!ocsp->response.data ||
(ocsp->expire < now.tv_sec))
return SSL_TLSEXT_ERR_NOACK;
ssl_buf = OPENSSL_malloc(ocsp->response.data);
if (!ssl_buf)
return SSL_TLSEXT_ERR_NOACK;
memcpy(ssl_buf, ocsp->response.area, ocsp->response.data);
SSL_set_tlsext_status_ocsp_resp(ssl, ssl_buf, ocsp->response.data);
return SSL_TLSEXT_ERR_OK;
}
#endif
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) && !defined OPENSSL_IS_BORINGSSL)
/*
* Decrease the refcount of the struct ocsp_response and frees it if it's not
* used anymore. Also removes it from the tree if free'd.
*/
static void ssl_sock_free_ocsp(struct certificate_ocsp *ocsp)
{
if (!ocsp)
return;
ocsp->refcount--;
if (ocsp->refcount <= 0) {
ebmb_delete(&ocsp->key);
chunk_destroy(&ocsp->response);
free(ocsp);
}
}
/*
* This function enables the handling of OCSP status extension on 'ctx' if a
* ocsp_response buffer was found in the cert_key_and_chain. To enable OCSP
* status extension, the issuer's certificate is mandatory. It should be
* present in ckch->ocsp_issuer.
*
* In addition, the ckch->ocsp_reponse buffer is loaded as a DER format of an
* OCSP response. If file is empty or content is not a valid OCSP response,
* OCSP status extension is enabled but OCSP response is ignored (a warning is
* displayed).
*
* Returns 1 if no ".ocsp" file found, 0 if OCSP status extension is
* successfully enabled, or -1 in other error case.
*/
static int ssl_sock_load_ocsp(SSL_CTX *ctx, const struct cert_key_and_chain *ckch, STACK_OF(X509) *chain)
{
X509 *x, *issuer;
OCSP_CERTID *cid = NULL;
int i, ret = -1;
struct certificate_ocsp *ocsp = NULL, *iocsp;
char *warn = NULL;
unsigned char *p;
void (*callback) (void);
x = ckch->cert;
if (!x)
goto out;
issuer = ckch->ocsp_issuer;
/* take issuer from chain over ocsp_issuer, is what is done historicaly */
if (chain) {
/* check if one of the certificate of the chain is the issuer */
for (i = 0; i < sk_X509_num(chain); i++) {
X509 *ti = sk_X509_value(chain, i);
if (X509_check_issued(ti, x) == X509_V_OK) {
issuer = ti;
break;
}
}
}
if (!issuer)
goto out;
cid = OCSP_cert_to_id(0, x, issuer);
if (!cid)
goto out;
i = i2d_OCSP_CERTID(cid, NULL);
if (!i || (i > OCSP_MAX_CERTID_ASN1_LENGTH))
goto out;
ocsp = calloc(1, sizeof(*ocsp));
if (!ocsp)
goto out;
p = ocsp->key_data;
ocsp->key_length = i2d_OCSP_CERTID(cid, &p);
iocsp = (struct certificate_ocsp *)ebmb_insert(&cert_ocsp_tree, &ocsp->key, OCSP_MAX_CERTID_ASN1_LENGTH);
if (iocsp == ocsp)
ocsp = NULL;
#ifndef SSL_CTX_get_tlsext_status_cb
# define SSL_CTX_get_tlsext_status_cb(ctx, cb) \
*cb = (void (*) (void))ctx->tlsext_status_cb;
#endif
SSL_CTX_get_tlsext_status_cb(ctx, &callback);
if (!callback) {
struct ocsp_cbk_arg *cb_arg;
EVP_PKEY *pkey;
cb_arg = calloc(1, sizeof(*cb_arg));
if (!cb_arg)
goto out;
cb_arg->is_single = 1;
cb_arg->s_ocsp = iocsp;
iocsp->refcount++;
pkey = X509_get_pubkey(x);
cb_arg->single_kt = EVP_PKEY_base_id(pkey);
EVP_PKEY_free(pkey);
SSL_CTX_set_tlsext_status_cb(ctx, ssl_sock_ocsp_stapling_cbk);
SSL_CTX_set_ex_data(ctx, ocsp_ex_index, cb_arg); /* we use the ex_data instead of the cb_arg function here, so we can use the cleanup callback to free */
} else {
/*
* If the ctx has a status CB, then we have previously set an OCSP staple for this ctx
* Update that cb_arg with the new cert's staple
*/
struct ocsp_cbk_arg *cb_arg;
struct certificate_ocsp *tmp_ocsp;
int index;
int key_type;
EVP_PKEY *pkey;
cb_arg = SSL_CTX_get_ex_data(ctx, ocsp_ex_index);
/*
* The following few lines will convert cb_arg from a single ocsp to multi ocsp
* the order of operations below matter, take care when changing it
*/
tmp_ocsp = cb_arg->s_ocsp;
index = ssl_sock_get_ocsp_arg_kt_index(cb_arg->single_kt);
cb_arg->s_ocsp = NULL;
cb_arg->m_ocsp[index] = tmp_ocsp;
cb_arg->is_single = 0;
cb_arg->single_kt = 0;
pkey = X509_get_pubkey(x);
key_type = EVP_PKEY_base_id(pkey);
EVP_PKEY_free(pkey);
index = ssl_sock_get_ocsp_arg_kt_index(key_type);
if (index >= 0 && !cb_arg->m_ocsp[index]) {
cb_arg->m_ocsp[index] = iocsp;
iocsp->refcount++;
}
}
ret = 0;
warn = NULL;
if (ssl_sock_load_ocsp_response(ckch->ocsp_response, iocsp, cid, &warn)) {
memprintf(&warn, "Loading: %s. Content will be ignored", warn ? warn : "failure");
ha_warning("%s.\n", warn);
}
out:
if (cid)
OCSP_CERTID_free(cid);
if (ocsp)
free(ocsp);
if (warn)
free(warn);
return ret;
}
#endif
#ifdef OPENSSL_IS_BORINGSSL
static int ssl_sock_load_ocsp(SSL_CTX *ctx, const struct cert_key_and_chain *ckch, STACK_OF(X509) *chain)
{
return SSL_CTX_set_ocsp_response(ctx, (const uint8_t *)ckch->ocsp_response->area, ckch->ocsp_response->data);
}
#endif
#ifdef HAVE_SSL_CTX_ADD_SERVER_CUSTOM_EXT
#define CT_EXTENSION_TYPE 18
int sctl_ex_index = -1;
int ssl_sock_sctl_add_cbk(SSL *ssl, unsigned ext_type, const unsigned char **out, size_t *outlen, int *al, void *add_arg)
{
struct buffer *sctl = add_arg;
*out = (unsigned char *) sctl->area;
*outlen = sctl->data;
return 1;
}
int ssl_sock_sctl_parse_cbk(SSL *s, unsigned int ext_type, const unsigned char *in, size_t inlen, int *al, void *parse_arg)
{
return 1;
}
static int ssl_sock_load_sctl(SSL_CTX *ctx, struct buffer *sctl)
{
int ret = -1;
if (!SSL_CTX_add_server_custom_ext(ctx, CT_EXTENSION_TYPE, ssl_sock_sctl_add_cbk, NULL, sctl, ssl_sock_sctl_parse_cbk, NULL))
goto out;
SSL_CTX_set_ex_data(ctx, sctl_ex_index, sctl);
ret = 0;
out:
return ret;
}
#endif
void ssl_sock_infocbk(const SSL *ssl, int where, int ret)
{
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
#ifdef USE_QUIC
struct quic_conn *qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index);
#endif /* USE_QUIC */
struct ssl_sock_ctx *ctx = NULL;
BIO *write_bio;
(void)ret; /* shut gcc stupid warning */
if (conn)
ctx = conn_get_ssl_sock_ctx(conn);
#ifdef USE_QUIC
else if (qc)
ctx = qc->xprt_ctx;
#endif /* USE_QUIC */
if (!ctx) {
/* must never happen */
ABORT_NOW();
return;
}
#ifndef SSL_OP_NO_RENEGOTIATION
/* Please note that BoringSSL defines this macro to zero so don't
* change this to #if and do not assign a default value to this macro!
*/
if (where & SSL_CB_HANDSHAKE_START) {
/* Disable renegotiation (CVE-2009-3555) */
if (conn && (conn->flags & (CO_FL_WAIT_L6_CONN | CO_FL_EARLY_SSL_HS | CO_FL_EARLY_DATA)) == 0) {
conn->flags |= CO_FL_ERROR;
conn->err_code = CO_ER_SSL_RENEG;
}
}
#endif
if ((where & SSL_CB_ACCEPT_LOOP) == SSL_CB_ACCEPT_LOOP) {
if (!(ctx->xprt_st & SSL_SOCK_ST_FL_16K_WBFSIZE)) {
/* Long certificate chains optimz
If write and read bios are different, we
consider that the buffering was activated,
so we rise the output buffer size from 4k
to 16k */
write_bio = SSL_get_wbio(ssl);
if (write_bio != SSL_get_rbio(ssl)) {
BIO_set_write_buffer_size(write_bio, 16384);
ctx->xprt_st |= SSL_SOCK_ST_FL_16K_WBFSIZE;
}
}
}
}
/* Callback is called for each certificate of the chain during a verify
ok is set to 1 if preverify detect no error on current certificate.
Returns 0 to break the handshake, 1 otherwise. */
int ssl_sock_bind_verifycbk(int ok, X509_STORE_CTX *x_store)
{
SSL *ssl;
struct connection *conn;
struct ssl_sock_ctx *ctx;
int err, depth;
X509 *client_crt;
STACK_OF(X509) *certs;
ssl = X509_STORE_CTX_get_ex_data(x_store, SSL_get_ex_data_X509_STORE_CTX_idx());
conn = SSL_get_ex_data(ssl, ssl_app_data_index);
client_crt = SSL_get_ex_data(ssl, ssl_client_crt_ref_index);
ctx = __conn_get_ssl_sock_ctx(conn);
ctx->xprt_st |= SSL_SOCK_ST_FL_VERIFY_DONE;
depth = X509_STORE_CTX_get_error_depth(x_store);
err = X509_STORE_CTX_get_error(x_store);
if (ok) /* no errors */
return ok;
/* Keep a reference to the client's certificate in order to be able to
* dump some fetches values in a log even when the verification process
* fails. */
if (depth == 0) {
X509_free(client_crt);
client_crt = X509_STORE_CTX_get0_cert(x_store);
if (client_crt) {
X509_up_ref(client_crt);
SSL_set_ex_data(ssl, ssl_client_crt_ref_index, client_crt);
}
}
else {
/* An error occurred on a CA certificate of the certificate
* chain, we might never call this verify callback on the client
* certificate's depth (which is 0) so we try to store the
* reference right now. */
certs = X509_STORE_CTX_get1_chain(x_store);
if (certs) {
client_crt = sk_X509_value(certs, 0);
if (client_crt) {
X509_up_ref(client_crt);
SSL_set_ex_data(ssl, ssl_client_crt_ref_index, client_crt);
}
sk_X509_pop_free(certs, X509_free);
}
}
/* check if CA error needs to be ignored */
if (depth > 0) {
if (!SSL_SOCK_ST_TO_CA_ERROR(ctx->xprt_st)) {
ctx->xprt_st |= SSL_SOCK_CA_ERROR_TO_ST(err);
ctx->xprt_st |= SSL_SOCK_CAEDEPTH_TO_ST(depth);
}
if (err < 64 && __objt_listener(conn->target)->bind_conf->ca_ignerr & (1ULL << err)) {
ssl_sock_dump_errors(conn);
ERR_clear_error();
return 1;
}
conn->err_code = CO_ER_SSL_CA_FAIL;
return 0;
}
if (!SSL_SOCK_ST_TO_CRTERROR(ctx->xprt_st))
ctx->xprt_st |= SSL_SOCK_CRTERROR_TO_ST(err);
/* check if certificate error needs to be ignored */
if (err < 64 && __objt_listener(conn->target)->bind_conf->crt_ignerr & (1ULL << err)) {
ssl_sock_dump_errors(conn);
ERR_clear_error();
return 1;
}
conn->err_code = CO_ER_SSL_CRT_FAIL;
return 0;
}
#ifdef TLS1_RT_HEARTBEAT
static void ssl_sock_parse_heartbeat(struct connection *conn, int write_p, int version,
int content_type, const void *buf, size_t len,
SSL *ssl)
{
/* test heartbeat received (write_p is set to 0
for a received record) */
if ((content_type == TLS1_RT_HEARTBEAT) && (write_p == 0)) {
struct ssl_sock_ctx *ctx = __conn_get_ssl_sock_ctx(conn);
const unsigned char *p = buf;
unsigned int payload;
ctx->xprt_st |= SSL_SOCK_RECV_HEARTBEAT;
/* Check if this is a CVE-2014-0160 exploitation attempt. */
if (*p != TLS1_HB_REQUEST)
return;
if (len < 1 + 2 + 16) /* 1 type + 2 size + 0 payload + 16 padding */
goto kill_it;
payload = (p[1] * 256) + p[2];
if (3 + payload + 16 <= len)
return; /* OK no problem */
kill_it:
/* We have a clear heartbleed attack (CVE-2014-0160), the
* advertised payload is larger than the advertised packet
* length, so we have garbage in the buffer between the
* payload and the end of the buffer (p+len). We can't know
* if the SSL stack is patched, and we don't know if we can
* safely wipe out the area between p+3+len and payload.
* So instead, we prevent the response from being sent by
* setting the max_send_fragment to 0 and we report an SSL
* error, which will kill this connection. It will be reported
* above as SSL_ERROR_SSL while an other handshake failure with
* a heartbeat message will be reported as SSL_ERROR_SYSCALL.
*/
ssl->max_send_fragment = 0;
SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_SSL_HANDSHAKE_FAILURE);
}
}
#endif
static void ssl_sock_parse_clienthello(struct connection *conn, int write_p, int version,
int content_type, const void *buf, size_t len,
SSL *ssl)
{
struct ssl_capture *capture;
uchar *msg;
uchar *end;
uchar *extensions_end;
uchar *ec_start = NULL;
uchar *ec_formats_start = NULL;
uchar *list_end;
ushort protocol_version;
ushort extension_id;
ushort ec_len = 0;
uchar ec_formats_len = 0;
int offset = 0;
int rec_len;
/* This function is called for "from client" and "to server"
* connections. The combination of write_p == 0 and content_type == 22
* is only available during "from client" connection.
*/
/* "write_p" is set to 0 is the bytes are received messages,
* otherwise it is set to 1.
*/
if (write_p != 0)
return;
/* content_type contains the type of message received or sent
* according with the SSL/TLS protocol spec. This message is
* encoded with one byte. The value 256 (two bytes) is used
* for designing the SSL/TLS record layer. According with the
* rfc6101, the expected message (other than 256) are:
* - change_cipher_spec(20)
* - alert(21)
* - handshake(22)
* - application_data(23)
* - (255)
* We are interessed by the handshake and specially the client
* hello.
*/
if (content_type != 22)
return;
/* The message length is at least 4 bytes, containing the
* message type and the message length.
*/
if (len < 4)
return;
/* First byte of the handshake message id the type of
* message. The known types are:
* - hello_request(0)
* - client_hello(1)
* - server_hello(2)
* - certificate(11)
* - server_key_exchange (12)
* - certificate_request(13)
* - server_hello_done(14)
* We are interested by the client hello.
*/
msg = (unsigned char *)buf;
if (msg[0] != 1)
return;
/* Next three bytes are the length of the message. The total length
* must be this decoded length + 4. If the length given as argument
* is not the same, we abort the protocol dissector.
*/
rec_len = (msg[1] << 16) + (msg[2] << 8) + msg[3];
if (len < rec_len + 4)
return;
msg += 4;
end = msg + rec_len;
if (end < msg)
return;
/* Expect 2 bytes for protocol version
* (1 byte for major and 1 byte for minor)
*/
if (msg + 2 > end)
return;
protocol_version = (msg[0] << 8) + msg[1];
msg += 2;
/* Expect the random, composed by 4 bytes for the unix time and
* 28 bytes for unix payload. So we jump 4 + 28.
*/
msg += 4 + 28;
if (msg > end)
return;
/* Next, is session id:
* if present, we have to jump by length + 1 for the size information
* if not present, we have to jump by 1 only
*/
if (msg[0] > 0)
msg += msg[0];
msg += 1;
if (msg > end)
return;
/* Next two bytes are the ciphersuite length. */
if (msg + 2 > end)
return;
rec_len = (msg[0] << 8) + msg[1];
msg += 2;
if (msg + rec_len > end || msg + rec_len < msg)
return;
capture = pool_zalloc(pool_head_ssl_capture);
if (!capture)
return;
/* Compute the xxh64 of the ciphersuite. */
capture->xxh64 = XXH64(msg, rec_len, 0);
/* Capture the ciphersuite. */
capture->ciphersuite_len = MIN(global_ssl.capture_buffer_size, rec_len);
capture->ciphersuite_offset = 0;
memcpy(capture->data, msg, capture->ciphersuite_len);
msg += rec_len;
offset += capture->ciphersuite_len;
/* Initialize other data */
capture->protocol_version = protocol_version;
/* Next, compression methods:
* if present, we have to jump by length + 1 for the size information
* if not present, we have to jump by 1 only
*/
if (msg[0] > 0)
msg += msg[0];
msg += 1;
if (msg > end)
goto store_capture;
/* We reached extensions */
if (msg + 2 > end)
goto store_capture;
rec_len = (msg[0] << 8) + msg[1];
msg += 2;
if (msg + rec_len > end || msg + rec_len < msg)
goto store_capture;
extensions_end = msg + rec_len;
capture->extensions_offset = offset;
/* Parse each extension */
while (msg + 4 < extensions_end) {
/* Add 2 bytes of extension_id */
if (global_ssl.capture_buffer_size >= offset + 2) {
capture->data[offset++] = msg[0];
capture->data[offset++] = msg[1];
capture->extensions_len += 2;
}
else
break;
extension_id = (msg[0] << 8) + msg[1];
/* Length of the extension */
rec_len = (msg[2] << 8) + msg[3];
/* Expect 2 bytes extension id + 2 bytes extension size */
msg += 2 + 2;
if (msg + rec_len > extensions_end || msg + rec_len < msg)
goto store_capture;
/* TLS Extensions
* https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml */
if (extension_id == 0x000a) {
/* Elliptic Curves:
* https://www.rfc-editor.org/rfc/rfc8422.html
* https://www.rfc-editor.org/rfc/rfc7919.html */
list_end = msg + rec_len;
if (msg + 2 > list_end)
goto store_capture;
rec_len = (msg[0] << 8) + msg[1];
msg += 2;
if (msg + rec_len > list_end || msg + rec_len < msg)
goto store_capture;
/* Store location/size of the list */
ec_start = msg;
ec_len = rec_len;
}
else if (extension_id == 0x000b) {
/* Elliptic Curves Point Formats:
* https://www.rfc-editor.org/rfc/rfc8422.html */
list_end = msg + rec_len;
if (msg + 1 > list_end)
goto store_capture;
rec_len = msg[0];
msg += 1;
if (msg + rec_len > list_end || msg + rec_len < msg)
goto store_capture;
/* Store location/size of the list */
ec_formats_start = msg;
ec_formats_len = rec_len;
}
msg += rec_len;
}
if (ec_start) {
rec_len = ec_len;
if (offset + rec_len > global_ssl.capture_buffer_size)
rec_len = global_ssl.capture_buffer_size - offset;
memcpy(capture->data + offset, ec_start, rec_len);
capture->ec_offset = offset;
capture->ec_len = rec_len;
offset += rec_len;
}
if (ec_formats_start) {
rec_len = ec_formats_len;
if (offset + rec_len > global_ssl.capture_buffer_size)
rec_len = global_ssl.capture_buffer_size - offset;
memcpy(capture->data + offset, ec_formats_start, rec_len);
capture->ec_formats_offset = offset;
capture->ec_formats_len = rec_len;
offset += rec_len;
}
store_capture:
SSL_set_ex_data(ssl, ssl_capture_ptr_index, capture);
}
#ifdef HAVE_SSL_KEYLOG
static void ssl_init_keylog(struct connection *conn, int write_p, int version,
int content_type, const void *buf, size_t len,
SSL *ssl)
{
struct ssl_keylog *keylog;
if (SSL_get_ex_data(ssl, ssl_keylog_index))
return;
keylog = pool_zalloc(pool_head_ssl_keylog);
if (!keylog)
return;
if (!SSL_set_ex_data(ssl, ssl_keylog_index, keylog)) {
pool_free(pool_head_ssl_keylog, keylog);
return;
}
}
#endif
/* Callback is called for ssl protocol analyse */
void ssl_sock_msgcbk(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)
{
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
struct ssl_sock_msg_callback *cbk;
/* Try to call all callback functions that were registered by using
* ssl_sock_register_msg_callback().
*/
list_for_each_entry(cbk, &ssl_sock_msg_callbacks, list) {
cbk->func(conn, write_p, version, content_type, buf, len, ssl);
}
}
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
static int ssl_sock_srv_select_protos(SSL *s, unsigned char **out, unsigned char *outlen,
const unsigned char *in, unsigned int inlen,
void *arg)
{
struct server *srv = arg;
if (SSL_select_next_proto(out, outlen, in, inlen, (unsigned char *)srv->ssl_ctx.npn_str,
srv->ssl_ctx.npn_len) == OPENSSL_NPN_NEGOTIATED)
return SSL_TLSEXT_ERR_OK;
return SSL_TLSEXT_ERR_NOACK;
}
#endif
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
/* This callback is used so that the server advertises the list of
* negotiable protocols for NPN.
*/
static int ssl_sock_advertise_npn_protos(SSL *s, const unsigned char **data,
unsigned int *len, void *arg)
{
struct ssl_bind_conf *conf = arg;
*data = (const unsigned char *)conf->npn_str;
*len = conf->npn_len;
return SSL_TLSEXT_ERR_OK;
}
#endif
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
/* This callback is used so that the server advertises the list of
* negotiable protocols for ALPN.
*/
static int ssl_sock_advertise_alpn_protos(SSL *s, const unsigned char **out,
unsigned char *outlen,
const unsigned char *server,
unsigned int server_len, void *arg)
{
struct ssl_bind_conf *conf = arg;
#ifdef USE_QUIC
struct quic_conn *qc = SSL_get_ex_data(s, ssl_qc_app_data_index);
#endif
if (SSL_select_next_proto((unsigned char**) out, outlen, (const unsigned char *)conf->alpn_str,
conf->alpn_len, server, server_len) != OPENSSL_NPN_NEGOTIATED) {
#ifdef USE_QUIC
if (qc)
quic_set_tls_alert(qc, SSL_AD_NO_APPLICATION_PROTOCOL);
#endif
return SSL_TLSEXT_ERR_NOACK;
}
#ifdef USE_QUIC
if (qc && !quic_set_app_ops(qc, *out, *outlen)) {
quic_set_tls_alert(qc, SSL_AD_NO_APPLICATION_PROTOCOL);
return SSL_TLSEXT_ERR_NOACK;
}
#endif
return SSL_TLSEXT_ERR_OK;
}
#endif
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
#ifndef SSL_NO_GENERATE_CERTIFICATES
/* Configure a DNS SAN extenion on a certificate. */
int ssl_sock_add_san_ext(X509V3_CTX* ctx, X509* cert, const char *servername) {
int failure = 0;
X509_EXTENSION *san_ext = NULL;
CONF *conf = NULL;
struct buffer *san_name = get_trash_chunk();
conf = NCONF_new(NULL);
if (!conf) {
failure = 1;
goto cleanup;
}
/* Build an extension based on the DNS entry above */
chunk_appendf(san_name, "DNS:%s", servername);
san_ext = X509V3_EXT_nconf_nid(conf, ctx, NID_subject_alt_name, san_name->area);
if (!san_ext) {
failure = 1;
goto cleanup;
}
/* Add the extension */
if (!X509_add_ext(cert, san_ext, -1 /* Add to end */)) {
failure = 1;
goto cleanup;
}
/* Success */
failure = 0;
cleanup:
if (NULL != san_ext) X509_EXTENSION_free(san_ext);
if (NULL != conf) NCONF_free(conf);
return failure;
}
/* Create a X509 certificate with the specified servername and serial. This
* function returns a SSL_CTX object or NULL if an error occurs. */
static SSL_CTX *
ssl_sock_do_create_cert(const char *servername, struct bind_conf *bind_conf, SSL *ssl)
{
X509 *cacert = bind_conf->ca_sign_ckch->cert;
EVP_PKEY *capkey = bind_conf->ca_sign_ckch->key;
SSL_CTX *ssl_ctx = NULL;
X509 *newcrt = NULL;
EVP_PKEY *pkey = NULL;
SSL *tmp_ssl = NULL;
CONF *ctmp = NULL;
X509_NAME *name;
const EVP_MD *digest;
X509V3_CTX ctx;
unsigned int i;
int key_type;
/* Get the private key of the default certificate and use it */
#ifdef HAVE_SSL_CTX_get0_privatekey
pkey = SSL_CTX_get0_privatekey(bind_conf->default_ctx);
#else
tmp_ssl = SSL_new(bind_conf->default_ctx);
if (tmp_ssl)
pkey = SSL_get_privatekey(tmp_ssl);
#endif
if (!pkey)
goto mkcert_error;
/* Create the certificate */
if (!(newcrt = X509_new()))
goto mkcert_error;
/* Set version number for the certificate (X509v3) and the serial
* number */
if (X509_set_version(newcrt, 2L) != 1)
goto mkcert_error;
ASN1_INTEGER_set(X509_get_serialNumber(newcrt), _HA_ATOMIC_ADD_FETCH(&ssl_ctx_serial, 1));
/* Set duration for the certificate */
if (!X509_gmtime_adj(X509_getm_notBefore(newcrt), (long)-60*60*24) ||
!X509_gmtime_adj(X509_getm_notAfter(newcrt),(long)60*60*24*365))
goto mkcert_error;
/* set public key in the certificate */
if (X509_set_pubkey(newcrt, pkey) != 1)
goto mkcert_error;
/* Set issuer name from the CA */
if (!(name = X509_get_subject_name(cacert)))
goto mkcert_error;
if (X509_set_issuer_name(newcrt, name) != 1)
goto mkcert_error;
/* Set the subject name using the same, but the CN */
name = X509_NAME_dup(name);
if (X509_NAME_add_entry_by_txt(name, "CN", MBSTRING_ASC,
(const unsigned char *)servername,
-1, -1, 0) != 1) {
X509_NAME_free(name);
goto mkcert_error;
}
if (X509_set_subject_name(newcrt, name) != 1) {
X509_NAME_free(name);
goto mkcert_error;
}
X509_NAME_free(name);
/* Add x509v3 extensions as specified */
ctmp = NCONF_new(NULL);
X509V3_set_ctx(&ctx, cacert, newcrt, NULL, NULL, 0);
for (i = 0; i < X509V3_EXT_SIZE; i++) {
X509_EXTENSION *ext;
if (!(ext = X509V3_EXT_nconf(ctmp, &ctx, x509v3_ext_names[i], x509v3_ext_values[i])))
goto mkcert_error;
if (!X509_add_ext(newcrt, ext, -1)) {
X509_EXTENSION_free(ext);
goto mkcert_error;
}
X509_EXTENSION_free(ext);
}
/* Add SAN extension */
if (ssl_sock_add_san_ext(&ctx, newcrt, servername)) {
goto mkcert_error;
}
/* Sign the certificate with the CA private key */
key_type = EVP_PKEY_base_id(capkey);
if (key_type == EVP_PKEY_DSA)
digest = EVP_sha1();
else if (key_type == EVP_PKEY_RSA)
digest = EVP_sha256();
else if (key_type == EVP_PKEY_EC)
digest = EVP_sha256();
else {
#ifdef ASN1_PKEY_CTRL_DEFAULT_MD_NID
int nid;
if (EVP_PKEY_get_default_digest_nid(capkey, &nid) <= 0)
goto mkcert_error;
if (!(digest = EVP_get_digestbynid(nid)))
goto mkcert_error;
#else
goto mkcert_error;
#endif
}
if (!(X509_sign(newcrt, capkey, digest)))
goto mkcert_error;
/* Create and set the new SSL_CTX */
if (!(ssl_ctx = SSL_CTX_new(SSLv23_server_method())))
goto mkcert_error;
if (!SSL_CTX_use_PrivateKey(ssl_ctx, pkey))
goto mkcert_error;
if (!SSL_CTX_use_certificate(ssl_ctx, newcrt))
goto mkcert_error;
if (!SSL_CTX_check_private_key(ssl_ctx))
goto mkcert_error;
/* Build chaining the CA cert and the rest of the chain, keep these order */
#if defined(SSL_CTX_add1_chain_cert)
if (!SSL_CTX_add1_chain_cert(ssl_ctx, bind_conf->ca_sign_ckch->cert)) {
goto mkcert_error;
}
if (bind_conf->ca_sign_ckch->chain) {
for (i = 0; i < sk_X509_num(bind_conf->ca_sign_ckch->chain); i++) {
X509 *chain_cert = sk_X509_value(bind_conf->ca_sign_ckch->chain, i);
if (!SSL_CTX_add1_chain_cert(ssl_ctx, chain_cert)) {
goto mkcert_error;
}
}
}
#endif
if (newcrt) X509_free(newcrt);
#ifndef OPENSSL_NO_DH
#if (HA_OPENSSL_VERSION_NUMBER < 0x3000000fL)
SSL_CTX_set_tmp_dh_callback(ssl_ctx, ssl_get_tmp_dh_cbk);
#else
ssl_sock_set_tmp_dh_from_pkey(ssl_ctx, pkey);
#endif
#endif
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
#if defined(SSL_CTX_set1_curves_list)
{
const char *ecdhe = (bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe : ECDHE_DEFAULT_CURVE);
if (!SSL_CTX_set1_curves_list(ssl_ctx, ecdhe))
goto end;
}
#endif
#else
#if defined(SSL_CTX_set_tmp_ecdh) && !defined(OPENSSL_NO_ECDH)
{
const char *ecdhe = (bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe : ECDHE_DEFAULT_CURVE);
EC_KEY *ecc;
int nid;
if ((nid = OBJ_sn2nid(ecdhe)) == NID_undef)
goto end;
if (!(ecc = EC_KEY_new_by_curve_name(nid)))
goto end;
SSL_CTX_set_tmp_ecdh(ssl_ctx, ecc);
EC_KEY_free(ecc);
}
#endif /* defined(SSL_CTX_set_tmp_ecdh) && !defined(OPENSSL_NO_ECDH) */
#endif /* HA_OPENSSL_VERSION_NUMBER >= 0x10101000L */
end:
return ssl_ctx;
mkcert_error:
if (ctmp) NCONF_free(ctmp);
if (tmp_ssl) SSL_free(tmp_ssl);
if (ssl_ctx) SSL_CTX_free(ssl_ctx);
if (newcrt) X509_free(newcrt);
return NULL;
}
/* Do a lookup for a certificate in the LRU cache used to store generated
* certificates and immediately assign it to the SSL session if not null. */
SSL_CTX *
ssl_sock_assign_generated_cert(unsigned int key, struct bind_conf *bind_conf, SSL *ssl)
{
struct lru64 *lru = NULL;
if (ssl_ctx_lru_tree) {
HA_RWLOCK_WRLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
lru = lru64_lookup(key, ssl_ctx_lru_tree, bind_conf->ca_sign_ckch->cert, 0);
if (lru && lru->domain) {
if (ssl)
SSL_set_SSL_CTX(ssl, (SSL_CTX *)lru->data);
HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
return (SSL_CTX *)lru->data;
}
HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
}
return NULL;
}
/* Same as <ssl_sock_assign_generated_cert> but without SSL session. This
* function is not thread-safe, it should only be used to check if a certificate
* exists in the lru cache (with no warranty it will not be removed by another
* thread). It is kept for backward compatibility. */
SSL_CTX *
ssl_sock_get_generated_cert(unsigned int key, struct bind_conf *bind_conf)
{
return ssl_sock_assign_generated_cert(key, bind_conf, NULL);
}
/* Set a certificate int the LRU cache used to store generated
* certificate. Return 0 on success, otherwise -1 */
int
ssl_sock_set_generated_cert(SSL_CTX *ssl_ctx, unsigned int key, struct bind_conf *bind_conf)
{
struct lru64 *lru = NULL;
if (ssl_ctx_lru_tree) {
HA_RWLOCK_WRLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
lru = lru64_get(key, ssl_ctx_lru_tree, bind_conf->ca_sign_ckch->cert, 0);
if (!lru) {
HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
return -1;
}
if (lru->domain && lru->data)
lru->free((SSL_CTX *)lru->data);
lru64_commit(lru, ssl_ctx, bind_conf->ca_sign_ckch->cert, 0, (void (*)(void *))SSL_CTX_free);
HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
return 0;
}
return -1;
}
/* Compute the key of the certificate. */
unsigned int
ssl_sock_generated_cert_key(const void *data, size_t len)
{
return XXH32(data, len, ssl_ctx_lru_seed);
}
/* Generate a cert and immediately assign it to the SSL session so that the cert's
* refcount is maintained regardless of the cert's presence in the LRU cache.
