blob: c3010c5f3a5bcde472572ec788664839f3ff2fdd [file] [log] [blame]
/*
* activity measurement functions.
*
* Copyright 2000-2018 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <haproxy/activity-t.h>
#include <haproxy/api.h>
#include <haproxy/cfgparse.h>
#include <haproxy/channel.h>
#include <haproxy/cli.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/stream_interface.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
#include <haproxy/xxhash.h>
#if defined(DEBUG_MEM_STATS)
/* these ones are macros in bug.h when DEBUG_MEM_STATS is set, and will
* prevent the new ones from being redefined.
*/
#undef calloc
#undef malloc
#undef realloc
#endif
/* bit field of profiling options. Beware, may be modified at runtime! */
unsigned int profiling __read_mostly = HA_PROF_TASKS_AOFF;
unsigned long task_profiling_mask __read_mostly = 0;
/* One struct per thread containing all collected measurements */
struct activity activity[MAX_THREADS] __attribute__((aligned(64))) = { };
/* One struct per function pointer hash entry (256 values, 0=collision) */
struct sched_activity sched_activity[256] __attribute__((aligned(64))) = { };
#ifdef USE_MEMORY_PROFILING
/* determine the number of buckets to store stats */
#define MEMPROF_HASH_BITS 10
#define MEMPROF_HASH_BUCKETS (1U << MEMPROF_HASH_BITS)
enum memprof_method {
MEMPROF_METH_UNKNOWN = 0,
MEMPROF_METH_MALLOC,
MEMPROF_METH_CALLOC,
MEMPROF_METH_REALLOC,
MEMPROF_METH_FREE,
MEMPROF_METH_METHODS /* count, must be last */
};
static const char *const memprof_methods[MEMPROF_METH_METHODS] = {
"unknown", "malloc", "calloc", "realloc", "free",
};
/* stats:
* - malloc increases alloc
* - free increases free (if non null)
* - realloc increases either depending on the size change.
* when the real size is known (malloc_usable_size()), it's used in free_tot
* and alloc_tot, otherwise the requested size is reported in alloc_tot and
* zero in free_tot.
*/
struct memprof_stats {
const void *caller;
enum memprof_method method;
/* 4-7 bytes hole here */
unsigned long long alloc_calls;
unsigned long long free_calls;
unsigned long long alloc_tot;
unsigned long long free_tot;
};
/* last one is for hash collisions ("others") and has no caller address */
struct memprof_stats memprof_stats[MEMPROF_HASH_BUCKETS + 1] = { };
/* used to detect recursive calls */
static THREAD_LOCAL int in_memprof = 0;
/* perform a pointer hash by scrambling its bits and retrieving the most
* mixed ones (topmost ones in 32-bit, middle ones in 64-bit).
*/
static unsigned int memprof_hash_ptr(const void *p)
{
unsigned long long x = (unsigned long)p;
x = 0xcbda9653U * x;
if (sizeof(long) == 4)
x >>= 32;
else
x >>= 33 - MEMPROF_HASH_BITS / 2;
return x & (MEMPROF_HASH_BUCKETS - 1);
}
/* These ones are used by glibc and will be called early. They are in charge of
* initializing the handlers with the original functions.
*/
static void *memprof_malloc_initial_handler(size_t size);
static void *memprof_calloc_initial_handler(size_t nmemb, size_t size);
static void *memprof_realloc_initial_handler(void *ptr, size_t size);
static void memprof_free_initial_handler(void *ptr);
/* Fallback handlers for the main alloc/free functions. They are preset to
* the initializer in order to save a test in the functions's critical path.
*/
static void *(*memprof_malloc_handler)(size_t size) = memprof_malloc_initial_handler;
static void *(*memprof_calloc_handler)(size_t nmemb, size_t size) = memprof_calloc_initial_handler;
static void *(*memprof_realloc_handler)(void *ptr, size_t size) = memprof_realloc_initial_handler;
static void (*memprof_free_handler)(void *ptr) = memprof_free_initial_handler;
/* Used to force to die if it's not possible to retrieve the allocation
* functions. We cannot even use stdio in this case.
*/
static __attribute__((noreturn)) void memprof_die(const char *msg)
{
DISGUISE(write(2, msg, strlen(msg)));
exit(1);
}
/* Resolve original allocation functions and initialize all handlers.
