blob: cb7a09e6e72fcd11aebcce17016601096377d8e3 [file] [log] [blame]
#include <haproxy/mux_quic.h>
#include <import/eb64tree.h>
#include <haproxy/api.h>
#include <haproxy/connection.h>
#include <haproxy/dynbuf.h>
#include <haproxy/htx.h>
#include <haproxy/list.h>
#include <haproxy/ncbuf.h>
#include <haproxy/pool.h>
#include <haproxy/quic_stream.h>
#include <haproxy/quic_tp-t.h>
#include <haproxy/ssl_sock-t.h>
#include <haproxy/stconn.h>
#include <haproxy/trace.h>
#include <haproxy/xprt_quic.h>
DECLARE_POOL(pool_head_qcc, "qcc", sizeof(struct qcc));
DECLARE_POOL(pool_head_qcs, "qcs", sizeof(struct qcs));
/* trace source and events */
static void qmux_trace(enum trace_level level, uint64_t mask,
const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4);
static const struct trace_event qmux_trace_events[] = {
#define QMUX_EV_QCC_RECV (1ULL << 1)
{ .mask = QMUX_EV_QCC_RECV, .name = "qcc_recv", .desc = "Rx on QUIC connection" },
#define QMUX_EV_QCC_SEND (1ULL << 2)
{ .mask = QMUX_EV_QCC_SEND, .name = "qcc_send", .desc = "Tx on QUIC connection" },
#define QMUX_EV_QCC_WAKE (1ULL << 3)
{ .mask = QMUX_EV_QCC_WAKE, .name = "qcc_wake", .desc = "QUIC connection woken up" },
#define QMUX_EV_QCC_END (1ULL << 4)
{ .mask = QMUX_EV_QCC_END, .name = "qcc_end", .desc = "QUIC connection terminated" },
#define QMUX_EV_QCC_NQCS (1ULL << 5)
{ .mask = QMUX_EV_QCC_NQCS, .name = "qcc_no_qcs", .desc = "QUIC stream not found" },
#define QMUX_EV_QCS_NEW (1ULL << 6)
{ .mask = QMUX_EV_QCS_NEW, .name = "qcs_new", .desc = "new QUIC stream" },
#define QMUX_EV_QCS_RECV (1ULL << 7)
{ .mask = QMUX_EV_QCS_RECV, .name = "qcs_recv", .desc = "Rx on QUIC stream" },
#define QMUX_EV_QCS_SEND (1ULL << 8)
{ .mask = QMUX_EV_QCS_SEND, .name = "qcs_send", .desc = "Tx on QUIC stream" },
#define QMUX_EV_QCS_END (1ULL << 9)
{ .mask = QMUX_EV_QCS_END, .name = "qcs_end", .desc = "QUIC stream terminated" },
#define QMUX_EV_STRM_RECV (1ULL << 10)
{ .mask = QMUX_EV_STRM_RECV, .name = "strm_recv", .desc = "receiving data for stream" },
#define QMUX_EV_STRM_SEND (1ULL << 11)
{ .mask = QMUX_EV_STRM_SEND, .name = "strm_send", .desc = "sending data for stream" },
#define QMUX_EV_STRM_END (1ULL << 12)
{ .mask = QMUX_EV_STRM_END, .name = "strm_end", .desc = "detaching app-layer stream" },
#define QMUX_EV_SEND_FRM (1ULL << 13)
{ .mask = QMUX_EV_SEND_FRM, .name = "send_frm", .desc = "sending QUIC frame" },
/* special event dedicated to qcs_xfer_data */
#define QMUX_EV_QCS_XFER_DATA (1ULL << 14)
{ .mask = QMUX_EV_QCS_XFER_DATA, .name = "qcs_xfer_data", .desc = "qcs_xfer_data" },
/* special event dedicated to qcs_build_stream_frm */
#define QMUX_EV_QCS_BUILD_STRM (1ULL << 15)
{ .mask = QMUX_EV_QCS_BUILD_STRM, .name = "qcs_build_stream_frm", .desc = "qcs_build_stream_frm" },
{ }
};
/* custom arg for QMUX_EV_QCS_XFER_DATA */
struct qcs_xfer_data_trace_arg {
size_t prep;
int xfer;
};
/* custom arg for QMUX_EV_QCS_BUILD_STRM */
struct qcs_build_stream_trace_arg {
size_t len;
char fin;
uint64_t offset;
};
static const struct name_desc qmux_trace_lockon_args[4] = {
/* arg1 */ { /* already used by the connection */ },
/* arg2 */ { .name="qcs", .desc="QUIC stream" },
/* arg3 */ { },
/* arg4 */ { }
};
static const struct name_desc qmux_trace_decoding[] = {
#define QMUX_VERB_CLEAN 1
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
#define QMUX_VERB_MINIMAL 2
{ .name="minimal", .desc="report only qcc/qcs state and flags, no real decoding" },
{ /* end */ }
};
struct trace_source trace_qmux = {
.name = IST("qmux"),
.desc = "QUIC multiplexer",
.arg_def = TRC_ARG1_CONN, /* TRACE()'s first argument is always a connection */
.default_cb = qmux_trace,
.known_events = qmux_trace_events,
.lockon_args = qmux_trace_lockon_args,
.decoding = qmux_trace_decoding,
.report_events = ~0, /* report everything by default */
};
#define TRACE_SOURCE &trace_qmux
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
/* Emit a CONNECTION_CLOSE with error <err>. This will interrupt all future
* send/receive operations.
*/
static void qcc_emit_cc(struct qcc *qcc, int err)
{
quic_set_connection_close(qcc->conn->handle.qc, err, 0);
qcc->flags |= QC_CF_CC_EMIT;
tasklet_wakeup(qcc->wait_event.tasklet);
}
/* Allocate a new QUIC streams with id <id> and type <type>. */
struct qcs *qcs_new(struct qcc *qcc, uint64_t id, enum qcs_type type)
{
struct qcs *qcs;
TRACE_ENTER(QMUX_EV_QCS_NEW, qcc->conn);
qcs = pool_alloc(pool_head_qcs);
if (!qcs)
return NULL;
qcs->stream = NULL;
qcs->qcc = qcc;
qcs->sd = NULL;
qcs->flags = QC_SF_NONE;
qcs->ctx = NULL;
/* Allocate transport layer stream descriptor. Only needed for TX. */
if (!quic_stream_is_uni(id) || !quic_stream_is_remote(qcc, id)) {
struct quic_conn *qc = qcc->conn->handle.qc;
qcs->stream = qc_stream_desc_new(id, type, qcs, qc);
if (!qcs->stream)
goto err;
}
qcs->id = qcs->by_id.key = id;
if (qcc->app_ops->attach) {
if (qcc->app_ops->attach(qcs, qcc->ctx))
goto err;
}
/* store transport layer stream descriptor in qcc tree */
eb64_insert(&qcc->streams_by_id, &qcs->by_id);
qcc->strms[type].nb_streams++;
/* If stream is local, use peer remote-limit, or else the opposite. */
/* TODO use uni limit for unidirectional streams */
qcs->tx.msd = quic_stream_is_local(qcc, id) ? qcc->rfctl.msd_bidi_r :
qcc->rfctl.msd_bidi_l;
qcs->rx.ncbuf = NCBUF_NULL;
qcs->rx.app_buf = BUF_NULL;
qcs->rx.offset = qcs->rx.offset_max = 0;
/* TODO use uni limit for unidirectional streams */
qcs->rx.msd = quic_stream_is_local(qcc, id) ? qcc->lfctl.msd_bidi_l :
qcc->lfctl.msd_bidi_r;
qcs->rx.msd_init = qcs->rx.msd;
qcs->tx.buf = BUF_NULL;
qcs->tx.offset = 0;
qcs->tx.sent_offset = 0;
qcs->wait_event.tasklet = NULL;
qcs->wait_event.events = 0;
qcs->subs = NULL;
out:
TRACE_LEAVE(QMUX_EV_QCS_NEW, qcc->conn, qcs);
return qcs;
err:
if (qcs->ctx && qcc->app_ops->detach)
qcc->app_ops->detach(qcs);
qc_stream_desc_release(qcs->stream);
pool_free(pool_head_qcs, qcs);
return NULL;
}
static void qc_free_ncbuf(struct qcs *qcs, struct ncbuf *ncbuf)
{
struct buffer buf;
if (ncb_is_null(ncbuf))
return;
buf = b_make(ncbuf->area, ncbuf->size, 0, 0);
b_free(&buf);
offer_buffers(NULL, 1);
*ncbuf = NCBUF_NULL;
}
/* Free a qcs. This function must only be done to remove a stream on allocation
* error or connection shutdown. Else use qcs_destroy which handle all the
* QUIC connection mechanism.