*/
static int
ssl_sock_generate_certificate(const char *servername, struct bind_conf *bind_conf, SSL *ssl)
{
X509 *cacert = bind_conf->ca_sign_ckch->cert;
SSL_CTX *ssl_ctx = NULL;
struct lru64 *lru = NULL;
unsigned int key;
key = ssl_sock_generated_cert_key(servername, strlen(servername));
if (ssl_ctx_lru_tree) {
HA_RWLOCK_WRLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
lru = lru64_get(key, ssl_ctx_lru_tree, cacert, 0);
if (lru && lru->domain)
ssl_ctx = (SSL_CTX *)lru->data;
if (!ssl_ctx && lru) {
ssl_ctx = ssl_sock_do_create_cert(servername, bind_conf, ssl);
lru64_commit(lru, ssl_ctx, cacert, 0, (void (*)(void *))SSL_CTX_free);
}
SSL_set_SSL_CTX(ssl, ssl_ctx);
HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock);
return 1;
}
else {
ssl_ctx = ssl_sock_do_create_cert(servername, bind_conf, ssl);
SSL_set_SSL_CTX(ssl, ssl_ctx);
/* No LRU cache, this CTX will be released as soon as the session dies */
SSL_CTX_free(ssl_ctx);
return 1;
}
return 0;
}
static int
ssl_sock_generate_certificate_from_conn(struct bind_conf *bind_conf, SSL *ssl)
{
unsigned int key;
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
if (conn_get_dst(conn)) {
key = ssl_sock_generated_cert_key(conn->dst, get_addr_len(conn->dst));
if (ssl_sock_assign_generated_cert(key, bind_conf, ssl))
return 1;
}
return 0;
}
#endif /* !defined SSL_NO_GENERATE_CERTIFICATES */
#if (HA_OPENSSL_VERSION_NUMBER < 0x1010000fL)
static void ctx_set_SSLv3_func(SSL_CTX *ctx, set_context_func c)
{
#if SSL_OP_NO_SSLv3
c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, SSLv3_server_method())
: SSL_CTX_set_ssl_version(ctx, SSLv3_client_method());
#endif
}
static void ctx_set_TLSv10_func(SSL_CTX *ctx, set_context_func c) {
c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_server_method())
: SSL_CTX_set_ssl_version(ctx, TLSv1_client_method());
}
static void ctx_set_TLSv11_func(SSL_CTX *ctx, set_context_func c) {
#if SSL_OP_NO_TLSv1_1
c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_1_server_method())
: SSL_CTX_set_ssl_version(ctx, TLSv1_1_client_method());
#endif
}
static void ctx_set_TLSv12_func(SSL_CTX *ctx, set_context_func c) {
#if SSL_OP_NO_TLSv1_2
c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_2_server_method())
: SSL_CTX_set_ssl_version(ctx, TLSv1_2_client_method());
#endif
}
/* TLSv1.2 is the last supported version in this context. */
static void ctx_set_TLSv13_func(SSL_CTX *ctx, set_context_func c) {}
/* Unusable in this context. */
static void ssl_set_SSLv3_func(SSL *ssl, set_context_func c) {}
static void ssl_set_TLSv10_func(SSL *ssl, set_context_func c) {}
static void ssl_set_TLSv11_func(SSL *ssl, set_context_func c) {}
static void ssl_set_TLSv12_func(SSL *ssl, set_context_func c) {}
static void ssl_set_TLSv13_func(SSL *ssl, set_context_func c) {}
#else /* openssl >= 1.1.0 */
static void ctx_set_SSLv3_func(SSL_CTX *ctx, set_context_func c) {
c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, SSL3_VERSION)
: SSL_CTX_set_min_proto_version(ctx, SSL3_VERSION);
}
static void ssl_set_SSLv3_func(SSL *ssl, set_context_func c) {
c == SET_MAX ? SSL_set_max_proto_version(ssl, SSL3_VERSION)
: SSL_set_min_proto_version(ssl, SSL3_VERSION);
}
static void ctx_set_TLSv10_func(SSL_CTX *ctx, set_context_func c) {
c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_VERSION)
: SSL_CTX_set_min_proto_version(ctx, TLS1_VERSION);
}
static void ssl_set_TLSv10_func(SSL *ssl, set_context_func c) {
c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_VERSION)
: SSL_set_min_proto_version(ssl, TLS1_VERSION);
}
static void ctx_set_TLSv11_func(SSL_CTX *ctx, set_context_func c) {
c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_1_VERSION)
: SSL_CTX_set_min_proto_version(ctx, TLS1_1_VERSION);
}
static void ssl_set_TLSv11_func(SSL *ssl, set_context_func c) {
c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_1_VERSION)
: SSL_set_min_proto_version(ssl, TLS1_1_VERSION);
}
static void ctx_set_TLSv12_func(SSL_CTX *ctx, set_context_func c) {
c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_2_VERSION)
: SSL_CTX_set_min_proto_version(ctx, TLS1_2_VERSION);
}
static void ssl_set_TLSv12_func(SSL *ssl, set_context_func c) {
c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_2_VERSION)
: SSL_set_min_proto_version(ssl, TLS1_2_VERSION);
}
static void ctx_set_TLSv13_func(SSL_CTX *ctx, set_context_func c) {
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION)
: SSL_CTX_set_min_proto_version(ctx, TLS1_3_VERSION);
#endif
}
static void ssl_set_TLSv13_func(SSL *ssl, set_context_func c) {
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_3_VERSION)
: SSL_set_min_proto_version(ssl, TLS1_3_VERSION);
#endif
}
#endif
static void ctx_set_None_func(SSL_CTX *ctx, set_context_func c) { }
static void ssl_set_None_func(SSL *ssl, set_context_func c) { }
struct methodVersions methodVersions[] = {
{0, 0, ctx_set_None_func, ssl_set_None_func, "NONE"}, /* CONF_TLSV_NONE */
{SSL_OP_NO_SSLv3, MC_SSL_O_NO_SSLV3, ctx_set_SSLv3_func, ssl_set_SSLv3_func, "SSLv3"}, /* CONF_SSLV3 */
{SSL_OP_NO_TLSv1, MC_SSL_O_NO_TLSV10, ctx_set_TLSv10_func, ssl_set_TLSv10_func, "TLSv1.0"}, /* CONF_TLSV10 */
{SSL_OP_NO_TLSv1_1, MC_SSL_O_NO_TLSV11, ctx_set_TLSv11_func, ssl_set_TLSv11_func, "TLSv1.1"}, /* CONF_TLSV11 */
{SSL_OP_NO_TLSv1_2, MC_SSL_O_NO_TLSV12, ctx_set_TLSv12_func, ssl_set_TLSv12_func, "TLSv1.2"}, /* CONF_TLSV12 */
{SSL_OP_NO_TLSv1_3, MC_SSL_O_NO_TLSV13, ctx_set_TLSv13_func, ssl_set_TLSv13_func, "TLSv1.3"}, /* CONF_TLSV13 */
};
static void ssl_sock_switchctx_set(SSL *ssl, SSL_CTX *ctx)
{
SSL_set_verify(ssl, SSL_CTX_get_verify_mode(ctx), ssl_sock_bind_verifycbk);
SSL_set_client_CA_list(ssl, SSL_dup_CA_list(SSL_CTX_get_client_CA_list(ctx)));
SSL_set_SSL_CTX(ssl, ctx);
}
#ifdef HAVE_SSL_CLIENT_HELLO_CB
int ssl_sock_switchctx_err_cbk(SSL *ssl, int *al, void *priv)
{
struct bind_conf *s = priv;
(void)al; /* shut gcc stupid warning */
if (SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name) || s->generate_certs)
return SSL_TLSEXT_ERR_OK;
return SSL_TLSEXT_ERR_NOACK;
}
#ifdef OPENSSL_IS_BORINGSSL
int ssl_sock_switchctx_cbk(const struct ssl_early_callback_ctx *ctx)
{
SSL *ssl = ctx->ssl;
#else
int ssl_sock_switchctx_cbk(SSL *ssl, int *al, void *arg)
{
#endif
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
#ifdef USE_QUIC
struct quic_conn *qc = SSL_get_ex_data(ssl, ssl_qc_app_data_index);
#endif /* USE_QUIC */
struct bind_conf *s = NULL;
const uint8_t *extension_data;
size_t extension_len;
int has_rsa_sig = 0, has_ecdsa_sig = 0;
char *wildp = NULL;
const uint8_t *servername;
size_t servername_len;
struct ebmb_node *node, *n, *node_ecdsa = NULL, *node_rsa = NULL, *node_anonymous = NULL;
int allow_early = 0;
int i;
if (conn)
s = __objt_listener(conn->target)->bind_conf;
#ifdef USE_QUIC
else if (qc)
s = qc->li->bind_conf;
#endif /* USE_QUIC */
if (!s) {
/* must never happen */
ABORT_NOW();
return 0;
}
#ifdef USE_QUIC
if (qc) {
/* Look for the QUIC transport parameters. */
#ifdef OPENSSL_IS_BORINGSSL
if (!SSL_early_callback_ctx_extension_get(ctx, qc->tps_tls_ext,
&extension_data, &extension_len))
#else
if (!SSL_client_hello_get0_ext(ssl, qc->tps_tls_ext,
&extension_data, &extension_len))
#endif
{
/* This is not redundant. It we only return 0 without setting
* <*al>, this has as side effect to generate another TLS alert
* which would be set after calling quic_set_tls_alert().
*/
*al = SSL_AD_MISSING_EXTENSION;
quic_set_tls_alert(qc, SSL_AD_MISSING_EXTENSION);
return 0;
}
if (!quic_transport_params_store(qc, 0, extension_data,
extension_data + extension_len))
goto abort;
}
#endif /* USE_QUIC */
if (s->ssl_conf.early_data)
allow_early = 1;
#ifdef OPENSSL_IS_BORINGSSL
if (SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_server_name,
&extension_data, &extension_len)) {
#else
if (SSL_client_hello_get0_ext(ssl, TLSEXT_TYPE_server_name, &extension_data, &extension_len)) {
#endif
/*
* The server_name extension was given too much extensibility when it
* was written, so parsing the normal case is a bit complex.
*/
size_t len;
if (extension_len <= 2)
goto abort;
/* Extract the length of the supplied list of names. */
len = (*extension_data++) << 8;
len |= *extension_data++;
if (len + 2 != extension_len)
goto abort;
/*
* The list in practice only has a single element, so we only consider
* the first one.
*/
if (len == 0 || *extension_data++ != TLSEXT_NAMETYPE_host_name)
goto abort;
extension_len = len - 1;
/* Now we can finally pull out the byte array with the actual hostname. */
if (extension_len <= 2)
goto abort;
len = (*extension_data++) << 8;
len |= *extension_data++;
if (len == 0 || len + 2 > extension_len || len > TLSEXT_MAXLEN_host_name
|| memchr(extension_data, 0, len) != NULL)
goto abort;
servername = extension_data;
servername_len = len;
} else {
#if (!defined SSL_NO_GENERATE_CERTIFICATES)
if (s->generate_certs && ssl_sock_generate_certificate_from_conn(s, ssl)) {
goto allow_early;
}
#endif
/* without SNI extension, is the default_ctx (need SSL_TLSEXT_ERR_NOACK) */
if (!s->strict_sni) {
HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock);
ssl_sock_switchctx_set(ssl, s->default_ctx);
HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock);
goto allow_early;
}
goto abort;
}
/* extract/check clientHello information */
#ifdef OPENSSL_IS_BORINGSSL
if (SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_signature_algorithms, &extension_data, &extension_len)) {
#else
if (SSL_client_hello_get0_ext(ssl, TLSEXT_TYPE_signature_algorithms, &extension_data, &extension_len)) {
#endif
uint8_t sign;
size_t len;
if (extension_len < 2)
goto abort;
len = (*extension_data++) << 8;
len |= *extension_data++;
if (len + 2 != extension_len)
goto abort;
if (len % 2 != 0)
goto abort;
for (; len > 0; len -= 2) {
extension_data++; /* hash */
sign = *extension_data++;
switch (sign) {
case TLSEXT_signature_rsa:
has_rsa_sig = 1;
break;
case TLSEXT_signature_ecdsa:
has_ecdsa_sig = 1;
break;
default:
continue;
}
if (has_ecdsa_sig && has_rsa_sig)
break;
}
} else {
/* without TLSEXT_TYPE_signature_algorithms extension (< TLSv1.2) */
has_rsa_sig = 1;
}
if (has_ecdsa_sig) { /* in very rare case: has ecdsa sign but not a ECDSA cipher */
const SSL_CIPHER *cipher;
size_t len;
const uint8_t *cipher_suites;
has_ecdsa_sig = 0;
#ifdef OPENSSL_IS_BORINGSSL
len = ctx->cipher_suites_len;
cipher_suites = ctx->cipher_suites;
#else
len = SSL_client_hello_get0_ciphers(ssl, &cipher_suites);
#endif
if (len % 2 != 0)
goto abort;
for (; len != 0; len -= 2, cipher_suites += 2) {
#ifdef OPENSSL_IS_BORINGSSL
uint16_t cipher_suite = (cipher_suites[0] << 8) | cipher_suites[1];
cipher = SSL_get_cipher_by_value(cipher_suite);
#else
cipher = SSL_CIPHER_find(ssl, cipher_suites);
#endif
if (cipher && SSL_CIPHER_get_auth_nid(cipher) == NID_auth_ecdsa) {
has_ecdsa_sig = 1;
break;
}
}
}
for (i = 0; i < trash.size && i < servername_len; i++) {
trash.area[i] = tolower(servername[i]);
if (!wildp && (trash.area[i] == '.'))
wildp = &trash.area[i];
}
trash.area[i] = 0;
HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock);
/* Look for an ECDSA, RSA and DSA certificate, first in the single
* name and if not found in the wildcard */
for (i = 0; i < 2; i++) {
if (i == 0) /* lookup in full qualified names */
node = ebst_lookup(&s->sni_ctx, trash.area);
else if (i == 1 && wildp) /* lookup in wildcards names */
node = ebst_lookup(&s->sni_w_ctx, wildp);
else
break;
for (n = node; n; n = ebmb_next_dup(n)) {
/* lookup a not neg filter */
if (!container_of(n, struct sni_ctx, name)->neg) {
struct sni_ctx *sni, *sni_tmp;
int skip = 0;
if (i == 1 && wildp) { /* wildcard */
/* If this is a wildcard, look for an exclusion on the same crt-list line */
sni = container_of(n, struct sni_ctx, name);
list_for_each_entry(sni_tmp, &sni->ckch_inst->sni_ctx, by_ckch_inst) {
if (sni_tmp->neg && (strcmp((const char *)sni_tmp->name.key, trash.area) == 0)) {
skip = 1;
break;
}
}
if (skip)
continue;
}
switch(container_of(n, struct sni_ctx, name)->kinfo.sig) {
case TLSEXT_signature_ecdsa:
if (!node_ecdsa)
node_ecdsa = n;
break;
case TLSEXT_signature_rsa:
if (!node_rsa)
node_rsa = n;
break;
default: /* TLSEXT_signature_anonymous|dsa */
if (!node_anonymous)
node_anonymous = n;
break;
}
}
}
}
/* Once the certificates are found, select them depending on what is
* supported in the client and by key_signature priority order: EDSA >
* RSA > DSA */
if (has_ecdsa_sig && node_ecdsa)
node = node_ecdsa;
else if (has_rsa_sig && node_rsa)
node = node_rsa;
else if (node_anonymous)
node = node_anonymous;
else if (node_ecdsa)
node = node_ecdsa; /* no ecdsa signature case (< TLSv1.2) */
else
node = node_rsa; /* no rsa signature case (far far away) */
if (node) {
/* switch ctx */
struct ssl_bind_conf *conf = container_of(node, struct sni_ctx, name)->conf;
ssl_sock_switchctx_set(ssl, container_of(node, struct sni_ctx, name)->ctx);
if (conf) {
methodVersions[conf->ssl_methods.min].ssl_set_version(ssl, SET_MIN);
methodVersions[conf->ssl_methods.max].ssl_set_version(ssl, SET_MAX);
if (conf->early_data)
allow_early = 1;
}
HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock);
goto allow_early;
}
HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock);
#if (!defined SSL_NO_GENERATE_CERTIFICATES)
if (s->generate_certs && ssl_sock_generate_certificate(trash.area, s, ssl)) {
/* switch ctx done in ssl_sock_generate_certificate */
goto allow_early;
}
#endif
if (!s->strict_sni) {
/* no certificate match, is the default_ctx */
HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock);
ssl_sock_switchctx_set(ssl, s->default_ctx);
HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock);
goto allow_early;
}
/* We are about to raise an handshake error so the servername extension
* callback will never be called and the SNI will never be stored in the
* SSL context. In order for the ssl_fc_sni sample fetch to still work
* in such a case, we store the SNI ourselves as an ex_data information
* in the SSL context.
*/
{
char *client_sni = pool_alloc(ssl_sock_client_sni_pool);
if (client_sni) {
strncpy(client_sni, trash.area, TLSEXT_MAXLEN_host_name);
client_sni[TLSEXT_MAXLEN_host_name] = '\0';
SSL_set_ex_data(ssl, ssl_client_sni_index, client_sni);
}
}
/* other cases fallback on abort, if strict-sni is set but no node was found */
abort:
/* abort handshake (was SSL_TLSEXT_ERR_ALERT_FATAL) */
if (conn)
conn->err_code = CO_ER_SSL_HANDSHAKE;
#ifdef OPENSSL_IS_BORINGSSL
return ssl_select_cert_error;
#else
*al = SSL_AD_UNRECOGNIZED_NAME;
return 0;
#endif
allow_early:
#ifdef OPENSSL_IS_BORINGSSL
if (allow_early)
SSL_set_early_data_enabled(ssl, 1);
#else
if (!allow_early)
SSL_set_max_early_data(ssl, 0);
#endif
return 1;
}
#else /* ! HAVE_SSL_CLIENT_HELLO_CB */
/* Sets the SSL ctx of <ssl> to match the advertised server name. Returns a
* warning when no match is found, which implies the default (first) cert
* will keep being used.
*/
static int ssl_sock_switchctx_cbk(SSL *ssl, int *al, void *priv)
{
const char *servername;
const char *wildp = NULL;
struct ebmb_node *node, *n;
struct bind_conf *s = priv;
int i;
(void)al; /* shut gcc stupid warning */
servername = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
if (!servername) {
#if (!defined SSL_NO_GENERATE_CERTIFICATES)
if (s->generate_certs && ssl_sock_generate_certificate_from_conn(s, ssl))
return SSL_TLSEXT_ERR_OK;
#endif
if (s->strict_sni)
return SSL_TLSEXT_ERR_ALERT_FATAL;
HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock);
ssl_sock_switchctx_set(ssl, s->default_ctx);
HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock);
return SSL_TLSEXT_ERR_NOACK;
}
for (i = 0; i < trash.size; i++) {
if (!servername[i])
break;
trash.area[i] = tolower((unsigned char)servername[i]);
if (!wildp && (trash.area[i] == '.'))
