| /* |
| * include/haproxy/atomic.h |
| * Macros and inline functions for thread-safe atomic operations. |
| * |
| * Copyright (C) 2017 Christopher Faulet - cfaulet@haproxy.com |
| * Copyright (C) 2020 Willy Tarreau - w@1wt.eu |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation, version 2.1 |
| * exclusively. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| #ifndef _HAPROXY_ATOMIC_H |
| #define _HAPROXY_ATOMIC_H |
| |
| #include <string.h> |
| |
| /* A few notes for the macros and functions here: |
| * - this file is painful to edit, most operations exist in 3 variants, |
| * no-thread, threads with gcc<4.7, threads with gcc>=4.7. Be careful when |
| * modifying it not to break any of them. |
| * |
| * - macros named HA_ATOMIC_* are or use in the general case, they contain the |
| * required memory barriers to guarantee sequential consistency |
| * |
| * - macros named _HA_ATOMIC_* are the same but without the memory barriers, |
| * so they may only be used if followed by other HA_ATOMIC_* or within a |
| * sequence of _HA_ATOMIC_* terminated by a store barrier, or when there is |
| * no data dependency (e.g. updating a counter). Not all of them are |
| * implemented, in which case fallbacks to the safe ones are provided. In |
| * case of doubt, don't use them and use the generic ones instead. |
| * |
| * - the __ha_atomic_* barriers are for use around _HA_ATOMIC_* operations. |
| * Some architectures make them useless and they will automatically be |
| * dropped in such a case. Don't use them outside of this use case. |
| * |
| * - in general, the more underscores you find in front of a function or macro |
| * name, the riskier it is to use. Barriers are among them because validating |
| * their usage is not trivial at all and it's often safer to fall back to |
| * more generic behaviors. |
| * |
| * There is also a compiler barrier (__ha_compiler_barrier) which is eliminated |
| * when threads are disabled. We currently don't have a permanent compiler |
| * barrier to prevent the compiler from reordering signal-sensitive code for |
| * example. |
| */ |
| |
| |
| #ifndef USE_THREAD |
| |
| /* Threads are DISABLED, atomic ops are also not used. Note that these MUST |
| * NOT be used for inter-process synchronization nor signal-safe variable |
| * manipulations which might occur without threads, as they are not atomic. |
| */ |
| |
| #define HA_ATOMIC_LOAD(val) *(val) |
| #define HA_ATOMIC_STORE(val, new) ({*(val) = new;}) |
| |
| #define HA_ATOMIC_XCHG(val, new) \ |
| ({ \ |
| typeof(*(val)) __old_xchg = *(val); \ |
| *(val) = new; \ |
| __old_xchg; \ |
| }) |
| |
| #define HA_ATOMIC_AND(val, flags) do { *(val) &= (flags);} while (0) |
| #define HA_ATOMIC_OR(val, flags) do { *(val) |= (flags);} while (0) |