* This must be called very early at boot, before the very first malloc()
* call, and is not thread-safe! It's not even possible to use stdio there.
* Worse, we have to account for the risk of reentrance from dlsym() when
* it tries to prepare its error messages. Here its ahndled by in_memprof
* that makes allocators return NULL. dlsym() handles it gracefully. An
* alternate approach consists in calling aligned_alloc() from these places
* but that would mean not being able to intercept it later if considered
* useful to do so.
*/
static void memprof_init()
{
in_memprof++;
memprof_malloc_handler = get_sym_next_addr("malloc");
if (!memprof_malloc_handler)
memprof_die("FATAL: malloc() function not found.\n");
memprof_calloc_handler = get_sym_next_addr("calloc");
if (!memprof_calloc_handler)
memprof_die("FATAL: calloc() function not found.\n");
memprof_realloc_handler = get_sym_next_addr("realloc");
if (!memprof_realloc_handler)
memprof_die("FATAL: realloc() function not found.\n");
memprof_free_handler = get_sym_next_addr("free");
if (!memprof_free_handler)
memprof_die("FATAL: free() function not found.\n");
in_memprof--;
}
/* the initial handlers will initialize all regular handlers and will call the
* one they correspond to. A single one of these functions will typically be
* called, though it's unknown which one (as any might be called before main).
*/
static void *memprof_malloc_initial_handler(size_t size)
{
if (in_memprof) {
/* it's likely that dlsym() needs malloc(), let's fail */
return NULL;
}
memprof_init();
return memprof_malloc_handler(size);
}
static void *memprof_calloc_initial_handler(size_t nmemb, size_t size)
{
if (in_memprof) {
/* it's likely that dlsym() needs calloc(), let's fail */
return NULL;
}
memprof_init();
return memprof_calloc_handler(nmemb, size);
}
static void *memprof_realloc_initial_handler(void *ptr, size_t size)
{
if (in_memprof) {
/* it's likely that dlsym() needs realloc(), let's fail */
return NULL;
}
memprof_init();
return memprof_realloc_handler(ptr, size);
}
static void memprof_free_initial_handler(void *ptr)
{
memprof_init();
memprof_free_handler(ptr);
}
/* Assign a bin for the memprof_stats to the return address. May perform a few
* attempts before finding the right one, but always succeeds (in the worst
* case, returns a default bin). The caller address is atomically set except
* for the default one which is never set.
*/
static struct memprof_stats *memprof_get_bin(const void *ra, enum memprof_method meth)
{
int retries = 16; // up to 16 consecutive entries may be tested.
const void *old;
unsigned int bin;
bin = memprof_hash_ptr(ra);
for (; memprof_stats[bin].caller != ra; bin = (bin + 1) & (MEMPROF_HASH_BUCKETS - 1)) {
if (!--retries) {
bin = MEMPROF_HASH_BUCKETS;
break;
}
old = NULL;
if (!memprof_stats[bin].caller &&
HA_ATOMIC_CAS(&memprof_stats[bin].caller, &old, ra)) {
memprof_stats[bin].method = meth;
break;
}
}
return &memprof_stats[bin];
}
/* This is the new global malloc() function. It must optimize for the normal
* case (i.e. profiling disabled) hence the first test to permit a direct jump.
* It must remain simple to guarantee the lack of reentrance. stdio is not
* possible there even for debugging. The reported size is the really allocated
* one as returned by malloc_usable_size(), because this will allow it to be
* compared to the one before realloc() or free(). This is a GNU and jemalloc
* extension but other systems may also store this size in ptr[-1].
*/
void *malloc(size_t size)
{
struct memprof_stats *bin;
void *ret;
if (likely(!(profiling & HA_PROF_MEMORY)))
return memprof_malloc_handler(size);
ret = memprof_malloc_handler(size);
size = malloc_usable_size(ret);
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_MALLOC);
_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
_HA_ATOMIC_ADD(&bin->alloc_tot, size);
return ret;
}
/* This is the new global calloc() function. It must optimize for the normal
* case (i.e. profiling disabled) hence the first test to permit a direct jump.
* It must remain simple to guarantee the lack of reentrance. stdio is not
* possible there even for debugging. The reported size is the really allocated
* one as returned by malloc_usable_size(), because this will allow it to be
* compared to the one before realloc() or free(). This is a GNU and jemalloc
* extension but other systems may also store this size in ptr[-1].