wildp = &trash.area[i];
}
trash.area[i] = 0;
HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock);
node = NULL;
/* lookup in full qualified names */
for (n = ebst_lookup(&s->sni_ctx, trash.area); n; n = ebmb_next_dup(n)) {
/* lookup a not neg filter */
if (!container_of(n, struct sni_ctx, name)->neg) {
node = n;
break;
}
}
if (!node && wildp) {
/* lookup in wildcards names */
for (n = ebst_lookup(&s->sni_w_ctx, wildp); n; n = ebmb_next_dup(n)) {
/* lookup a not neg filter */
if (!container_of(n, struct sni_ctx, name)->neg) {
node = n;
break;
}
}
}
if (!node) {
#if (!defined SSL_NO_GENERATE_CERTIFICATES)
if (s->generate_certs && ssl_sock_generate_certificate(servername, s, ssl)) {
/* switch ctx done in ssl_sock_generate_certificate */
HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock);
return SSL_TLSEXT_ERR_OK;
}
#endif
if (s->strict_sni) {
HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock);
return SSL_TLSEXT_ERR_ALERT_FATAL;
}
ssl_sock_switchctx_set(ssl, s->default_ctx);
HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock);
return SSL_TLSEXT_ERR_OK;
}
/* switch ctx */
ssl_sock_switchctx_set(ssl, container_of(node, struct sni_ctx, name)->ctx);
HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock);
return SSL_TLSEXT_ERR_OK;
}
#endif /* (!) OPENSSL_IS_BORINGSSL */
#endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */
#ifndef OPENSSL_NO_DH
static inline HASSL_DH *ssl_new_dh_fromdata(BIGNUM *p, BIGNUM *g)
{
#if (HA_OPENSSL_VERSION_NUMBER >= 0x3000000fL)
OSSL_PARAM_BLD *tmpl = NULL;
OSSL_PARAM *params = NULL;
EVP_PKEY_CTX *ctx = NULL;
EVP_PKEY *pkey = NULL;
if ((tmpl = OSSL_PARAM_BLD_new()) == NULL
|| !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
|| !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_G, g)
|| (params = OSSL_PARAM_BLD_to_param(tmpl)) == NULL) {
goto end;
}
ctx = EVP_PKEY_CTX_new_from_name(NULL, "DH", NULL);
if (ctx == NULL
|| !EVP_PKEY_fromdata_init(ctx)
|| !EVP_PKEY_fromdata(ctx, &pkey, EVP_PKEY_KEY_PARAMETERS, params)) {
goto end;
}
end:
EVP_PKEY_CTX_free(ctx);
OSSL_PARAM_free(params);
OSSL_PARAM_BLD_free(tmpl);
return pkey;
#else
HASSL_DH *dh = DH_new();
if (!dh)
return NULL;
DH_set0_pqg(dh, p, NULL, g);
return dh;
#endif
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
static inline HASSL_DH *ssl_get_dh_by_nid(int nid)
{
#if (HA_OPENSSL_VERSION_NUMBER >= 0x3000000fL)
OSSL_PARAM params[2];
EVP_PKEY *pkey = NULL;
EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_from_name(NULL, "DH", NULL);
const char *named_group = NULL;
if (!pctx)
goto end;
named_group = OBJ_nid2ln(nid);
if (!named_group)
goto end;
params[0] = OSSL_PARAM_construct_utf8_string("group", (char*)named_group, 0);
params[1] = OSSL_PARAM_construct_end();
if (EVP_PKEY_keygen_init(pctx) && EVP_PKEY_CTX_set_params(pctx, params))
EVP_PKEY_generate(pctx, &pkey);
end:
EVP_PKEY_CTX_free(pctx);
return pkey;
#else
HASSL_DH *dh = NULL;
dh = DH_new_by_nid(nid);
return dh;
#endif
}
#endif
static HASSL_DH * ssl_get_dh_1024(void)
{
static unsigned char dh1024_p[]={
0xFA,0xF9,0x2A,0x22,0x2A,0xA7,0x7F,0xE1,0x67,0x4E,0x53,0xF7,
0x56,0x13,0xC3,0xB1,0xE3,0x29,0x6B,0x66,0x31,0x6A,0x7F,0xB3,
0xC2,0x68,0x6B,0xCB,0x1D,0x57,0x39,0x1D,0x1F,0xFF,0x1C,0xC9,
0xA6,0xA4,0x98,0x82,0x31,0x5D,0x25,0xFF,0x8A,0xE0,0x73,0x96,
0x81,0xC8,0x83,0x79,0xC1,0x5A,0x04,0xF8,0x37,0x0D,0xA8,0x3D,
0xAE,0x74,0xBC,0xDB,0xB6,0xA4,0x75,0xD9,0x71,0x8A,0xA0,0x17,
0x9E,0x2D,0xC8,0xA8,0xDF,0x2C,0x5F,0x82,0x95,0xF8,0x92,0x9B,
0xA7,0x33,0x5F,0x89,0x71,0xC8,0x2D,0x6B,0x18,0x86,0xC4,0x94,
0x22,0xA5,0x52,0x8D,0xF6,0xF6,0xD2,0x37,0x92,0x0F,0xA5,0xCC,
0xDB,0x7B,0x1D,0x3D,0xA1,0x31,0xB7,0x80,0x8F,0x0B,0x67,0x5E,
0x36,0xA5,0x60,0x0C,0xF1,0x95,0x33,0x8B,
};
static unsigned char dh1024_g[]={
0x02,
};
BIGNUM *p;
BIGNUM *g;
HASSL_DH *dh = NULL;
p = BN_bin2bn(dh1024_p, sizeof dh1024_p, NULL);
g = BN_bin2bn(dh1024_g, sizeof dh1024_g, NULL);
if (p && g)
dh = ssl_new_dh_fromdata(p, g);
return dh;
}
static HASSL_DH *ssl_get_dh_2048(void)
{
#if (HA_OPENSSL_VERSION_NUMBER < 0x10101000L)
static unsigned char dh2048_p[]={
0xEC,0x86,0xF8,0x70,0xA0,0x33,0x16,0xEC,0x05,0x1A,0x73,0x59,
0xCD,0x1F,0x8B,0xF8,0x29,0xE4,0xD2,0xCF,0x52,0xDD,0xC2,0x24,
0x8D,0xB5,0x38,0x9A,0xFB,0x5C,0xA4,0xE4,0xB2,0xDA,0xCE,0x66,
0x50,0x74,0xA6,0x85,0x4D,0x4B,0x1D,0x30,0xB8,0x2B,0xF3,0x10,
0xE9,0xA7,0x2D,0x05,0x71,0xE7,0x81,0xDF,0x8B,0x59,0x52,0x3B,
0x5F,0x43,0x0B,0x68,0xF1,0xDB,0x07,0xBE,0x08,0x6B,0x1B,0x23,
0xEE,0x4D,0xCC,0x9E,0x0E,0x43,0xA0,0x1E,0xDF,0x43,0x8C,0xEC,
0xBE,0xBE,0x90,0xB4,0x51,0x54,0xB9,0x2F,0x7B,0x64,0x76,0x4E,
0x5D,0xD4,0x2E,0xAE,0xC2,0x9E,0xAE,0x51,0x43,0x59,0xC7,0x77,
0x9C,0x50,0x3C,0x0E,0xED,0x73,0x04,0x5F,0xF1,0x4C,0x76,0x2A,
0xD8,0xF8,0xCF,0xFC,0x34,0x40,0xD1,0xB4,0x42,0x61,0x84,0x66,
0x42,0x39,0x04,0xF8,0x68,0xB2,0x62,0xD7,0x55,0xED,0x1B,0x74,
0x75,0x91,0xE0,0xC5,0x69,0xC1,0x31,0x5C,0xDB,0x7B,0x44,0x2E,
0xCE,0x84,0x58,0x0D,0x1E,0x66,0x0C,0xC8,0x44,0x9E,0xFD,0x40,
0x08,0x67,0x5D,0xFB,0xA7,0x76,0x8F,0x00,0x11,0x87,0xE9,0x93,
0xF9,0x7D,0xC4,0xBC,0x74,0x55,0x20,0xD4,0x4A,0x41,0x2F,0x43,
0x42,0x1A,0xC1,0xF2,0x97,0x17,0x49,0x27,0x37,0x6B,0x2F,0x88,
0x7E,0x1C,0xA0,0xA1,0x89,0x92,0x27,0xD9,0x56,0x5A,0x71,0xC1,
0x56,0x37,0x7E,0x3A,0x9D,0x05,0xE7,0xEE,0x5D,0x8F,0x82,0x17,
0xBC,0xE9,0xC2,0x93,0x30,0x82,0xF9,0xF4,0xC9,0xAE,0x49,0xDB,
0xD0,0x54,0xB4,0xD9,0x75,0x4D,0xFA,0x06,0xB8,0xD6,0x38,0x41,
0xB7,0x1F,0x77,0xF3,
};
static unsigned char dh2048_g[]={
0x02,
};
BIGNUM *p;
BIGNUM *g;
HASSL_DH *dh = NULL;
p = BN_bin2bn(dh2048_p, sizeof dh2048_p, NULL);
g = BN_bin2bn(dh2048_g, sizeof dh2048_g, NULL);
if (p && g)
dh = ssl_new_dh_fromdata(p, g);
return dh;
#else
return ssl_get_dh_by_nid(NID_ffdhe2048);
#endif
}
static HASSL_DH *ssl_get_dh_4096(void)
{
#if (HA_OPENSSL_VERSION_NUMBER < 0x10101000L)
static unsigned char dh4096_p[]={
0xDE,0x16,0x94,0xCD,0x99,0x58,0x07,0xF1,0xF7,0x32,0x96,0x11,
0x04,0x82,0xD4,0x84,0x72,0x80,0x99,0x06,0xCA,0xF0,0xA3,0x68,
0x07,0xCE,0x64,0x50,0xE7,0x74,0x45,0x20,0x80,0x5E,0x4D,0xAD,
0xA5,0xB6,0xED,0xFA,0x80,0x6C,0x3B,0x35,0xC4,0x9A,0x14,0x6B,
0x32,0xBB,0xFD,0x1F,0x17,0x8E,0xB7,0x1F,0xD6,0xFA,0x3F,0x7B,
0xEE,0x16,0xA5,0x62,0x33,0x0D,0xED,0xBC,0x4E,0x58,0xE5,0x47,
0x4D,0xE9,0xAB,0x8E,0x38,0xD3,0x6E,0x90,0x57,0xE3,0x22,0x15,
0x33,0xBD,0xF6,0x43,0x45,0xB5,0x10,0x0A,0xBE,0x2C,0xB4,0x35,
0xB8,0x53,0x8D,0xAD,0xFB,0xA7,0x1F,0x85,0x58,0x41,0x7A,0x79,
0x20,0x68,0xB3,0xE1,0x3D,0x08,0x76,0xBF,0x86,0x0D,0x49,0xE3,
0x82,0x71,0x8C,0xB4,0x8D,0x81,0x84,0xD4,0xE7,0xBE,0x91,0xDC,
0x26,0x39,0x48,0x0F,0x35,0xC4,0xCA,0x65,0xE3,0x40,0x93,0x52,
0x76,0x58,0x7D,0xDD,0x51,0x75,0xDC,0x69,0x61,0xBF,0x47,0x2C,
0x16,0x68,0x2D,0xC9,0x29,0xD3,0xE6,0xC0,0x99,0x48,0xA0,0x9A,
0xC8,0x78,0xC0,0x6D,0x81,0x67,0x12,0x61,0x3F,0x71,0xBA,0x41,
0x1F,0x6C,0x89,0x44,0x03,0xBA,0x3B,0x39,0x60,0xAA,0x28,0x55,
0x59,0xAE,0xB8,0xFA,0xCB,0x6F,0xA5,0x1A,0xF7,0x2B,0xDD,0x52,
0x8A,0x8B,0xE2,0x71,0xA6,0x5E,0x7E,0xD8,0x2E,0x18,0xE0,0x66,
0xDF,0xDD,0x22,0x21,0x99,0x52,0x73,0xA6,0x33,0x20,0x65,0x0E,
0x53,0xE7,0x6B,0x9B,0xC5,0xA3,0x2F,0x97,0x65,0x76,0xD3,0x47,
0x23,0x77,0x12,0xB6,0x11,0x7B,0x24,0xED,0xF1,0xEF,0xC0,0xE2,
0xA3,0x7E,0x67,0x05,0x3E,0x96,0x4D,0x45,0xC2,0x18,0xD1,0x73,
0x9E,0x07,0xF3,0x81,0x6E,0x52,0x63,0xF6,0x20,0x76,0xB9,0x13,
0xD2,0x65,0x30,0x18,0x16,0x09,0x16,0x9E,0x8F,0xF1,0xD2,0x10,
0x5A,0xD3,0xD4,0xAF,0x16,0x61,0xDA,0x55,0x2E,0x18,0x5E,0x14,
0x08,0x54,0x2E,0x2A,0x25,0xA2,0x1A,0x9B,0x8B,0x32,0xA9,0xFD,
0xC2,0x48,0x96,0xE1,0x80,0xCA,0xE9,0x22,0x17,0xBB,0xCE,0x3E,
0x9E,0xED,0xC7,0xF1,0x1F,0xEC,0x17,0x21,0xDC,0x7B,0x82,0x48,
0x8E,0xBB,0x4B,0x9D,0x5B,0x04,0x04,0xDA,0xDB,0x39,0xDF,0x01,
0x40,0xC3,0xAA,0x26,0x23,0x89,0x75,0xC6,0x0B,0xD0,0xA2,0x60,
0x6A,0xF1,0xCC,0x65,0x18,0x98,0x1B,0x52,0xD2,0x74,0x61,0xCC,
0xBD,0x60,0xAE,0xA3,0xA0,0x66,0x6A,0x16,0x34,0x92,0x3F,0x41,
0x40,0x31,0x29,0xC0,0x2C,0x63,0xB2,0x07,0x8D,0xEB,0x94,0xB8,
0xE8,0x47,0x92,0x52,0x93,0x6A,0x1B,0x7E,0x1A,0x61,0xB3,0x1B,
0xF0,0xD6,0x72,0x9B,0xF1,0xB0,0xAF,0xBF,0x3E,0x65,0xEF,0x23,
0x1D,0x6F,0xFF,0x70,0xCD,0x8A,0x4C,0x8A,0xA0,0x72,0x9D,0xBE,
0xD4,0xBB,0x24,0x47,0x4A,0x68,0xB5,0xF5,0xC6,0xD5,0x7A,0xCD,
0xCA,0x06,0x41,0x07,0xAD,0xC2,0x1E,0xE6,0x54,0xA7,0xAD,0x03,
0xD9,0x12,0xC1,0x9C,0x13,0xB1,0xC9,0x0A,0x43,0x8E,0x1E,0x08,
0xCE,0x50,0x82,0x73,0x5F,0xA7,0x55,0x1D,0xD9,0x59,0xAC,0xB5,
0xEA,0x02,0x7F,0x6C,0x5B,0x74,0x96,0x98,0x67,0x24,0xA3,0x0F,
0x15,0xFC,0xA9,0x7D,0x3E,0x67,0xD1,0x70,0xF8,0x97,0xF3,0x67,
0xC5,0x8C,0x88,0x44,0x08,0x02,0xC7,0x2B,
};
static unsigned char dh4096_g[]={
0x02,
};
BIGNUM *p;
BIGNUM *g;
HASSL_DH *dh = NULL;
p = BN_bin2bn(dh4096_p, sizeof dh4096_p, NULL);
g = BN_bin2bn(dh4096_g, sizeof dh4096_g, NULL);
if (p && g)
dh = ssl_new_dh_fromdata(p, g);
return dh;
#else
return ssl_get_dh_by_nid(NID_ffdhe4096);
#endif
}
static HASSL_DH *ssl_get_tmp_dh(EVP_PKEY *pkey)
{
HASSL_DH *dh = NULL;
int type;
int keylen = 0;
type = pkey ? EVP_PKEY_base_id(pkey) : EVP_PKEY_NONE;
/* The keylen supplied by OpenSSL can only be 512 or 1024.
See ssl3_send_server_key_exchange() in ssl/s3_srvr.c
*/
if (type == EVP_PKEY_RSA || type == EVP_PKEY_DSA) {
keylen = EVP_PKEY_bits(pkey);
}
if (keylen > global_ssl.default_dh_param) {
keylen = global_ssl.default_dh_param;
}
if (keylen >= 4096) {
if (!local_dh_4096)
local_dh_4096 = ssl_get_dh_4096();
dh = local_dh_4096;
}
else if (keylen >= 2048) {
if (!local_dh_2048)
local_dh_2048 = ssl_get_dh_2048();
dh = local_dh_2048;
}
else {
if (!local_dh_1024)
local_dh_1024 = ssl_get_dh_1024();
dh = local_dh_1024;
}
return dh;
}
#if (HA_OPENSSL_VERSION_NUMBER < 0x3000000fL)
/* Returns Diffie-Hellman parameters matching the private key length
but not exceeding global_ssl.default_dh_param */
static HASSL_DH *ssl_get_tmp_dh_cbk(SSL *ssl, int export, int keylen)
{
EVP_PKEY *pkey = SSL_get_privatekey(ssl);
return ssl_get_tmp_dh(pkey);
}
#endif
static int ssl_sock_set_tmp_dh(SSL_CTX *ctx, HASSL_DH *dh)
{
#if (HA_OPENSSL_VERSION_NUMBER < 0x3000000fL)
return SSL_CTX_set_tmp_dh(ctx, dh);
#else
int retval = 0;
HASSL_DH_up_ref(dh);
retval = SSL_CTX_set0_tmp_dh_pkey(ctx, dh);
if (!retval)
HASSL_DH_free(dh);
return retval;
#endif
}
#if (HA_OPENSSL_VERSION_NUMBER >= 0x3000000fL)
static void ssl_sock_set_tmp_dh_from_pkey(SSL_CTX *ctx, EVP_PKEY *pkey)
{
HASSL_DH *dh = NULL;
if (pkey && (dh = ssl_get_tmp_dh(pkey))) {
HASSL_DH_up_ref(dh);
if (!SSL_CTX_set0_tmp_dh_pkey(ctx, dh))
HASSL_DH_free(dh);
}
}
#endif
HASSL_DH *ssl_sock_get_dh_from_bio(BIO *bio)
{
#if (HA_OPENSSL_VERSION_NUMBER >= 0x3000000fL)
HASSL_DH *dh = NULL;
OSSL_DECODER_CTX *dctx = NULL;
const char *format = "PEM";
const char *keytype = "DH";
dctx = OSSL_DECODER_CTX_new_for_pkey(&dh, format, NULL, keytype,
OSSL_KEYMGMT_SELECT_DOMAIN_PARAMETERS,
NULL, NULL);
if (dctx == NULL || OSSL_DECODER_CTX_get_num_decoders(dctx) == 0)
goto end;
/* The DH parameters might not be the first section found in the PEM
* file so we need to iterate over all of them until we find the right
* one.
*/
while (!BIO_eof(bio) && !dh)
OSSL_DECODER_from_bio(dctx, bio);
end:
OSSL_DECODER_CTX_free(dctx);
return dh;
#else
HASSL_DH *dh = NULL;
dh = PEM_read_bio_DHparams(bio, NULL, NULL, NULL);
return dh;
#endif
}
static HASSL_DH * ssl_sock_get_dh_from_file(const char *filename)
{
HASSL_DH *dh = NULL;
BIO *in = BIO_new(BIO_s_file());
if (in == NULL)
goto end;
if (BIO_read_filename(in, filename) <= 0)
goto end;
dh = ssl_sock_get_dh_from_bio(in);
end:
if (in)
BIO_free(in);
ERR_clear_error();
return dh;
}
int ssl_sock_load_global_dh_param_from_file(const char *filename)
{
global_dh = ssl_sock_get_dh_from_file(filename);
if (global_dh) {
return 0;
}
return -1;
}
#endif
/* This function allocates a sni_ctx and adds it to the ckch_inst */
static int ckch_inst_add_cert_sni(SSL_CTX *ctx, struct ckch_inst *ckch_inst,
struct bind_conf *s, struct ssl_bind_conf *conf,
struct pkey_info kinfo, char *name, int order)
{
struct sni_ctx *sc;
int wild = 0, neg = 0;
if (*name == '!') {
neg = 1;
name++;
}
if (*name == '*') {
wild = 1;
name++;
}
/* !* filter is a nop */
if (neg && wild)
return order;
if (*name) {
int j, len;
len = strlen(name);
for (j = 0; j < len && j < trash.size; j++)
trash.area[j] = tolower((unsigned char)name[j]);
if (j >= trash.size)
return -1;
trash.area[j] = 0;
sc = malloc(sizeof(struct sni_ctx) + len + 1);
if (!sc)
return -1;
memcpy(sc->name.key, trash.area, len + 1);
SSL_CTX_up_ref(ctx);
sc->ctx = ctx;
sc->conf = conf;
sc->kinfo = kinfo;
sc->order = order++;
sc->neg = neg;
sc->wild = wild;
sc->name.node.leaf_p = NULL;
sc->ckch_inst = ckch_inst;
LIST_APPEND(&ckch_inst->sni_ctx, &sc->by_ckch_inst);
}
return order;
}
/*
* Insert the sni_ctxs that are listed in the ckch_inst, in the bind_conf's sni_ctx tree
* This function can't return an error.
*
* *CAUTION*: The caller must lock the sni tree if called in multithreading mode
*/
void ssl_sock_load_cert_sni(struct ckch_inst *ckch_inst, struct bind_conf *bind_conf)
{
struct sni_ctx *sc0, *sc0b, *sc1;
struct ebmb_node *node;
list_for_each_entry_safe(sc0, sc0b, &ckch_inst->sni_ctx, by_ckch_inst) {
/* ignore if sc0 was already inserted in a tree */
if (sc0->name.node.leaf_p)
continue;
/* Check for duplicates. */
if (sc0->wild)
node = ebst_lookup(&bind_conf->sni_w_ctx, (char *)sc0->name.key);
else
node = ebst_lookup(&bind_conf->sni_ctx, (char *)sc0->name.key);
for (; node; node = ebmb_next_dup(node)) {
sc1 = ebmb_entry(node, struct sni_ctx, name);
if (sc1->ctx == sc0->ctx && sc1->conf == sc0->conf
&& sc1->neg == sc0->neg && sc1->wild == sc0->wild) {
/* it's a duplicate, we should remove and free it */
LIST_DELETE(&sc0->by_ckch_inst);
SSL_CTX_free(sc0->ctx);
ha_free(&sc0);
break;
}
}
/* if duplicate, ignore the insertion */
if (!sc0)
continue;
if (sc0->wild)
ebst_insert(&bind_conf->sni_w_ctx, &sc0->name);
else
ebst_insert(&bind_conf->sni_ctx, &sc0->name);
}
/* replace the default_ctx if required with the instance's ctx. */
if (ckch_inst->is_default) {
SSL_CTX_free(bind_conf->default_ctx);
SSL_CTX_up_ref(ckch_inst->ctx);
bind_conf->default_ctx = ckch_inst->ctx;
bind_conf->default_inst = ckch_inst;
}
}
/*
* tree used to store the ckchs ordered by filename/bundle name
*/
struct eb_root ckchs_tree = EB_ROOT_UNIQUE;
/* tree of crtlist (crt-list/directory) */
struct eb_root crtlists_tree = EB_ROOT_UNIQUE;
/* Loads Diffie-Hellman parameter from a ckchs to an SSL_CTX.
* If there is no DH parameter available in the ckchs, the global
* DH parameter is loaded into the SSL_CTX and if there is no
* DH parameter available in ckchs nor in global, the default
* DH parameters are applied on the SSL_CTX.
* Returns a bitfield containing the flags:
* ERR_FATAL in any fatal error case
* ERR_ALERT if a reason of the error is availabine in err
* ERR_WARN if a warning is available into err
* The value 0 means there is no error nor warning and
* the operation succeed.
*/
#ifndef OPENSSL_NO_DH
static int ssl_sock_load_dh_params(SSL_CTX *ctx, const struct cert_key_and_chain *ckch,
const char *path, char **err)
{
int ret = 0;
HASSL_DH *dh = NULL;
if (ckch && ckch->dh) {
dh = ckch->dh;
if (!ssl_sock_set_tmp_dh(ctx, dh)) {
memprintf(err, "%sunable to load the DH parameter specified in '%s'",
err && *err ? *err : "", path);
memprintf(err, "%s, DH ciphers won't be available.\n",
err && *err ? *err : "");
ret |= ERR_WARN;
goto end;
}
if (ssl_dh_ptr_index >= 0) {
/* store a pointer to the DH params to avoid complaining about
ssl-default-dh-param not being set for this SSL_CTX */
SSL_CTX_set_ex_data(ctx, ssl_dh_ptr_index, dh);
}
}
else if (global_dh) {
if (!ssl_sock_set_tmp_dh(ctx, global_dh)) {
memprintf(err, "%sunable to use the global DH parameter for certificate '%s'",
err && *err ? *err : "", path);
memprintf(err, "%s, DH ciphers won't be available.\n",
err && *err ? *err : "");
ret |= ERR_WARN;
goto end;
}
}
else {
/* Clear openssl global errors stack */
ERR_clear_error();
/* We do not want DHE ciphers to be added to the cipher list
* unless there is an explicit global dh option in the conf.
*/
if (global_ssl.default_dh_param) {
if (global_ssl.default_dh_param <= 1024) {
/* we are limited to DH parameter of 1024 bits anyway */
if (local_dh_1024 == NULL)
local_dh_1024 = ssl_get_dh_1024();
if (local_dh_1024 == NULL) {
memprintf(err, "%sunable to load default 1024 bits DH parameter for certificate '%s'.\n",
err && *err ? *err : "", path);
ret |= ERR_ALERT | ERR_FATAL;
goto end;
}
if (!ssl_sock_set_tmp_dh(ctx, local_dh_1024)) {
memprintf(err, "%sunable to load default 1024 bits DH parameter for certificate '%s'.\n",
err && *err ? *err : "", path);
memprintf(err, "%s, DH ciphers won't be available.\n",
err && *err ? *err : "");
ret |= ERR_WARN;
goto end;
}
}
else {
#if (HA_OPENSSL_VERSION_NUMBER < 0x3000000fL)
SSL_CTX_set_tmp_dh_callback(ctx, ssl_get_tmp_dh_cbk);
#else
ssl_sock_set_tmp_dh_from_pkey(ctx, ckch ? ckch->key : NULL);
#endif
}
}
}
end:
ERR_clear_error();
return ret;
}
#endif
/* Load a certificate chain into an SSL context.
* Returns a bitfield containing the flags:
* ERR_FATAL in any fatal error case
* ERR_ALERT if the reason of the error is available in err
* ERR_WARN if a warning is available into err
* The value 0 means there is no error nor warning and
* the operation succeed.
*/
static int ssl_sock_load_cert_chain(const char *path, const struct cert_key_and_chain *ckch,
SSL_CTX *ctx, STACK_OF(X509) **find_chain, char **err)
{
int errcode = 0;
if (find_chain == NULL) {
errcode |= ERR_FATAL;
goto end;
}
if (!SSL_CTX_use_certificate(ctx, ckch->cert)) {
memprintf(err, "%sunable to load SSL certificate into SSL Context '%s'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
if (ckch->chain) {
*find_chain = ckch->chain;
} else {
/* Find Certificate Chain in global */
struct issuer_chain *issuer;
issuer = ssl_get0_issuer_chain(ckch->cert);
if (issuer)
*find_chain = issuer->chain;
}
if (!*find_chain) {
/* always put a null chain stack in the SSL_CTX so it does not
* try to build the chain from the verify store */
*find_chain = sk_X509_new_null();
}
/* Load all certs in the ckch into the ctx_chain for the ssl_ctx */
#ifdef SSL_CTX_set1_chain
if (!SSL_CTX_set1_chain(ctx, *find_chain)) {
memprintf(err, "%sunable to load chain certificate into SSL Context '%s'. Make sure you are linking against Openssl >= 1.0.2.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
#else
{ /* legacy compat (< openssl 1.0.2) */
X509 *ca;
STACK_OF(X509) *chain;
chain = X509_chain_up_ref(*find_chain);
while ((ca = sk_X509_shift(chain)))
if (!SSL_CTX_add_extra_chain_cert(ctx, ca)) {
memprintf(err, "%sunable to load chain certificate into SSL Context '%s'.\n",
err && *err ? *err : "", path);
X509_free(ca);
sk_X509_pop_free(chain, X509_free);
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
}
#endif
#ifdef SSL_CTX_build_cert_chain
/* remove the Root CA from the SSL_CTX if the option is activated */
if (global_ssl.skip_self_issued_ca) {
if (!SSL_CTX_build_cert_chain(ctx, SSL_BUILD_CHAIN_FLAG_NO_ROOT|SSL_BUILD_CHAIN_FLAG_UNTRUSTED|SSL_BUILD_CHAIN_FLAG_IGNORE_ERROR)) {
memprintf(err, "%sunable to load chain certificate into SSL Context '%s'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
}
#endif
end:
return errcode;
}
/* Loads the info in ckch into ctx
* Returns a bitfield containing the flags:
* ERR_FATAL in any fatal error case
* ERR_ALERT if the reason of the error is available in err
* ERR_WARN if a warning is available into err
* The value 0 means there is no error nor warning and
* the operation succeed.
*/
static int ssl_sock_put_ckch_into_ctx(const char *path, const struct cert_key_and_chain *ckch, SSL_CTX *ctx, char **err)
{
int errcode = 0;
STACK_OF(X509) *find_chain = NULL;
if (SSL_CTX_use_PrivateKey(ctx, ckch->key) <= 0) {
memprintf(err, "%sunable to load SSL private key into SSL Context '%s'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
return errcode;
}
/* Load certificate chain */
errcode |= ssl_sock_load_cert_chain(path, ckch, ctx, &find_chain, err);
if (errcode & ERR_CODE)
goto end;
#ifndef OPENSSL_NO_DH
/* store a NULL pointer to indicate we have not yet loaded
a custom DH param file */
if (ssl_dh_ptr_index >= 0) {
SSL_CTX_set_ex_data(ctx, ssl_dh_ptr_index, NULL);
}
errcode |= ssl_sock_load_dh_params(ctx, ckch, path, err);
if (errcode & ERR_CODE) {
memprintf(err, "%sunable to load DH parameters from file '%s'.\n",
err && *err ? *err : "", path);
goto end;
}
#endif
#ifdef HAVE_SSL_CTX_ADD_SERVER_CUSTOM_EXT
if (sctl_ex_index >= 0 && ckch->sctl) {
if (ssl_sock_load_sctl(ctx, ckch->sctl) < 0) {
memprintf(err, "%s '%s.sctl' is present but cannot be read or parsed'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
}
#endif
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) || defined OPENSSL_IS_BORINGSSL)
/* Load OCSP Info into context */
if (ckch->ocsp_response) {
if (ssl_sock_load_ocsp(ctx, ckch, find_chain) < 0) {
memprintf(err, "%s '%s.ocsp' is present and activates OCSP but it is impossible to compute the OCSP certificate ID (maybe the issuer could not be found)'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto end;
}
}
#endif
end:
return errcode;
}
/* Loads the info of a ckch built out of a backend certificate into an SSL ctx
* Returns a bitfield containing the flags:
* ERR_FATAL in any fatal error case
* ERR_ALERT if the reason of the error is available in err
* ERR_WARN if a warning is available into err
* The value 0 means there is no error nor warning and
* the operation succeed.
*/
static int ssl_sock_put_srv_ckch_into_ctx(const char *path, const struct cert_key_and_chain *ckch,
SSL_CTX *ctx, char **err)
{
int errcode = 0;
STACK_OF(X509) *find_chain = NULL;
/* Load the private key */
if (SSL_CTX_use_PrivateKey(ctx, ckch->key) <= 0) {
memprintf(err, "%sunable to load SSL private key into SSL Context '%s'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
}
/* Load certificate chain */
errcode |= ssl_sock_load_cert_chain(path, ckch, ctx, &find_chain, err);
if (errcode & ERR_CODE)
goto end;
if (SSL_CTX_check_private_key(ctx) <= 0) {
memprintf(err, "%sinconsistencies between private key and certificate loaded from PEM file '%s'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
}
end:
return errcode;
}
/*
* This function allocate a ckch_inst and create its snis
*
* Returns a bitfield containing the flags:
* ERR_FATAL in any fatal error case
* ERR_ALERT if the reason of the error is available in err
* ERR_WARN if a warning is available into err
*/
int ckch_inst_new_load_store(const char *path, struct ckch_store *ckchs, struct bind_conf *bind_conf,
struct ssl_bind_conf *ssl_conf, char **sni_filter, int fcount, struct ckch_inst **ckchi, char **err)
{
SSL_CTX *ctx;
int i;
int order = 0;
X509_NAME *xname;
char *str;
EVP_PKEY *pkey;
struct pkey_info kinfo = { .sig = TLSEXT_signature_anonymous, .bits = 0 };
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
STACK_OF(GENERAL_NAME) *names;
#endif
struct cert_key_and_chain *ckch;
struct ckch_inst *ckch_inst = NULL;
int errcode = 0;
*ckchi = NULL;
if (!ckchs || !ckchs->ckch)
return ERR_FATAL;
ckch = ckchs->ckch;
ctx = SSL_CTX_new(SSLv23_server_method());
if (!ctx) {
memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto error;
}
errcode |= ssl_sock_put_ckch_into_ctx(path, ckch, ctx, err);
if (errcode & ERR_CODE)
goto error;
ckch_inst = ckch_inst_new();
if (!ckch_inst) {
memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto error;
}
pkey = X509_get_pubkey(ckch->cert);
if (pkey) {
kinfo.bits = EVP_PKEY_bits(pkey);
switch(EVP_PKEY_base_id(pkey)) {
case EVP_PKEY_RSA:
kinfo.sig = TLSEXT_signature_rsa;
break;
case EVP_PKEY_EC:
kinfo.sig = TLSEXT_signature_ecdsa;
break;
case EVP_PKEY_DSA:
kinfo.sig = TLSEXT_signature_dsa;
break;
}
EVP_PKEY_free(pkey);
}
if (fcount) {
while (fcount--) {
order = ckch_inst_add_cert_sni(ctx, ckch_inst, bind_conf, ssl_conf, kinfo, sni_filter[fcount], order);
if (order < 0) {
memprintf(err, "%sunable to create a sni context.\n", err && *err ? *err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto error;
}
}
}
else {
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
names = X509_get_ext_d2i(ckch->cert, NID_subject_alt_name, NULL, NULL);
if (names) {
for (i = 0; i < sk_GENERAL_NAME_num(names); i++) {
GENERAL_NAME *name = sk_GENERAL_NAME_value(names, i);
if (name->type == GEN_DNS) {
if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) {
order = ckch_inst_add_cert_sni(ctx, ckch_inst, bind_conf, ssl_conf, kinfo, str, order);
OPENSSL_free(str);
if (order < 0) {
memprintf(err, "%sunable to create a sni context.\n", err && *err ? *err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto error;
}
}
}
}
sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free);
}
#endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */
xname = X509_get_subject_name(ckch->cert);
i = -1;
while ((i = X509_NAME_get_index_by_NID(xname, NID_commonName, i)) != -1) {
X509_NAME_ENTRY *entry = X509_NAME_get_entry(xname, i);
ASN1_STRING *value;
value = X509_NAME_ENTRY_get_data(entry);
if (ASN1_STRING_to_UTF8((unsigned char **)&str, value) >= 0) {
order = ckch_inst_add_cert_sni(ctx, ckch_inst, bind_conf, ssl_conf, kinfo, str, order);
OPENSSL_free(str);
if (order < 0) {
memprintf(err, "%sunable to create a sni context.\n", err && *err ? *err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto error;
}
}
}
}
/* we must not free the SSL_CTX anymore below, since it's already in
* the tree, so it will be discovered and cleaned in time.