*/
void qcs_free(struct qcs *qcs)
{
qc_free_ncbuf(qcs, &qcs->rx.ncbuf);
b_free(&qcs->tx.buf);
BUG_ON(!qcs->qcc->strms[qcs_id_type(qcs->id)].nb_streams);
--qcs->qcc->strms[qcs_id_type(qcs->id)].nb_streams;
if (qcs->ctx && qcs->qcc->app_ops->detach)
qcs->qcc->app_ops->detach(qcs);
qc_stream_desc_release(qcs->stream);
BUG_ON(qcs->sd && !se_fl_test(qcs->sd, SE_FL_ORPHAN));
sedesc_free(qcs->sd);
eb64_delete(&qcs->by_id);
pool_free(pool_head_qcs, qcs);
}
struct buffer *qc_get_buf(struct qcs *qcs, struct buffer *bptr)
{
struct buffer *buf = b_alloc(bptr);
BUG_ON(!buf);
return buf;
}
static struct ncbuf *qc_get_ncbuf(struct qcs *qcs, struct ncbuf *ncbuf)
{
struct buffer buf = BUF_NULL;
if (ncb_is_null(ncbuf)) {
b_alloc(&buf);
BUG_ON(b_is_null(&buf));
*ncbuf = ncb_make(buf.area, buf.size, 0);
ncb_init(ncbuf, 0);
}
return ncbuf;
}
int qcs_subscribe(struct qcs *qcs, int event_type, struct wait_event *es)
{
struct qcc *qcc = qcs->qcc;
TRACE_ENTER(QMUX_EV_STRM_SEND|QMUX_EV_STRM_RECV, qcc->conn, qcs);
BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV));
BUG_ON(qcs->subs && qcs->subs != es);
es->events |= event_type;
qcs->subs = es;
if (event_type & SUB_RETRY_RECV)
TRACE_DEVEL("subscribe(recv)", QMUX_EV_STRM_RECV, qcc->conn, qcs);
if (event_type & SUB_RETRY_SEND)
TRACE_DEVEL("subscribe(send)", QMUX_EV_STRM_SEND, qcc->conn, qcs);
TRACE_LEAVE(QMUX_EV_STRM_SEND|QMUX_EV_STRM_RECV, qcc->conn, qcs);
return 0;
}
void qcs_notify_recv(struct qcs *qcs)
{
if (qcs->subs && qcs->subs->events & SUB_RETRY_RECV) {
tasklet_wakeup(qcs->subs->tasklet);
qcs->subs->events &= ~SUB_RETRY_RECV;
if (!qcs->subs->events)
qcs->subs = NULL;
}
}
void qcs_notify_send(struct qcs *qcs)
{
if (qcs->subs && qcs->subs->events & SUB_RETRY_SEND) {
tasklet_wakeup(qcs->subs->tasklet);
qcs->subs->events &= ~SUB_RETRY_SEND;
if (!qcs->subs->events)
qcs->subs = NULL;
}
}
/* Retrieve as an ebtree node the stream with <id> as ID, possibly allocates
* several streams, depending on the already open ones.
* Return this node if succeeded, NULL if not.
*/
struct qcs *qcc_get_qcs(struct qcc *qcc, uint64_t id)
{
unsigned int strm_type;
int64_t sub_id;
struct eb64_node *node;
struct qcs *qcs = NULL;
strm_type = id & QCS_ID_TYPE_MASK;
sub_id = id >> QCS_ID_TYPE_SHIFT;
node = NULL;
if (quic_stream_is_local(qcc, id)) {
/* Local streams: this stream must be already opened. */
node = eb64_lookup(&qcc->streams_by_id, id);
if (!node) {
/* unknown stream id */
goto out;
}
qcs = eb64_entry(node, struct qcs, by_id);
}
else {
/* Remote streams. */
struct eb_root *strms;
uint64_t largest_id;
enum qcs_type qcs_type;
strms = &qcc->streams_by_id;
qcs_type = qcs_id_type(id);
/* TODO also checks max-streams for uni streams */
if (quic_stream_is_bidi(id)) {
if (sub_id + 1 > qcc->lfctl.ms_bidi) {
/* RFC 9000 4.6. Controlling Concurrency
*
* An endpoint that receives a frame with a
* stream ID exceeding the limit it has sent
* MUST treat this as a connection error of
* type STREAM_LIMIT_ERROR
*/
qcc_emit_cc(qcc, QC_ERR_STREAM_LIMIT_ERROR);
goto out;
}
}
/* Note: ->largest_id was initialized with (uint64_t)-1 as value, 0 being a
* correct value.
*/
largest_id = qcc->strms[qcs_type].largest_id;
if (sub_id > (int64_t)largest_id) {
/* RFC: "A stream ID that is used out of order results in all streams
* of that type with lower-numbered stream IDs also being opened".
* So, let's "open" these streams.
*/
int64_t i;
struct qcs *tmp_qcs;
tmp_qcs = NULL;
for (i = largest_id + 1; i <= sub_id; i++) {
uint64_t id = (i << QCS_ID_TYPE_SHIFT) | strm_type;
enum qcs_type type = id & QCS_ID_DIR_BIT ? QCS_CLT_UNI : QCS_CLT_BIDI;
tmp_qcs = qcs_new(qcc, id, type);
if (!tmp_qcs) {
/* allocation failure */
goto out;
}
qcc->strms[qcs_type].largest_id = i;
}
if (tmp_qcs)
qcs = tmp_qcs;
}
else {
node = eb64_lookup(strms, id);
if (node)
qcs = eb64_entry(node, struct qcs, by_id);
}
}
return qcs;
out:
return NULL;
}
/* Simple function to duplicate a buffer */
static inline struct buffer qcs_b_dup(const struct ncbuf *b)
{
return b_make(ncb_orig(b), b->size, b->head, ncb_data(b, 0));
}
/* Remove <bytes> from <qcs> Rx buffer. Flow-control for received offsets may
* be allocated for the peer if needed.