| #define HA_ATOMIC_ADD(val, i) do { *(val) += (i);} while (0) |
| #define HA_ATOMIC_SUB(val, i) do { *(val) -= (i);} while (0) |
| #define HA_ATOMIC_INC(val) do { *(val) += 1;} while (0) |
| #define HA_ATOMIC_DEC(val) do { *(val) -= 1;} while (0) |
| |
| #define HA_ATOMIC_AND_FETCH(val, flags) ({ *(val) &= (flags); }) |
| #define HA_ATOMIC_OR_FETCH(val, flags) ({ *(val) |= (flags); }) |
| #define HA_ATOMIC_ADD_FETCH(val, i) ({ *(val) += (i); }) |
| #define HA_ATOMIC_SUB_FETCH(val, i) ({ *(val) -= (i); }) |
| |
| #define HA_ATOMIC_FETCH_AND(val, i) \ |
| ({ \ |
| typeof((val)) __p_val = (val); \ |
| typeof(*(val)) __old_val = *__p_val; \ |
| *__p_val &= (i); \ |
| __old_val; \ |
| }) |
| |
| #define HA_ATOMIC_FETCH_OR(val, i) \ |
| ({ \ |
| typeof((val)) __p_val = (val); \ |
| typeof(*(val)) __old_val = *__p_val; \ |
| *__p_val |= (i); \ |
| __old_val; \ |
| }) |
| |
| #define HA_ATOMIC_FETCH_ADD(val, i) \ |
| ({ \ |
| typeof((val)) __p_val = (val); \ |
| typeof(*(val)) __old_val = *__p_val; \ |
| *__p_val += (i); \ |
| __old_val; \ |
| }) |
| |
| #define HA_ATOMIC_FETCH_SUB(val, i) \ |
| ({ \ |
| typeof((val)) __p_val = (val); \ |
| typeof(*(val)) __old_val = *__p_val; \ |
| *__p_val -= (i); \ |
| __old_val; \ |
| }) |
| |
| #define HA_ATOMIC_BTS(val, bit) \ |
| ({ \ |
| typeof((val)) __p_bts = (val); \ |
| typeof(*__p_bts) __b_bts = (1UL << (bit)); \ |
| typeof(*__p_bts) __t_bts = *__p_bts & __b_bts; \ |
| if (!__t_bts) \ |
| *__p_bts |= __b_bts; \ |
| __t_bts; \ |
| }) |
| |
| #define HA_ATOMIC_BTR(val, bit) \ |
| ({ \ |
| typeof((val)) __p_btr = (val); \ |
| typeof(*__p_btr) __b_btr = (1UL << (bit)); \ |
| typeof(*__p_btr) __t_btr = *__p_btr & __b_btr; \ |
| if (__t_btr) \ |
| *__p_btr &= ~__b_btr; \ |
| __t_btr; \ |
| }) |
| |
| #define HA_ATOMIC_CAS(val, old, new) \ |
| ({ \ |
| typeof(val) _v = (val); \ |
| typeof(old) _o = (old); \ |
| (*_v == *_o) ? ((*_v = (new)), 1) : ((*_o = *_v), 0); \ |
| }) |
| |
| /* warning, n is a pointer to the double value for dwcas */ |
| #define HA_ATOMIC_DWCAS(val, o, n) \ |
| ({ \ |
| long *_v = (long*)(val); \ |
| long *_o = (long*)(o); \ |
| long *_n = (long*)(n); \ |
| long _v0 = _v[0], _v1 = _v[1]; \ |
| (_v0 == _o[0] && _v1 == _o[1]) ? \ |
| (_v[0] = _n[0], _v[1] = _n[1], 1) : \ |
| (_o[0] = _v0, _o[1] = _v1, 0); \ |
| }) |
| |
| #define HA_ATOMIC_UPDATE_MAX(val, new) \ |
| ({ \ |
| typeof(val) __val = (val); \ |
| typeof(*(val)) __new_max = (new); \ |
| \ |
| if (*__val < __new_max) \ |
| *__val = __new_max; \ |
| *__val; \ |
| }) |
| |
| #define HA_ATOMIC_UPDATE_MIN(val, new) \ |
| ({ \ |
| typeof(val) __val = (val); \ |
| typeof(*(val)) __new_min = (new); \ |
| \ |
| if (*__val > __new_min) \ |
| *__val = __new_min; \ |