*/
#ifndef SSL_CTRL_SET_TLSEXT_HOSTNAME
if (bind_conf->default_ctx) {
memprintf(err, "%sthis version of openssl cannot load multiple SSL certificates.\n",
err && *err ? *err : "");
errcode |= ERR_ALERT | ERR_FATAL;
goto error;
}
#endif
if (!bind_conf->default_ctx) {
bind_conf->default_ctx = ctx;
bind_conf->default_ssl_conf = ssl_conf;
ckch_inst->is_default = 1;
SSL_CTX_up_ref(ctx);
bind_conf->default_inst = ckch_inst;
}
/* Always keep a reference to the newly constructed SSL_CTX in the
* instance. This way if the instance has no SNIs, the SSL_CTX will
* still be linked. */
SSL_CTX_up_ref(ctx);
ckch_inst->ctx = ctx;
/* everything succeed, the ckch instance can be used */
ckch_inst->bind_conf = bind_conf;
ckch_inst->ssl_conf = ssl_conf;
ckch_inst->ckch_store = ckchs;
SSL_CTX_free(ctx); /* we need to free the ctx since we incremented the refcount where it's used */
*ckchi = ckch_inst;
return errcode;
error:
/* free the allocated sni_ctxs */
if (ckch_inst) {
if (ckch_inst->is_default)
SSL_CTX_free(ctx);
ckch_inst_free(ckch_inst);
ckch_inst = NULL;
}
SSL_CTX_free(ctx);
return errcode;
}
/*
* This function allocate a ckch_inst that will be used on the backend side
* (server line)
*
* Returns a bitfield containing the flags:
* ERR_FATAL in any fatal error case
* ERR_ALERT if the reason of the error is available in err
* ERR_WARN if a warning is available into err
*/
int ckch_inst_new_load_srv_store(const char *path, struct ckch_store *ckchs,
struct ckch_inst **ckchi, char **err)
{
SSL_CTX *ctx;
struct cert_key_and_chain *ckch;
struct ckch_inst *ckch_inst = NULL;
int errcode = 0;
*ckchi = NULL;
if (!ckchs || !ckchs->ckch)
return ERR_FATAL;
ckch = ckchs->ckch;
ctx = SSL_CTX_new(SSLv23_client_method());
if (!ctx) {
memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto error;
}
errcode |= ssl_sock_put_srv_ckch_into_ctx(path, ckch, ctx, err);
if (errcode & ERR_CODE)
goto error;
ckch_inst = ckch_inst_new();
if (!ckch_inst) {
memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n",
err && *err ? *err : "", path);
errcode |= ERR_ALERT | ERR_FATAL;
goto error;
}
/* everything succeed, the ckch instance can be used */
ckch_inst->bind_conf = NULL;
ckch_inst->ssl_conf = NULL;
ckch_inst->ckch_store = ckchs;
ckch_inst->ctx = ctx;
ckch_inst->is_server_instance = 1;
*ckchi = ckch_inst;
return errcode;
error:
SSL_CTX_free(ctx);
return errcode;
}
/* Returns a set of ERR_* flags possibly with an error in <err>. */
static int ssl_sock_load_ckchs(const char *path, struct ckch_store *ckchs,
struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf,
char **sni_filter, int fcount, struct ckch_inst **ckch_inst, char **err)
{
int errcode = 0;
/* we found the ckchs in the tree, we can use it directly */
errcode |= ckch_inst_new_load_store(path, ckchs, bind_conf, ssl_conf, sni_filter, fcount, ckch_inst, err);
if (errcode & ERR_CODE)
return errcode;
ssl_sock_load_cert_sni(*ckch_inst, bind_conf);
/* succeed, add the instance to the ckch_store's list of instance */
LIST_APPEND(&ckchs->ckch_inst, &((*ckch_inst)->by_ckchs));
return errcode;
}
/* This function generates a <struct ckch_inst *> for a <struct server *>, and
* fill the SSL_CTX of the server.
*
* Returns a set of ERR_* flags possibly with an error in <err>. */
static int ssl_sock_load_srv_ckchs(const char *path, struct ckch_store *ckchs,
struct server *server, struct ckch_inst **ckch_inst, char **err)
{
int errcode = 0;
/* we found the ckchs in the tree, we can use it directly */
errcode |= ckch_inst_new_load_srv_store(path, ckchs, ckch_inst, err);
if (errcode & ERR_CODE)
return errcode;
(*ckch_inst)->server = server;
/* Keep the reference to the SSL_CTX in the server. */
SSL_CTX_up_ref((*ckch_inst)->ctx);
server->ssl_ctx.ctx = (*ckch_inst)->ctx;
/* succeed, add the instance to the ckch_store's list of instance */
LIST_APPEND(&ckchs->ckch_inst, &((*ckch_inst)->by_ckchs));
return errcode;
}
/* Make sure openssl opens /dev/urandom before the chroot. The work is only
* done once. Zero is returned if the operation fails. No error is returned
* if the random is said as not implemented, because we expect that openssl
* will use another method once needed.
*/
int ssl_initialize_random(void)
{
unsigned char random;
static int random_initialized = 0;
if (!random_initialized && RAND_bytes(&random, 1) != 0)
random_initialized = 1;
return random_initialized;
}
/* Load a crt-list file, this is done in 2 parts:
* - store the content of the file in a crtlist structure with crtlist_entry structures
* - generate the instances by iterating on entries in the crtlist struct
*
* Nothing is locked there, this function is used in the configuration parser.
*
* Returns a set of ERR_* flags possibly with an error in <err>.
*/
int ssl_sock_load_cert_list_file(char *file, int dir, struct bind_conf *bind_conf, struct proxy *curproxy, char **err)
{
struct crtlist *crtlist = NULL;
struct ebmb_node *eb;
struct crtlist_entry *entry = NULL;
struct bind_conf_list *bind_conf_node = NULL;
int cfgerr = 0;
char *end;
bind_conf_node = malloc(sizeof(*bind_conf_node));
if (!bind_conf_node) {
memprintf(err, "%sCan't alloc memory!\n", err && *err ? *err : "");
cfgerr |= ERR_FATAL | ERR_ALERT;
goto error;
}
bind_conf_node->next = NULL;
bind_conf_node->bind_conf = bind_conf;
/* strip trailing slashes, including first one */
for (end = file + strlen(file) - 1; end >= file && *end == '/'; end--)
*end = 0;
/* look for an existing crtlist or create one */
eb = ebst_lookup(&crtlists_tree, file);
if (eb) {
crtlist = ebmb_entry(eb, struct crtlist, node);
} else {
/* load a crt-list OR a directory */
if (dir)
cfgerr |= crtlist_load_cert_dir(file, bind_conf, &crtlist, err);
else
cfgerr |= crtlist_parse_file(file, bind_conf, curproxy, &crtlist, err);
if (!(cfgerr & ERR_CODE))
ebst_insert(&crtlists_tree, &crtlist->node);
}
if (cfgerr & ERR_CODE) {
cfgerr |= ERR_FATAL | ERR_ALERT;
goto error;
}
/* generates ckch instance from the crtlist_entry */
list_for_each_entry(entry, &crtlist->ord_entries, by_crtlist) {
struct ckch_store *store;
struct ckch_inst *ckch_inst = NULL;
store = entry->node.key;
cfgerr |= ssl_sock_load_ckchs(store->path, store, bind_conf, entry->ssl_conf, entry->filters, entry->fcount, &ckch_inst, err);
if (cfgerr & ERR_CODE) {
memprintf(err, "error processing line %d in file '%s' : %s", entry->linenum, file, *err);
goto error;
}
LIST_APPEND(&entry->ckch_inst, &ckch_inst->by_crtlist_entry);
ckch_inst->crtlist_entry = entry;
}
/* add the bind_conf to the list */
bind_conf_node->next = crtlist->bind_conf;
crtlist->bind_conf = bind_conf_node;
return cfgerr;
error:
{
struct crtlist_entry *lastentry;
struct ckch_inst *inst, *s_inst;
lastentry = entry; /* which entry we tried to generate last */
if (lastentry) {
list_for_each_entry(entry, &crtlist->ord_entries, by_crtlist) {
if (entry == lastentry) /* last entry we tried to generate, no need to go further */
break;
list_for_each_entry_safe(inst, s_inst, &entry->ckch_inst, by_crtlist_entry) {
/* this was not generated for this bind_conf, skip */
if (inst->bind_conf != bind_conf)
continue;
/* free the sni_ctx and instance */
ckch_inst_free(inst);
}
}
}
free(bind_conf_node);
}
return cfgerr;
}
/* Returns a set of ERR_* flags possibly with an error in <err>. */
int ssl_sock_load_cert(char *path, struct bind_conf *bind_conf, char **err)
{
struct stat buf;
int cfgerr = 0;
struct ckch_store *ckchs;
struct ckch_inst *ckch_inst = NULL;
int found = 0; /* did we found a file to load ? */
if ((ckchs = ckchs_lookup(path))) {
/* we found the ckchs in the tree, we can use it directly */
cfgerr |= ssl_sock_load_ckchs(path, ckchs, bind_conf, NULL, NULL, 0, &ckch_inst, err);
found++;
} else if (stat(path, &buf) == 0) {
found++;
if (S_ISDIR(buf.st_mode) == 0) {
ckchs = ckchs_load_cert_file(path, err);
if (!ckchs)
cfgerr |= ERR_ALERT | ERR_FATAL;
cfgerr |= ssl_sock_load_ckchs(path, ckchs, bind_conf, NULL, NULL, 0, &ckch_inst, err);
} else {
cfgerr |= ssl_sock_load_cert_list_file(path, 1, bind_conf, bind_conf->frontend, err);
}
} else {
/* stat failed, could be a bundle */
if (global_ssl.extra_files & SSL_GF_BUNDLE) {
char fp[MAXPATHLEN+1] = {0};
int n = 0;
/* Load all possible certs and keys in separate ckch_store */
for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) {
struct stat buf;
int ret;
ret = snprintf(fp, sizeof(fp), "%s.%s", path, SSL_SOCK_KEYTYPE_NAMES[n]);
if (ret > sizeof(fp))
continue;
if ((ckchs = ckchs_lookup(fp))) {
cfgerr |= ssl_sock_load_ckchs(fp, ckchs, bind_conf, NULL, NULL, 0, &ckch_inst, err);
found++;
} else {
if (stat(fp, &buf) == 0) {
found++;
ckchs = ckchs_load_cert_file(fp, err);
if (!ckchs)
cfgerr |= ERR_ALERT | ERR_FATAL;
cfgerr |= ssl_sock_load_ckchs(fp, ckchs, bind_conf, NULL, NULL, 0, &ckch_inst, err);
}
}
}
#if HA_OPENSSL_VERSION_NUMBER < 0x10101000L
if (found) {
memprintf(err, "%sCan't load '%s'. Loading a multi certificates bundle requires OpenSSL >= 1.1.1\n",
err && *err ? *err : "", path);
cfgerr |= ERR_ALERT | ERR_FATAL;
}
#endif
}
}
if (!found) {
memprintf(err, "%sunable to stat SSL certificate from file '%s' : %s.\n",
err && *err ? *err : "", path, strerror(errno));
cfgerr |= ERR_ALERT | ERR_FATAL;
}
return cfgerr;
}
/* Create a full ssl context and ckch instance that will be used for a specific
* backend server (server configuration line).
* Returns a set of ERR_* flags possibly with an error in <err>.
*/
int ssl_sock_load_srv_cert(char *path, struct server *server, int create_if_none, char **err)
{
struct stat buf;
int cfgerr = 0;
struct ckch_store *ckchs;
int found = 0; /* did we found a file to load ? */
if ((ckchs = ckchs_lookup(path))) {
/* we found the ckchs in the tree, we can use it directly */
cfgerr |= ssl_sock_load_srv_ckchs(path, ckchs, server, &server->ssl_ctx.inst, err);
found++;
} else {
if (!create_if_none) {
memprintf(err, "%sunable to stat SSL certificate '%s'.\n",
err && *err ? *err : "", path);
cfgerr |= ERR_ALERT | ERR_FATAL;
goto out;
}
if (stat(path, &buf) == 0) {
/* We do not manage directories on backend side. */
if (S_ISDIR(buf.st_mode) == 0) {
++found;
ckchs = ckchs_load_cert_file(path, err);
if (!ckchs)
cfgerr |= ERR_ALERT | ERR_FATAL;
cfgerr |= ssl_sock_load_srv_ckchs(path, ckchs, server, &server->ssl_ctx.inst, err);
}
}
}
if (!found) {
memprintf(err, "%sunable to stat SSL certificate from file '%s' : %s.\n",
err && *err ? *err : "", path, strerror(errno));
cfgerr |= ERR_ALERT | ERR_FATAL;
}
out:
return cfgerr;
}
/* Create an initial CTX used to start the SSL connection before switchctx */
static int
ssl_sock_initial_ctx(struct bind_conf *bind_conf)
{
SSL_CTX *ctx = NULL;
long options =
SSL_OP_ALL | /* all known workarounds for bugs */
SSL_OP_NO_SSLv2 |
SSL_OP_NO_COMPRESSION |
SSL_OP_SINGLE_DH_USE |
SSL_OP_SINGLE_ECDH_USE |
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION |
SSL_OP_PRIORITIZE_CHACHA |
SSL_OP_CIPHER_SERVER_PREFERENCE;
long mode =
SSL_MODE_ENABLE_PARTIAL_WRITE |
SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER |
SSL_MODE_RELEASE_BUFFERS |
SSL_MODE_SMALL_BUFFERS;
struct tls_version_filter *conf_ssl_methods = &bind_conf->ssl_conf.ssl_methods;
int i, min, max, hole;
int flags = MC_SSL_O_ALL;
int cfgerr = 0;
const int default_min_ver = CONF_TLSV12;
ctx = SSL_CTX_new(SSLv23_server_method());
bind_conf->initial_ctx = ctx;
if (conf_ssl_methods->flags && (conf_ssl_methods->min || conf_ssl_methods->max))
ha_warning("Proxy '%s': no-sslv3/no-tlsv1x are ignored for bind '%s' at [%s:%d]. "
"Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n",
bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line);
else
flags = conf_ssl_methods->flags;
min = conf_ssl_methods->min;
max = conf_ssl_methods->max;
/* default minimum is TLSV12, */
if (!min) {
if (!max || (max >= default_min_ver)) {
min = default_min_ver;
} else {
ha_warning("Proxy '%s': Ambiguous configuration for bind '%s' at [%s:%d]: the ssl-min-ver value is not configured and the ssl-max-ver value is lower than the default ssl-min-ver value (%s). "
"Setting the ssl-min-ver to %s. Use 'ssl-min-ver' to fix this.\n",
bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line, methodVersions[default_min_ver].name, methodVersions[max].name);
min = max;
}
}
/* Real min and max should be determinate with configuration and openssl's capabilities */
if (min)
flags |= (methodVersions[min].flag - 1);
if (max)
flags |= ~((methodVersions[max].flag << 1) - 1);
/* find min, max and holes */
min = max = CONF_TLSV_NONE;
hole = 0;
for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++)
/* version is in openssl && version not disable in configuration */
if (methodVersions[i].option && !(flags & methodVersions[i].flag)) {
if (min) {
if (hole) {
ha_warning("Proxy '%s': SSL/TLS versions range not contiguous for bind '%s' at [%s:%d]. "
"Hole find for %s. Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n",
bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line,
methodVersions[hole].name);
hole = 0;
}
max = i;
}
else {
min = max = i;
}
}
else {
if (min)
hole = i;
}
if (!min) {
ha_alert("Proxy '%s': all SSL/TLS versions are disabled for bind '%s' at [%s:%d].\n",
bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr += 1;
}
/* save real min/max in bind_conf */
conf_ssl_methods->min = min;
conf_ssl_methods->max = max;
#if (HA_OPENSSL_VERSION_NUMBER < 0x1010000fL)
/* Keep force-xxx implementation as it is in older haproxy. It's a
precautionary measure to avoid any surprise with older openssl version. */
if (min == max)
methodVersions[min].ctx_set_version(ctx, SET_SERVER);
else
for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) {
/* clear every version flags in case SSL_CTX_new()
* returns an SSL_CTX with disabled versions */
SSL_CTX_clear_options(ctx, methodVersions[i].option);
if (flags & methodVersions[i].flag)
options |= methodVersions[i].option;
}
#else /* openssl >= 1.1.0 */
/* set the max_version is required to cap TLS version or activate new TLS (v1.3) */
methodVersions[min].ctx_set_version(ctx, SET_MIN);
methodVersions[max].ctx_set_version(ctx, SET_MAX);
#endif
if (bind_conf->ssl_options & BC_SSL_O_NO_TLS_TICKETS)
options |= SSL_OP_NO_TICKET;
if (bind_conf->ssl_options & BC_SSL_O_PREF_CLIE_CIPH)
options &= ~SSL_OP_CIPHER_SERVER_PREFERENCE;
#ifdef SSL_OP_NO_RENEGOTIATION
options |= SSL_OP_NO_RENEGOTIATION;
#endif
SSL_CTX_set_options(ctx, options);
#ifdef SSL_MODE_ASYNC
if (global_ssl.async)
mode |= SSL_MODE_ASYNC;
#endif
SSL_CTX_set_mode(ctx, mode);
if (global_ssl.life_time)
SSL_CTX_set_timeout(ctx, global_ssl.life_time);
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
#ifdef OPENSSL_IS_BORINGSSL
SSL_CTX_set_select_certificate_cb(ctx, ssl_sock_switchctx_cbk);
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk);
#elif defined(SSL_OP_NO_ANTI_REPLAY)
if (bind_conf->ssl_conf.early_data)
SSL_CTX_set_options(ctx, SSL_OP_NO_ANTI_REPLAY);
SSL_CTX_set_client_hello_cb(ctx, ssl_sock_switchctx_cbk, NULL);
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk);
#else
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_cbk);
#endif
SSL_CTX_set_tlsext_servername_arg(ctx, bind_conf);
#endif
return cfgerr;
}
static inline void sh_ssl_sess_free_blocks(struct shared_block *first, struct shared_block *block)
{
if (first == block) {
struct sh_ssl_sess_hdr *sh_ssl_sess = (struct sh_ssl_sess_hdr *)first->data;
if (first->len > 0)
sh_ssl_sess_tree_delete(sh_ssl_sess);
}
}
/* return first block from sh_ssl_sess */
static inline struct shared_block *sh_ssl_sess_first_block(struct sh_ssl_sess_hdr *sh_ssl_sess)
{
return (struct shared_block *)((unsigned char *)sh_ssl_sess - ((struct shared_block *)NULL)->data);
}
/* store a session into the cache
* s_id : session id padded with zero to SSL_MAX_SSL_SESSION_ID_LENGTH
* data: asn1 encoded session
* data_len: asn1 encoded session length
* Returns 1 id session was stored (else 0)
*/
static int sh_ssl_sess_store(unsigned char *s_id, unsigned char *data, int data_len)
{
struct shared_block *first;
struct sh_ssl_sess_hdr *sh_ssl_sess, *oldsh_ssl_sess;
first = shctx_row_reserve_hot(ssl_shctx, NULL, data_len + sizeof(struct sh_ssl_sess_hdr));
if (!first) {
/* Could not retrieve enough free blocks to store that session */
return 0;
}
/* STORE the key in the first elem */
sh_ssl_sess = (struct sh_ssl_sess_hdr *)first->data;
memcpy(sh_ssl_sess->key_data, s_id, SSL_MAX_SSL_SESSION_ID_LENGTH);
first->len = sizeof(struct sh_ssl_sess_hdr);
/* it returns the already existing node
or current node if none, never returns null */
oldsh_ssl_sess = sh_ssl_sess_tree_insert(sh_ssl_sess);
if (oldsh_ssl_sess != sh_ssl_sess) {
/* NOTE: Row couldn't be in use because we lock read & write function */
/* release the reserved row */
shctx_row_dec_hot(ssl_shctx, first);
/* replace the previous session already in the tree */
sh_ssl_sess = oldsh_ssl_sess;
/* ignore the previous session data, only use the header */
first = sh_ssl_sess_first_block(sh_ssl_sess);
shctx_row_inc_hot(ssl_shctx, first);
first->len = sizeof(struct sh_ssl_sess_hdr);
}
if (shctx_row_data_append(ssl_shctx, first, NULL, data, data_len) < 0) {
shctx_row_dec_hot(ssl_shctx, first);
return 0;
}
shctx_row_dec_hot(ssl_shctx, first);
return 1;
}
/* SSL callback used when a new session is created while connecting to a server */
static int ssl_sess_new_srv_cb(SSL *ssl, SSL_SESSION *sess)
{
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
struct server *s;
s = __objt_server(conn->target);
/* RWLOCK: only read lock the SSL cache even when writing in it because there is
* one cache per thread, it only prevents to flush it from the CLI in
* another thread */
if (!(s->ssl_ctx.options & SRV_SSL_O_NO_REUSE)) {
int len;
unsigned char *ptr;
const char *sni;
len = i2d_SSL_SESSION(sess, NULL);
sni = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
HA_RWLOCK_RDLOCK(SSL_SERVER_LOCK, &s->ssl_ctx.lock);
if (s->ssl_ctx.reused_sess[tid].ptr && s->ssl_ctx.reused_sess[tid].allocated_size >= len) {
ptr = s->ssl_ctx.reused_sess[tid].ptr;
} else {
ptr = realloc(s->ssl_ctx.reused_sess[tid].ptr, len);
s->ssl_ctx.reused_sess[tid].ptr = ptr;
s->ssl_ctx.reused_sess[tid].allocated_size = len;
}
if (s->ssl_ctx.reused_sess[tid].ptr) {
s->ssl_ctx.reused_sess[tid].size = i2d_SSL_SESSION(sess,
&ptr);
}
if (s->ssl_ctx.reused_sess[tid].sni) {
/* if the new sni is empty or isn' t the same as the old one */
if ((!sni) || strcmp(s->ssl_ctx.reused_sess[tid].sni, sni) != 0) {
ha_free(&s->ssl_ctx.reused_sess[tid].sni);
if (sni)
s->ssl_ctx.reused_sess[tid].sni = strdup(sni);
}
} else if (sni) {
/* if there wasn't an old sni but there is a new one */
s->ssl_ctx.reused_sess[tid].sni = strdup(sni);
}
HA_RWLOCK_RDUNLOCK(SSL_SERVER_LOCK, &s->ssl_ctx.lock);
} else {
HA_RWLOCK_RDLOCK(SSL_SERVER_LOCK, &s->ssl_ctx.lock);
ha_free(&s->ssl_ctx.reused_sess[tid].ptr);
HA_RWLOCK_RDUNLOCK(SSL_SERVER_LOCK, &s->ssl_ctx.lock);
}
return 0;
}
/* SSL callback used on new session creation */
int sh_ssl_sess_new_cb(SSL *ssl, SSL_SESSION *sess)
{
unsigned char encsess[SHSESS_MAX_DATA_LEN]; /* encoded session */
unsigned char encid[SSL_MAX_SSL_SESSION_ID_LENGTH]; /* encoded id */
unsigned char *p;
int data_len;
unsigned int sid_length;
const unsigned char *sid_data;
/* Session id is already stored in to key and session id is known
* so we don't store it to keep size.
* note: SSL_SESSION_set1_id is using
* a memcpy so we need to use a different pointer
* than sid_data or sid_ctx_data to avoid valgrind
* complaining.
*/
sid_data = SSL_SESSION_get_id(sess, &sid_length);
/* copy value in an other buffer */
memcpy(encid, sid_data, sid_length);
/* pad with 0 */
if (sid_length < SSL_MAX_SSL_SESSION_ID_LENGTH)
memset(encid + sid_length, 0, SSL_MAX_SSL_SESSION_ID_LENGTH-sid_length);
/* force length to zero to avoid ASN1 encoding */
SSL_SESSION_set1_id(sess, encid, 0);
/* force length to zero to avoid ASN1 encoding */
SSL_SESSION_set1_id_context(sess, (const unsigned char *)SHCTX_APPNAME, 0);
/* check if buffer is large enough for the ASN1 encoded session */
data_len = i2d_SSL_SESSION(sess, NULL);
if (data_len > SHSESS_MAX_DATA_LEN)
goto err;
p = encsess;
/* process ASN1 session encoding before the lock */
i2d_SSL_SESSION(sess, &p);
shctx_lock(ssl_shctx);
/* store to cache */
sh_ssl_sess_store(encid, encsess, data_len);
shctx_unlock(ssl_shctx);
err:
/* reset original length values */
SSL_SESSION_set1_id(sess, encid, sid_length);
SSL_SESSION_set1_id_context(sess, (const unsigned char *)SHCTX_APPNAME, strlen(SHCTX_APPNAME));
return 0; /* do not increment session reference count */
}
/* SSL callback used on lookup an existing session cause none found in internal cache */
SSL_SESSION *sh_ssl_sess_get_cb(SSL *ssl, __OPENSSL_110_CONST__ unsigned char *key, int key_len, int *do_copy)
{
struct sh_ssl_sess_hdr *sh_ssl_sess;
unsigned char data[SHSESS_MAX_DATA_LEN], *p;
unsigned char tmpkey[SSL_MAX_SSL_SESSION_ID_LENGTH];
SSL_SESSION *sess;
struct shared_block *first;
_HA_ATOMIC_INC(&global.shctx_lookups);
/* allow the session to be freed automatically by openssl */
*do_copy = 0;
/* tree key is zeros padded sessionid */
if (key_len < SSL_MAX_SSL_SESSION_ID_LENGTH) {
memcpy(tmpkey, key, key_len);
memset(tmpkey + key_len, 0, SSL_MAX_SSL_SESSION_ID_LENGTH - key_len);
key = tmpkey;
}
/* lock cache */
shctx_lock(ssl_shctx);
/* lookup for session */
sh_ssl_sess = sh_ssl_sess_tree_lookup(key);
if (!sh_ssl_sess) {
/* no session found: unlock cache and exit */
shctx_unlock(ssl_shctx);
_HA_ATOMIC_INC(&global.shctx_misses);
return NULL;
}
/* sh_ssl_sess (shared_block->data) is at the end of shared_block */
first = sh_ssl_sess_first_block(sh_ssl_sess);
shctx_row_data_get(ssl_shctx, first, data, sizeof(struct sh_ssl_sess_hdr), first->len-sizeof(struct sh_ssl_sess_hdr));
shctx_unlock(ssl_shctx);
/* decode ASN1 session */
p = data;
sess = d2i_SSL_SESSION(NULL, (const unsigned char **)&p, first->len-sizeof(struct sh_ssl_sess_hdr));
/* Reset session id and session id contenxt */
if (sess) {
SSL_SESSION_set1_id(sess, key, key_len);
SSL_SESSION_set1_id_context(sess, (const unsigned char *)SHCTX_APPNAME, strlen(SHCTX_APPNAME));
}
return sess;
}
/* SSL callback used to signal session is no more used in internal cache */
void sh_ssl_sess_remove_cb(SSL_CTX *ctx, SSL_SESSION *sess)
{
struct sh_ssl_sess_hdr *sh_ssl_sess;
unsigned char tmpkey[SSL_MAX_SSL_SESSION_ID_LENGTH];
unsigned int sid_length;
const unsigned char *sid_data;
(void)ctx;
sid_data = SSL_SESSION_get_id(sess, &sid_length);
/* tree key is zeros padded sessionid */
if (sid_length < SSL_MAX_SSL_SESSION_ID_LENGTH) {
memcpy(tmpkey, sid_data, sid_length);
memset(tmpkey+sid_length, 0, SSL_MAX_SSL_SESSION_ID_LENGTH - sid_length);
sid_data = tmpkey;
}
shctx_lock(ssl_shctx);
/* lookup for session */
sh_ssl_sess = sh_ssl_sess_tree_lookup(sid_data);
if (sh_ssl_sess) {
/* free session */
sh_ssl_sess_tree_delete(sh_ssl_sess);
}
/* unlock cache */
shctx_unlock(ssl_shctx);
}
/* Set session cache mode to server and disable openssl internal cache.
* Set shared cache callbacks on an ssl context.