*/
static void qcs_consume(struct qcs *qcs, uint64_t bytes)
{
struct qcc *qcc = qcs->qcc;
struct quic_frame *frm;
struct ncbuf *buf = &qcs->rx.ncbuf;
enum ncb_ret ret;
ret = ncb_advance(buf, bytes);
if (ret) {
ABORT_NOW(); /* should not happens because removal only in data */
}
if (ncb_is_empty(buf))
qc_free_ncbuf(qcs, buf);
qcs->rx.offset += bytes;
if (qcs->rx.msd - qcs->rx.offset < qcs->rx.msd_init / 2) {
frm = pool_zalloc(pool_head_quic_frame);
BUG_ON(!frm); /* TODO handle this properly */
qcs->rx.msd = qcs->rx.offset + qcs->rx.msd_init;
LIST_INIT(&frm->reflist);
frm->type = QUIC_FT_MAX_STREAM_DATA;
frm->max_stream_data.id = qcs->id;
frm->max_stream_data.max_stream_data = qcs->rx.msd;
LIST_APPEND(&qcc->lfctl.frms, &frm->list);
tasklet_wakeup(qcc->wait_event.tasklet);
}
qcc->lfctl.offsets_consume += bytes;
if (qcc->lfctl.md - qcc->lfctl.offsets_consume < qcc->lfctl.md_init / 2) {
frm = pool_zalloc(pool_head_quic_frame);
BUG_ON(!frm); /* TODO handle this properly */
qcc->lfctl.md = qcc->lfctl.offsets_consume + qcc->lfctl.md_init;
LIST_INIT(&frm->reflist);
frm->type = QUIC_FT_MAX_DATA;
frm->max_data.max_data = qcc->lfctl.md;
LIST_APPEND(&qcs->qcc->lfctl.frms, &frm->list);
tasklet_wakeup(qcs->qcc->wait_event.tasklet);
}
}
/* Decode the content of STREAM frames already received on the stream instance
* <qcs>.
*
* Returns 0 on success else non-zero.
*/
static int qcc_decode_qcs(struct qcc *qcc, struct qcs *qcs)
{
struct buffer b;
ssize_t ret;
int fin = 0;
TRACE_ENTER(QMUX_EV_QCS_RECV, qcc->conn, qcs);
b = qcs_b_dup(&qcs->rx.ncbuf);
/* Signal FIN to application if STREAM FIN received and there is no gap
* in the Rx buffer.
*/
if (qcs->flags & QC_SF_FIN_RECV && !ncb_is_fragmented(&qcs->rx.ncbuf))
fin = 1;
ret = qcc->app_ops->decode_qcs(qcs, &b, fin);
if (ret < 0) {
TRACE_DEVEL("leaving on decoding error", QMUX_EV_QCS_RECV, qcc->conn, qcs);
return 1;
}
if (ret) {
qcs_consume(qcs, ret);
qcs_notify_recv(qcs);
}
TRACE_LEAVE(QMUX_EV_QCS_RECV, qcc->conn, qcs);
return 0;
}
/* Emit a CONNECTION_CLOSE_APP with error <err>. Reserved for application error
* code. This will interrupt all future send/receive operations.
*/
void qcc_emit_cc_app(struct qcc *qcc, int err)
{
quic_set_connection_close(qcc->conn->handle.qc, err, 1);
qcc->flags |= QC_CF_CC_EMIT;
tasklet_wakeup(qcc->wait_event.tasklet);
}
/* Handle a new STREAM frame for stream with id <id>. Payload is pointed by
* <data> with length <len> and represents the offset <offset>. <fin> is set if
* the QUIC frame FIN bit is set.
*
* Returns 0 on success else non-zero.
*/
int qcc_recv(struct qcc *qcc, uint64_t id, uint64_t len, uint64_t offset,
char fin, char *data)
{
struct qcs *qcs;
enum ncb_ret ret;
TRACE_ENTER(QMUX_EV_QCC_RECV, qcc->conn);
if (qcc->flags & QC_CF_CC_EMIT) {
TRACE_DEVEL("leaving on error", QMUX_EV_QCC_RECV, qcc->conn);
return 0;
}
/* RFC 9000 19.8. STREAM Frames
*
* An endpoint MUST terminate the connection with error
* STREAM_STATE_ERROR if it receives a STREAM frame for a locally
* initiated stream that has not yet been created, or for a send-only
* stream.
*/
if (quic_stream_is_local(qcc, id) && quic_stream_is_uni(id)) {
qcc_emit_cc(qcc, QC_ERR_STREAM_STATE_ERROR);
TRACE_DEVEL("leaving on invalid reception for a send-only stream", QMUX_EV_QCC_RECV|QMUX_EV_QCC_NQCS, qcc->conn, NULL, &id);
return 1;
}
qcs = qcc_get_qcs(qcc, id);
if (!qcs) {
if ((id >> QCS_ID_TYPE_SHIFT) <= qcc->strms[qcs_id_type(id)].largest_id) {
TRACE_DEVEL("already released stream", QMUX_EV_QCC_RECV|QMUX_EV_QCC_NQCS, qcc->conn, NULL, &id);
return 0;
}
else {
/* RFC 9000 19.8. STREAM Frames
*
* An endpoint MUST terminate the connection with error
* STREAM_STATE_ERROR if it receives a STREAM frame for a locally
* initiated stream that has not yet been created, or for a send-only
* stream.
*/
if (quic_stream_is_local(qcc, id)) {
TRACE_DEVEL("leaving on locally initiated stream not yet created", QMUX_EV_QCC_RECV|QMUX_EV_QCC_NQCS, qcc->conn, NULL, &id);
qcc_emit_cc(qcc, QC_ERR_STREAM_STATE_ERROR);
return 1;
}
else {
TRACE_DEVEL("leaving on stream not found", QMUX_EV_QCC_RECV|QMUX_EV_QCC_NQCS, qcc->conn, NULL, &id);
return 1;
}
}
}
if (offset + len <= qcs->rx.offset) {
TRACE_DEVEL("leaving on already received offset", QMUX_EV_QCC_RECV|QMUX_EV_QCS_RECV, qcc->conn, qcs);
return 0;
}
/* TODO if last frame already received, stream size must not change.
* Else send FINAL_SIZE_ERROR.
*/
if (offset + len > qcs->rx.offset_max) {
uint64_t diff = offset + len - qcs->rx.offset_max;
qcs->rx.offset_max = offset + len;
qcc->lfctl.offsets_recv += diff;
if (offset + len > qcs->rx.msd ||
qcc->lfctl.offsets_recv > qcc->lfctl.md) {
/* RFC 9000 4.1. Data Flow Control
*
* A receiver MUST close the connection with an error
* of type FLOW_CONTROL_ERROR if the sender violates
* the advertised connection or stream data limits
*/
TRACE_DEVEL("leaving on flow control error", QMUX_EV_QCC_RECV|QMUX_EV_QCS_RECV,
qcc->conn, qcs);
qcc_emit_cc(qcc, QC_ERR_FLOW_CONTROL_ERROR);
return 1;
}
}
if (!qc_get_ncbuf(qcs, &qcs->rx.ncbuf) || ncb_is_null(&qcs->rx.ncbuf)) {
/* TODO should mark qcs as full */
ABORT_NOW();
return 1;
}
TRACE_DEVEL("newly received offset", QMUX_EV_QCC_RECV|QMUX_EV_QCS_RECV, qcc->conn, qcs);
if (offset < qcs->rx.offset) {
len -= qcs->rx.offset - offset;
offset = qcs->rx.offset;
}
ret = ncb_add(&qcs->rx.ncbuf, offset - qcs->rx.offset, data, len, NCB_ADD_COMPARE);
if (ret != NCB_RET_OK) {
if (ret == NCB_RET_DATA_REJ) {
/* RFC 9000 2.2. Sending and Receiving Data
*
* An endpoint could receive data for a stream at the
* same stream offset multiple times. Data that has
* already been received can be discarded. The data at
* a given offset MUST NOT change if it is sent
* multiple times; an endpoint MAY treat receipt of
* different data at the same offset within a stream as
* a connection error of type PROTOCOL_VIOLATION.