*/
void *calloc(size_t nmemb, size_t size)
{
struct memprof_stats *bin;
void *ret;
if (likely(!(profiling & HA_PROF_MEMORY)))
return memprof_calloc_handler(nmemb, size);
ret = memprof_calloc_handler(nmemb, size);
size = malloc_usable_size(ret);
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_CALLOC);
_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
_HA_ATOMIC_ADD(&bin->alloc_tot, size);
return ret;
}
/* This is the new global realloc() function. It must optimize for the normal
* case (i.e. profiling disabled) hence the first test to permit a direct jump.
* It must remain simple to guarantee the lack of reentrance. stdio is not
* possible there even for debugging. The reported size is the really allocated
* one as returned by malloc_usable_size(), because this will allow it to be
* compared to the one before realloc() or free(). This is a GNU and jemalloc
* extension but other systems may also store this size in ptr[-1].
* Depending on the old vs new size, it's considered as an allocation or a free
* (or neither if the size remains the same).
*/
void *realloc(void *ptr, size_t size)
{
struct memprof_stats *bin;
size_t size_before;
void *ret;
if (likely(!(profiling & HA_PROF_MEMORY)))
return memprof_realloc_handler(ptr, size);
size_before = malloc_usable_size(ptr);
ret = memprof_realloc_handler(ptr, size);
size = malloc_usable_size(ret);
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_REALLOC);
if (size > size_before) {
_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
_HA_ATOMIC_ADD(&bin->alloc_tot, size - size_before);
} else if (size < size_before) {
_HA_ATOMIC_ADD(&bin->free_calls, 1);
_HA_ATOMIC_ADD(&bin->free_tot, size_before - size);
}
return ret;
}
/* This is the new global free() function. It must optimize for the normal
* case (i.e. profiling disabled) hence the first test to permit a direct jump.
* It must remain simple to guarantee the lack of reentrance. stdio is not
* possible there even for debugging. The reported size is the really allocated
* one as returned by malloc_usable_size(), because this will allow it to be
* compared to the one before realloc() or free(). This is a GNU and jemalloc
* extension but other systems may also store this size in ptr[-1]. Since
* free() is often called on NULL pointers to collect garbage at the end of
* many functions or during config parsing, as a special case free(NULL)
* doesn't update any stats.
*/
void free(void *ptr)
{
struct memprof_stats *bin;
size_t size_before;
if (likely(!(profiling & HA_PROF_MEMORY) || !ptr)) {
memprof_free_handler(ptr);
return;
}
size_before = malloc_usable_size(ptr);
memprof_free_handler(ptr);
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_FREE);
_HA_ATOMIC_ADD(&bin->free_calls, 1);
_HA_ATOMIC_ADD(&bin->free_tot, size_before);
}
#endif // USE_MEMORY_PROFILING
/* Updates the current thread's statistics about stolen CPU time. The unit for
* <stolen> is half-milliseconds.
*/
void report_stolen_time(uint64_t stolen)
{
activity[tid].cpust_total += stolen;
update_freq_ctr(&activity[tid].cpust_1s, stolen);
update_freq_ctr_period(&activity[tid].cpust_15s, 15000, stolen);
}
/* Collect date and time information before calling poll(). This will be used
* to count the run time of the past loop and the sleep time of the next poll.
* It also makes use of the just updated before_poll timer to count the loop's
* run time and feed the average loop time metric (in microseconds).
*/
void activity_count_runtime()
{
uint32_t run_time;
uint32_t up, down;
/* 1 millisecond per loop on average over last 1024 iterations is
* enough to turn on profiling.
*/
up = 1000;
down = up * 99 / 100;
run_time = (before_poll.tv_sec - after_poll.tv_sec) * 1000000U + (before_poll.tv_usec - after_poll.tv_usec);
run_time = swrate_add(&activity[tid].avg_loop_us, TIME_STATS_SAMPLES, run_time);
/* In automatic mode, reaching the "up" threshold on average switches
* profiling to "on" when automatic, and going back below the "down"
* threshold switches to off. The forced modes don't check the load.