* Shared context MUST be firstly initialized */
void ssl_set_shctx(SSL_CTX *ctx)
{
SSL_CTX_set_session_id_context(ctx, (const unsigned char *)SHCTX_APPNAME, strlen(SHCTX_APPNAME));
if (!ssl_shctx) {
SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_OFF);
return;
}
SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_SERVER |
SSL_SESS_CACHE_NO_INTERNAL |
SSL_SESS_CACHE_NO_AUTO_CLEAR);
/* Set callbacks */
SSL_CTX_sess_set_new_cb(ctx, sh_ssl_sess_new_cb);
SSL_CTX_sess_set_get_cb(ctx, sh_ssl_sess_get_cb);
SSL_CTX_sess_set_remove_cb(ctx, sh_ssl_sess_remove_cb);
}
/*
* https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
*
* The format is:
* * <Label> <space> <ClientRandom> <space> <Secret>
* We only need to copy the secret as there is a sample fetch for the ClientRandom
*/
#ifdef HAVE_SSL_KEYLOG
void SSL_CTX_keylog(const SSL *ssl, const char *line)
{
struct ssl_keylog *keylog;
char *lastarg = NULL;
char *dst = NULL;
keylog = SSL_get_ex_data(ssl, ssl_keylog_index);
if (!keylog)
return;
lastarg = strrchr(line, ' ');
if (lastarg == NULL || ++lastarg == NULL)
return;
dst = pool_alloc(pool_head_ssl_keylog_str);
if (!dst)
return;
strncpy(dst, lastarg, SSL_KEYLOG_MAX_SECRET_SIZE-1);
dst[SSL_KEYLOG_MAX_SECRET_SIZE-1] = '\0';
if (strncmp(line, "CLIENT_RANDOM ", strlen("CLIENT RANDOM ")) == 0) {
if (keylog->client_random)
goto error;
keylog->client_random = dst;
} else if (strncmp(line, "CLIENT_EARLY_TRAFFIC_SECRET ", strlen("CLIENT_EARLY_TRAFFIC_SECRET ")) == 0) {
if (keylog->client_early_traffic_secret)
goto error;
keylog->client_early_traffic_secret = dst;
} else if (strncmp(line, "CLIENT_HANDSHAKE_TRAFFIC_SECRET ", strlen("CLIENT_HANDSHAKE_TRAFFIC_SECRET ")) == 0) {
if(keylog->client_handshake_traffic_secret)
goto error;
keylog->client_handshake_traffic_secret = dst;
} else if (strncmp(line, "SERVER_HANDSHAKE_TRAFFIC_SECRET ", strlen("SERVER_HANDSHAKE_TRAFFIC_SECRET ")) == 0) {
if (keylog->server_handshake_traffic_secret)
goto error;
keylog->server_handshake_traffic_secret = dst;
} else if (strncmp(line, "CLIENT_TRAFFIC_SECRET_0 ", strlen("CLIENT_TRAFFIC_SECRET_0 ")) == 0) {
if (keylog->client_traffic_secret_0)
goto error;
keylog->client_traffic_secret_0 = dst;
} else if (strncmp(line, "SERVER_TRAFFIC_SECRET_0 ", strlen("SERVER_TRAFFIC_SECRET_0 ")) == 0) {
if (keylog->server_traffic_secret_0)
goto error;
keylog->server_traffic_secret_0 = dst;
} else if (strncmp(line, "EARLY_EXPORTER_SECRET ", strlen("EARLY_EXPORTER_SECRET ")) == 0) {
if (keylog->early_exporter_secret)
goto error;
keylog->early_exporter_secret = dst;
} else if (strncmp(line, "EXPORTER_SECRET ", strlen("EXPORTER_SECRET ")) == 0) {
if (keylog->exporter_secret)
goto error;
keylog->exporter_secret = dst;
} else {
goto error;
}
return;
error:
pool_free(pool_head_ssl_keylog_str, dst);
return;
}
#endif
/*
* This function applies the SSL configuration on a SSL_CTX
* It returns an error code and fills the <err> buffer
*/
static int ssl_sock_prepare_ctx(struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, SSL_CTX *ctx, char **err)
{
struct proxy *curproxy = bind_conf->frontend;
int cfgerr = 0;
int verify = SSL_VERIFY_NONE;
struct ssl_bind_conf __maybe_unused *ssl_conf_cur;
const char *conf_ciphers;
#ifdef HAVE_SSL_CTX_SET_CIPHERSUITES
const char *conf_ciphersuites;
#endif
const char *conf_curves = NULL;
if (ssl_conf) {
struct tls_version_filter *conf_ssl_methods = &ssl_conf->ssl_methods;
int i, min, max;
int flags = MC_SSL_O_ALL;
/* Real min and max should be determinate with configuration and openssl's capabilities */
min = conf_ssl_methods->min ? conf_ssl_methods->min : bind_conf->ssl_conf.ssl_methods.min;
max = conf_ssl_methods->max ? conf_ssl_methods->max : bind_conf->ssl_conf.ssl_methods.max;
if (min)
flags |= (methodVersions[min].flag - 1);
if (max)
flags |= ~((methodVersions[max].flag << 1) - 1);
min = max = CONF_TLSV_NONE;
for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++)
if (methodVersions[i].option && !(flags & methodVersions[i].flag)) {
if (min)
max = i;
else
min = max = i;
}
/* save real min/max */
conf_ssl_methods->min = min;
conf_ssl_methods->max = max;
if (!min) {
memprintf(err, "%sProxy '%s': all SSL/TLS versions are disabled for bind '%s' at [%s:%d].\n",
err && *err ? *err : "", bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr |= ERR_ALERT | ERR_FATAL;
}
}
switch ((ssl_conf && ssl_conf->verify) ? ssl_conf->verify : bind_conf->ssl_conf.verify) {
case SSL_SOCK_VERIFY_NONE:
verify = SSL_VERIFY_NONE;
break;
case SSL_SOCK_VERIFY_OPTIONAL:
verify = SSL_VERIFY_PEER;
break;
case SSL_SOCK_VERIFY_REQUIRED:
verify = SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT;
break;
}
SSL_CTX_set_verify(ctx, verify, ssl_sock_bind_verifycbk);
if (verify & SSL_VERIFY_PEER) {
char *ca_file = (ssl_conf && ssl_conf->ca_file) ? ssl_conf->ca_file : bind_conf->ssl_conf.ca_file;
char *ca_verify_file = (ssl_conf && ssl_conf->ca_verify_file) ? ssl_conf->ca_verify_file : bind_conf->ssl_conf.ca_verify_file;
char *crl_file = (ssl_conf && ssl_conf->crl_file) ? ssl_conf->crl_file : bind_conf->ssl_conf.crl_file;
if (ca_file || ca_verify_file) {
/* set CAfile to verify */
if (ca_file && !ssl_set_verify_locations_file(ctx, ca_file)) {
memprintf(err, "%sProxy '%s': unable to set CA file '%s' for bind '%s' at [%s:%d].\n",
err && *err ? *err : "", curproxy->id, ca_file, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr |= ERR_ALERT | ERR_FATAL;
}
if (ca_verify_file && !ssl_set_verify_locations_file(ctx, ca_verify_file)) {
memprintf(err, "%sProxy '%s': unable to set CA-no-names file '%s' for bind '%s' at [%s:%d].\n",
err && *err ? *err : "", curproxy->id, ca_verify_file, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr |= ERR_ALERT | ERR_FATAL;
}
if (ca_file && !((ssl_conf && ssl_conf->no_ca_names) || bind_conf->ssl_conf.no_ca_names)) {
/* set CA names for client cert request, function returns void */
SSL_CTX_set_client_CA_list(ctx, SSL_dup_CA_list(ssl_get_client_ca_file(ca_file)));
}
}
else {
memprintf(err, "%sProxy '%s': verify is enabled but no CA file specified for bind '%s' at [%s:%d].\n",
err && *err ? *err : "", curproxy->id, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr |= ERR_ALERT | ERR_FATAL;
}
#ifdef X509_V_FLAG_CRL_CHECK
if (crl_file) {
X509_STORE *store = SSL_CTX_get_cert_store(ctx);
if (!ssl_set_cert_crl_file(store, crl_file)) {
memprintf(err, "%sProxy '%s': unable to configure CRL file '%s' for bind '%s' at [%s:%d].\n",
err && *err ? *err : "", curproxy->id, crl_file, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr |= ERR_ALERT | ERR_FATAL;
}
else {
X509_STORE_set_flags(store, X509_V_FLAG_CRL_CHECK|X509_V_FLAG_CRL_CHECK_ALL);
}
}
#endif
ERR_clear_error();
}
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
if(bind_conf->keys_ref) {
if (!SSL_CTX_set_tlsext_ticket_key_evp_cb(ctx, ssl_tlsext_ticket_key_cb)) {
memprintf(err, "%sProxy '%s': unable to set callback for TLS ticket validation for bind '%s' at [%s:%d].\n",
err && *err ? *err : "", curproxy->id, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr |= ERR_ALERT | ERR_FATAL;
}
}
#endif
ssl_set_shctx(ctx);
conf_ciphers = (ssl_conf && ssl_conf->ciphers) ? ssl_conf->ciphers : bind_conf->ssl_conf.ciphers;
if (conf_ciphers &&
!SSL_CTX_set_cipher_list(ctx, conf_ciphers)) {
memprintf(err, "%sProxy '%s': unable to set SSL cipher list to '%s' for bind '%s' at [%s:%d].\n",
err && *err ? *err : "", curproxy->id, conf_ciphers, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr |= ERR_ALERT | ERR_FATAL;
}
#ifdef HAVE_SSL_CTX_SET_CIPHERSUITES
conf_ciphersuites = (ssl_conf && ssl_conf->ciphersuites) ? ssl_conf->ciphersuites : bind_conf->ssl_conf.ciphersuites;
if (conf_ciphersuites &&
!SSL_CTX_set_ciphersuites(ctx, conf_ciphersuites)) {
memprintf(err, "%sProxy '%s': unable to set TLS 1.3 cipher suites to '%s' for bind '%s' at [%s:%d].\n",
err && *err ? *err : "", curproxy->id, conf_ciphersuites, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr |= ERR_ALERT | ERR_FATAL;
}
#endif
#ifndef OPENSSL_NO_DH
if (!local_dh_1024)
local_dh_1024 = ssl_get_dh_1024();
if (!local_dh_2048)
local_dh_2048 = ssl_get_dh_2048();
if (!local_dh_4096)
local_dh_4096 = ssl_get_dh_4096();
#endif /* OPENSSL_NO_DH */
SSL_CTX_set_info_callback(ctx, ssl_sock_infocbk);
#ifdef SSL_CTRL_SET_MSG_CALLBACK
SSL_CTX_set_msg_callback(ctx, ssl_sock_msgcbk);
#endif
#ifdef HAVE_SSL_KEYLOG
SSL_CTX_set_keylog_callback(ctx, SSL_CTX_keylog);
#endif
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
ssl_conf_cur = NULL;
if (ssl_conf && ssl_conf->npn_str)
ssl_conf_cur = ssl_conf;
else if (bind_conf->ssl_conf.npn_str)
ssl_conf_cur = &bind_conf->ssl_conf;
if (ssl_conf_cur)
SSL_CTX_set_next_protos_advertised_cb(ctx, ssl_sock_advertise_npn_protos, ssl_conf_cur);
#endif
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
ssl_conf_cur = NULL;
if (ssl_conf && ssl_conf->alpn_str)
ssl_conf_cur = ssl_conf;
else if (bind_conf->ssl_conf.alpn_str)
ssl_conf_cur = &bind_conf->ssl_conf;
if (ssl_conf_cur)
SSL_CTX_set_alpn_select_cb(ctx, ssl_sock_advertise_alpn_protos, ssl_conf_cur);
#endif
#if defined(SSL_CTX_set1_curves_list)
conf_curves = (ssl_conf && ssl_conf->curves) ? ssl_conf->curves : bind_conf->ssl_conf.curves;
if (conf_curves) {
if (!SSL_CTX_set1_curves_list(ctx, conf_curves)) {
memprintf(err, "%sProxy '%s': unable to set SSL curves list to '%s' for bind '%s' at [%s:%d].\n",
err && *err ? *err : "", curproxy->id, conf_curves, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr |= ERR_ALERT | ERR_FATAL;
}
(void)SSL_CTX_set_ecdh_auto(ctx, 1);
}
#endif /* defined(SSL_CTX_set1_curves_list) */
if (!conf_curves) {
#if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
#if defined(SSL_CTX_set1_curves_list)
const char *ecdhe = (ssl_conf && ssl_conf->ecdhe) ? ssl_conf->ecdhe :
(bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe :
NULL);
if (ecdhe && SSL_CTX_set1_curves_list(ctx, ecdhe) == 0) {
memprintf(err, "%sProxy '%s': unable to set elliptic named curve to '%s' for bind '%s' at [%s:%d].\n",
err && *err ? *err : "", curproxy->id, ecdhe, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr |= ERR_ALERT | ERR_FATAL;
}
#endif /* defined(SSL_CTX_set1_curves_list) */
#else
#if defined(SSL_CTX_set_tmp_ecdh) && !defined(OPENSSL_NO_ECDH)
int i;
EC_KEY *ecdh;
const char *ecdhe = (ssl_conf && ssl_conf->ecdhe) ? ssl_conf->ecdhe :
(bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe :
ECDHE_DEFAULT_CURVE);
i = OBJ_sn2nid(ecdhe);
if (!i || ((ecdh = EC_KEY_new_by_curve_name(i)) == NULL)) {
memprintf(err, "%sProxy '%s': unable to set elliptic named curve to '%s' for bind '%s' at [%s:%d].\n",
err && *err ? *err : "", curproxy->id, ecdhe, bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr |= ERR_ALERT | ERR_FATAL;
}
else {
SSL_CTX_set_tmp_ecdh(ctx, ecdh);
EC_KEY_free(ecdh);
}
#endif /* defined(SSL_CTX_set_tmp_ecdh) && !defined(OPENSSL_NO_ECDH) */
#endif /* HA_OPENSSL_VERSION_NUMBER >= 0x10101000L */
}
return cfgerr;
}
/*
* Prepare the SSL_CTX based on the bind line configuration.
* Since the CA file loading is made depending on the verify option of the bind
* line, the link between the SSL_CTX and the CA file tree entry is made here.
* If we want to create a link between the CA file entry and the corresponding
* ckch instance (for CA file hot update), it needs to be done after
* ssl_sock_prepare_ctx.
* Returns 0 in case of success.
*/
int ssl_sock_prep_ctx_and_inst(struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf,
SSL_CTX *ctx, struct ckch_inst *ckch_inst, char **err)
{
int errcode = 0;
errcode |= ssl_sock_prepare_ctx(bind_conf, ssl_conf, ctx, err);
if (!errcode && ckch_inst)
ckch_inst_add_cafile_link(ckch_inst, bind_conf, ssl_conf, NULL);
return errcode;
}
static int ssl_sock_srv_hostcheck(const char *pattern, const char *hostname)
{
const char *pattern_wildcard, *pattern_left_label_end, *hostname_left_label_end;
size_t prefixlen, suffixlen;
/* Trivial case */
if (strcasecmp(pattern, hostname) == 0)
return 1;
/* The rest of this logic is based on RFC 6125, section 6.4.3
* (http://tools.ietf.org/html/rfc6125#section-6.4.3) */
pattern_wildcard = NULL;
pattern_left_label_end = pattern;
while (*pattern_left_label_end != '.') {
switch (*pattern_left_label_end) {
case 0:
/* End of label not found */
return 0;
case '*':
/* If there is more than one wildcards */
if (pattern_wildcard)
return 0;
pattern_wildcard = pattern_left_label_end;
break;
}
pattern_left_label_end++;
}
/* If it's not trivial and there is no wildcard, it can't
* match */
if (!pattern_wildcard)
return 0;
/* Make sure all labels match except the leftmost */
hostname_left_label_end = strchr(hostname, '.');
if (!hostname_left_label_end
|| strcasecmp(pattern_left_label_end, hostname_left_label_end) != 0)
return 0;
/* Make sure the leftmost label of the hostname is long enough
* that the wildcard can match */
if (hostname_left_label_end - hostname < (pattern_left_label_end - pattern) - 1)
return 0;
/* Finally compare the string on either side of the
* wildcard */
prefixlen = pattern_wildcard - pattern;
suffixlen = pattern_left_label_end - (pattern_wildcard + 1);
if ((prefixlen && (strncasecmp(pattern, hostname, prefixlen) != 0))
|| (suffixlen && (strncasecmp(pattern_wildcard + 1, hostname_left_label_end - suffixlen, suffixlen) != 0)))
return 0;
return 1;
}
static int ssl_sock_srv_verifycbk(int ok, X509_STORE_CTX *ctx)
{
SSL *ssl;
struct connection *conn;
struct ssl_sock_ctx *ssl_ctx;
const char *servername;
const char *sni;
int depth;
X509 *cert;
STACK_OF(GENERAL_NAME) *alt_names;
int i;
X509_NAME *cert_subject;
char *str;
if (ok == 0)
return ok;
ssl = X509_STORE_CTX_get_ex_data(ctx, SSL_get_ex_data_X509_STORE_CTX_idx());
conn = SSL_get_ex_data(ssl, ssl_app_data_index);
ssl_ctx = __conn_get_ssl_sock_ctx(conn);
/* We're checking if the provided hostnames match the desired one. The
* desired hostname comes from the SNI we presented if any, or if not
* provided then it may have been explicitly stated using a "verifyhost"
* directive. If neither is set, we don't care about the name so the
* verification is OK.
*/
servername = SSL_get_servername(ssl_ctx->ssl, TLSEXT_NAMETYPE_host_name);
sni = servername;
if (!servername) {
servername = __objt_server(conn->target)->ssl_ctx.verify_host;
if (!servername)
return ok;
}
/* We only need to verify the CN on the actual server cert,
* not the indirect CAs */
depth = X509_STORE_CTX_get_error_depth(ctx);
if (depth != 0)
return ok;
/* At this point, the cert is *not* OK unless we can find a
* hostname match */
ok = 0;
cert = X509_STORE_CTX_get_current_cert(ctx);
/* It seems like this might happen if verify peer isn't set */
if (!cert)
return ok;
alt_names = X509_get_ext_d2i(cert, NID_subject_alt_name, NULL, NULL);
if (alt_names) {
for (i = 0; !ok && i < sk_GENERAL_NAME_num(alt_names); i++) {
GENERAL_NAME *name = sk_GENERAL_NAME_value(alt_names, i);
if (name->type == GEN_DNS) {
#if HA_OPENSSL_VERSION_NUMBER < 0x00907000L
if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.ia5) >= 0) {
#else
if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) {
#endif
ok = ssl_sock_srv_hostcheck(str, servername);
OPENSSL_free(str);
}
}
}
sk_GENERAL_NAME_pop_free(alt_names, GENERAL_NAME_free);
}
cert_subject = X509_get_subject_name(cert);
i = -1;
while (!ok && (i = X509_NAME_get_index_by_NID(cert_subject, NID_commonName, i)) != -1) {
X509_NAME_ENTRY *entry = X509_NAME_get_entry(cert_subject, i);
ASN1_STRING *value;
value = X509_NAME_ENTRY_get_data(entry);
if (ASN1_STRING_to_UTF8((unsigned char **)&str, value) >= 0) {
ok = ssl_sock_srv_hostcheck(str, servername);
OPENSSL_free(str);
}
}
/* report the mismatch and indicate if SNI was used or not */
if (!ok && !conn->err_code)
conn->err_code = sni ? CO_ER_SSL_MISMATCH_SNI : CO_ER_SSL_MISMATCH;
return ok;
}
/* prepare ssl context from servers options. Returns an error count */
int ssl_sock_prepare_srv_ctx(struct server *srv)
{
int cfgerr = 0;
SSL_CTX *ctx;
/* Automatic memory computations need to know we use SSL there */
global.ssl_used_backend = 1;
/* Initiate SSL context for current server */
if (!srv->ssl_ctx.reused_sess) {
if ((srv->ssl_ctx.reused_sess = calloc(1, global.nbthread*sizeof(*srv->ssl_ctx.reused_sess))) == NULL) {
ha_alert("out of memory.\n");
cfgerr++;
return cfgerr;
}
}
if (srv->use_ssl == 1)
srv->xprt = &ssl_sock;
if (srv->ssl_ctx.client_crt) {
const int create_if_none = srv->flags & SRV_F_DYNAMIC ? 0 : 1;
char *err = NULL;
int err_code = 0;
/* If there is a crt keyword there, the SSL_CTX will be created here. */
err_code = ssl_sock_load_srv_cert(srv->ssl_ctx.client_crt, srv, create_if_none, &err);
if (err_code != ERR_NONE) {
if ((err_code & ERR_WARN) && !(err_code & ERR_ALERT))
ha_warning("%s", err);
else
ha_alert("%s", err);
if (err_code & (ERR_FATAL|ERR_ABORT))
cfgerr++;
}
ha_free(&err);
}
ctx = srv->ssl_ctx.ctx;
/* The context will be uninitialized if there wasn't any "cert" option
* in the server line. */
if (!ctx) {
ctx = SSL_CTX_new(SSLv23_client_method());
if (!ctx) {
ha_alert("unable to allocate ssl context.\n");
cfgerr++;
return cfgerr;
}
srv->ssl_ctx.ctx = ctx;
}
cfgerr += ssl_sock_prep_srv_ctx_and_inst(srv, srv->ssl_ctx.ctx, srv->ssl_ctx.inst);
return cfgerr;
}
/* Initialize an SSL context that will be used on the backend side.
* Returns an error count.
*/
static int ssl_sock_prepare_srv_ssl_ctx(const struct server *srv, SSL_CTX *ctx)
{
struct proxy *curproxy = srv->proxy;
int cfgerr = 0;
long options =
SSL_OP_ALL | /* all known workarounds for bugs */
SSL_OP_NO_SSLv2 |
SSL_OP_NO_COMPRESSION;
long mode =
SSL_MODE_ENABLE_PARTIAL_WRITE |
SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER |
SSL_MODE_RELEASE_BUFFERS |
SSL_MODE_SMALL_BUFFERS;
int verify = SSL_VERIFY_NONE;
const struct tls_version_filter *conf_ssl_methods = &srv->ssl_ctx.methods;
int i, min, max, hole;
int flags = MC_SSL_O_ALL;
if (conf_ssl_methods->flags && (conf_ssl_methods->min || conf_ssl_methods->max))
ha_warning("no-sslv3/no-tlsv1x are ignored for this server. "
"Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n");
else
flags = conf_ssl_methods->flags;
/* Real min and max should be determinate with configuration and openssl's capabilities */
if (conf_ssl_methods->min)
flags |= (methodVersions[conf_ssl_methods->min].flag - 1);
if (conf_ssl_methods->max)
flags |= ~((methodVersions[conf_ssl_methods->max].flag << 1) - 1);
/* find min, max and holes */
min = max = CONF_TLSV_NONE;
hole = 0;
for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++)
/* version is in openssl && version not disable in configuration */
if (methodVersions[i].option && !(flags & methodVersions[i].flag)) {
if (min) {
if (hole) {
ha_warning("%s '%s': SSL/TLS versions range not contiguous for server '%s'. "
"Hole find for %s. Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n",
proxy_type_str(curproxy), curproxy->id, srv->id,
methodVersions[hole].name);
hole = 0;
}
max = i;
}
else {
min = max = i;
}
}
else {
if (min)
hole = i;
}
if (!min) {
ha_alert("%s '%s': all SSL/TLS versions are disabled for server '%s'.\n",
proxy_type_str(curproxy), curproxy->id, srv->id);
cfgerr += 1;
}
#if (HA_OPENSSL_VERSION_NUMBER < 0x1010000fL)
/* Keep force-xxx implementation as it is in older haproxy. It's a
precautionary measure to avoid any surprise with older openssl version. */
if (min == max)
methodVersions[min].ctx_set_version(ctx, SET_CLIENT);
else
for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++)
if (flags & methodVersions[i].flag)
options |= methodVersions[i].option;
#else /* openssl >= 1.1.0 */
/* set the max_version is required to cap TLS version or activate new TLS (v1.3) */
methodVersions[min].ctx_set_version(ctx, SET_MIN);
methodVersions[max].ctx_set_version(ctx, SET_MAX);
#endif
if (srv->ssl_ctx.options & SRV_SSL_O_NO_TLS_TICKETS)
options |= SSL_OP_NO_TICKET;
SSL_CTX_set_options(ctx, options);
#ifdef SSL_MODE_ASYNC
if (global_ssl.async)
mode |= SSL_MODE_ASYNC;
#endif
SSL_CTX_set_mode(ctx, mode);
if (global.ssl_server_verify == SSL_SERVER_VERIFY_REQUIRED)
verify = SSL_VERIFY_PEER;
switch (srv->ssl_ctx.verify) {
case SSL_SOCK_VERIFY_NONE:
verify = SSL_VERIFY_NONE;
break;
case SSL_SOCK_VERIFY_REQUIRED:
verify = SSL_VERIFY_PEER;
break;
}
SSL_CTX_set_verify(ctx, verify,
(srv->ssl_ctx.verify_host || (verify & SSL_VERIFY_PEER)) ? ssl_sock_srv_verifycbk : NULL);
if (verify & SSL_VERIFY_PEER) {
if (srv->ssl_ctx.ca_file) {
/* set CAfile to verify */
if (!ssl_set_verify_locations_file(ctx, srv->ssl_ctx.ca_file)) {
ha_alert("unable to set CA file '%s'.\n",
srv->ssl_ctx.ca_file);
cfgerr++;
}
}
else {
if (global.ssl_server_verify == SSL_SERVER_VERIFY_REQUIRED)
ha_alert("verify is enabled by default but no CA file specified. If you're running on a LAN where you're certain to trust the server's certificate, please set an explicit 'verify none' statement on the 'server' line, or use 'ssl-server-verify none' in the global section to disable server-side verifications by default.\n");
else
ha_alert("verify is enabled but no CA file specified.\n");
cfgerr++;
}
#ifdef X509_V_FLAG_CRL_CHECK
if (srv->ssl_ctx.crl_file) {
X509_STORE *store = SSL_CTX_get_cert_store(ctx);
if (!ssl_set_cert_crl_file(store, srv->ssl_ctx.crl_file)) {
ha_alert("unable to configure CRL file '%s'.\n",
srv->ssl_ctx.crl_file);
cfgerr++;
}
else {
X509_STORE_set_flags(store, X509_V_FLAG_CRL_CHECK|X509_V_FLAG_CRL_CHECK_ALL);
}
}
#endif
}
SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_NO_INTERNAL_STORE);
SSL_CTX_sess_set_new_cb(ctx, ssl_sess_new_srv_cb);
if (srv->ssl_ctx.ciphers &&
!SSL_CTX_set_cipher_list(ctx, srv->ssl_ctx.ciphers)) {
ha_alert("unable to set SSL cipher list to '%s'.\n",
srv->ssl_ctx.ciphers);
cfgerr++;
}
#ifdef HAVE_SSL_CTX_SET_CIPHERSUITES
if (srv->ssl_ctx.ciphersuites &&
!SSL_CTX_set_ciphersuites(ctx, srv->ssl_ctx.ciphersuites)) {
ha_alert("unable to set TLS 1.3 cipher suites to '%s'.\n",
srv->ssl_ctx.ciphersuites);
cfgerr++;
}
#endif
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
if (srv->ssl_ctx.npn_str)
SSL_CTX_set_next_proto_select_cb(ctx, ssl_sock_srv_select_protos, (struct server*)srv);
#endif
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
if (srv->ssl_ctx.alpn_str)
SSL_CTX_set_alpn_protos(ctx, (unsigned char *)srv->ssl_ctx.alpn_str, srv->ssl_ctx.alpn_len);
#endif
return cfgerr;
}
/*
* Prepare the frontend's SSL_CTX based on the server line configuration.
* Since the CA file loading is made depending on the verify option of the
* server line, the link between the SSL_CTX and the CA file tree entry is
* made here.
* If we want to create a link between the CA file entry and the corresponding
* ckch instance (for CA file hot update), it needs to be done after
* ssl_sock_prepare_srv_ssl_ctx.
* Returns an error count.
*/
int ssl_sock_prep_srv_ctx_and_inst(const struct server *srv, SSL_CTX *ctx,
struct ckch_inst *ckch_inst)
{
int cfgerr = 0;
cfgerr += ssl_sock_prepare_srv_ssl_ctx(srv, ctx);
if (!cfgerr && ckch_inst)
ckch_inst_add_cafile_link(ckch_inst, NULL, NULL, srv);
return cfgerr;
}
/*
* Create an initial CTX used to start the SSL connections.
* May be used by QUIC xprt which makes usage of SSL sessions initialized from SSL_CTXs.
* Returns 0 if succeeded, or something >0 if not.
*/
#ifdef USE_QUIC
static int ssl_initial_ctx(struct bind_conf *bind_conf)
{
if (bind_conf->xprt == xprt_get(XPRT_QUIC))
return ssl_quic_initial_ctx(bind_conf);
else
return ssl_sock_initial_ctx(bind_conf);
}
#else
static int ssl_initial_ctx(struct bind_conf *bind_conf)
{
return ssl_sock_initial_ctx(bind_conf);
}
#endif
/* Walks down the two trees in bind_conf and prepares all certs. The pointer may
* be NULL, in which case nothing is done. Returns the number of errors
* encountered.
*/
int ssl_sock_prepare_all_ctx(struct bind_conf *bind_conf)
{
struct ebmb_node *node;
struct sni_ctx *sni;
int err = 0;
int errcode = 0;
char *errmsg = NULL;
/* Automatic memory computations need to know we use SSL there */
global.ssl_used_frontend = 1;
/* Create initial_ctx used to start the ssl connection before do switchctx */
if (!bind_conf->initial_ctx) {
err += ssl_initial_ctx(bind_conf);
/* It should not be necessary to call this function, but it's
necessary first to check and move all initialisation related
to initial_ctx in ssl_initial_ctx. */
errcode |= ssl_sock_prep_ctx_and_inst(bind_conf, NULL, bind_conf->initial_ctx, NULL, &errmsg);
}
if (bind_conf->default_ctx) {
errcode |= ssl_sock_prep_ctx_and_inst(bind_conf, bind_conf->default_ssl_conf, bind_conf->default_ctx, bind_conf->default_inst, &errmsg);
}
node = ebmb_first(&bind_conf->sni_ctx);
while (node) {
sni = ebmb_entry(node, struct sni_ctx, name);
if (!sni->order && sni->ctx != bind_conf->default_ctx) {
/* only initialize the CTX on its first occurrence and
if it is not the default_ctx */
errcode |= ssl_sock_prep_ctx_and_inst(bind_conf, sni->conf, sni->ctx, sni->ckch_inst, &errmsg);
}
node = ebmb_next(node);
}
node = ebmb_first(&bind_conf->sni_w_ctx);
while (node) {
sni = ebmb_entry(node, struct sni_ctx, name);
if (!sni->order && sni->ctx != bind_conf->default_ctx) {
/* only initialize the CTX on its first occurrence and
if it is not the default_ctx */
errcode |= ssl_sock_prep_ctx_and_inst(bind_conf, sni->conf, sni->ctx, sni->ckch_inst, &errmsg);
}
node = ebmb_next(node);
}
if (errcode & ERR_WARN) {
ha_warning("%s", errmsg);
} else if (errcode & ERR_CODE) {
ha_alert("%s", errmsg);
err++;
}
free(errmsg);
return err;
}
/* Prepares all the contexts for a bind_conf and allocates the shared SSL
* context if needed. Returns < 0 on error, 0 on success. The warnings and
* alerts are directly emitted since the rest of the stack does it below.