| *__val; \ |
| }) |
| |
| /* various barriers */ |
| #define __ha_barrier_atomic_load() do { } while (0) |
| #define __ha_barrier_atomic_store() do { } while (0) |
| #define __ha_barrier_atomic_full() do { } while (0) |
| #define __ha_barrier_load() do { } while (0) |
| #define __ha_barrier_store() do { } while (0) |
| #define __ha_barrier_full() do { } while (0) |
| #define __ha_compiler_barrier() do { } while (0) |
| #define __ha_cpu_relax() ({ 1; }) |
| |
| #else /* !USE_THREAD */ |
| |
| /* Threads are ENABLED, all atomic ops are made thread-safe. By extension they |
| * can also be used for inter-process synchronization but one must verify that |
| * the code still builds with threads disabled. |
| */ |
| |
| #if defined(__GNUC__) && (__GNUC__ < 4 || __GNUC__ == 4 && __GNUC_MINOR__ < 7) && !defined(__clang__) |
| /* gcc < 4.7 */ |
| |
| #define HA_ATOMIC_LOAD(val) \ |
| ({ \ |
| typeof(*(val)) ret; \ |
| __sync_synchronize(); \ |
| ret = *(volatile typeof(val))val; \ |
| __sync_synchronize(); \ |
| ret; \ |
| }) |
| |
| #define HA_ATOMIC_STORE(val, new) \ |
| ({ \ |
| typeof((val)) __val_store = (val); \ |
| typeof(*(val)) __old_store; \ |
| typeof((new)) __new_store = (new); \ |
| do { __old_store = *__val_store; \ |
| } while (!__sync_bool_compare_and_swap(__val_store, __old_store, __new_store)); \ |
| }) |
| |
| #define HA_ATOMIC_XCHG(val, new) \ |
| ({ \ |
| typeof((val)) __val_xchg = (val); \ |
| typeof(*(val)) __old_xchg; \ |
| typeof((new)) __new_xchg = (new); \ |
| do { __old_xchg = *__val_xchg; \ |
| } while (!__sync_bool_compare_and_swap(__val_xchg, __old_xchg, __new_xchg)); \ |
| __old_xchg; \ |
| }) |
| |
| #define HA_ATOMIC_AND(val, flags) do { __sync_and_and_fetch(val, flags); } while (0) |
| #define HA_ATOMIC_OR(val, flags) do { __sync_or_and_fetch(val, flags); } while (0) |
| #define HA_ATOMIC_ADD(val, i) do { __sync_add_and_fetch(val, i); } while (0) |
| #define HA_ATOMIC_SUB(val, i) do { __sync_sub_and_fetch(val, i); } while (0) |
| #define HA_ATOMIC_INC(val) do { __sync_add_and_fetch(val, 1); } while (0) |
| #define HA_ATOMIC_DEC(val) do { __sync_sub_and_fetch(val, 1); } while (0) |
| |
| #define HA_ATOMIC_AND_FETCH(val, flags) __sync_and_and_fetch(val, flags) |
| #define HA_ATOMIC_OR_FETCH(val, flags) __sync_or_and_fetch(val, flags) |
| #define HA_ATOMIC_ADD_FETCH(val, i) __sync_add_and_fetch(val, i) |
| #define HA_ATOMIC_SUB_FETCH(val, i) __sync_sub_and_fetch(val, i) |
| |
| #define HA_ATOMIC_FETCH_AND(val, flags) __sync_fetch_and_and(val, flags) |
| #define HA_ATOMIC_FETCH_OR(val, flags) __sync_fetch_and_or(val, flags) |
| #define HA_ATOMIC_FETCH_ADD(val, i) __sync_fetch_and_add(val, i) |
| #define HA_ATOMIC_FETCH_SUB(val, i) __sync_fetch_and_sub(val, i) |