*/
if (!(task_profiling_mask & tid_bit)) {
if (unlikely((profiling & HA_PROF_TASKS_MASK) == HA_PROF_TASKS_ON ||
((profiling & HA_PROF_TASKS_MASK) == HA_PROF_TASKS_AON &&
swrate_avg(run_time, TIME_STATS_SAMPLES) >= up)))
_HA_ATOMIC_OR(&task_profiling_mask, tid_bit);
} else {
if (unlikely((profiling & HA_PROF_TASKS_MASK) == HA_PROF_TASKS_OFF ||
((profiling & HA_PROF_TASKS_MASK) == HA_PROF_TASKS_AOFF &&
swrate_avg(run_time, TIME_STATS_SAMPLES) <= down)))
_HA_ATOMIC_AND(&task_profiling_mask, ~tid_bit);
}
}
#ifdef USE_MEMORY_PROFILING
/* config parser for global "profiling.memory", accepts "on" or "off" */
static int cfg_parse_prof_memory(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
if (strcmp(args[1], "on") == 0)
profiling |= HA_PROF_MEMORY;
else if (strcmp(args[1], "off") == 0)
profiling &= ~HA_PROF_MEMORY;
else {
memprintf(err, "'%s' expects either 'on' or 'off' but got '%s'.", args[0], args[1]);
return -1;
}
return 0;
}
#endif // USE_MEMORY_PROFILING
/* config parser for global "profiling.tasks", accepts "on" or "off" */
static int cfg_parse_prof_tasks(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
if (strcmp(args[1], "on") == 0)
profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_ON;
else if (strcmp(args[1], "auto") == 0)
profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AOFF;
else if (strcmp(args[1], "off") == 0)
profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_OFF;
else {
memprintf(err, "'%s' expects either 'on', 'auto', or 'off' but got '%s'.", args[0], args[1]);
return -1;
}
return 0;
}
/* parse a "set profiling" command. It always returns 1. */
static int cli_parse_set_profiling(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (strcmp(args[2], "memory") == 0) {
#ifdef USE_MEMORY_PROFILING
if (strcmp(args[3], "on") == 0) {
unsigned int old = profiling;
int i;
while (!_HA_ATOMIC_CAS(&profiling, &old, old | HA_PROF_MEMORY))
;
/* also flush current profiling stats */
for (i = 0; i < sizeof(memprof_stats) / sizeof(memprof_stats[0]); i++) {
HA_ATOMIC_STORE(&memprof_stats[i].alloc_calls, 0);
HA_ATOMIC_STORE(&memprof_stats[i].free_calls, 0);
HA_ATOMIC_STORE(&memprof_stats[i].alloc_tot, 0);
HA_ATOMIC_STORE(&memprof_stats[i].free_tot, 0);
HA_ATOMIC_STORE(&memprof_stats[i].caller, NULL);
}
}
else if (strcmp(args[3], "off") == 0) {
unsigned int old = profiling;
while (!_HA_ATOMIC_CAS(&profiling, &old, old & ~HA_PROF_MEMORY))
;
}
else
return cli_err(appctx, "Expects either 'on' or 'off'.\n");
return 1;
#else
return cli_err(appctx, "Memory profiling not compiled in.\n");
#endif
}
if (strcmp(args[2], "tasks") != 0)
return cli_err(appctx, "Expects either 'tasks' or 'memory'.\n");
if (strcmp(args[3], "on") == 0) {
unsigned int old = profiling;
int i;
while (!_HA_ATOMIC_CAS(&profiling, &old, (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_ON))
;
/* also flush current profiling stats */
for (i = 0; i < 256; i++) {
HA_ATOMIC_STORE(&sched_activity[i].calls, 0);
HA_ATOMIC_STORE(&sched_activity[i].cpu_time, 0);
HA_ATOMIC_STORE(&sched_activity[i].lat_time, 0);
HA_ATOMIC_STORE(&sched_activity[i].func, NULL);
}
}
else if (strcmp(args[3], "auto") == 0) {
unsigned int old = profiling;
unsigned int new;
do {
if ((old & HA_PROF_TASKS_MASK) >= HA_PROF_TASKS_AON)
new = (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AON;
else
new = (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AOFF;
} while (!_HA_ATOMIC_CAS(&profiling, &old, new));
}
else if (strcmp(args[3], "off") == 0) {
unsigned int old = profiling;