*/
int ssl_sock_prepare_bind_conf(struct bind_conf *bind_conf)
{
struct proxy *px = bind_conf->frontend;
int alloc_ctx;
int err;
if (!bind_conf->is_ssl) {
if (bind_conf->default_ctx) {
ha_warning("Proxy '%s': A certificate was specified but SSL was not enabled on bind '%s' at [%s:%d] (use 'ssl').\n",
px->id, bind_conf->arg, bind_conf->file, bind_conf->line);
}
return 0;
}
if (!bind_conf->default_ctx) {
if (bind_conf->strict_sni && !bind_conf->generate_certs) {
ha_warning("Proxy '%s': no SSL certificate specified for bind '%s' at [%s:%d], ssl connections will fail (use 'crt').\n",
px->id, bind_conf->arg, bind_conf->file, bind_conf->line);
}
else {
ha_alert("Proxy '%s': no SSL certificate specified for bind '%s' at [%s:%d] (use 'crt').\n",
px->id, bind_conf->arg, bind_conf->file, bind_conf->line);
return -1;
}
}
if (!ssl_shctx && global.tune.sslcachesize) {
alloc_ctx = shctx_init(&ssl_shctx, global.tune.sslcachesize,
sizeof(struct sh_ssl_sess_hdr) + SHSESS_BLOCK_MIN_SIZE, -1,
sizeof(*sh_ssl_sess_tree), (global.nbthread > 1));
if (alloc_ctx <= 0) {
if (alloc_ctx == SHCTX_E_INIT_LOCK)
ha_alert("Unable to initialize the lock for the shared SSL session cache. You can retry using the global statement 'tune.ssl.force-private-cache' but it could increase CPU usage due to renegotiations if nbproc > 1.\n");
else
ha_alert("Unable to allocate SSL session cache.\n");
return -1;
}
/* free block callback */
ssl_shctx->free_block = sh_ssl_sess_free_blocks;
/* init the root tree within the extra space */
sh_ssl_sess_tree = (void *)ssl_shctx + sizeof(struct shared_context);
*sh_ssl_sess_tree = EB_ROOT_UNIQUE;
}
err = 0;
/* initialize all certificate contexts */
err += ssl_sock_prepare_all_ctx(bind_conf);
/* initialize CA variables if the certificates generation is enabled */
err += ssl_sock_load_ca(bind_conf);
return -err;
}
/* release ssl context allocated for servers. Most of the field free here
* must also be allocated in srv_ssl_settings_cpy() */
void ssl_sock_free_srv_ctx(struct server *srv)
{
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
ha_free(&srv->ssl_ctx.alpn_str);
#endif
#ifdef OPENSSL_NPN_NEGOTIATED
ha_free(&srv->ssl_ctx.npn_str);
#endif
if (srv->ssl_ctx.reused_sess) {
int i;
for (i = 0; i < global.nbthread; i++) {
ha_free(&srv->ssl_ctx.reused_sess[i].ptr);
ha_free(&srv->ssl_ctx.reused_sess[i].sni);
}
ha_free(&srv->ssl_ctx.reused_sess);
}
if (srv->ssl_ctx.ctx) {
SSL_CTX_free(srv->ssl_ctx.ctx);
srv->ssl_ctx.ctx = NULL;
}
ha_free(&srv->ssl_ctx.ca_file);
ha_free(&srv->ssl_ctx.crl_file);
ha_free(&srv->ssl_ctx.client_crt);
ha_free(&srv->ssl_ctx.verify_host);
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
ha_free(&srv->sni_expr);
release_sample_expr(srv->ssl_ctx.sni);
srv->ssl_ctx.sni = NULL;
#endif
ha_free(&srv->ssl_ctx.ciphers);
#ifdef HAVE_SSL_CTX_SET_CIPHERSUITES
ha_free(&srv->ssl_ctx.ciphersuites);
#endif
/* If there is a certificate we must unlink the ckch instance */
ckch_inst_free(srv->ssl_ctx.inst);
}
/* Walks down the two trees in bind_conf and frees all the certs. The pointer may
* be NULL, in which case nothing is done. The default_ctx is nullified too.
*/
void ssl_sock_free_all_ctx(struct bind_conf *bind_conf)
{
struct ebmb_node *node, *back;
struct sni_ctx *sni;
node = ebmb_first(&bind_conf->sni_ctx);
while (node) {
sni = ebmb_entry(node, struct sni_ctx, name);
back = ebmb_next(node);
ebmb_delete(node);
SSL_CTX_free(sni->ctx);
LIST_DELETE(&sni->by_ckch_inst);
free(sni);
node = back;
}
node = ebmb_first(&bind_conf->sni_w_ctx);
while (node) {
sni = ebmb_entry(node, struct sni_ctx, name);
back = ebmb_next(node);
ebmb_delete(node);
SSL_CTX_free(sni->ctx);
LIST_DELETE(&sni->by_ckch_inst);
free(sni);
node = back;
}
SSL_CTX_free(bind_conf->initial_ctx);
bind_conf->initial_ctx = NULL;
SSL_CTX_free(bind_conf->default_ctx);
bind_conf->default_ctx = NULL;
bind_conf->default_inst = NULL;
bind_conf->default_ssl_conf = NULL;
}
void ssl_sock_deinit()
{
crtlist_deinit(); /* must be free'd before the ckchs */
ckch_deinit();
}
REGISTER_POST_DEINIT(ssl_sock_deinit);
/* Destroys all the contexts for a bind_conf. This is used during deinit(). */
void ssl_sock_destroy_bind_conf(struct bind_conf *bind_conf)
{
ssl_sock_free_ca(bind_conf);
ssl_sock_free_all_ctx(bind_conf);
ssl_sock_free_ssl_conf(&bind_conf->ssl_conf);
free(bind_conf->ca_sign_file);
free(bind_conf->ca_sign_pass);
if (bind_conf->keys_ref && !--bind_conf->keys_ref->refcount) {
free(bind_conf->keys_ref->filename);
free(bind_conf->keys_ref->tlskeys);
LIST_DELETE(&bind_conf->keys_ref->list);
free(bind_conf->keys_ref);
}
bind_conf->keys_ref = NULL;
bind_conf->ca_sign_pass = NULL;
bind_conf->ca_sign_file = NULL;
}
/* Load CA cert file and private key used to generate certificates */
int
ssl_sock_load_ca(struct bind_conf *bind_conf)
{
struct proxy *px = bind_conf->frontend;
struct cert_key_and_chain *ckch = NULL;
int ret = 0;
char *err = NULL;
if (!bind_conf->generate_certs)
return ret;
#if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES)
if (global_ssl.ctx_cache) {
ssl_ctx_lru_tree = lru64_new(global_ssl.ctx_cache);
}
ssl_ctx_lru_seed = (unsigned int)time(NULL);
ssl_ctx_serial = now_ms;
#endif
if (!bind_conf->ca_sign_file) {
ha_alert("Proxy '%s': cannot enable certificate generation, "
"no CA certificate File configured at [%s:%d].\n",
px->id, bind_conf->file, bind_conf->line);
goto failed;
}
/* Allocate cert structure */
ckch = calloc(1, sizeof(*ckch));
if (!ckch) {
ha_alert("Proxy '%s': Failed to read CA certificate file '%s' at [%s:%d]. Chain allocation failure\n",
px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line);
goto failed;
}
/* Try to parse file */
if (ssl_sock_load_files_into_ckch(bind_conf->ca_sign_file, ckch, &err)) {
ha_alert("Proxy '%s': Failed to read CA certificate file '%s' at [%s:%d]. Chain loading failed: %s\n",
px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line, err);
free(err);
goto failed;
}
/* Fail if missing cert or pkey */
if ((!ckch->cert) || (!ckch->key)) {
ha_alert("Proxy '%s': Failed to read CA certificate file '%s' at [%s:%d]. Chain missing certificate or private key\n",
px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line);
goto failed;
}
/* Final assignment to bind */
bind_conf->ca_sign_ckch = ckch;
return ret;
failed:
if (ckch) {
ssl_sock_free_cert_key_and_chain_contents(ckch);
free(ckch);
}
bind_conf->generate_certs = 0;
ret++;
return ret;
}
/* Release CA cert and private key used to generate certificated */
void
ssl_sock_free_ca(struct bind_conf *bind_conf)
{
if (bind_conf->ca_sign_ckch) {
ssl_sock_free_cert_key_and_chain_contents(bind_conf->ca_sign_ckch);
ha_free(&bind_conf->ca_sign_ckch);
}
}
/*
* Try to allocate the BIO and SSL session objects of <conn> connection with <bio> and
* <ssl> as addresses, <bio_meth> as BIO method and <ssl_ctx> as SSL context inherited settings.
* Connect the allocated BIO to the allocated SSL session. Also set <ctx> as address of custom
* data for the BIO and store <conn> as user data of the SSL session object.
* This is the responsibility of the caller to check the validity of all the pointers passed
* as parameters to this function.
* Return 0 if succeeded, -1 if not. If failed, sets the ->err_code member of <conn> to
* CO_ER_SSL_NO_MEM.
*/
int ssl_bio_and_sess_init(struct connection *conn, SSL_CTX *ssl_ctx,
SSL **ssl, BIO **bio, BIO_METHOD *bio_meth, void *ctx)
{
int retry = 1;
retry:
/* Alloc a new SSL session. */
*ssl = SSL_new(ssl_ctx);
if (!*ssl) {
if (!retry--)
goto err;
pool_gc(NULL);
goto retry;
}
*bio = BIO_new(bio_meth);
if (!*bio) {
SSL_free(*ssl);
*ssl = NULL;
if (!retry--)
goto err;
pool_gc(NULL);
goto retry;
}
BIO_set_data(*bio, ctx);
SSL_set_bio(*ssl, *bio, *bio);
/* set connection pointer. */
if (!SSL_set_ex_data(*ssl, ssl_app_data_index, conn)) {
SSL_free(*ssl);
*ssl = NULL;
if (!retry--)
goto err;
pool_gc(NULL);
goto retry;
}
return 0;
err:
conn->err_code = CO_ER_SSL_NO_MEM;
return -1;
}
/* This function is called when all the XPRT have been initialized. We can
* now attempt to start the SSL handshake.
*/
static int ssl_sock_start(struct connection *conn, void *xprt_ctx)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
if (ctx->xprt->start) {
int ret;
ret = ctx->xprt->start(conn, ctx->xprt_ctx);
if (ret < 0)
return ret;
}
tasklet_wakeup(ctx->wait_event.tasklet);
return 0;
}
/*
* This function is called if SSL * context is not yet allocated. The function
* is designed to be called before any other data-layer operation and sets the
* handshake flag on the connection. It is safe to call it multiple times.
* It returns 0 on success and -1 in error case.
*/
static int ssl_sock_init(struct connection *conn, void **xprt_ctx)
{
struct ssl_sock_ctx *ctx;
/* already initialized */
if (*xprt_ctx)
return 0;
ctx = pool_alloc(ssl_sock_ctx_pool);
if (!ctx) {
conn->err_code = CO_ER_SSL_NO_MEM;
return -1;
}
ctx->wait_event.tasklet = tasklet_new();
if (!ctx->wait_event.tasklet) {
conn->err_code = CO_ER_SSL_NO_MEM;
pool_free(ssl_sock_ctx_pool, ctx);
return -1;
}
ctx->wait_event.tasklet->process = ssl_sock_io_cb;
ctx->wait_event.tasklet->context = ctx;
ctx->wait_event.tasklet->state |= TASK_HEAVY; // assign it to the bulk queue during handshake
ctx->wait_event.events = 0;
ctx->sent_early_data = 0;
ctx->early_buf = BUF_NULL;
ctx->conn = conn;
ctx->subs = NULL;
ctx->xprt_st = 0;
ctx->xprt_ctx = NULL;
ctx->error_code = 0;
/* Only work with sockets for now, this should be adapted when we'll
* add QUIC support.
*/
ctx->xprt = xprt_get(XPRT_RAW);
if (ctx->xprt->init) {
if (ctx->xprt->init(conn, &ctx->xprt_ctx) != 0)
goto err;
}
if (global.maxsslconn && global.sslconns >= global.maxsslconn) {
conn->err_code = CO_ER_SSL_TOO_MANY;
goto err;
}
/* If it is in client mode initiate SSL session
in connect state otherwise accept state */
if (objt_server(conn->target)) {
if (ssl_bio_and_sess_init(conn, __objt_server(conn->target)->ssl_ctx.ctx,
&ctx->ssl, &ctx->bio, ha_meth, ctx) == -1)
goto err;
SSL_set_connect_state(ctx->ssl);
HA_RWLOCK_RDLOCK(SSL_SERVER_LOCK, &(__objt_server(conn->target)->ssl_ctx.lock));
if (__objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr) {
const unsigned char *ptr = __objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr;
SSL_SESSION *sess = d2i_SSL_SESSION(NULL, &ptr, __objt_server(conn->target)->ssl_ctx.reused_sess[tid].size);
if (sess && !SSL_set_session(ctx->ssl, sess)) {
SSL_SESSION_free(sess);
ha_free(&__objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr);
} else if (sess) {
SSL_SESSION_free(sess);
}
}
HA_RWLOCK_RDUNLOCK(SSL_SERVER_LOCK, &(__objt_server(conn->target)->ssl_ctx.lock));
/* leave init state and start handshake */
conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN;
_HA_ATOMIC_INC(&global.sslconns);
_HA_ATOMIC_INC(&global.totalsslconns);
*xprt_ctx = ctx;
return 0;
}
else if (objt_listener(conn->target)) {
struct bind_conf *bc = __objt_listener(conn->target)->bind_conf;
if (ssl_bio_and_sess_init(conn, bc->initial_ctx,
&ctx->ssl, &ctx->bio, ha_meth, ctx) == -1)
goto err;
#ifdef SSL_READ_EARLY_DATA_SUCCESS
if (bc->ssl_conf.early_data) {
b_alloc(&ctx->early_buf);
SSL_set_max_early_data(ctx->ssl,
/* Only allow early data if we managed to allocate
* a buffer.
*/
(!b_is_null(&ctx->early_buf)) ?
global.tune.bufsize - global.tune.maxrewrite : 0);
}
#endif
SSL_set_accept_state(ctx->ssl);
/* leave init state and start handshake */
conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN;
#ifdef SSL_READ_EARLY_DATA_SUCCESS
if (bc->ssl_conf.early_data)
conn->flags |= CO_FL_EARLY_SSL_HS;
#endif
_HA_ATOMIC_INC(&global.sslconns);
_HA_ATOMIC_INC(&global.totalsslconns);
*xprt_ctx = ctx;
return 0;
}
/* don't know how to handle such a target */
conn->err_code = CO_ER_SSL_NO_TARGET;
err:
if (ctx && ctx->wait_event.tasklet)
tasklet_free(ctx->wait_event.tasklet);
pool_free(ssl_sock_ctx_pool, ctx);
return -1;
}
/* This is the callback which is used when an SSL handshake is pending. It
* updates the FD status if it wants some polling before being called again.
* It returns 0 if it fails in a fatal way or needs to poll to go further,
* otherwise it returns non-zero and removes itself from the connection's
* flags (the bit is provided in <flag> by the caller).
*/
static int ssl_sock_handshake(struct connection *conn, unsigned int flag)
{
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
int ret;
struct ssl_counters *counters = NULL;
struct ssl_counters *counters_px = NULL;
struct listener *li;
struct server *srv;
socklen_t lskerr;
int skerr;
if (!conn_ctrl_ready(conn))
return 0;
/* get counters */
switch (obj_type(conn->target)) {
case OBJ_TYPE_LISTENER:
li = __objt_listener(conn->target);
counters = EXTRA_COUNTERS_GET(li->extra_counters, &ssl_stats_module);
counters_px = EXTRA_COUNTERS_GET(li->bind_conf->frontend->extra_counters_fe,
&ssl_stats_module);
break;
case OBJ_TYPE_SERVER:
srv = __objt_server(conn->target);
counters = EXTRA_COUNTERS_GET(srv->extra_counters, &ssl_stats_module);
counters_px = EXTRA_COUNTERS_GET(srv->proxy->extra_counters_be,
&ssl_stats_module);
break;
default:
break;
}
if (!ctx)
goto out_error;
/* don't start calculating a handshake on a dead connection */
if (conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH))
goto out_error;
/* FIXME/WT: for now we don't have a clear way to inspect the connection
* status from the lower layers, so let's check the FD directly. Ideally
* the xprt layers should provide some status indicating their knowledge
* of shutdowns or error.
*/
BUG_ON(conn->flags & CO_FL_FDLESS);
skerr = 0;
lskerr = sizeof(skerr);
if ((getsockopt(conn->handle.fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr) < 0) ||
skerr != 0)
goto out_error;
#ifdef SSL_READ_EARLY_DATA_SUCCESS
/*
* Check if we have early data. If we do, we have to read them
* before SSL_do_handshake() is called, And there's no way to
* detect early data, except to try to read them
*/
if (conn->flags & CO_FL_EARLY_SSL_HS) {
size_t read_data = 0;
while (1) {
ret = SSL_read_early_data(ctx->ssl,
b_tail(&ctx->early_buf), b_room(&ctx->early_buf),
&read_data);
if (ret == SSL_READ_EARLY_DATA_ERROR)
goto check_error;
if (read_data > 0) {
conn->flags |= CO_FL_EARLY_DATA;
b_add(&ctx->early_buf, read_data);
}
if (ret == SSL_READ_EARLY_DATA_FINISH) {
conn->flags &= ~CO_FL_EARLY_SSL_HS;
if (!b_data(&ctx->early_buf))
b_free(&ctx->early_buf);
break;
}
}
}
#endif
/* If we use SSL_do_handshake to process a reneg initiated by
* the remote peer, it sometimes returns SSL_ERROR_SSL.
* Usually SSL_write and SSL_read are used and process implicitly
* the reneg handshake.
* Here we use SSL_peek as a workaround for reneg.
*/
if (!(conn->flags & CO_FL_WAIT_L6_CONN) && SSL_renegotiate_pending(ctx->ssl)) {
char c;
ret = SSL_peek(ctx->ssl, &c, 1);
if (ret <= 0) {
/* handshake may have not been completed, let's find why */
ret = SSL_get_error(ctx->ssl, ret);
if (ret == SSL_ERROR_WANT_WRITE) {
/* SSL handshake needs to write, L4 connection may not be ready */
if (!(ctx->wait_event.events & SUB_RETRY_SEND))
ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event);
return 0;
}
else if (ret == SSL_ERROR_WANT_READ) {
/* handshake may have been completed but we have
* no more data to read.
*/
if (!SSL_renegotiate_pending(ctx->ssl)) {
ret = 1;
goto reneg_ok;
}
/* SSL handshake needs to read, L4 connection is ready */
if (!(ctx->wait_event.events & SUB_RETRY_RECV))
ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_RECV, &ctx->wait_event);
return 0;
}
#ifdef SSL_MODE_ASYNC
else if (ret == SSL_ERROR_WANT_ASYNC) {
ssl_async_process_fds(ctx);
return 0;
}
#endif
else if (ret == SSL_ERROR_SYSCALL) {
/* if errno is null, then connection was successfully established */
if (!errno && conn->flags & CO_FL_WAIT_L4_CONN)
conn->flags &= ~CO_FL_WAIT_L4_CONN;
if (!conn->err_code) {
#if defined(OPENSSL_IS_BORINGSSL) || defined(LIBRESSL_VERSION_NUMBER)
/* do not handle empty handshakes in BoringSSL or LibreSSL */
conn->err_code = CO_ER_SSL_HANDSHAKE;
#else
int empty_handshake;
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL)
/* use SSL_get_state() in OpenSSL >= 1.1.0; SSL_state() is broken */
OSSL_HANDSHAKE_STATE state = SSL_get_state((SSL *)ctx->ssl);
empty_handshake = state == TLS_ST_BEFORE;
#else
/* access packet_length directly in OpenSSL <= 1.0.2; SSL_state() is broken */
empty_handshake = !ctx->ssl->packet_length;
#endif
if (empty_handshake) {
if (!errno) {
if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT)
conn->err_code = CO_ER_SSL_HANDSHAKE_HB;
else
conn->err_code = CO_ER_SSL_EMPTY;
}
else {
if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT)
conn->err_code = CO_ER_SSL_HANDSHAKE_HB;
else
conn->err_code = CO_ER_SSL_ABORT;
}
}
else {
if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT)
conn->err_code = CO_ER_SSL_HANDSHAKE_HB;
else
conn->err_code = CO_ER_SSL_HANDSHAKE;
}
#endif /* BoringSSL or LibreSSL */
}
goto out_error;
}
else {
/* Fail on all other handshake errors */
/* Note: OpenSSL may leave unread bytes in the socket's
* buffer, causing an RST to be emitted upon close() on
* TCP sockets. We first try to drain possibly pending
* data to avoid this as much as possible.
*/
conn_ctrl_drain(conn);
if (!conn->err_code)
conn->err_code = (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) ?
CO_ER_SSL_KILLED_HB : CO_ER_SSL_HANDSHAKE;
goto out_error;
}
}
/* read some data: consider handshake completed */
goto reneg_ok;
}
ret = SSL_do_handshake(ctx->ssl);
check_error:
if (ret != 1) {
/* handshake did not complete, let's find why */
ret = SSL_get_error(ctx->ssl, ret);
if (!ctx->error_code)
ctx->error_code = ERR_peek_error();
if (ret == SSL_ERROR_WANT_WRITE) {
/* SSL handshake needs to write, L4 connection may not be ready */
if (!(ctx->wait_event.events & SUB_RETRY_SEND))
ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event);
return 0;
}
else if (ret == SSL_ERROR_WANT_READ) {
/* SSL handshake needs to read, L4 connection is ready */
if (!(ctx->wait_event.events & SUB_RETRY_RECV))
ctx->xprt->subscribe(conn, ctx->xprt_ctx,
SUB_RETRY_RECV, &ctx->wait_event);
return 0;
}
#ifdef SSL_MODE_ASYNC
else if (ret == SSL_ERROR_WANT_ASYNC) {
ssl_async_process_fds(ctx);
return 0;
}
#endif
else if (ret == SSL_ERROR_SYSCALL) {
/* if errno is null, then connection was successfully established */
if (!errno && conn->flags & CO_FL_WAIT_L4_CONN)
conn->flags &= ~CO_FL_WAIT_L4_CONN;
if (!conn->err_code) {
#if defined(OPENSSL_IS_BORINGSSL) || defined(LIBRESSL_VERSION_NUMBER)
/* do not handle empty handshakes in BoringSSL or LibreSSL */
conn->err_code = CO_ER_SSL_HANDSHAKE;
#else
int empty_handshake;
#if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL)
/* use SSL_get_state() in OpenSSL >= 1.1.0; SSL_state() is broken */
OSSL_HANDSHAKE_STATE state = SSL_get_state(ctx->ssl);
empty_handshake = state == TLS_ST_BEFORE;
#else
/* access packet_length directly in OpenSSL <= 1.0.2; SSL_state() is broken */
empty_handshake = !ctx->ssl->packet_length;
#endif
if (empty_handshake) {
if (!errno) {
if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT)
conn->err_code = CO_ER_SSL_HANDSHAKE_HB;
else
conn->err_code = CO_ER_SSL_EMPTY;
}
else {
if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT)
conn->err_code = CO_ER_SSL_HANDSHAKE_HB;
else
conn->err_code = CO_ER_SSL_ABORT;
}
}
else {
if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT)
conn->err_code = CO_ER_SSL_HANDSHAKE_HB;
else
conn->err_code = CO_ER_SSL_HANDSHAKE;
}
#endif /* BoringSSL or LibreSSL */
}
goto out_error;
}
else {
/* Fail on all other handshake errors */
/* Note: OpenSSL may leave unread bytes in the socket's
* buffer, causing an RST to be emitted upon close() on
* TCP sockets. We first try to drain possibly pending
* data to avoid this as much as possible.
*/
conn_ctrl_drain(conn);
if (!conn->err_code)
conn->err_code = (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) ?
CO_ER_SSL_KILLED_HB : CO_ER_SSL_HANDSHAKE;
goto out_error;
}
}
#ifdef SSL_READ_EARLY_DATA_SUCCESS
else {
/*
* If the server refused the early data, we have to send a
* 425 to the client, as we no longer have the data to sent
* them again.
*/
if ((conn->flags & CO_FL_EARLY_DATA) && (objt_server(conn->target))) {
if (SSL_get_early_data_status(ctx->ssl) == SSL_EARLY_DATA_REJECTED) {
conn->err_code = CO_ER_SSL_EARLY_FAILED;
goto out_error;
}
}
}
#endif
reneg_ok:
#ifdef SSL_MODE_ASYNC
/* ASYNC engine API doesn't support moving read/write
* buffers. So we disable ASYNC mode right after
* the handshake to avoid buffer overflow.
*/
if (global_ssl.async)
SSL_clear_mode(ctx->ssl, SSL_MODE_ASYNC);
#endif
/* Handshake succeeded */
if (!SSL_session_reused(ctx->ssl)) {
if (objt_server(conn->target)) {
update_freq_ctr(&global.ssl_be_keys_per_sec, 1);
if (global.ssl_be_keys_per_sec.curr_ctr > global.ssl_be_keys_max)
global.ssl_be_keys_max = global.ssl_be_keys_per_sec.curr_ctr;
}
else {
update_freq_ctr(&global.ssl_fe_keys_per_sec, 1);
if (global.ssl_fe_keys_per_sec.curr_ctr > global.ssl_fe_keys_max)
global.ssl_fe_keys_max = global.ssl_fe_keys_per_sec.curr_ctr;
}
if (counters) {
HA_ATOMIC_INC(&counters->sess);
HA_ATOMIC_INC(&counters_px->sess);
}
}
else if (counters) {
HA_ATOMIC_INC(&counters->reused_sess);
HA_ATOMIC_INC(&counters_px->reused_sess);
}
/* The connection is now established at both layers, it's time to leave */
conn->flags &= ~(flag | CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN);
return 1;
out_error:
/* Clear openssl global errors stack */
ssl_sock_dump_errors(conn);
ERR_clear_error();
/* free resumed session if exists */
if (objt_server(conn->target)) {
struct server *s = __objt_server(conn->target);
/* RWLOCK: only rdlock the SSL cache even when writing in it because there is
* one cache per thread, it only prevents to flush it from the CLI in
* another thread */
HA_RWLOCK_RDLOCK(SSL_SERVER_LOCK, &s->ssl_ctx.lock);
if (s->ssl_ctx.reused_sess[tid].ptr)
ha_free(&s->ssl_ctx.reused_sess[tid].ptr);
HA_RWLOCK_RDUNLOCK(SSL_SERVER_LOCK, &s->ssl_ctx.lock);
}
if (counters) {
HA_ATOMIC_INC(&counters->failed_handshake);
HA_ATOMIC_INC(&counters_px->failed_handshake);
}
/* Fail on all other handshake errors */
conn->flags |= CO_FL_ERROR;
if (!conn->err_code)
conn->err_code = CO_ER_SSL_HANDSHAKE;
return 0;
}
/* Called from the upper layer, to subscribe <es> to events <event_type>. The
* event subscriber <es> is not allowed to change from a previous call as long
* as at least one event is still subscribed. The <event_type> must only be a
* combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0,
* unless the transport layer was already released.
*/
static int ssl_subscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
if (!ctx)
return -1;
BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV));
BUG_ON(ctx->subs && ctx->subs != es);
ctx->subs = es;
es->events |= event_type;
/* we may have to subscribe to lower layers for new events */
event_type &= ~ctx->wait_event.events;
if (event_type && !(conn->flags & CO_FL_SSL_WAIT_HS))
ctx->xprt->subscribe(conn, ctx->xprt_ctx, event_type, &ctx->wait_event);
return 0;
}
/* Called from the upper layer, to unsubscribe <es> from events <event_type>.
* The <es> pointer is not allowed to differ from the one passed to the
* subscribe() call. It always returns zero.
*/
static int ssl_unsubscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV));
BUG_ON(ctx->subs && ctx->subs != es);
es->events &= ~event_type;
if (!es->events)
ctx->subs = NULL;
/* If we subscribed, and we're not doing the handshake,
* then we subscribed because the upper layer asked for it,
* as the upper layer is no longer interested, we can
* unsubscribe too.
*/
event_type &= ctx->wait_event.events;
if (event_type && !(ctx->conn->flags & CO_FL_SSL_WAIT_HS))
conn_unsubscribe(conn, ctx->xprt_ctx, event_type, &ctx->wait_event);
return 0;
}
/* The connection has been taken over, so destroy the old tasklet and create
* a new one. The original thread ID must be passed into orig_tid
* It should be called with the takeover lock for the old thread held.
* Returns 0 on success, and -1 on failure
*/
static int ssl_takeover(struct connection *conn, void *xprt_ctx, int orig_tid)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
struct tasklet *tl = tasklet_new();
if (!tl)
return -1;
ctx->wait_event.tasklet->context = NULL;
tasklet_wakeup_on(ctx->wait_event.tasklet, orig_tid);
ctx->wait_event.tasklet = tl;
ctx->wait_event.tasklet->process = ssl_sock_io_cb;
ctx->wait_event.tasklet->context = ctx;
return 0;
}
/* notify the next xprt that the connection is about to become idle and that it
* may be stolen at any time after the function returns and that any tasklet in
* the chain must be careful before dereferencing its context.
*/
static void ssl_set_idle(struct connection *conn, void *xprt_ctx)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
if (!ctx || !ctx->wait_event.tasklet)
return;
HA_ATOMIC_OR(&ctx->wait_event.tasklet->state, TASK_F_USR1);
if (ctx->xprt)
xprt_set_idle(conn, ctx->xprt, ctx->xprt_ctx);
}
/* notify the next xprt that the connection is not idle anymore and that it may
* not be stolen before the next xprt_set_idle().
*/
static void ssl_set_used(struct connection *conn, void *xprt_ctx)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
if (!ctx || !ctx->wait_event.tasklet)
return;
HA_ATOMIC_OR(&ctx->wait_event.tasklet->state, TASK_F_USR1);
if (ctx->xprt)
xprt_set_used(conn, ctx->xprt, ctx->xprt_ctx);
}
/* Use the provided XPRT as an underlying XPRT, and provide the old one.
* Returns 0 on success, and non-zero on failure.