| |
| #define HA_ATOMIC_BTS(val, bit) \ |
| ({ \ |
| typeof(*(val)) __b_bts = (1UL << (bit)); \ |
| __sync_fetch_and_or((val), __b_bts) & __b_bts; \ |
| }) |
| |
| #define HA_ATOMIC_BTR(val, bit) \ |
| ({ \ |
| typeof(*(val)) __b_btr = (1UL << (bit)); \ |
| __sync_fetch_and_and((val), ~__b_btr) & __b_btr; \ |
| }) |
| |
| /* the CAS is a bit complicated. The older API doesn't support returning the |
| * value and the swap's result at the same time. So here we take what looks |
| * like the safest route, consisting in using the boolean version guaranteeing |
| * that the operation was performed or not, and we snoop a previous value. If |
| * the compare succeeds, we return. If it fails, we return the previous value, |
| * but only if it differs from the expected one. If it's the same it's a race |
| * thus we try again to avoid confusing a possibly sensitive caller. |
| */ |
| #define HA_ATOMIC_CAS(val, old, new) \ |
| ({ \ |
| typeof((val)) __val_cas = (val); \ |
| typeof((old)) __oldp_cas = (old); \ |
| typeof(*(old)) __oldv_cas; \ |
| typeof((new)) __new_cas = (new); \ |
| int __ret_cas; \ |
| do { \ |
| __oldv_cas = *__val_cas; \ |
| __ret_cas = __sync_bool_compare_and_swap(__val_cas, *__oldp_cas, __new_cas); \ |
| } while (!__ret_cas && *__oldp_cas == __oldv_cas); \ |
| if (!__ret_cas) \ |
| *__oldp_cas = __oldv_cas; \ |
| __ret_cas; \ |
| }) |
| |
| /* warning, n is a pointer to the double value for dwcas */ |
| #define HA_ATOMIC_DWCAS(val, o, n) __ha_cas_dw(val, o, n) |
| |
| #define HA_ATOMIC_UPDATE_MAX(val, new) \ |
| ({ \ |
| typeof(val) __val = (val); \ |
| typeof(*(val)) __old_max = *__val; \ |
| typeof(*(val)) __new_max = (new); \ |
| \ |
| while (__old_max < __new_max && \ |
| !HA_ATOMIC_CAS(__val, &__old_max, __new_max)); \ |
| *__val; \ |
| }) |
| |
| #define HA_ATOMIC_UPDATE_MIN(val, new) \ |
| ({ \ |
| typeof(val) __val = (val); \ |
| typeof(*(val)) __old_min = *__val; \ |
| typeof(*(val)) __new_min = (new); \ |
| \ |
| while (__old_min > __new_min && \ |
| !HA_ATOMIC_CAS(__val, &__old_min, __new_min)); \ |
| *__val; \ |
| }) |
| |
| #else /* gcc */ |
| |
| /* gcc >= 4.7 or clang */ |
| |
| #define HA_ATOMIC_STORE(val, new) __atomic_store_n(val, new, __ATOMIC_SEQ_CST) |
| #define HA_ATOMIC_LOAD(val) __atomic_load_n(val, __ATOMIC_SEQ_CST) |
| #define HA_ATOMIC_XCHG(val, new) __atomic_exchange_n(val, new, __ATOMIC_SEQ_CST) |
| |
| #define HA_ATOMIC_AND(val, flags) do { __atomic_and_fetch(val, flags, __ATOMIC_SEQ_CST); } while (0) |
| #define HA_ATOMIC_OR(val, flags) do { __atomic_or_fetch(val, flags, __ATOMIC_SEQ_CST); } while (0) |
| #define HA_ATOMIC_ADD(val, i) do { __atomic_add_fetch(val, i, __ATOMIC_SEQ_CST); } while (0) |
| #define HA_ATOMIC_SUB(val, i) do { __atomic_sub_fetch(val, i, __ATOMIC_SEQ_CST); } while (0) |