*/
TRACE_DEVEL("leaving on data rejected", QMUX_EV_QCC_RECV|QMUX_EV_QCS_RECV,
qcc->conn, qcs);
qcc_emit_cc(qcc, QC_ERR_PROTOCOL_VIOLATION);
}
else if (ret == NCB_RET_GAP_SIZE) {
TRACE_DEVEL("cannot bufferize frame due to gap size limit", QMUX_EV_QCC_RECV|QMUX_EV_QCS_RECV,
qcc->conn, qcs);
}
return 1;
}
if (fin)
qcs->flags |= QC_SF_FIN_RECV;
if (ncb_data(&qcs->rx.ncbuf, 0) && !(qcs->flags & QC_SF_DEM_FULL))
qcc_decode_qcs(qcc, qcs);
if (qcs->flags & QC_SF_READ_ABORTED) {
/* TODO should send a STOP_SENDING */
qcs_free(qcs);
}
TRACE_LEAVE(QMUX_EV_QCC_RECV, qcc->conn);
return 0;
}
/* Handle a new MAX_DATA frame. <max> must contains the maximum data field of
* the frame.
*
* Returns 0 on success else non-zero.
*/
int qcc_recv_max_data(struct qcc *qcc, uint64_t max)
{
if (qcc->rfctl.md < max) {
qcc->rfctl.md = max;
if (qcc->flags & QC_CF_BLK_MFCTL) {
qcc->flags &= ~QC_CF_BLK_MFCTL;
tasklet_wakeup(qcc->wait_event.tasklet);
}
}
return 0;
}
/* Handle a new MAX_STREAM_DATA frame. <max> must contains the maximum data
* field of the frame and <id> is the identifier of the QUIC stream.
*
* Returns 0 on success else non-zero.
*/
int qcc_recv_max_stream_data(struct qcc *qcc, uint64_t id, uint64_t max)
{
struct qcs *qcs;
struct eb64_node *node;
node = eb64_lookup(&qcc->streams_by_id, id);
if (node) {
qcs = eb64_entry(node, struct qcs, by_id);
if (max > qcs->tx.msd) {
qcs->tx.msd = max;
if (qcs->flags & QC_SF_BLK_SFCTL) {
qcs->flags &= ~QC_SF_BLK_SFCTL;
tasklet_wakeup(qcc->wait_event.tasklet);
}
}
}
return 0;
}
/* Signal the closing of remote stream with id <id>. Flow-control for new
* streams may be allocated for the peer if needed.
*/
static int qcc_release_remote_stream(struct qcc *qcc, uint64_t id)
{
struct quic_frame *frm;
if (quic_stream_is_bidi(id)) {
++qcc->lfctl.cl_bidi_r;
if (qcc->lfctl.cl_bidi_r > qcc->lfctl.ms_bidi_init / 2) {
frm = pool_zalloc(pool_head_quic_frame);
BUG_ON(!frm); /* TODO handle this properly */
LIST_INIT(&frm->reflist);
frm->type = QUIC_FT_MAX_STREAMS_BIDI;
frm->max_streams_bidi.max_streams = qcc->lfctl.ms_bidi +
qcc->lfctl.cl_bidi_r;
LIST_APPEND(&qcc->lfctl.frms, &frm->list);
tasklet_wakeup(qcc->wait_event.tasklet);
qcc->lfctl.ms_bidi += qcc->lfctl.cl_bidi_r;
qcc->lfctl.cl_bidi_r = 0;
}
}
else {
/* TODO */
}
return 0;
}
/* detaches the QUIC stream from its QCC and releases it to the QCS pool. */
static void qcs_destroy(struct qcs *qcs)
{
struct connection *conn = qcs->qcc->conn;
const uint64_t id = qcs->id;
TRACE_ENTER(QMUX_EV_QCS_END, conn, qcs);
if (quic_stream_is_remote(qcs->qcc, id))
qcc_release_remote_stream(qcs->qcc, id);
qcs_free(qcs);
TRACE_LEAVE(QMUX_EV_QCS_END, conn);
}
static inline int qcc_is_dead(const struct qcc *qcc)
{
if (qcc->app_ops && qcc->app_ops->is_active &&
qcc->app_ops->is_active(qcc, qcc->ctx))
return 0;
if ((qcc->conn->flags & CO_FL_ERROR) || !qcc->task)
return 1;
return 0;
}
/* Return true if the mux timeout should be armed. */
static inline int qcc_may_expire(struct qcc *qcc)
{
return !qcc->nb_sc;
}
/* release function. This one should be called to free all resources allocated
* to the mux.
*/
static void qc_release(struct qcc *qcc)
{
struct connection *conn = qcc->conn;
struct eb64_node *node;
TRACE_ENTER(QMUX_EV_QCC_END);
if (qcc->app_ops && qcc->app_ops->release)
qcc->app_ops->release(qcc->ctx);
if (qcc->task) {
task_destroy(qcc->task);
qcc->task = NULL;
}
if (qcc->wait_event.tasklet)
tasklet_free(qcc->wait_event.tasklet);
if (conn && qcc->wait_event.events) {
conn->xprt->unsubscribe(conn, conn->xprt_ctx,
qcc->wait_event.events,
&qcc->wait_event);
}
/* liberate remaining qcs instances */
node = eb64_first(&qcc->streams_by_id);
while (node) {
struct qcs *qcs = eb64_entry(node, struct qcs, by_id);
node = eb64_next(node);
qcs_free(qcs);
}
while (!LIST_ISEMPTY(&qcc->lfctl.frms)) {
struct quic_frame *frm = LIST_ELEM(qcc->lfctl.frms.n, struct quic_frame *, list);
LIST_DELETE(&frm->list);
pool_free(pool_head_quic_frame, frm);
}
pool_free(pool_head_qcc, qcc);
if (conn) {
LIST_DEL_INIT(&conn->stopping_list);
conn->handle.qc->conn = NULL;
conn->mux = NULL;
conn->ctx = NULL;
TRACE_DEVEL("freeing conn", QMUX_EV_QCC_END, conn);
conn_stop_tracking(conn);
conn_full_close(conn);
if (conn->destroy_cb)
conn->destroy_cb(conn);
conn_free(conn);
}
TRACE_LEAVE(QMUX_EV_QCC_END);
}
/* Transfer as much as possible data on <qcs> from <in> to <out>. This is done
* in respect with available flow-control at stream and connection level.
*
* Returns the total bytes of transferred data.
*/
static int qcs_xfer_data(struct qcs *qcs, struct buffer *out, struct buffer *in)
{
struct qcc *qcc = qcs->qcc;
int left, to_xfer;
int total = 0;
TRACE_ENTER(QMUX_EV_QCS_SEND, qcc->conn, qcs);
qc_get_buf(qcs, out);
/*
* QCS out buffer diagram
* head left to_xfer
* -------------> ----------> ----->
* --------------------------------------------------
* |...............|xxxxxxxxxxx|<<<<<
* --------------------------------------------------
* ^ ack-off ^ sent-off ^ off
*
* STREAM frame
* ^ ^
* |xxxxxxxxxxxxxxxxx|
*/
BUG_ON_HOT(qcs->tx.sent_offset < qcs->stream->ack_offset);
BUG_ON_HOT(qcs->tx.offset < qcs->tx.sent_offset);
BUG_ON_HOT(qcc->tx.offsets < qcc->tx.sent_offsets);
left = qcs->tx.offset - qcs->tx.sent_offset;
to_xfer = QUIC_MIN(b_data(in), b_room(out));
BUG_ON_HOT(qcs->tx.offset > qcs->tx.msd);
/* do not exceed flow control limit */
if (qcs->tx.offset + to_xfer > qcs->tx.msd)
to_xfer = qcs->tx.msd - qcs->tx.offset;
BUG_ON_HOT(qcc->tx.offsets > qcc->rfctl.md);
/* do not overcome flow control limit on connection */
if (qcc->tx.offsets + to_xfer > qcc->rfctl.md)
to_xfer = qcc->rfctl.md - qcc->tx.offsets;
if (!left && !to_xfer)
goto out;
total = b_force_xfer(out, in, to_xfer);
out:
{
struct qcs_xfer_data_trace_arg arg = {
.prep = b_data(out), .xfer = total,
};
TRACE_LEAVE(QMUX_EV_QCS_SEND|QMUX_EV_QCS_XFER_DATA,
qcc->conn, qcs, &arg);
}
return total;
}
/* Prepare a STREAM frame for <qcs> instance using <out> as payload. The frame
* is appended in <frm_list>. Set <fin> if this is supposed to be the last
* stream frame.