*/
static int ssl_add_xprt(struct connection *conn, void *xprt_ctx, void *toadd_ctx, const struct xprt_ops *toadd_ops, void **oldxprt_ctx, const struct xprt_ops **oldxprt_ops)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
if (oldxprt_ops != NULL)
*oldxprt_ops = ctx->xprt;
if (oldxprt_ctx != NULL)
*oldxprt_ctx = ctx->xprt_ctx;
ctx->xprt = toadd_ops;
ctx->xprt_ctx = toadd_ctx;
return 0;
}
/* Remove the specified xprt. If if it our underlying XPRT, remove it and
* return 0, otherwise just call the remove_xprt method from the underlying
* XPRT.
*/
static int ssl_remove_xprt(struct connection *conn, void *xprt_ctx, void *toremove_ctx, const struct xprt_ops *newops, void *newctx)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
if (ctx->xprt_ctx == toremove_ctx) {
ctx->xprt_ctx = newctx;
ctx->xprt = newops;
return 0;
}
return (ctx->xprt->remove_xprt(conn, ctx->xprt_ctx, toremove_ctx, newops, newctx));
}
struct task *ssl_sock_io_cb(struct task *t, void *context, unsigned int state)
{
struct tasklet *tl = (struct tasklet *)t;
struct ssl_sock_ctx *ctx = context;
struct connection *conn;
int conn_in_list;
int ret = 0;
if (state & TASK_F_USR1) {
/* the tasklet was idling on an idle connection, it might have
* been stolen, let's be careful!
*/
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
if (tl->context == NULL) {
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
tasklet_free(tl);
return NULL;
}
conn = ctx->conn;
conn_in_list = conn->flags & CO_FL_LIST_MASK;
if (conn_in_list)
conn_delete_from_tree(&conn->hash_node->node);
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
} else {
conn = ctx->conn;
conn_in_list = 0;
}
/* First if we're doing an handshake, try that */
if (ctx->conn->flags & CO_FL_SSL_WAIT_HS) {
ssl_sock_handshake(ctx->conn, CO_FL_SSL_WAIT_HS);
if (!(ctx->conn->flags & CO_FL_SSL_WAIT_HS)) {
/* handshake completed, leave the bulk queue */
_HA_ATOMIC_AND(&tl->state, ~TASK_HEAVY);
}
}
/* If we had an error, or the handshake is done and I/O is available,
* let the upper layer know.
* If no mux was set up yet, then call conn_create_mux()
* we can't be sure conn_fd_handler() will be called again.
*/
if ((ctx->conn->flags & CO_FL_ERROR) ||
!(ctx->conn->flags & CO_FL_SSL_WAIT_HS)) {
int woke = 0;
/* On error, wake any waiter */
if (ctx->subs) {
tasklet_wakeup(ctx->subs->tasklet);
ctx->subs->events = 0;
woke = 1;
ctx->subs = NULL;
}
/* If we're the first xprt for the connection, let the
* upper layers know. If we have no mux, create it,
* and once we have a mux, call its wake method if we didn't
* woke a tasklet already.
*/
if (ctx->conn->xprt_ctx == ctx) {
if (!ctx->conn->mux)
ret = conn_create_mux(ctx->conn);
if (ret >= 0 && !woke && ctx->conn->mux && ctx->conn->mux->wake)
ret = ctx->conn->mux->wake(ctx->conn);
goto leave;
}
}
#ifdef SSL_READ_EARLY_DATA_SUCCESS
/* If we have early data and somebody wants to receive, let them */
else if (b_data(&ctx->early_buf) && ctx->subs &&
ctx->subs->events & SUB_RETRY_RECV) {
tasklet_wakeup(ctx->subs->tasklet);
ctx->subs->events &= ~SUB_RETRY_RECV;
if (!ctx->subs->events)
ctx->subs = NULL;
}
#endif
leave:
if (!ret && conn_in_list) {
struct server *srv = objt_server(conn->target);
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
if (conn_in_list == CO_FL_SAFE_LIST)
ebmb_insert(&srv->per_thr[tid].safe_conns, &conn->hash_node->node, sizeof(conn->hash_node->hash));
else
ebmb_insert(&srv->per_thr[tid].idle_conns, &conn->hash_node->node, sizeof(conn->hash_node->hash));
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
}
return t;
}
/* Receive up to <count> bytes from connection <conn>'s socket and store them
* into buffer <buf>. Only one call to recv() is performed, unless the
* buffer wraps, in which case a second call may be performed. The connection's
* flags are updated with whatever special event is detected (error, read0,
* empty). The caller is responsible for taking care of those events and
* avoiding the call if inappropriate. The function does not call the
* connection's polling update function, so the caller is responsible for this.
*/
static size_t ssl_sock_to_buf(struct connection *conn, void *xprt_ctx, struct buffer *buf, size_t count, int flags)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
ssize_t ret;
size_t try, done = 0;
if (!ctx)
goto out_error;
#ifdef SSL_READ_EARLY_DATA_SUCCESS
if (b_data(&ctx->early_buf)) {
try = b_contig_space(buf);
if (try > b_data(&ctx->early_buf))
try = b_data(&ctx->early_buf);
memcpy(b_tail(buf), b_head(&ctx->early_buf), try);
b_add(buf, try);
b_del(&ctx->early_buf, try);
if (b_data(&ctx->early_buf) == 0)
b_free(&ctx->early_buf);
return try;
}
#endif
if (conn->flags & (CO_FL_WAIT_XPRT | CO_FL_SSL_WAIT_HS))
/* a handshake was requested */
return 0;
/* read the largest possible block. For this, we perform only one call
* to recv() unless the buffer wraps and we exactly fill the first hunk,
* in which case we accept to do it once again. A new attempt is made on
* EINTR too.
*/
while (count > 0) {
try = b_contig_space(buf);
if (!try)
break;
if (try > count)
try = count;
ret = SSL_read(ctx->ssl, b_tail(buf), try);
if (conn->flags & CO_FL_ERROR) {
/* CO_FL_ERROR may be set by ssl_sock_infocbk */
goto out_error;
}
if (ret > 0) {
b_add(buf, ret);
done += ret;
count -= ret;
}
else {
ret = SSL_get_error(ctx->ssl, ret);
if (ret == SSL_ERROR_WANT_WRITE) {
/* handshake is running, and it needs to enable write */
conn->flags |= CO_FL_SSL_WAIT_HS;
ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event);
#ifdef SSL_MODE_ASYNC
/* Async mode can be re-enabled, because we're leaving data state.*/
if (global_ssl.async)
SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC);
#endif
break;
}
else if (ret == SSL_ERROR_WANT_READ) {
if (SSL_renegotiate_pending(ctx->ssl)) {
ctx->xprt->subscribe(conn, ctx->xprt_ctx,
SUB_RETRY_RECV,
&ctx->wait_event);
/* handshake is running, and it may need to re-enable read */
conn->flags |= CO_FL_SSL_WAIT_HS;
#ifdef SSL_MODE_ASYNC
/* Async mode can be re-enabled, because we're leaving data state.*/
if (global_ssl.async)
SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC);
#endif
break;
}
break;
} else if (ret == SSL_ERROR_ZERO_RETURN)
goto read0;
else if (ret == SSL_ERROR_SSL) {
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
if (ctx && !ctx->error_code)
ctx->error_code = ERR_peek_error();
conn->err_code = CO_ERR_SSL_FATAL;
}
/* For SSL_ERROR_SYSCALL, make sure to clear the error
* stack before shutting down the connection for
* reading. */
if (ret == SSL_ERROR_SYSCALL && (!errno || errno == EAGAIN || errno == EWOULDBLOCK))
goto clear_ssl_error;
/* otherwise it's a real error */
goto out_error;
}
}
leave:
return done;
clear_ssl_error:
/* Clear openssl global errors stack */
ssl_sock_dump_errors(conn);
ERR_clear_error();
read0:
conn_sock_read0(conn);
goto leave;
out_error:
conn->flags |= CO_FL_ERROR;
/* Clear openssl global errors stack */
ssl_sock_dump_errors(conn);
ERR_clear_error();
goto leave;
}
/* Send up to <count> pending bytes from buffer <buf> to connection <conn>'s
* socket. <flags> may contain some CO_SFL_* flags to hint the system about
* other pending data for example, but this flag is ignored at the moment.
* Only one call to send() is performed, unless the buffer wraps, in which case
* a second call may be performed. The connection's flags are updated with
* whatever special event is detected (error, empty). The caller is responsible
* for taking care of those events and avoiding the call if inappropriate. The
* function does not call the connection's polling update function, so the caller
* is responsible for this. The buffer's output is not adjusted, it's up to the
* caller to take care of this. It's up to the caller to update the buffer's
* contents based on the return value.
*/
static size_t ssl_sock_from_buf(struct connection *conn, void *xprt_ctx, const struct buffer *buf, size_t count, int flags)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
ssize_t ret;
size_t try, done;
done = 0;
if (!ctx)
goto out_error;
if (conn->flags & (CO_FL_WAIT_XPRT | CO_FL_SSL_WAIT_HS | CO_FL_EARLY_SSL_HS))
/* a handshake was requested */
return 0;
/* send the largest possible block. For this we perform only one call
* to send() unless the buffer wraps and we exactly fill the first hunk,
* in which case we accept to do it once again.
*/
while (count) {
#ifdef SSL_READ_EARLY_DATA_SUCCESS
size_t written_data;
#endif
try = b_contig_data(buf, done);
if (try > count)
try = count;
if (global_ssl.hard_max_record && try > global_ssl.hard_max_record)
try = global_ssl.hard_max_record;
if (!(flags & CO_SFL_STREAMER) &&
!(ctx->xprt_st & SSL_SOCK_SEND_UNLIMITED) &&
global_ssl.max_record && try > global_ssl.max_record) {
try = global_ssl.max_record;
}
else {
/* we need to keep the information about the fact that
* we're not limiting the upcoming send(), because if it
* fails, we'll have to retry with at least as many data.
*/
ctx->xprt_st |= SSL_SOCK_SEND_UNLIMITED;
}
#ifdef SSL_READ_EARLY_DATA_SUCCESS
if (!SSL_is_init_finished(ctx->ssl) && conn_is_back(conn)) {
unsigned int max_early;
if (objt_listener(conn->target))
max_early = SSL_get_max_early_data(ctx->ssl);
else {
if (SSL_get0_session(ctx->ssl))
max_early = SSL_SESSION_get_max_early_data(SSL_get0_session(ctx->ssl));
else
max_early = 0;
}
if (try + ctx->sent_early_data > max_early) {
try -= (try + ctx->sent_early_data) - max_early;
if (try <= 0) {
conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN;
tasklet_wakeup(ctx->wait_event.tasklet);
break;
}
}
ret = SSL_write_early_data(ctx->ssl, b_peek(buf, done), try, &written_data);
if (ret == 1) {
ret = written_data;
ctx->sent_early_data += ret;
if (objt_server(conn->target)) {
conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN | CO_FL_EARLY_DATA;
/* Initiate the handshake, now */
tasklet_wakeup(ctx->wait_event.tasklet);
}
}
} else
#endif
ret = SSL_write(ctx->ssl, b_peek(buf, done), try);
if (conn->flags & CO_FL_ERROR) {
/* CO_FL_ERROR may be set by ssl_sock_infocbk */
goto out_error;
}
if (ret > 0) {
/* A send succeeded, so we can consider ourself connected */
conn->flags &= ~CO_FL_WAIT_L4L6;
ctx->xprt_st &= ~SSL_SOCK_SEND_UNLIMITED;
count -= ret;
done += ret;
}
else {
ret = SSL_get_error(ctx->ssl, ret);
if (ret == SSL_ERROR_WANT_WRITE) {
if (SSL_renegotiate_pending(ctx->ssl)) {
/* handshake is running, and it may need to re-enable write */
conn->flags |= CO_FL_SSL_WAIT_HS;
ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event);
#ifdef SSL_MODE_ASYNC
/* Async mode can be re-enabled, because we're leaving data state.*/
if (global_ssl.async)
SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC);
#endif
break;
}
break;
}
else if (ret == SSL_ERROR_WANT_READ) {
/* handshake is running, and it needs to enable read */
conn->flags |= CO_FL_SSL_WAIT_HS;
ctx->xprt->subscribe(conn, ctx->xprt_ctx,
SUB_RETRY_RECV,
&ctx->wait_event);
#ifdef SSL_MODE_ASYNC
/* Async mode can be re-enabled, because we're leaving data state.*/
if (global_ssl.async)
SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC);
#endif
break;
}
else if (ret == SSL_ERROR_SSL || ret == SSL_ERROR_SYSCALL) {
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
if (ctx && !ctx->error_code)
ctx->error_code = ERR_peek_error();
conn->err_code = CO_ERR_SSL_FATAL;
}
goto out_error;
}
}
leave:
return done;
out_error:
/* Clear openssl global errors stack */
ssl_sock_dump_errors(conn);
ERR_clear_error();
conn->flags |= CO_FL_ERROR;
goto leave;
}
void ssl_sock_close(struct connection *conn, void *xprt_ctx) {
struct ssl_sock_ctx *ctx = xprt_ctx;
if (ctx) {
if (ctx->wait_event.events != 0)
ctx->xprt->unsubscribe(ctx->conn, ctx->xprt_ctx,
ctx->wait_event.events,
&ctx->wait_event);
if (ctx->subs) {
ctx->subs->events = 0;
tasklet_wakeup(ctx->subs->tasklet);
}
if (ctx->xprt->close)
ctx->xprt->close(conn, ctx->xprt_ctx);
#ifdef SSL_MODE_ASYNC
if (global_ssl.async) {
OSSL_ASYNC_FD all_fd[32], afd;
size_t num_all_fds = 0;
int i;
SSL_get_all_async_fds(ctx->ssl, NULL, &num_all_fds);
if (num_all_fds > 32) {
send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n");
return;
}
SSL_get_all_async_fds(ctx->ssl, all_fd, &num_all_fds);
/* If an async job is pending, we must try to
to catch the end using polling before calling
SSL_free */
if (num_all_fds && SSL_waiting_for_async(ctx->ssl)) {
for (i=0 ; i < num_all_fds ; i++) {
/* switch on an handler designed to
* handle the SSL_free
*/
afd = all_fd[i];
fdtab[afd].iocb = ssl_async_fd_free;
fdtab[afd].owner = ctx->ssl;
fd_want_recv(afd);
/* To ensure that the fd cache won't be used
* and we'll catch a real RD event.
*/
fd_cant_recv(afd);
}
tasklet_free(ctx->wait_event.tasklet);
pool_free(ssl_sock_ctx_pool, ctx);
_HA_ATOMIC_INC(&jobs);
return;
}
/* Else we can remove the fds from the fdtab
* and call SSL_free.
* note: we do a fd_stop_both and not a delete
* because the fd is owned by the engine.
* the engine is responsible to close
*/
for (i=0 ; i < num_all_fds ; i++)
fd_stop_both(all_fd[i]);
}
#endif
SSL_free(ctx->ssl);
b_free(&ctx->early_buf);
tasklet_free(ctx->wait_event.tasklet);
pool_free(ssl_sock_ctx_pool, ctx);
_HA_ATOMIC_DEC(&global.sslconns);
}
}
/* This function tries to perform a clean shutdown on an SSL connection, and in
* any case, flags the connection as reusable if no handshake was in progress.
*/
static void ssl_sock_shutw(struct connection *conn, void *xprt_ctx, int clean)
{
struct ssl_sock_ctx *ctx = xprt_ctx;
if (conn->flags & (CO_FL_WAIT_XPRT | CO_FL_SSL_WAIT_HS))
return;
if (!clean)
/* don't sent notify on SSL_shutdown */
SSL_set_quiet_shutdown(ctx->ssl, 1);
/* no handshake was in progress, try a clean ssl shutdown */
if (SSL_shutdown(ctx->ssl) <= 0) {
/* Clear openssl global errors stack */
ssl_sock_dump_errors(conn);
ERR_clear_error();
}
}
/* used for ppv2 pkey algo (can be used for logging) */
int ssl_sock_get_pkey_algo(struct connection *conn, struct buffer *out)
{
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
X509 *crt;
if (!ctx)
return 0;
crt = SSL_get_certificate(ctx->ssl);
if (!crt)
return 0;
return cert_get_pkey_algo(crt, out);
}
/* used for ppv2 cert signature (can be used for logging) */
const char *ssl_sock_get_cert_sig(struct connection *conn)
{
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
__OPENSSL_110_CONST__ ASN1_OBJECT *algorithm;
X509 *crt;
if (!ctx)
return NULL;
crt = SSL_get_certificate(ctx->ssl);
if (!crt)
return NULL;
X509_ALGOR_get0(&algorithm, NULL, NULL, X509_get0_tbs_sigalg(crt));
return OBJ_nid2sn(OBJ_obj2nid(algorithm));
}
/* used for ppv2 authority */
const char *ssl_sock_get_sni(struct connection *conn)
{
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
if (!ctx)
return NULL;
return SSL_get_servername(ctx->ssl, TLSEXT_NAMETYPE_host_name);
#else
return NULL;
#endif
}
/* used for logging/ppv2, may be changed for a sample fetch later */
const char *ssl_sock_get_cipher_name(struct connection *conn)
{
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
if (!ctx)
return NULL;
return SSL_get_cipher_name(ctx->ssl);
}
/* used for logging/ppv2, may be changed for a sample fetch later */
const char *ssl_sock_get_proto_version(struct connection *conn)
{
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
if (!ctx)
return NULL;
return SSL_get_version(ctx->ssl);
}
void ssl_sock_set_alpn(struct connection *conn, const unsigned char *alpn, int len)
{
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
if (!ctx)
return;
SSL_set_alpn_protos(ctx->ssl, alpn, len);
#endif
}
/* Sets advertised SNI for outgoing connections. Please set <hostname> to NULL
* to disable SNI.
*/
void ssl_sock_set_servername(struct connection *conn, const char *hostname)
{
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
struct server *s;
char *prev_name;
if (!ctx)
return;
BUG_ON(!(conn->flags & CO_FL_WAIT_L6_CONN));
BUG_ON(!(conn->flags & CO_FL_SSL_WAIT_HS));
s = __objt_server(conn->target);
/* if the SNI changes, we must destroy the reusable context so that a
* new connection will present a new SNI. compare with the SNI
* previously stored in the reused_sess */
/* the RWLOCK is used to ensure that we are not trying to flush the
* cache from the CLI */
HA_RWLOCK_RDLOCK(SSL_SERVER_LOCK, &s->ssl_ctx.lock);
prev_name = s->ssl_ctx.reused_sess[tid].sni;
if ((!prev_name && hostname) ||
(prev_name && (!hostname || strcmp(hostname, prev_name) != 0)))
SSL_set_session(ctx->ssl, NULL);
HA_RWLOCK_RDUNLOCK(SSL_SERVER_LOCK, &s->ssl_ctx.lock);
SSL_set_tlsext_host_name(ctx->ssl, hostname);
#endif
}
/* Extract peer certificate's common name into the chunk dest
* Returns
* the len of the extracted common name
* or 0 if no CN found in DN
* or -1 on error case (i.e. no peer certificate)
*/
int ssl_sock_get_remote_common_name(struct connection *conn,
struct buffer *dest)
{
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
X509 *crt = NULL;
X509_NAME *name;
const char find_cn[] = "CN";
const struct buffer find_cn_chunk = {
.area = (char *)&find_cn,
.data = sizeof(find_cn)-1
};
int result = -1;
if (!ctx)
goto out;
/* SSL_get_peer_certificate, it increase X509 * ref count */
crt = SSL_get_peer_certificate(ctx->ssl);
if (!crt)
goto out;
name = X509_get_subject_name(crt);
if (!name)
goto out;
result = ssl_sock_get_dn_entry(name, &find_cn_chunk, 1, dest);
out:
if (crt)
X509_free(crt);
return result;
}
/* returns 1 if client passed a certificate for this session, 0 if not */
int ssl_sock_get_cert_used_sess(struct connection *conn)
{
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
X509 *crt = NULL;
if (!ctx)
return 0;
/* SSL_get_peer_certificate, it increase X509 * ref count */
crt = SSL_get_peer_certificate(ctx->ssl);
if (!crt)
return 0;
X509_free(crt);
return 1;
}
/* returns 1 if client passed a certificate for this connection, 0 if not */
int ssl_sock_get_cert_used_conn(struct connection *conn)
{
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
if (!ctx)
return 0;
return SSL_SOCK_ST_FL_VERIFY_DONE & ctx->xprt_st ? 1 : 0;
}
/* returns result from SSL verify */
unsigned int ssl_sock_get_verify_result(struct connection *conn)
{
struct ssl_sock_ctx *ctx = conn_get_ssl_sock_ctx(conn);
if (!ctx)
return (unsigned int)X509_V_ERR_APPLICATION_VERIFICATION;
return (unsigned int)SSL_get_verify_result(ctx->ssl);
}
/* Returns the application layer protocol name in <str> and <len> when known.
* Zero is returned if the protocol name was not found, otherwise non-zero is
* returned. The string is allocated in the SSL context and doesn't have to be
* freed by the caller. NPN is also checked if available since older versions
* of openssl (1.0.1) which are more common in field only support this one.
*/
int ssl_sock_get_alpn(const struct connection *conn, void *xprt_ctx, const char **str, int *len)
{
#if defined(TLSEXT_TYPE_application_layer_protocol_negotiation) || \
defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
struct ssl_sock_ctx *ctx = xprt_ctx;
if (!ctx)
return 0;
*str = NULL;
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
SSL_get0_alpn_selected(ctx->ssl, (const unsigned char **)str, (unsigned *)len);
if (*str)
return 1;
#endif
#if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG)
SSL_get0_next_proto_negotiated(ctx->ssl, (const unsigned char **)str, (unsigned *)len);
if (*str)
return 1;
#endif
#endif
return 0;
}
/* "issuers-chain-path" load chain certificate in global */
int ssl_load_global_issuer_from_BIO(BIO *in, char *fp, char **err)
{
X509 *ca;
X509_NAME *name = NULL;
ASN1_OCTET_STRING *skid = NULL;
STACK_OF(X509) *chain = NULL;
struct issuer_chain *issuer;
struct eb64_node *node;
char *path;
u64 key;
int ret = 0;
while ((ca = PEM_read_bio_X509(in, NULL, NULL, NULL))) {
if (chain == NULL) {
chain = sk_X509_new_null();
skid = X509_get_ext_d2i(ca, NID_subject_key_identifier, NULL, NULL);
name = X509_get_subject_name(ca);
}
if (!sk_X509_push(chain, ca)) {
X509_free(ca);
goto end;
}
}
if (!chain) {
memprintf(err, "unable to load issuers-chain %s : pem certificate not found.\n", fp);
goto end;
}
if (!skid) {
memprintf(err, "unable to load issuers-chain %s : SubjectKeyIdentifier not found.\n", fp);
goto end;
}
if (!name) {
memprintf(err, "unable to load issuers-chain %s : SubjectName not found.\n", fp);
goto end;
}
key = XXH3(ASN1_STRING_get0_data(skid), ASN1_STRING_length(skid), 0);
for (node = eb64_lookup(&cert_issuer_tree, key); node; node = eb64_next(node)) {
issuer = container_of(node, typeof(*issuer), node);
if (!X509_NAME_cmp(name, X509_get_subject_name(sk_X509_value(issuer->chain, 0)))) {
memprintf(err, "duplicate issuers-chain %s: %s already in store\n", fp, issuer->path);
goto end;
}
}
issuer = calloc(1, sizeof *issuer);
path = strdup(fp);
if (!issuer || !path) {
free(issuer);
free(path);
goto end;
}
issuer->node.key = key;
issuer->path = path;
issuer->chain = chain;
chain = NULL;
eb64_insert(&cert_issuer_tree, &issuer->node);
ret = 1;
end:
if (skid)
ASN1_OCTET_STRING_free(skid);
if (chain)
sk_X509_pop_free(chain, X509_free);
return ret;
}
struct issuer_chain* ssl_get0_issuer_chain(X509 *cert)
{
AUTHORITY_KEYID *akid;
struct issuer_chain *issuer = NULL;
akid = X509_get_ext_d2i(cert, NID_authority_key_identifier, NULL, NULL);
if (akid && akid->keyid) {
struct eb64_node *node;
u64 hk;
hk = XXH3(ASN1_STRING_get0_data(akid->keyid), ASN1_STRING_length(akid->keyid), 0);
for (node = eb64_lookup(&cert_issuer_tree, hk); node; node = eb64_next(node)) {
struct issuer_chain *ti = container_of(node, typeof(*issuer), node);
if (X509_check_issued(sk_X509_value(ti->chain, 0), cert) == X509_V_OK) {
issuer = ti;
break;
}
}
AUTHORITY_KEYID_free(akid);
}
return issuer;
}
void ssl_free_global_issuers(void)
{
struct eb64_node *node, *back;
struct issuer_chain *issuer;
node = eb64_first(&cert_issuer_tree);
while (node) {
issuer = container_of(node, typeof(*issuer), node);
back = eb64_next(node);
eb64_delete(node);
free(issuer->path);
sk_X509_pop_free(issuer->chain, X509_free);
free(issuer);
node = back;
}
}
#if defined(USE_ENGINE) && !defined(OPENSSL_NO_ENGINE)
static int ssl_check_async_engine_count(void) {
int err_code = ERR_NONE;
if (global_ssl.async && (openssl_engines_initialized > 32)) {
ha_alert("ssl-mode-async only supports a maximum of 32 engines.\n");
err_code = ERR_ABORT;
}
return err_code;
}
#endif
/* "show fd" helper to dump ssl internals. Warning: the output buffer is often
* the common trash! It returns non-zero if the connection entry looks suspicious.
*/
static int ssl_sock_show_fd(struct buffer *buf, const struct connection *conn, const void *ctx)
{
const struct ssl_sock_ctx *sctx = ctx;
int ret = 0;
if (!sctx)
return ret;
if (sctx->conn != conn) {
chunk_appendf(&trash, " xctx.conn=%p(BOGUS)", sctx->conn);
ret = 1;
}
chunk_appendf(&trash, " xctx.st=%d", sctx->xprt_st);
if (sctx->xprt) {
chunk_appendf(&trash, " .xprt=%s", sctx->xprt->name);
if (sctx->xprt_ctx)
chunk_appendf(&trash, " .xctx=%p", sctx->xprt_ctx);
}
chunk_appendf(&trash, " .wait.ev=%d", sctx->wait_event.events);
/* as soon as a shutdown is reported the lower layer unregisters its
* subscriber, so the situations below are transient and rare enough to
* be reported as suspicious. In any case they shouldn't last.
*/
if ((sctx->wait_event.events & 1) && (conn->flags & (CO_FL_SOCK_RD_SH|CO_FL_ERROR)))
ret = 1;
if ((sctx->wait_event.events & 2) && (conn->flags & (CO_FL_SOCK_WR_SH|CO_FL_ERROR)))
ret = 1;
chunk_appendf(&trash, " .subs=%p", sctx->subs);
if (sctx->subs) {
chunk_appendf(&trash, "(ev=%d tl=%p", sctx->subs->events, sctx->subs->tasklet);
if (sctx->subs->tasklet->calls >= 1000000)
ret = 1;
chunk_appendf(&trash, " tl.calls=%d tl.ctx=%p tl.fct=",
sctx->subs->tasklet->calls,
sctx->subs->tasklet->context);
resolve_sym_name(&trash, NULL, sctx->subs->tasklet->process);
chunk_appendf(&trash, ")");
}
chunk_appendf(&trash, " .sent_early=%d", sctx->sent_early_data);
chunk_appendf(&trash, " .early_in=%d", (int)sctx->early_buf.data);
return ret;
}
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
/* This function is used with TLS ticket keys management. It permits to browse
* each reference. The variable <ref> must point to the current node's list
* element (which starts by the root), and <end> must point to the root node.
*/
static inline
struct tls_keys_ref *tlskeys_list_get_next(struct list *ref, struct list *end)
{
/* Get next list entry. */
ref = ref->n;
/* If the entry is the last of the list, return NULL. */
if (ref == end)
return NULL;
return LIST_ELEM(ref, struct tls_keys_ref *, list);
}
static inline
struct tls_keys_ref *tlskeys_ref_lookup_ref(const char *reference)
{
int id;
char *error;
/* If the reference starts by a '#', this is numeric id. */
if (reference[0] == '#') {
/* Try to convert the numeric id. If the conversion fails, the lookup fails. */
id = strtol(reference + 1, &error, 10);
if (*error != '\0')
return NULL;
/* Perform the unique id lookup. */
return tlskeys_ref_lookupid(id);
}
/* Perform the string lookup. */
return tlskeys_ref_lookup(reference);
}
#endif
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
/* dumps all tls keys. Relies on the show_keys_ctx context from the appctx. */
static int cli_io_handler_tlskeys_files(struct appctx *appctx)
{
struct show_keys_ctx *ctx = appctx->svcctx;
struct conn_stream *cs = appctx_cs(appctx);
switch (ctx->state) {
case SHOW_KEYS_INIT:
/* Display the column headers. If the message cannot be sent,
* quit the function with returning 0. The function is called
* later and restart at the state "SHOW_KEYS_INIT".
*/
chunk_reset(&trash);
if (ctx->dump_entries)
chunk_appendf(&trash, "# id secret\n");
else
chunk_appendf(&trash, "# id (file)\n");
if (ci_putchk(cs_ic(cs), &trash) == -1) {
cs_rx_room_blk(cs);
return 0;
}
/* Now, we start the browsing of the references lists.