| #define HA_ATOMIC_INC(val) do { __atomic_add_fetch(val, 1, __ATOMIC_SEQ_CST); } while (0) |
| #define HA_ATOMIC_DEC(val) do { __atomic_sub_fetch(val, 1, __ATOMIC_SEQ_CST); } while (0) |
| |
| #define HA_ATOMIC_AND_FETCH(val, flags) __atomic_and_fetch(val, flags, __ATOMIC_SEQ_CST) |
| #define HA_ATOMIC_OR_FETCH(val, flags) __atomic_or_fetch(val, flags, __ATOMIC_SEQ_CST) |
| #define HA_ATOMIC_ADD_FETCH(val, i) __atomic_add_fetch(val, i, __ATOMIC_SEQ_CST) |
| #define HA_ATOMIC_SUB_FETCH(val, i) __atomic_sub_fetch(val, i, __ATOMIC_SEQ_CST) |
| |
| #define HA_ATOMIC_FETCH_AND(val, flags) __atomic_fetch_and(val, flags, __ATOMIC_SEQ_CST) |
| #define HA_ATOMIC_FETCH_OR(val, flags) __atomic_fetch_or(val, flags, __ATOMIC_SEQ_CST) |
| #define HA_ATOMIC_FETCH_ADD(val, i) __atomic_fetch_add(val, i, __ATOMIC_SEQ_CST) |
| #define HA_ATOMIC_FETCH_SUB(val, i) __atomic_fetch_sub(val, i, __ATOMIC_SEQ_CST) |
| |
| #if defined(__GCC_ASM_FLAG_OUTPUTS__) && (defined(__i386__) || defined (__x86_64__)) |
| #define HA_ATOMIC_BTS(val, bit) \ |
| ({ \ |
| unsigned char __ret; \ |
| if (sizeof(long) == 8 && sizeof(*(val)) == 8) { \ |
| asm volatile("lock btsq %2, %0\n" \ |
| : "+m" (*(val)), "=@ccc"(__ret) \ |
| : "Ir" ((unsigned long)(bit)) \ |
| : "cc"); \ |
| } else if (sizeof(*(val)) == 4) { \ |
| asm volatile("lock btsl %2, %0\n" \ |
| : "+m" (*(val)), "=@ccc"(__ret) \ |
| : "Ir" ((unsigned int)(bit)) \ |
| : "cc"); \ |
| } else if (sizeof(*(val)) == 2) { \ |
| asm volatile("lock btsw %2, %0\n" \ |
| : "+m" (*(val)), "=@ccc"(__ret) \ |
| : "Ir" ((unsigned short)(bit)) \ |
| : "cc"); \ |
| } else { \ |
| typeof(*(val)) __b_bts = (1UL << (bit)); \ |
| __ret = !!(__atomic_fetch_or((val), __b_bts, __ATOMIC_SEQ_CST) & __b_bts); \ |
| } \ |
| __ret; \ |
| }) |
| |
| #define HA_ATOMIC_BTR(val, bit) \ |
| ({ \ |
| unsigned char __ret; \ |
| if (sizeof(long) == 8 && sizeof(*(val)) == 8) { \ |
| asm volatile("lock btrq %2, %0\n" \ |
| : "+m" (*(val)), "=@ccc"(__ret) \ |
| : "Ir" ((unsigned long)(bit)) \ |
| : "cc"); \ |
| } else if (sizeof(*(val)) == 4) { \ |
| asm volatile("lock btrl %2, %0\n" \ |
| : "+m" (*(val)), "=@ccc"(__ret) \ |
| : "Ir" ((unsigned int)(bit)) \ |
| : "cc"); \ |
| } else if (sizeof(*(val)) == 2) { \ |
| asm volatile("lock btrw %2, %0\n" \ |
| : "+m" (*(val)), "=@ccc"(__ret) \ |
| : "Ir" ((unsigned short)(bit)) \ |
| : "cc"); \ |
| } else { \ |
| typeof(*(val)) __b_bts = (1UL << (bit)); \ |
| __ret = !!(__atomic_fetch_and((val), ~__b_bts, __ATOMIC_SEQ_CST) & __b_bts); \ |
| } \ |
| __ret; \ |
| }) |
| |
| #else // not x86 or !__GCC_ASM_FLAG_OUTPUTS__ |
| |
| #define HA_ATOMIC_BTS(val, bit) \ |
| ({ \ |
| typeof(*(val)) __b_bts = (1UL << (bit)); \ |