*
* Returns the length of the STREAM frame or a negative error code.
*/
static int qcs_build_stream_frm(struct qcs *qcs, struct buffer *out, char fin,
struct list *frm_list)
{
struct qcc *qcc = qcs->qcc;
struct quic_frame *frm;
int head, total;
uint64_t base_off;
TRACE_ENTER(QMUX_EV_QCS_SEND, qcc->conn, qcs);
/* if ack_offset < buf_offset, it points to an older buffer. */
base_off = MAX(qcs->stream->buf_offset, qcs->stream->ack_offset);
BUG_ON(qcs->tx.sent_offset < base_off);
head = qcs->tx.sent_offset - base_off;
total = b_data(out) - head;
BUG_ON(total < 0);
if (!total) {
TRACE_LEAVE(QMUX_EV_QCS_SEND, qcc->conn, qcs);
return 0;
}
BUG_ON(qcs->tx.sent_offset >= qcs->tx.offset);
BUG_ON(qcs->tx.sent_offset + total > qcs->tx.offset);
BUG_ON(qcc->tx.sent_offsets + total > qcc->rfctl.md);
frm = pool_zalloc(pool_head_quic_frame);
if (!frm)
goto err;
LIST_INIT(&frm->reflist);
frm->type = QUIC_FT_STREAM_8;
frm->stream.stream = qcs->stream;
frm->stream.id = qcs->id;
frm->stream.buf = out;
frm->stream.data = (unsigned char *)b_peek(out, head);
/* FIN is positioned only when the buffer has been totally emptied. */
if (fin)
frm->type |= QUIC_STREAM_FRAME_TYPE_FIN_BIT;
if (qcs->tx.sent_offset) {
frm->type |= QUIC_STREAM_FRAME_TYPE_OFF_BIT;
frm->stream.offset.key = qcs->tx.sent_offset;
}
frm->type |= QUIC_STREAM_FRAME_TYPE_LEN_BIT;
frm->stream.len = total;
LIST_APPEND(frm_list, &frm->list);
out:
{
struct qcs_build_stream_trace_arg arg = {
.len = frm->stream.len, .fin = fin,
.offset = frm->stream.offset.key,
};
TRACE_LEAVE(QMUX_EV_QCS_SEND|QMUX_EV_QCS_BUILD_STRM,
qcc->conn, qcs, &arg);
}
return total;
err:
TRACE_DEVEL("leaving in error", QMUX_EV_QCS_SEND, qcc->conn, qcs);
return -1;
}
/* This function must be called by the upper layer to inform about the sending
* of a STREAM frame for <qcs> instance. The frame is of <data> length and on
* <offset>.
*/
void qcc_streams_sent_done(struct qcs *qcs, uint64_t data, uint64_t offset)
{
struct qcc *qcc = qcs->qcc;
uint64_t diff;
BUG_ON(offset > qcs->tx.sent_offset);
BUG_ON(offset + data > qcs->tx.offset);
/* check if the STREAM frame has already been notified. It can happen
* for retransmission.
*/
if (offset + data <= qcs->tx.sent_offset)
return;
diff = offset + data - qcs->tx.sent_offset;
/* increase offset sum on connection */
qcc->tx.sent_offsets += diff;
BUG_ON_HOT(qcc->tx.sent_offsets > qcc->rfctl.md);
if (qcc->tx.sent_offsets == qcc->rfctl.md)
qcc->flags |= QC_CF_BLK_MFCTL;
/* increase offset on stream */
qcs->tx.sent_offset += diff;
BUG_ON_HOT(qcs->tx.sent_offset > qcs->tx.msd);
BUG_ON_HOT(qcs->tx.sent_offset > qcs->tx.offset);
if (qcs->tx.sent_offset == qcs->tx.msd)
qcs->flags |= QC_SF_BLK_SFCTL;
if (qcs->tx.offset == qcs->tx.sent_offset && b_full(&qcs->stream->buf->buf)) {
qc_stream_buf_release(qcs->stream);
/* prepare qcs for immediate send retry if data to send */
if (b_data(&qcs->tx.buf))
LIST_APPEND(&qcc->send_retry_list, &qcs->el);
}
}
/* Wrapper for send on transport layer. Send a list of frames <frms> for the
* connection <qcc>.
*
* Returns 0 if all data sent with success else non-zero.
*/
static int qc_send_frames(struct qcc *qcc, struct list *frms)
{
/* TODO implement an opportunistic retry mechanism. This is needed
* because qc_send_app_pkts is not completed. It will only prepare data
* up to its Tx buffer. The frames left are not send even if the Tx
* buffer is emptied by the sendto call.
*
* To overcome this, we call repeatedly qc_send_app_pkts until we
* detect that the transport layer has send nothing. This could happen
* on congestion or sendto syscall error.
*
* When qc_send_app_pkts is improved to handle retry by itself, we can
* remove the looping from the MUX.
*/
struct quic_frame *first_frm;
uint64_t first_offset = 0;
char first_stream_frame_type;
TRACE_ENTER(QMUX_EV_QCC_SEND, qcc->conn);
if (LIST_ISEMPTY(frms)) {
TRACE_DEVEL("leaving with no frames to send", QMUX_EV_QCC_SEND, qcc->conn);
return 1;
}
LIST_INIT(&qcc->send_retry_list);
retry_send:
first_frm = LIST_ELEM(frms->n, struct quic_frame *, list);
if ((first_frm->type & QUIC_FT_STREAM_8) == QUIC_FT_STREAM_8) {
first_offset = first_frm->stream.offset.key;
first_stream_frame_type = 1;
}
else {
first_stream_frame_type = 0;
}
if (!LIST_ISEMPTY(frms))
qc_send_app_pkts(qcc->conn->handle.qc, 0, frms);
/* If there is frames left, check if the transport layer has send some
* data or is blocked.
*/
if (!LIST_ISEMPTY(frms)) {
if (first_frm != LIST_ELEM(frms->n, struct quic_frame *, list))
goto retry_send;
/* If the first frame is STREAM, check if its offset has
* changed.
*/
if (first_stream_frame_type &&
first_offset != LIST_ELEM(frms->n, struct quic_frame *, list)->stream.offset.key) {
goto retry_send;
}
}
/* If there is frames left at this stage, transport layer is blocked.
* Subscribe on it to retry later.
*/
if (!LIST_ISEMPTY(frms)) {
TRACE_DEVEL("leaving with remaining frames to send, subscribing", QMUX_EV_QCC_SEND, qcc->conn);
qcc->conn->xprt->subscribe(qcc->conn, qcc->conn->xprt_ctx,
SUB_RETRY_SEND, &qcc->wait_event);
return 1;
}
TRACE_LEAVE(QMUX_EV_QCC_SEND);
return 0;
}
/* Used internally by qc_send function. Proceed to send for <qcs>. This will
* transfer data from qcs buffer to its quic_stream counterpart. A STREAM frame
* is then generated and inserted in <frms> list.
*
* Returns the total bytes transferred between qcs and quic_stream buffers. Can
* be null if out buffer cannot be allocated.