while (!_HA_ATOMIC_CAS(&profiling, &old, (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_OFF))
;
}
else
return cli_err(appctx, "Expects 'on', 'auto', or 'off'.\n");
return 1;
}
static int cmp_sched_activity_calls(const void *a, const void *b)
{
const struct sched_activity *l = (const struct sched_activity *)a;
const struct sched_activity *r = (const struct sched_activity *)b;
if (l->calls > r->calls)
return -1;
else if (l->calls < r->calls)
return 1;
else
return 0;
}
static int cmp_sched_activity_addr(const void *a, const void *b)
{
const struct sched_activity *l = (const struct sched_activity *)a;
const struct sched_activity *r = (const struct sched_activity *)b;
if (l->func > r->func)
return -1;
else if (l->func < r->func)
return 1;
else
return 0;
}
#ifdef USE_MEMORY_PROFILING
/* used by qsort below */
static int cmp_memprof_stats(const void *a, const void *b)
{
const struct memprof_stats *l = (const struct memprof_stats *)a;
const struct memprof_stats *r = (const struct memprof_stats *)b;
if (l->alloc_tot + l->free_tot > r->alloc_tot + r->free_tot)
return -1;
else if (l->alloc_tot + l->free_tot < r->alloc_tot + r->free_tot)
return 1;
else
return 0;
}
static int cmp_memprof_addr(const void *a, const void *b)
{
const struct memprof_stats *l = (const struct memprof_stats *)a;
const struct memprof_stats *r = (const struct memprof_stats *)b;
if (l->caller > r->caller)
return -1;
else if (l->caller < r->caller)
return 1;
else
return 0;
}
#endif // USE_MEMORY_PROFILING
/* Computes the index of function pointer <func> for use with sched_activity[]
* or any other similar array passed in <array>, and returns a pointer to the
* entry after having atomically assigned it to this function pointer. Note
* that in case of collision, the first entry is returned instead ("other").
*/
struct sched_activity *sched_activity_entry(struct sched_activity *array, const void *func)
{
uint64_t hash = XXH64_avalanche(XXH64_mergeRound((size_t)func, (size_t)func));
struct sched_activity *ret;
const void *old = NULL;
hash ^= (hash >> 32);
hash ^= (hash >> 16);
hash ^= (hash >> 8);
hash &= 0xff;
ret = &array[hash];
if (likely(ret->func == func))
return ret;
if (HA_ATOMIC_CAS(&ret->func, &old, func))
return ret;
return array;
}
/* This function dumps all profiling settings. It returns 0 if the output
* buffer is full and it needs to be called again, otherwise non-zero.
* It dumps some parts depending on the following states:
* ctx.cli.i0:
* 0, 4: dump status, then jump to 1 if 0
* 1, 5: dump tasks, then jump to 2 if 1
* 2, 6: dump memory, then stop
* ctx.cli.i1:
* restart line for each step (starts at zero)
* ctx.cli.o0:
* may contain a configured max line count for each step (0=not set)
* ctx.cli.o1:
* 0: sort by usage
* 1: sort by address
*/
static int cli_io_handler_show_profiling(struct appctx *appctx)
{
struct sched_activity tmp_activity[256] __attribute__((aligned(64)));
#ifdef USE_MEMORY_PROFILING
struct memprof_stats tmp_memstats[MEMPROF_HASH_BUCKETS + 1];
unsigned long long tot_alloc_calls, tot_free_calls;
unsigned long long tot_alloc_bytes, tot_free_bytes;
#endif
struct stream_interface *si = appctx->owner;
struct buffer *name_buffer = get_trash_chunk();
const char *str;
int max_lines;
int i, max;
if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW)))
return 1;
chunk_reset(&trash);
switch (profiling & HA_PROF_TASKS_MASK) {
case HA_PROF_TASKS_AOFF: str="auto-off"; break;
case HA_PROF_TASKS_AON: str="auto-on"; break;