* Note that the following call to LIST_ELEM return bad pointer. The only
* available field of this pointer is <list>. It is used with the function
* tlskeys_list_get_next() for retruning the first available entry
*/
if (ctx->next_ref == NULL)
ctx->next_ref = tlskeys_list_get_next(&tlskeys_reference, &tlskeys_reference);
ctx->state = SHOW_KEYS_LIST;
/* fall through */
case SHOW_KEYS_LIST:
while (ctx->next_ref) {
struct tls_keys_ref *ref = ctx->next_ref;
chunk_reset(&trash);
if (ctx->dump_entries && ctx->next_index == 0)
chunk_appendf(&trash, "# ");
if (ctx->next_index == 0)
chunk_appendf(&trash, "%d (%s)\n", ref->unique_id, ref->filename);
if (ctx->dump_entries) {
int head;
HA_RWLOCK_RDLOCK(TLSKEYS_REF_LOCK, &ref->lock);
head = ref->tls_ticket_enc_index;
while (ctx->next_index < TLS_TICKETS_NO) {
struct buffer *t2 = get_trash_chunk();
chunk_reset(t2);
/* should never fail here because we dump only a key in the t2 buffer */
if (ref->key_size_bits == 128) {
t2->data = a2base64((char *)(ref->tlskeys + (head + 2 + ctx->next_index) % TLS_TICKETS_NO),
sizeof(struct tls_sess_key_128),
t2->area, t2->size);
chunk_appendf(&trash, "%d.%d %s\n", ref->unique_id, ctx->next_index,
t2->area);
}
else if (ref->key_size_bits == 256) {
t2->data = a2base64((char *)(ref->tlskeys + (head + 2 + ctx->next_index) % TLS_TICKETS_NO),
sizeof(struct tls_sess_key_256),
t2->area, t2->size);
chunk_appendf(&trash, "%d.%d %s\n", ref->unique_id, ctx->next_index,
t2->area);
}
else {
/* This case should never happen */
chunk_appendf(&trash, "%d.%d <unknown>\n", ref->unique_id, ctx->next_index);
}
if (ci_putchk(cs_ic(cs), &trash) == -1) {
/* let's try again later from this stream. We add ourselves into
* this stream's users so that it can remove us upon termination.
*/
HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock);
cs_rx_room_blk(cs);
return 0;
}
ctx->next_index++;
}
HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock);
ctx->next_index = 0;
}
if (ci_putchk(cs_ic(cs), &trash) == -1) {
/* let's try again later from this stream. We add ourselves into
* this stream's users so that it can remove us upon termination.
*/
cs_rx_room_blk(cs);
return 0;
}
if (ctx->names_only == 0) /* don't display everything if not necessary */
break;
/* get next list entry and check the end of the list */
ctx->next_ref = tlskeys_list_get_next(&ref->list, &tlskeys_reference);
}
ctx->state = SHOW_KEYS_DONE;
/* fall through */
default:
return 1;
}
return 0;
}
/* Prepares a "show_keys_ctx" and sets the appropriate io_handler if needed */
static int cli_parse_show_tlskeys(char **args, char *payload, struct appctx *appctx, void *private)
{
struct show_keys_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
/* no parameter, shows only file list */
if (!*args[2]) {
ctx->names_only = 1;
return 0;
}
if (args[2][0] == '*') {
/* list every TLS ticket keys */
ctx->names_only = 1;
} else {
ctx->next_ref = tlskeys_ref_lookup_ref(args[2]);
if (!ctx->next_ref)
return cli_err(appctx, "'show tls-keys' unable to locate referenced filename\n");
}
ctx->dump_entries = 1;
return 0;
}
static int cli_parse_set_tlskeys(char **args, char *payload, struct appctx *appctx, void *private)
{
struct tls_keys_ref *ref;
int ret;
/* Expect two parameters: the filename and the new new TLS key in encoding */
if (!*args[3] || !*args[4])
return cli_err(appctx, "'set ssl tls-key' expects a filename and the new TLS key in base64 encoding.\n");
ref = tlskeys_ref_lookup_ref(args[3]);
if (!ref)
return cli_err(appctx, "'set ssl tls-key' unable to locate referenced filename\n");
ret = base64dec(args[4], strlen(args[4]), trash.area, trash.size);
if (ret < 0)
return cli_err(appctx, "'set ssl tls-key' received invalid base64 encoded TLS key.\n");
trash.data = ret;
if (ssl_sock_update_tlskey_ref(ref, &trash) < 0)
return cli_err(appctx, "'set ssl tls-key' received a key of wrong size.\n");
return cli_msg(appctx, LOG_INFO, "TLS ticket key updated!\n");
}
#endif
static int cli_parse_set_ocspresponse(char **args, char *payload, struct appctx *appctx, void *private)
{
#if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP)
char *err = NULL;
int i, j, ret;
if (!payload)
payload = args[3];
/* Expect one parameter: the new response in base64 encoding */
if (!*payload)
return cli_err(appctx, "'set ssl ocsp-response' expects response in base64 encoding.\n");
/* remove \r and \n from the payload */
for (i = 0, j = 0; payload[i]; i++) {
if (payload[i] == '\r' || payload[i] == '\n')
continue;
payload[j++] = payload[i];
}
payload[j] = 0;
ret = base64dec(payload, j, trash.area, trash.size);
if (ret < 0)
return cli_err(appctx, "'set ssl ocsp-response' received invalid base64 encoded response.\n");
trash.data = ret;
if (ssl_sock_update_ocsp_response(&trash, &err)) {
if (err)
return cli_dynerr(appctx, memprintf(&err, "%s.\n", err));
else
return cli_err(appctx, "Failed to update OCSP response.\n");
}
return cli_msg(appctx, LOG_INFO, "OCSP Response updated!\n");
#else
return cli_err(appctx, "HAProxy was compiled against a version of OpenSSL that doesn't support OCSP stapling.\n");
#endif
}
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) && !defined OPENSSL_IS_BORINGSSL)
static int cli_io_handler_show_ocspresponse_detail(struct appctx *appctx);
#endif
/* parsing function for 'show ssl ocsp-response [id]'. If an entry is forced,
* it's set into appctx->svcctx.
*/
static int cli_parse_show_ocspresponse(char **args, char *payload, struct appctx *appctx, void *private)
{
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) && !defined OPENSSL_IS_BORINGSSL)
if (*args[3]) {
struct certificate_ocsp *ocsp = NULL;
char *key = NULL;
int key_length = 0;
if (strlen(args[3]) > OCSP_MAX_CERTID_ASN1_LENGTH*2) {
return cli_err(appctx, "'show ssl ocsp-response' received a too big key.\n");
}
if (parse_binary(args[3], &key, &key_length, NULL)) {
char full_key[OCSP_MAX_CERTID_ASN1_LENGTH] = {};
memcpy(full_key, key, key_length);
ocsp = (struct certificate_ocsp *)ebmb_lookup(&cert_ocsp_tree, full_key, OCSP_MAX_CERTID_ASN1_LENGTH);
}
if (key)
ha_free(&key);
if (!ocsp) {
return cli_err(appctx, "Certificate ID does not match any certificate.\n");
}
appctx->svcctx = ocsp;
appctx->io_handler = cli_io_handler_show_ocspresponse_detail;
}
return 0;
#else
return cli_err(appctx, "HAProxy was compiled against a version of OpenSSL that doesn't support OCSP stapling.\n");
#endif
}
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) && !defined OPENSSL_IS_BORINGSSL)
/*
* This function dumps the details of an OCSP_CERTID. It is based on
* ocsp_certid_print in OpenSSL.
*/
static inline int ocsp_certid_print(BIO *bp, OCSP_CERTID *certid, int indent)
{
ASN1_OCTET_STRING *piNameHash = NULL;
ASN1_OCTET_STRING *piKeyHash = NULL;
ASN1_INTEGER *pSerial = NULL;
if (OCSP_id_get0_info(&piNameHash, NULL, &piKeyHash, &pSerial, certid)) {
BIO_printf(bp, "%*sCertificate ID:\n", indent, "");
indent += 2;
BIO_printf(bp, "%*sIssuer Name Hash: ", indent, "");
i2a_ASN1_STRING(bp, piNameHash, 0);
BIO_printf(bp, "\n%*sIssuer Key Hash: ", indent, "");
i2a_ASN1_STRING(bp, piKeyHash, 0);
BIO_printf(bp, "\n%*sSerial Number: ", indent, "");
i2a_ASN1_INTEGER(bp, pSerial);
}
return 1;
}
#endif
/*
* IO handler of "show ssl ocsp-response". The command taking a specific ID
* is managed in cli_io_handler_show_ocspresponse_detail.
* The current entry is taken from appctx->svcctx.
*/
static int cli_io_handler_show_ocspresponse(struct appctx *appctx)
{
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) && !defined OPENSSL_IS_BORINGSSL)
struct buffer *trash = alloc_trash_chunk();
struct buffer *tmp = NULL;
struct ebmb_node *node;
struct conn_stream *cs = appctx_cs(appctx);
struct certificate_ocsp *ocsp = NULL;
BIO *bio = NULL;
int write = -1;
if (trash == NULL)
return 1;
tmp = alloc_trash_chunk();
if (!tmp)
goto end;
if ((bio = BIO_new(BIO_s_mem())) == NULL)
goto end;
if (!appctx->svcctx) {
chunk_appendf(trash, "# Certificate IDs\n");
node = ebmb_first(&cert_ocsp_tree);
} else {
node = &((struct certificate_ocsp *)appctx->svcctx)->key;
}
while (node) {
OCSP_CERTID *certid = NULL;
const unsigned char *p = NULL;
int i;
ocsp = ebmb_entry(node, struct certificate_ocsp, key);
/* Dump the key in hexadecimal */
chunk_appendf(trash, "Certificate ID key : ");
for (i = 0; i < ocsp->key_length; ++i) {
chunk_appendf(trash, "%02x", ocsp->key_data[i]);
}
chunk_appendf(trash, "\n");
p = ocsp->key_data;
/* Decode the certificate ID (serialized into the key). */
d2i_OCSP_CERTID(&certid, &p, ocsp->key_length);
if (!certid)
goto end;
/* Dump the CERTID info */
ocsp_certid_print(bio, certid, 1);
OCSP_CERTID_free(certid);
write = BIO_read(bio, tmp->area, tmp->size-1);
/* strip trailing LFs */
while (write > 0 && tmp->area[write-1] == '\n')
write--;
tmp->area[write] = '\0';
chunk_appendf(trash, "%s\n", tmp->area);
node = ebmb_next(node);
if (ci_putchk(cs_ic(cs), trash) == -1) {
cs_rx_room_blk(cs);
goto yield;
}
}
end:
appctx->svcctx = NULL;
if (trash)
free_trash_chunk(trash);
if (tmp)
free_trash_chunk(tmp);
if (bio)
BIO_free(bio);
return 1;
yield:
if (trash)
free_trash_chunk(trash);
if (tmp)
free_trash_chunk(tmp);
if (bio)
BIO_free(bio);
appctx->svcctx = ocsp;
return 0;
#else
return cli_err(appctx, "HAProxy was compiled against a version of OpenSSL that doesn't support OCSP stapling.\n");
#endif
}
#ifdef HAVE_SSL_PROVIDERS
struct provider_name {
const char *name;
struct list list;
};
static int ssl_provider_get_name_cb(OSSL_PROVIDER *provider, void *cbdata)
{
struct list *provider_names = cbdata;
struct provider_name *item = NULL;
const char *name = OSSL_PROVIDER_get0_name(provider);
if (!provider_names)
return 0;
item = calloc(1, sizeof(*item));
if (!item)
return 0;
item->name = name;
LIST_APPEND(provider_names, &item->list);
return 1;
}
static void ssl_provider_get_name_list(struct list *provider_names)
{
if (!provider_names)
return;
OSSL_PROVIDER_do_all(NULL, ssl_provider_get_name_cb, provider_names);
}
static void ssl_provider_clear_name_list(struct list *provider_names)
{
struct provider_name *item = NULL, *item_s = NULL;
if (provider_names) {
list_for_each_entry_safe(item, item_s, provider_names, list) {
LIST_DELETE(&item->list);
free(item);
}
}
}
static int cli_io_handler_show_providers(struct appctx *appctx)
{
struct buffer *trash = get_trash_chunk();
struct conn_stream *cs = appctx_cs(appctx);
struct list provider_names;
struct provider_name *name;
LIST_INIT(&provider_names);
chunk_appendf(trash, "Loaded providers : \n");
ssl_provider_get_name_list(&provider_names);
list_for_each_entry(name, &provider_names, list) {
chunk_appendf(trash, "\t- %s\n", name->name);
}
ssl_provider_clear_name_list(&provider_names);
if (ci_putchk(cs_ic(cs), trash) == -1) {
cs_rx_room_blk(cs);
goto yield;
}
return 1;
yield:
return 0;
}
#endif
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) && !defined OPENSSL_IS_BORINGSSL)
/*
* Dump the details about an OCSP response in DER format stored in
* <ocsp_response> into buffer <out>.
* Returns 0 in case of success.
*/
int ssl_ocsp_response_print(struct buffer *ocsp_response, struct buffer *out)
{
BIO *bio = NULL;
int write = -1;
OCSP_RESPONSE *resp;
const unsigned char *p;
int retval = -1;
if (!ocsp_response)
return -1;
if ((bio = BIO_new(BIO_s_mem())) == NULL)
return -1;
p = (const unsigned char*)ocsp_response->area;
resp = d2i_OCSP_RESPONSE(NULL, &p, ocsp_response->data);
if (!resp) {
chunk_appendf(out, "Unable to parse OCSP response");
goto end;
}
if (OCSP_RESPONSE_print(bio, resp, 0) != 0) {
struct buffer *trash = get_trash_chunk();
struct ist ist_block = IST_NULL;
struct ist ist_double_lf = IST_NULL;
static struct ist double_lf = IST("\n\n");
write = BIO_read(bio, trash->area, trash->size - 1);
if (write <= 0)
goto end;
trash->data = write;
/* Look for empty lines in the 'trash' buffer and add a space to
* the beginning to avoid having empty lines in the output
* (without changing the appearance of the information
* displayed).
*/
ist_block = ist2(b_orig(trash), b_data(trash));
ist_double_lf = istist(ist_block, double_lf);
while (istlen(ist_double_lf)) {
/* istptr(ist_double_lf) points to the first \n of a
* \n\n pattern.
*/
uint empty_line_offset = istptr(ist_double_lf) + 1 - istptr(ist_block);
/* Write up to the first '\n' of the "\n\n" pattern into
* the output buffer.
*/
b_putblk(out, istptr(ist_block), empty_line_offset);
/* Add an extra space. */
b_putchr(out, ' ');
/* Keep looking for empty lines in the rest of the data. */
ist_block = istadv(ist_block, empty_line_offset);
ist_double_lf = istist(ist_block, double_lf);
}
retval = (b_istput(out, ist_block) <= 0);
}
end:
if (bio)
BIO_free(bio);
OCSP_RESPONSE_free(resp);
return retval;
}
/*
* Dump the details of the OCSP response of ID <ocsp_certid> into buffer <out>.
* Returns 0 in case of success.
*/
int ssl_get_ocspresponse_detail(unsigned char *ocsp_certid, struct buffer *out)
{
struct certificate_ocsp *ocsp;
ocsp = (struct certificate_ocsp *)ebmb_lookup(&cert_ocsp_tree, ocsp_certid, OCSP_MAX_CERTID_ASN1_LENGTH);
if (!ocsp)
return -1;
return ssl_ocsp_response_print(&ocsp->response, out);
}
/* IO handler of details "show ssl ocsp-response <id>".
* The current entry is taken from appctx->svcctx.
*/
static int cli_io_handler_show_ocspresponse_detail(struct appctx *appctx)
{
struct buffer *trash = alloc_trash_chunk();
struct certificate_ocsp *ocsp = appctx->svcctx;
struct conn_stream *cs = appctx_cs(appctx);
if (trash == NULL)
return 1;
if (ssl_ocsp_response_print(&ocsp->response, trash)) {
free_trash_chunk(trash);
return 1;
}
if (ci_putchk(cs_ic(cs), trash) == -1) {
cs_rx_room_blk(cs);
goto yield;
}
appctx->svcctx = NULL;
if (trash)
free_trash_chunk(trash);
return 1;
yield:
if (trash)
free_trash_chunk(trash);
return 0;
}
#endif
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
{ { "show", "tls-keys", NULL }, "show tls-keys [id|*] : show tls keys references or dump tls ticket keys when id specified", cli_parse_show_tlskeys, cli_io_handler_tlskeys_files },
{ { "set", "ssl", "tls-key", NULL }, "set ssl tls-key [id|file] <key> : set the next TLS key for the <id> or <file> listener to <key>", cli_parse_set_tlskeys, NULL },
#endif
{ { "set", "ssl", "ocsp-response", NULL }, "set ssl ocsp-response <resp|payload> : update a certificate's OCSP Response from a base64-encode DER", cli_parse_set_ocspresponse, NULL },
{ { "show", "ssl", "ocsp-response", NULL },"show ssl ocsp-response [id] : display the IDs of the OCSP responses used in memory, or the details of a single OCSP response", cli_parse_show_ocspresponse, cli_io_handler_show_ocspresponse, NULL },
#ifdef HAVE_SSL_PROVIDERS
{ { "show", "ssl", "providers", NULL }, "show ssl providers : show loaded SSL providers", NULL, cli_io_handler_show_providers },
#endif
{ { NULL }, NULL, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
/* transport-layer operations for SSL sockets */
struct xprt_ops ssl_sock = {
.snd_buf = ssl_sock_from_buf,
.rcv_buf = ssl_sock_to_buf,
.subscribe = ssl_subscribe,
.unsubscribe = ssl_unsubscribe,
.remove_xprt = ssl_remove_xprt,
.add_xprt = ssl_add_xprt,
.rcv_pipe = NULL,
.snd_pipe = NULL,
.shutr = NULL,
.shutw = ssl_sock_shutw,
.close = ssl_sock_close,
.init = ssl_sock_init,
.start = ssl_sock_start,
.prepare_bind_conf = ssl_sock_prepare_bind_conf,
.destroy_bind_conf = ssl_sock_destroy_bind_conf,
.prepare_srv = ssl_sock_prepare_srv_ctx,
.destroy_srv = ssl_sock_free_srv_ctx,
.get_alpn = ssl_sock_get_alpn,
.takeover = ssl_takeover,
.set_idle = ssl_set_idle,
.set_used = ssl_set_used,
.get_ssl_sock_ctx = ssl_sock_get_ctx,
.name = "SSL",
.show_fd = ssl_sock_show_fd,
};
enum act_return ssl_action_wait_for_hs(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct connection *conn;
struct conn_stream *cs;
conn = objt_conn(sess->origin);
cs = s->csf;
if (conn && cs) {
if (conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_SSL_WAIT_HS)) {
cs->endp->flags |= CS_EP_WAIT_FOR_HS;
s->req.flags |= CF_READ_NULL;
return ACT_RET_YIELD;
}
}
return (ACT_RET_CONT);
}
static enum act_parse_ret ssl_parse_wait_for_hs(const char **args, int *orig_arg, struct proxy *px, struct act_rule *rule, char **err)
{
rule->action_ptr = ssl_action_wait_for_hs;
return ACT_RET_PRS_OK;
}
static struct action_kw_list http_req_actions = {ILH, {
{ "wait-for-handshake", ssl_parse_wait_for_hs },
{ /* END */ }
}};
INITCALL1(STG_REGISTER, http_req_keywords_register, &http_req_actions);
#ifdef HAVE_SSL_CTX_ADD_SERVER_CUSTOM_EXT
static void ssl_sock_sctl_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp)
{
if (ptr) {
chunk_destroy(ptr);
free(ptr);
}
}
#endif
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) && !defined OPENSSL_IS_BORINGSSL)
static void ssl_sock_ocsp_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp)
{
struct ocsp_cbk_arg *ocsp_arg;
if (ptr) {
ocsp_arg = ptr;
if (ocsp_arg->is_single) {
ssl_sock_free_ocsp(ocsp_arg->s_ocsp);
ocsp_arg->s_ocsp = NULL;
} else {
int i;
for (i = 0; i < SSL_SOCK_NUM_KEYTYPES; i++) {
ssl_sock_free_ocsp(ocsp_arg->m_ocsp[i]);
ocsp_arg->m_ocsp[i] = NULL;
}
}
free(ocsp_arg);
}
}
#endif
static void ssl_sock_capture_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp)
{
pool_free(pool_head_ssl_capture, ptr);
}
#ifdef HAVE_SSL_KEYLOG
static void ssl_sock_keylog_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp)
{
struct ssl_keylog *keylog;
if (!ptr)
return;
keylog = ptr;
pool_free(pool_head_ssl_keylog_str, keylog->client_random);
pool_free(pool_head_ssl_keylog_str, keylog->client_early_traffic_secret);
pool_free(pool_head_ssl_keylog_str, keylog->client_handshake_traffic_secret);
pool_free(pool_head_ssl_keylog_str, keylog->server_handshake_traffic_secret);
pool_free(pool_head_ssl_keylog_str, keylog->client_traffic_secret_0);
pool_free(pool_head_ssl_keylog_str, keylog->server_traffic_secret_0);
pool_free(pool_head_ssl_keylog_str, keylog->exporter_secret);
pool_free(pool_head_ssl_keylog_str, keylog->early_exporter_secret);
pool_free(pool_head_ssl_keylog, ptr);
}
#endif
static void ssl_sock_clt_crt_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp)
{
if (!ptr)
return;
X509_free((X509*)ptr);
}
static void ssl_sock_clt_sni_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp)
{
pool_free(ssl_sock_client_sni_pool, ptr);
}
static void __ssl_sock_init(void)
{
#if (!defined(OPENSSL_NO_COMP) && !defined(SSL_OP_NO_COMPRESSION))
STACK_OF(SSL_COMP)* cm;
int n;
#endif
if (global_ssl.listen_default_ciphers)
global_ssl.listen_default_ciphers = strdup(global_ssl.listen_default_ciphers);
if (global_ssl.connect_default_ciphers)
global_ssl.connect_default_ciphers = strdup(global_ssl.connect_default_ciphers);
#ifdef HAVE_SSL_CTX_SET_CIPHERSUITES
if (global_ssl.listen_default_ciphersuites)
global_ssl.listen_default_ciphersuites = strdup(global_ssl.listen_default_ciphersuites);
if (global_ssl.connect_default_ciphersuites)
global_ssl.connect_default_ciphersuites = strdup(global_ssl.connect_default_ciphersuites);
#endif
xprt_register(XPRT_SSL, &ssl_sock);
#if HA_OPENSSL_VERSION_NUMBER < 0x10100000L
SSL_library_init();
#endif
#if (!defined(OPENSSL_NO_COMP) && !defined(SSL_OP_NO_COMPRESSION))
cm = SSL_COMP_get_compression_methods();
n = sk_SSL_COMP_num(cm);
while (n--) {
(void) sk_SSL_COMP_pop(cm);
}
#endif
#if defined(USE_THREAD) && (HA_OPENSSL_VERSION_NUMBER < 0x10100000L)
ssl_locking_init();
#endif
#ifdef HAVE_SSL_CTX_ADD_SERVER_CUSTOM_EXT
sctl_ex_index = SSL_CTX_get_ex_new_index(0, NULL, NULL, NULL, ssl_sock_sctl_free_func);
#endif
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) && !defined OPENSSL_IS_BORINGSSL)
ocsp_ex_index = SSL_CTX_get_ex_new_index(0, NULL, NULL, NULL, ssl_sock_ocsp_free_func);
#endif
ssl_app_data_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL);
ssl_capture_ptr_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, ssl_sock_capture_free_func);
#ifdef USE_QUIC
ssl_qc_app_data_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL);
#endif /* USE_QUIC */
#ifdef HAVE_SSL_KEYLOG
ssl_keylog_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, ssl_sock_keylog_free_func);
#endif
ssl_client_crt_ref_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, ssl_sock_clt_crt_free_func);
ssl_client_sni_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, ssl_sock_clt_sni_free_func);
#if defined(USE_ENGINE) && !defined(OPENSSL_NO_ENGINE)
ENGINE_load_builtin_engines();
hap_register_post_check(ssl_check_async_engine_count);
#endif
#if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0)
hap_register_post_check(tlskeys_finalize_config);
#endif
global.ssl_session_max_cost = SSL_SESSION_MAX_COST;
global.ssl_handshake_max_cost = SSL_HANDSHAKE_MAX_COST;
hap_register_post_deinit(ssl_free_global_issuers);
#ifndef OPENSSL_NO_DH
ssl_dh_ptr_index = SSL_CTX_get_ex_new_index(0, NULL, NULL, NULL, NULL);
hap_register_post_deinit(ssl_free_dh);
#endif
#if defined(USE_ENGINE) && !defined(OPENSSL_NO_ENGINE)
hap_register_post_deinit(ssl_free_engines);
#endif
#ifdef HAVE_SSL_PROVIDERS
hap_register_post_deinit(ssl_unload_providers);
#endif
#if HA_OPENSSL_VERSION_NUMBER < 0x3000000fL
/* Load SSL string for the verbose & debug mode. */
ERR_load_SSL_strings();
#endif
ha_meth = BIO_meth_new(0x666, "ha methods");
BIO_meth_set_write(ha_meth, ha_ssl_write);
BIO_meth_set_read(ha_meth, ha_ssl_read);
BIO_meth_set_ctrl(ha_meth, ha_ssl_ctrl);
BIO_meth_set_create(ha_meth, ha_ssl_new);
BIO_meth_set_destroy(ha_meth, ha_ssl_free);
BIO_meth_set_puts(ha_meth, ha_ssl_puts);
BIO_meth_set_gets(ha_meth, ha_ssl_gets);
HA_SPIN_INIT(&ckch_lock);
/* Try to register dedicated SSL/TLS protocol message callbacks for
* heartbleed attack (CVE-2014-0160) and clienthello.
*/
hap_register_post_check(ssl_sock_register_msg_callbacks);
/* Try to free all callbacks that were registered by using
* ssl_sock_register_msg_callback().
*/
hap_register_post_deinit(ssl_sock_unregister_msg_callbacks);
}
INITCALL0(STG_REGISTER, __ssl_sock_init);
/* Compute and register the version string */
static void ssl_register_build_options()
{
char *ptr = NULL;
int i;
memprintf(&ptr, "Built with OpenSSL version : "
#ifdef OPENSSL_IS_BORINGSSL
"BoringSSL");
#else /* OPENSSL_IS_BORINGSSL */
OPENSSL_VERSION_TEXT
"\nRunning on OpenSSL version : %s%s",
OpenSSL_version(OPENSSL_VERSION),
((OPENSSL_VERSION_NUMBER ^ OpenSSL_version_num()) >> 8) ? " (VERSIONS DIFFER!)" : "");
#endif
memprintf(&ptr, "%s\nOpenSSL library supports TLS extensions : "
#if HA_OPENSSL_VERSION_NUMBER < 0x00907000L
"no (library version too old)"
#elif defined(OPENSSL_NO_TLSEXT)
"no (disabled via OPENSSL_NO_TLSEXT)"
#else
"yes"
#endif
"", ptr);
memprintf(&ptr, "%s\nOpenSSL library supports SNI : "
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
"yes"
#else
#ifdef OPENSSL_NO_TLSEXT
"no (because of OPENSSL_NO_TLSEXT)"
#else
"no (version might be too old, 0.9.8f min needed)"
#endif
#endif
"", ptr);
memprintf(&ptr, "%s\nOpenSSL library supports :", ptr);
for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++)
if (methodVersions[i].option)
memprintf(&ptr, "%s %s", ptr, methodVersions[i].name);
#ifdef HAVE_SSL_PROVIDERS
{
struct list provider_names;
struct provider_name *name;
LIST_INIT(&provider_names);
ssl_provider_get_name_list(&provider_names);
memprintf(&ptr, "%s\nOpenSSL providers loaded :", ptr);
list_for_each_entry(name, &provider_names, list) {
memprintf(&ptr, "%s %s", ptr, name->name);
}
ssl_provider_clear_name_list(&provider_names);
}
#endif
hap_register_build_opts(ptr, 1);
}
INITCALL0(STG_REGISTER, ssl_register_build_options);
#if defined(USE_ENGINE) && !defined(OPENSSL_NO_ENGINE)
void ssl_free_engines(void) {
struct ssl_engine_list *wl, *wlb;
/* free up engine list */
list_for_each_entry_safe(wl, wlb, &openssl_engines, list) {
ENGINE_finish(wl->e);
ENGINE_free(wl->e);
LIST_DELETE(&wl->list);
free(wl);
}
}
#endif
#ifdef HAVE_SSL_PROVIDERS
void ssl_unload_providers(void) {
struct ssl_provider_list *prov, *provb;
list_for_each_entry_safe(prov, provb, &openssl_providers, list) {
OSSL_PROVIDER_unload(prov->provider);
LIST_DELETE(&prov->list);
free(prov);
}
}
#endif
#ifndef OPENSSL_NO_DH
void ssl_free_dh(void) {
if (local_dh_1024) {
HASSL_DH_free(local_dh_1024);
local_dh_1024 = NULL;
}
if (local_dh_2048) {
HASSL_DH_free(local_dh_2048);
local_dh_2048 = NULL;
}
if (local_dh_4096) {
HASSL_DH_free(local_dh_4096);
local_dh_4096 = NULL;
}
if (global_dh) {
HASSL_DH_free(global_dh);
global_dh = NULL;
}
}
#endif
static void __ssl_sock_deinit(void)
{
#if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES)
if (ssl_ctx_lru_tree) {
lru64_destroy(ssl_ctx_lru_tree);
HA_RWLOCK_DESTROY(&ssl_ctx_lru_rwlock);
}
#endif
#if (HA_OPENSSL_VERSION_NUMBER < 0x10100000L)
ERR_remove_state(0);
ERR_free_strings();
EVP_cleanup();
#endif
#if (HA_OPENSSL_VERSION_NUMBER >= 0x00907000L) && (HA_OPENSSL_VERSION_NUMBER < 0x10100000L)
CRYPTO_cleanup_all_ex_data();
#endif
BIO_meth_free(ha_meth);
}
REGISTER_POST_DEINIT(__ssl_sock_deinit);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/