*/
static int _qc_send_qcs(struct qcs *qcs, struct list *frms)
{
struct qcc *qcc = qcs->qcc;
struct buffer *buf = &qcs->tx.buf;
struct buffer *out = qc_stream_buf_get(qcs->stream);
int xfer = 0;
/* Allocate <out> buffer if necessary. */
if (!out) {
if (qcc->flags & QC_CF_CONN_FULL)
return 0;
out = qc_stream_buf_alloc(qcs->stream, qcs->tx.offset);
if (!out) {
qcc->flags |= QC_CF_CONN_FULL;
return 0;
}
}
/* Transfer data from <buf> to <out>. */
if (b_data(buf)) {
xfer = qcs_xfer_data(qcs, out, buf);
if (xfer > 0) {
qcs_notify_send(qcs);
qcs->flags &= ~QC_SF_BLK_MROOM;
}
qcs->tx.offset += xfer;
BUG_ON_HOT(qcs->tx.offset > qcs->tx.msd);
qcc->tx.offsets += xfer;
BUG_ON_HOT(qcc->tx.offsets > qcc->rfctl.md);
}
/* out buffer cannot be emptied if qcs offsets differ. */
BUG_ON(!b_data(out) && qcs->tx.sent_offset != qcs->tx.offset);
/* Build a new STREAM frame with <out> buffer. */
if (qcs->tx.sent_offset != qcs->tx.offset) {
int ret;
char fin = !!(qcs->flags & QC_SF_FIN_STREAM);
/* FIN is set if all incoming data were transfered. */
fin = !!(fin && !b_data(buf));
ret = qcs_build_stream_frm(qcs, out, fin, frms);
if (ret < 0) { ABORT_NOW(); /* TODO handle this properly */ }
}
return xfer;
}
/* Proceed to sending. Loop through all available streams for the <qcc>
* instance and try to send as much as possible.
*
* Returns the total of bytes sent to the transport layer.
*/
static int qc_send(struct qcc *qcc)
{
struct list frms = LIST_HEAD_INIT(frms);
struct eb64_node *node;
struct qcs *qcs, *qcs_tmp;
int total = 0, tmp_total = 0;
TRACE_ENTER(QMUX_EV_QCC_SEND);
if (qcc->conn->flags & CO_FL_SOCK_WR_SH || qcc->flags & QC_CF_CC_EMIT) {
qcc->conn->flags |= CO_FL_ERROR;
TRACE_DEVEL("leaving on error", QMUX_EV_QCC_SEND, qcc->conn);
return 0;
}
if (!LIST_ISEMPTY(&qcc->lfctl.frms)) {
if (qc_send_frames(qcc, &qcc->lfctl.frms)) {
TRACE_DEVEL("flow-control frames rejected by transport, aborting send", QMUX_EV_QCC_SEND, qcc->conn);
goto out;
}
}
if (qcc->flags & QC_CF_BLK_MFCTL)
return 0;
/* loop through all streams, construct STREAM frames if data available.
* TODO optimize the loop to favor streams which are not too heavy.
*/
node = eb64_first(&qcc->streams_by_id);
while (node) {
int ret;
uint64_t id;
qcs = eb64_entry(node, struct qcs, by_id);
id = qcs->id;
if (quic_stream_is_uni(id) && quic_stream_is_remote(qcc, id)) {
node = eb64_next(node);
continue;
}
if (qcs->flags & QC_SF_BLK_SFCTL) {
node = eb64_next(node);
continue;
}
if (!b_data(&qcs->tx.buf) && !qc_stream_buf_get(qcs->stream)) {
node = eb64_next(node);
continue;
}
ret = _qc_send_qcs(qcs, &frms);
total += ret;
node = eb64_next(node);
}
if (qc_send_frames(qcc, &frms)) {
/* data rejected by transport layer, do not retry. */
goto out;
}
retry:
tmp_total = 0;
list_for_each_entry_safe(qcs, qcs_tmp, &qcc->send_retry_list, el) {
int ret;
BUG_ON(!b_data(&qcs->tx.buf));
BUG_ON(qc_stream_buf_get(qcs->stream));
ret = _qc_send_qcs(qcs, &frms);
tmp_total += ret;
LIST_DELETE(&qcs->el);
}
total += tmp_total;
if (!qc_send_frames(qcc, &frms) && !LIST_ISEMPTY(&qcc->send_retry_list))
goto retry;
out:
/* Deallocate frames that the transport layer has rejected. */
if (!LIST_ISEMPTY(&frms)) {
struct quic_frame *frm, *frm2;
list_for_each_entry_safe(frm, frm2, &frms, list) {
LIST_DELETE(&frm->list);
pool_free(pool_head_quic_frame, frm);
}
}
TRACE_LEAVE(QMUX_EV_QCC_SEND);
return total;
}
/* Proceed on receiving. Loop through all streams from <qcc> and use decode_qcs
* operation.
*
* Returns 0 on success else non-zero.
*/
static int qc_recv(struct qcc *qcc)
{
struct eb64_node *node;
struct qcs *qcs;
TRACE_ENTER(QMUX_EV_QCC_RECV);
if (qcc->flags & QC_CF_CC_EMIT) {
TRACE_DEVEL("leaving on error", QMUX_EV_QCC_RECV, qcc->conn);
return 0;
}
node = eb64_first(&qcc->streams_by_id);
while (node) {
uint64_t id;
qcs = eb64_entry(node, struct qcs, by_id);
id = qcs->id;
if (!ncb_data(&qcs->rx.ncbuf, 0) || (qcs->flags & QC_SF_DEM_FULL)) {
node = eb64_next(node);
continue;
}
if (quic_stream_is_uni(id) && quic_stream_is_local(qcc, id)) {
node = eb64_next(node);
continue;
}
qcc_decode_qcs(qcc, qcs);
node = eb64_next(node);
if (qcs->flags & QC_SF_READ_ABORTED) {
/* TODO should send a STOP_SENDING */
qcs_free(qcs);
}
}
TRACE_LEAVE(QMUX_EV_QCC_RECV);
return 0;
}
/* Release all streams that are already marked as detached. This is only done
* if their TX buffers are empty or if a CONNECTION_CLOSE has been received.
*
* Return the number of released stream.