case HA_PROF_TASKS_ON: str="on"; break;
default: str="off"; break;
}
if ((appctx->ctx.cli.i0 & 3) != 0)
goto skip_status;
chunk_printf(&trash,
"Per-task CPU profiling : %-8s # set profiling tasks {on|auto|off}\n"
"Memory usage profiling : %-8s # set profiling memory {on|off}\n",
str, (profiling & HA_PROF_MEMORY) ? "on" : "off");
if (ci_putchk(si_ic(si), &trash) == -1) {
/* failed, try again */
si_rx_room_blk(si);
return 0;
}
appctx->ctx.cli.i1 = 0; // reset first line to dump
if ((appctx->ctx.cli.i0 & 4) == 0)
appctx->ctx.cli.i0++; // next step
skip_status:
if ((appctx->ctx.cli.i0 & 3) != 1)
goto skip_tasks;
memcpy(tmp_activity, sched_activity, sizeof(tmp_activity));
if (appctx->ctx.cli.o1)
qsort(tmp_activity, 256, sizeof(tmp_activity[0]), cmp_sched_activity_addr);
else
qsort(tmp_activity, 256, sizeof(tmp_activity[0]), cmp_sched_activity_calls);
if (!appctx->ctx.cli.i1)
chunk_appendf(&trash, "Tasks activity:\n"
" function calls cpu_tot cpu_avg lat_tot lat_avg\n");
max_lines = appctx->ctx.cli.o0;
if (!max_lines)
max_lines = 256;
for (i = appctx->ctx.cli.i1; i < max_lines && tmp_activity[i].calls; i++) {
appctx->ctx.cli.i1 = i;
chunk_reset(name_buffer);
if (!tmp_activity[i].func)
chunk_printf(name_buffer, "other");
else
resolve_sym_name(name_buffer, "", tmp_activity[i].func);
/* reserve 35 chars for name+' '+#calls, knowing that longer names
* are often used for less often called functions.
*/
max = 35 - name_buffer->data;
if (max < 1)
max = 1;
chunk_appendf(&trash, " %s%*llu", name_buffer->area, max, (unsigned long long)tmp_activity[i].calls);
print_time_short(&trash, " ", tmp_activity[i].cpu_time, "");
print_time_short(&trash, " ", tmp_activity[i].cpu_time / tmp_activity[i].calls, "");
print_time_short(&trash, " ", tmp_activity[i].lat_time, "");
print_time_short(&trash, " ", tmp_activity[i].lat_time / tmp_activity[i].calls, "\n");
if (ci_putchk(si_ic(si), &trash) == -1) {
/* failed, try again */
si_rx_room_blk(si);
return 0;
}
}
if (ci_putchk(si_ic(si), &trash) == -1) {
/* failed, try again */
si_rx_room_blk(si);
return 0;
}
appctx->ctx.cli.i1 = 0; // reset first line to dump
if ((appctx->ctx.cli.i0 & 4) == 0)
appctx->ctx.cli.i0++; // next step
skip_tasks:
#ifdef USE_MEMORY_PROFILING
if ((appctx->ctx.cli.i0 & 3) != 2)
goto skip_mem;
memcpy(tmp_memstats, memprof_stats, sizeof(tmp_memstats));
if (appctx->ctx.cli.o1)
qsort(tmp_memstats, MEMPROF_HASH_BUCKETS+1, sizeof(tmp_memstats[0]), cmp_memprof_addr);
else
qsort(tmp_memstats, MEMPROF_HASH_BUCKETS+1, sizeof(tmp_memstats[0]), cmp_memprof_stats);
if (!appctx->ctx.cli.i1)
chunk_appendf(&trash,
"Alloc/Free statistics by call place:\n"
" Calls | Tot Bytes | Caller and method\n"
"<- alloc -> <- free ->|<-- alloc ---> <-- free ---->|\n");
max_lines = appctx->ctx.cli.o0;
if (!max_lines)
max_lines = MEMPROF_HASH_BUCKETS + 1;
for (i = appctx->ctx.cli.i1; i < max_lines; i++) {
struct memprof_stats *entry = &tmp_memstats[i];
appctx->ctx.cli.i1 = i;
if (!entry->alloc_calls && !entry->free_calls)
continue;
chunk_appendf(&trash, "%11llu %11llu %14llu %14llu| %16p ",
entry->alloc_calls, entry->free_calls,
entry->alloc_tot, entry->free_tot,
entry->caller);
if (entry->caller)
resolve_sym_name(&trash, NULL, entry->caller);
else
chunk_appendf(&trash, "[other]");
chunk_appendf(&trash," %s(%lld)\n", memprof_methods[entry->method],
(long long)(entry->alloc_tot - entry->free_tot) / (long long)(entry->alloc_calls + entry->free_calls));
if (ci_putchk(si_ic(si), &trash) == -1) {
si_rx_room_blk(si);
return 0;
}
}
if (ci_putchk(si_ic(si), &trash) == -1) {
si_rx_room_blk(si);
return 0;
}
tot_alloc_calls = tot_free_calls = tot_alloc_bytes = tot_free_bytes = 0;
for (i = 0; i < max_lines; i++) {
tot_alloc_calls += tmp_memstats[i].alloc_calls;
tot_free_calls += tmp_memstats[i].free_calls;
tot_alloc_bytes += tmp_memstats[i].alloc_tot;
tot_free_bytes += tmp_memstats[i].free_tot;
}
chunk_appendf(&trash,
"-----------------------|-----------------------------|\n"
"%11llu %11llu %14llu %14llu| <- Total; Delta_calls=%lld; Delta_bytes=%lld\n",
tot_alloc_calls, tot_free_calls,
tot_alloc_bytes, tot_free_bytes,
tot_alloc_calls - tot_free_calls,
tot_alloc_bytes - tot_free_bytes);
if (ci_putchk(si_ic(si), &trash) == -1) {
si_rx_room_blk(si);
return 0;
}
appctx->ctx.cli.i1 = 0; // reset first line to dump
if ((appctx->ctx.cli.i0 & 4) == 0)
appctx->ctx.cli.i0++; // next step
skip_mem:
#endif // USE_MEMORY_PROFILING
return 1;
}
/* parse a "show profiling" command. It returns 1 on failure, 0 if it starts to dump.
* - cli.i0 is set to the first state (0=all, 4=status, 5=tasks, 6=memory)
* - cli.o1 is set to 1 if the output must be sorted by addr instead of usage
* - cli.o0 is set to the number of lines of output
*/
static int cli_parse_show_profiling(char **args, char *payload, struct appctx *appctx, void *private)
{
int arg;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
for (arg = 2; *args[arg]; arg++) {
if (strcmp(args[arg], "all") == 0) {
appctx->ctx.cli.i0 = 0; // will cycle through 0,1,2; default
}
else if (strcmp(args[arg], "status") == 0) {
appctx->ctx.cli.i0 = 4; // will visit status only
}
else if (strcmp(args[arg], "tasks") == 0) {
appctx->ctx.cli.i0 = 5; // will visit tasks only
}
else if (strcmp(args[arg], "memory") == 0) {
appctx->ctx.cli.i0 = 6; // will visit memory only
}
else if (strcmp(args[arg], "byaddr") == 0) {
appctx->ctx.cli.o1 = 1; // sort output by address instead of usage
}
else if (isdigit((unsigned char)*args[arg])) {
appctx->ctx.cli.o0 = atoi(args[arg]); // number of entries to dump
}
else
return cli_err(appctx, "Expects either 'all', 'status', 'tasks', 'memory', 'byaddr' or a max number of output lines.\n");
}
return 0;
}
/* This function scans all threads' run queues and collects statistics about
* running tasks. It returns 0 if the output buffer is full and it needs to be
* called again, otherwise non-zero.
*/
static int cli_io_handler_show_tasks(struct appctx *appctx)
{
struct sched_activity tmp_activity[256] __attribute__((aligned(64)));
struct stream_interface *si = appctx->owner;
struct buffer *name_buffer = get_trash_chunk();
struct sched_activity *entry;
const struct tasklet *tl;
const struct task *t;
uint64_t now_ns, lat;
struct eb32sc_node *rqnode;
uint64_t tot_calls;
int thr, queue;
int i, max;
if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW)))
return 1;
/* It's not possible to scan queues in small chunks and yield in the
* middle of the dump and come back again. So what we're doing instead
* is to freeze all threads and inspect their queues at once as fast as
* possible, using a sched_activity array to collect metrics with
* limited collision, then we'll report statistics only. The tasks'
* #calls will reflect the number of occurrences, and the lat_time will
* reflect the latency when set. We prefer to take the time before
* calling thread_isolate() so that the wait time doesn't impact the
* measurement accuracy. However this requires to take care of negative
* times since tasks might be queued after we retrieve it.