*/
static int qc_release_detached_streams(struct qcc *qcc)
{
struct eb64_node *node;
int release = 0;
node = eb64_first(&qcc->streams_by_id);
while (node) {
struct qcs *qcs = eb64_entry(node, struct qcs, by_id);
node = eb64_next(node);
if (qcs->flags & QC_SF_DETACH) {
if (!b_data(&qcs->tx.buf) &&
qcs->tx.offset == qcs->tx.sent_offset) {
qcs_destroy(qcs);
release = 1;
}
else {
qcc->conn->xprt->subscribe(qcc->conn, qcc->conn->xprt_ctx,
SUB_RETRY_SEND, &qcc->wait_event);
}
}
}
return release;
}
static struct task *qc_io_cb(struct task *t, void *ctx, unsigned int status)
{
struct qcc *qcc = ctx;
TRACE_ENTER(QMUX_EV_QCC_WAKE);
qc_send(qcc);
if (qc_release_detached_streams(qcc)) {
if (qcc_is_dead(qcc)) {
qc_release(qcc);
}
else if (qcc->task) {
if (qcc_may_expire(qcc))
qcc->task->expire = tick_add(now_ms, qcc->timeout);
else
qcc->task->expire = TICK_ETERNITY;
task_queue(qcc->task);
}
}
qc_recv(qcc);
TRACE_LEAVE(QMUX_EV_QCC_WAKE);
return NULL;
}
static struct task *qc_timeout_task(struct task *t, void *ctx, unsigned int state)
{
struct qcc *qcc = ctx;
int expired = tick_is_expired(t->expire, now_ms);
TRACE_ENTER(QMUX_EV_QCC_WAKE, qcc ? qcc->conn : NULL);
if (qcc) {
if (!expired) {
TRACE_DEVEL("leaving (not expired)", QMUX_EV_QCC_WAKE, qcc->conn);
return t;
}
if (!qcc_may_expire(qcc)) {
TRACE_DEVEL("leaving (cannot expired)", QMUX_EV_QCC_WAKE, qcc->conn);
t->expire = TICK_ETERNITY;
return t;
}
}
task_destroy(t);
if (!qcc) {
TRACE_DEVEL("leaving (not more qcc)", QMUX_EV_QCC_WAKE);
return NULL;
}
qcc->task = NULL;
if (qcc_is_dead(qcc))
qc_release(qcc);
TRACE_LEAVE(QMUX_EV_QCC_WAKE);
return NULL;
}
static int qc_init(struct connection *conn, struct proxy *prx,
struct session *sess, struct buffer *input)
{
struct qcc *qcc;
struct quic_transport_params *lparams, *rparams;
qcc = pool_alloc(pool_head_qcc);
if (!qcc)
goto fail_no_qcc;
qcc->conn = conn;
conn->ctx = qcc;
qcc->nb_sc = 0;
qcc->flags = 0;
qcc->app_ops = NULL;
qcc->streams_by_id = EB_ROOT_UNIQUE;
/* Server parameters, params used for RX flow control. */
lparams = &conn->handle.qc->rx.params;
qcc->rx.max_data = lparams->initial_max_data;
qcc->tx.sent_offsets = qcc->tx.offsets = 0;
/* Client initiated streams must respect the server flow control. */
qcc->strms[QCS_CLT_BIDI].max_streams = lparams->initial_max_streams_bidi;
qcc->strms[QCS_CLT_BIDI].nb_streams = 0;
qcc->strms[QCS_CLT_BIDI].largest_id = -1;
qcc->strms[QCS_CLT_BIDI].rx.max_data = 0;
qcc->strms[QCS_CLT_BIDI].tx.max_data = lparams->initial_max_stream_data_bidi_remote;
qcc->strms[QCS_CLT_UNI].max_streams = lparams->initial_max_streams_uni;
qcc->strms[QCS_CLT_UNI].nb_streams = 0;
qcc->strms[QCS_CLT_UNI].largest_id = -1;
qcc->strms[QCS_CLT_UNI].rx.max_data = 0;
qcc->strms[QCS_CLT_UNI].tx.max_data = lparams->initial_max_stream_data_uni;
/* Server initiated streams must respect the server flow control. */
qcc->strms[QCS_SRV_BIDI].max_streams = 0;
qcc->strms[QCS_SRV_BIDI].nb_streams = 0;
qcc->strms[QCS_SRV_BIDI].largest_id = -1;
qcc->strms[QCS_SRV_BIDI].rx.max_data = lparams->initial_max_stream_data_bidi_local;
qcc->strms[QCS_SRV_BIDI].tx.max_data = 0;
qcc->strms[QCS_SRV_UNI].max_streams = 0;
qcc->strms[QCS_SRV_UNI].nb_streams = 0;
qcc->strms[QCS_SRV_UNI].largest_id = -1;
qcc->strms[QCS_SRV_UNI].rx.max_data = lparams->initial_max_stream_data_uni;
qcc->strms[QCS_SRV_UNI].tx.max_data = 0;
LIST_INIT(&qcc->lfctl.frms);
qcc->lfctl.ms_bidi = qcc->lfctl.ms_bidi_init = lparams->initial_max_streams_bidi;
qcc->lfctl.msd_bidi_l = lparams->initial_max_stream_data_bidi_local;
qcc->lfctl.msd_bidi_r = lparams->initial_max_stream_data_bidi_remote;
qcc->lfctl.cl_bidi_r = 0;
qcc->lfctl.md = qcc->lfctl.md_init = lparams->initial_max_data;
qcc->lfctl.offsets_recv = qcc->lfctl.offsets_consume = 0;
rparams = &conn->handle.qc->tx.params;
qcc->rfctl.md = rparams->initial_max_data;
qcc->rfctl.msd_bidi_l = rparams->initial_max_stream_data_bidi_local;
qcc->rfctl.msd_bidi_r = rparams->initial_max_stream_data_bidi_remote;
qcc->wait_event.tasklet = tasklet_new();
if (!qcc->wait_event.tasklet)
goto fail_no_tasklet;
LIST_INIT(&qcc->send_retry_list);
qcc->subs = NULL;
qcc->wait_event.tasklet->process = qc_io_cb;
qcc->wait_event.tasklet->context = qcc;
qcc->wait_event.events = 0;
/* haproxy timeouts */
qcc->task = NULL;
qcc->timeout = prx->timeout.client;
if (tick_isset(qcc->timeout)) {
qcc->task = task_new_here();
if (!qcc->task)
goto fail_no_timeout_task;
qcc->task->process = qc_timeout_task;
qcc->task->context = qcc;
qcc->task->expire = tick_add(now_ms, qcc->timeout);
}
if (!conn_is_back(conn)) {
if (!LIST_INLIST(&conn->stopping_list)) {
LIST_APPEND(&mux_stopping_data[tid].list,
&conn->stopping_list);
}
}
HA_ATOMIC_STORE(&conn->handle.qc->qcc, qcc);
/* init read cycle */
tasklet_wakeup(qcc->wait_event.tasklet);
return 0;
fail_no_timeout_task:
tasklet_free(qcc->wait_event.tasklet);
fail_no_tasklet:
pool_free(pool_head_qcc, qcc);
fail_no_qcc:
return -1;
}
static void qc_destroy(void *ctx)
{
struct qcc *qcc = ctx;
TRACE_ENTER(QMUX_EV_QCC_END, qcc->conn);
qc_release(qcc);
TRACE_LEAVE(QMUX_EV_QCC_END);
}
static void qc_detach(struct sedesc *sd)
{
struct qcs *qcs = sd->se;
struct qcc *qcc = qcs->qcc;
TRACE_ENTER(QMUX_EV_STRM_END, qcc->conn, qcs);
--qcc->nb_sc;
if ((b_data(&qcs->tx.buf) || qcs->tx.offset > qcs->tx.sent_offset) &&
!(qcc->conn->flags & CO_FL_ERROR)) {
TRACE_DEVEL("leaving with remaining data, detaching qcs", QMUX_EV_STRM_END, qcc->conn, qcs);
qcs->flags |= QC_SF_DETACH;
return;
}
qcs_destroy(qcs);
if (qcc_is_dead(qcc)) {
qc_release(qcc);
}
else if (qcc->task) {
if (qcc_may_expire(qcc))
qcc->task->expire = tick_add(now_ms, qcc->timeout);
else
qcc->task->expire = TICK_ETERNITY;
task_queue(qcc->task);
}
TRACE_LEAVE(QMUX_EV_STRM_END);
}
/* Called from the upper layer, to receive data */
static size_t qc_rcv_buf(struct stconn *sc, struct buffer *buf,
size_t count, int flags)
{
struct qcs *qcs = __sc_mux_strm(sc);
struct htx *qcs_htx = NULL;
struct htx *cs_htx = NULL;
size_t ret = 0;
char fin = 0;
TRACE_ENTER(QMUX_EV_STRM_RECV, qcs->qcc->conn, qcs);
qcs_htx = htx_from_buf(&qcs->rx.app_buf);
if (htx_is_empty(qcs_htx)) {
/* Set buffer data to 0 as HTX is empty. */
htx_to_buf(qcs_htx, &qcs->rx.app_buf);
goto end;
}
ret = qcs_htx->data;
cs_htx = htx_from_buf(buf);
if (htx_is_empty(cs_htx) && htx_used_space(qcs_htx) <= count) {
htx_to_buf(cs_htx, buf);
htx_to_buf(qcs_htx, &qcs->rx.app_buf);
b_xfer(buf, &qcs->rx.app_buf, b_data(&qcs->rx.app_buf));
goto end;
}
htx_xfer_blks(cs_htx, qcs_htx, count, HTX_BLK_UNUSED);
BUG_ON(qcs_htx->flags & HTX_FL_PARSING_ERROR);
/* Copy EOM from src to dst buffer if all data copied. */
if (htx_is_empty(qcs_htx) && (qcs_htx->flags & HTX_FL_EOM)) {
cs_htx->flags |= HTX_FL_EOM;
fin = 1;
}
cs_htx->extra = qcs_htx->extra ? (qcs_htx->data + qcs_htx->extra) : 0;
htx_to_buf(cs_htx, buf);
htx_to_buf(qcs_htx, &qcs->rx.app_buf);
ret -= qcs_htx->data;
end:
if (b_data(&qcs->rx.app_buf)) {
se_fl_set(qcs->sd, SE_FL_RCV_MORE | SE_FL_WANT_ROOM);
}
else {
se_fl_clr(qcs->sd, SE_FL_RCV_MORE | SE_FL_WANT_ROOM);
if (se_fl_test(qcs->sd, SE_FL_ERR_PENDING))
se_fl_set(qcs->sd, SE_FL_ERROR);
if (fin)
se_fl_set(qcs->sd, SE_FL_EOI);
if (b_size(&qcs->rx.app_buf)) {
b_free(&qcs->rx.app_buf);
offer_buffers(NULL, 1);
}
}
if (ret) {
qcs->flags &= ~QC_SF_DEM_FULL;
tasklet_wakeup(qcs->qcc->wait_event.tasklet);
}
TRACE_LEAVE(QMUX_EV_STRM_RECV, qcs->qcc->conn, qcs);
return ret;
}
static size_t qc_snd_buf(struct stconn *sc, struct buffer *buf,
size_t count, int flags)
{
struct qcs *qcs = __sc_mux_strm(sc);
size_t ret;
TRACE_ENTER(QMUX_EV_STRM_SEND, qcs->qcc->conn, qcs);
ret = qcs->qcc->app_ops->snd_buf(sc, buf, count, flags);
TRACE_LEAVE(QMUX_EV_STRM_SEND, qcs->qcc->conn, qcs);
return ret;
}
/* Called from the upper layer, to subscribe <es> to events <event_type>. The
* event subscriber <es> is not allowed to change from a previous call as long
* as at least one event is still subscribed. The <event_type> must only be a
* combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0.