*/
now_ns = now_mono_time();
memset(tmp_activity, 0, sizeof(tmp_activity));
thread_isolate();
/* 1. global run queue */
#ifdef USE_THREAD
rqnode = eb32sc_first(&rqueue, ~0UL);
while (rqnode) {
t = eb32sc_entry(rqnode, struct task, rq);
entry = sched_activity_entry(tmp_activity, t->process);
if (t->call_date) {
lat = now_ns - t->call_date;
if ((int64_t)lat > 0)
entry->lat_time += lat;
}
entry->calls++;
rqnode = eb32sc_next(rqnode, ~0UL);
}
#endif
/* 2. all threads's local run queues */
for (thr = 0; thr < global.nbthread; thr++) {
/* task run queue */
rqnode = eb32sc_first(&task_per_thread[thr].rqueue, ~0UL);
while (rqnode) {
t = eb32sc_entry(rqnode, struct task, rq);
entry = sched_activity_entry(tmp_activity, t->process);
if (t->call_date) {
lat = now_ns - t->call_date;
if ((int64_t)lat > 0)
entry->lat_time += lat;
}
entry->calls++;
rqnode = eb32sc_next(rqnode, ~0UL);
}
/* shared tasklet list */
list_for_each_entry(tl, mt_list_to_list(&task_per_thread[thr].shared_tasklet_list), list) {
t = (const struct task *)tl;
entry = sched_activity_entry(tmp_activity, t->process);
if (!TASK_IS_TASKLET(t) && t->call_date) {
lat = now_ns - t->call_date;
if ((int64_t)lat > 0)
entry->lat_time += lat;
}
entry->calls++;
}
/* classful tasklets */
for (queue = 0; queue < TL_CLASSES; queue++) {
list_for_each_entry(tl, &task_per_thread[thr].tasklets[queue], list) {
t = (const struct task *)tl;
entry = sched_activity_entry(tmp_activity, t->process);
if (!TASK_IS_TASKLET(t) && t->call_date) {
lat = now_ns - t->call_date;
if ((int64_t)lat > 0)
entry->lat_time += lat;
}
entry->calls++;
}
}
}
/* hopefully we're done */
thread_release();
chunk_reset(&trash);
tot_calls = 0;
for (i = 0; i < 256; i++)
tot_calls += tmp_activity[i].calls;
qsort(tmp_activity, 256, sizeof(tmp_activity[0]), cmp_sched_activity_calls);
chunk_appendf(&trash, "Running tasks: %d (%d threads)\n"
" function places %% lat_tot lat_avg\n",
(int)tot_calls, global.nbthread);
for (i = 0; i < 256 && tmp_activity[i].calls; i++) {
chunk_reset(name_buffer);
if (!tmp_activity[i].func)
chunk_printf(name_buffer, "other");
else
resolve_sym_name(name_buffer, "", tmp_activity[i].func);
/* reserve 35 chars for name+' '+#calls, knowing that longer names
* are often used for less often called functions.
*/
max = 35 - name_buffer->data;
if (max < 1)
max = 1;
chunk_appendf(&trash, " %s%*llu %3d.%1d",
name_buffer->area, max, (unsigned long long)tmp_activity[i].calls,
(int)(100ULL * tmp_activity[i].calls / tot_calls),
(int)((1000ULL * tmp_activity[i].calls / tot_calls)%10));
print_time_short(&trash, " ", tmp_activity[i].lat_time, "");
print_time_short(&trash, " ", tmp_activity[i].lat_time / tmp_activity[i].calls, "\n");
}
if (ci_putchk(si_ic(si), &trash) == -1) {
/* failed, try again */
si_rx_room_blk(si);
return 0;
}
return 1;
}
/* config keyword parsers */
static struct cfg_kw_list cfg_kws = {ILH, {
#ifdef USE_MEMORY_PROFILING
{ CFG_GLOBAL, "profiling.memory", cfg_parse_prof_memory },
#endif
{ CFG_GLOBAL, "profiling.tasks", cfg_parse_prof_tasks },
{ 0, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{ { "set", "profiling", NULL }, "set profiling <what> {auto|on|off} : enable/disable resource profiling (tasks,memory)", cli_parse_set_profiling, NULL },
{ { "show", "profiling", NULL }, "show profiling [<what>|<#lines>|byaddr]*: show profiling state (all,status,tasks,memory)", cli_parse_show_profiling, cli_io_handler_show_profiling, NULL },
{ { "show", "tasks", NULL }, "show tasks : show running tasks", NULL, cli_io_handler_show_tasks, NULL },
{{},}
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);