*/
static int qc_subscribe(struct stconn *sc, int event_type,
struct wait_event *es)
{
return qcs_subscribe(__sc_mux_strm(sc), event_type, es);
}
/* Called from the upper layer, to unsubscribe <es> from events <event_type>.
* The <es> pointer is not allowed to differ from the one passed to the
* subscribe() call. It always returns zero.
*/
static int qc_unsubscribe(struct stconn *sc, int event_type, struct wait_event *es)
{
struct qcs *qcs = __sc_mux_strm(sc);
BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV));
BUG_ON(qcs->subs && qcs->subs != es);
es->events &= ~event_type;
if (!es->events)
qcs->subs = NULL;
return 0;
}
/* Loop through all qcs from <qcc>. If CO_FL_ERROR is set on the connection,
* report SE_FL_ERR_PENDING|SE_FL_ERROR on the attached stream connectors and
* wake them.
*/
static int qc_wake_some_streams(struct qcc *qcc)
{
struct qcs *qcs;
struct eb64_node *node;
for (node = eb64_first(&qcc->streams_by_id); node;
node = eb64_next(node)) {
qcs = eb64_entry(node, struct qcs, by_id);
if (!qcs->sd || !qcs->sd->sc)
continue;
if (qcc->conn->flags & CO_FL_ERROR) {
se_fl_set(qcs->sd, SE_FL_ERR_PENDING);
if (se_fl_test(qcs->sd, SE_FL_EOS))
se_fl_set(qcs->sd, SE_FL_ERROR);
if (qcs->subs) {
qcs_notify_recv(qcs);
qcs_notify_send(qcs);
}
else if (qcs->sd->sc->app_ops->wake) {
qcs->sd->sc->app_ops->wake(qcs->sd->sc);
}
}
}
return 0;
}
static int qc_wake(struct connection *conn)
{
struct qcc *qcc = conn->ctx;
struct proxy *prx = conn->handle.qc->li->bind_conf->frontend;
TRACE_ENTER(QMUX_EV_QCC_WAKE, conn);
/* Check if a soft-stop is in progress.
*
* TODO this is revelant for frontend connections only.
*
* TODO Client should be notified with a H3 GOAWAY and then a
* CONNECTION_CLOSE. However, quic-conn uses the listener socket for
* sending which at this stage is already closed.
*/
if (unlikely(prx->flags & (PR_FL_DISABLED|PR_FL_STOPPED)))
qcc->conn->flags |= (CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH);
if (conn->handle.qc->flags & QUIC_FL_CONN_NOTIFY_CLOSE)
qcc->conn->flags |= (CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH);
qc_send(qcc);
qc_wake_some_streams(qcc);
if (qcc_is_dead(qcc))
goto release;
TRACE_LEAVE(QMUX_EV_QCC_WAKE, conn);
return 0;
release:
qc_release(qcc);
TRACE_DEVEL("leaving after releasing the connection", QMUX_EV_QCC_WAKE);
return 1;
}
static void qmux_trace_frm(const struct quic_frame *frm)
{
switch (frm->type) {
case QUIC_FT_MAX_STREAMS_BIDI:
chunk_appendf(&trace_buf, " max_streams=%llu",
(ull)frm->max_streams_bidi.max_streams);
break;
case QUIC_FT_MAX_STREAMS_UNI:
chunk_appendf(&trace_buf, " max_streams=%llu",
(ull)frm->max_streams_uni.max_streams);
break;
default:
break;
}
}
/* quic-mux trace handler */
static void qmux_trace(enum trace_level level, uint64_t mask,
const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4)
{
const struct connection *conn = a1;
const struct qcc *qcc = conn ? conn->ctx : NULL;
const struct qcs *qcs = a2;
if (!qcc)
return;
if (src->verbosity > QMUX_VERB_CLEAN) {
chunk_appendf(&trace_buf, " : qcc=%p(F)", qcc);
if (qcs)
chunk_appendf(&trace_buf, " qcs=%p(%llu)", qcs, (ull)qcs->id);
if (mask & QMUX_EV_QCC_NQCS) {
const uint64_t *id = a3;
chunk_appendf(&trace_buf, " id=%llu", (ull)*id);
}
if (mask & QMUX_EV_SEND_FRM)
qmux_trace_frm(a3);
if (mask & QMUX_EV_QCS_XFER_DATA) {
const struct qcs_xfer_data_trace_arg *arg = a3;
chunk_appendf(&trace_buf, " prep=%llu xfer=%d",
(ull)arg->prep, arg->xfer);
}
if (mask & QMUX_EV_QCS_BUILD_STRM) {
const struct qcs_build_stream_trace_arg *arg = a3;
chunk_appendf(&trace_buf, " len=%llu fin=%d offset=%llu",
(ull)arg->len, arg->fin, (ull)arg->offset);
}
}
}
static const struct mux_ops qc_ops = {
.init = qc_init,
.destroy = qc_destroy,
.detach = qc_detach,
.rcv_buf = qc_rcv_buf,
.snd_buf = qc_snd_buf,
.subscribe = qc_subscribe,
.unsubscribe = qc_unsubscribe,
.wake = qc_wake,
.flags = MX_FL_HTX|MX_FL_NO_UPG|MX_FL_FRAMED,
.name = "QUIC",
};
static struct mux_proto_list mux_proto_quic =
{ .token = IST("quic"), .mode = PROTO_MODE_HTTP, .side = PROTO_SIDE_FE, .mux = &qc_ops };
INITCALL1(STG_REGISTER, register_mux_proto, &mux_proto_quic);