| __atomic_fetch_or((val), __b_bts, __ATOMIC_SEQ_CST) & __b_bts; \ |
| }) |
| |
| #define HA_ATOMIC_BTR(val, bit) \ |
| ({ \ |
| typeof(*(val)) __b_btr = (1UL << (bit)); \ |
| __atomic_fetch_and((val), ~__b_btr, __ATOMIC_SEQ_CST) & __b_btr; \ |
| }) |
| |
| #endif // x86 || __GCC_ASM_FLAG_OUTPUTS__ |
| |
| #define HA_ATOMIC_CAS(val, old, new) __atomic_compare_exchange_n(val, old, new, 0, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST) |
| |
| /* warning, n is a pointer to the double value for dwcas */ |
| #define HA_ATOMIC_DWCAS(val, o, n) __ha_cas_dw(val, o, n) |
| |
| #define HA_ATOMIC_UPDATE_MAX(val, new) \ |
| ({ \ |
| typeof(val) __val = (val); \ |
| typeof(*(val)) __old_max = *__val; \ |
| typeof(*(val)) __new_max = (new); \ |
| \ |
| while (__old_max < __new_max && \ |
| !HA_ATOMIC_CAS(__val, &__old_max, __new_max)); \ |
| *__val; \ |
| }) |
| |
| #define HA_ATOMIC_UPDATE_MIN(val, new) \ |
| ({ \ |
| typeof(val) __val = (val); \ |
| typeof(*(val)) __old_min = *__val; \ |
| typeof(*(val)) __new_min = (new); \ |
| \ |
| while (__old_min > __new_min && \ |
| !HA_ATOMIC_CAS(__val, &__old_min, __new_min)); \ |
| *__val; \ |
| }) |
| |
| /* Modern compilers provide variants that don't generate any memory barrier. |
| * If you're unsure how to deal with barriers, just use the HA_ATOMIC_* version, |
| * that will always generate correct code. |
| * Usually it's fine to use those when updating data that have no dependency, |
| * ie updating a counter. Otherwise a barrier is required. |
| */ |
| |
| #define _HA_ATOMIC_LOAD(val) __atomic_load_n(val, __ATOMIC_RELAXED) |
| #define _HA_ATOMIC_STORE(val, new) __atomic_store_n(val, new, __ATOMIC_RELAXED) |
| #define _HA_ATOMIC_XCHG(val, new) __atomic_exchange_n(val, new, __ATOMIC_RELAXED) |
| |
| #define _HA_ATOMIC_AND(val, flags) do { __atomic_and_fetch(val, flags, __ATOMIC_RELAXED); } while (0) |
| #define _HA_ATOMIC_OR(val, flags) do { __atomic_or_fetch(val, flags, __ATOMIC_RELAXED); } while (0) |
| #define _HA_ATOMIC_ADD(val, i) do { __atomic_add_fetch(val, i, __ATOMIC_RELAXED); } while (0) |
| #define _HA_ATOMIC_SUB(val, i) do { __atomic_sub_fetch(val, i, __ATOMIC_RELAXED); } while (0) |
| #define _HA_ATOMIC_INC(val) do { __atomic_add_fetch(val, 1, __ATOMIC_RELAXED); } while (0) |
| #define _HA_ATOMIC_DEC(val) do { __atomic_sub_fetch(val, 1, __ATOMIC_RELAXED); } while (0) |
| |
| #define _HA_ATOMIC_AND_FETCH(val, flags) __atomic_and_fetch(val, flags, __ATOMIC_RELAXED) |
| #define _HA_ATOMIC_OR_FETCH(val, flags) __atomic_or_fetch(val, flags, __ATOMIC_RELAXED) |
| #define _HA_ATOMIC_ADD_FETCH(val, i) __atomic_add_fetch(val, i, __ATOMIC_RELAXED) |
| #define _HA_ATOMIC_SUB_FETCH(val, i) __atomic_sub_fetch(val, i, __ATOMIC_RELAXED) |
| |
| #define _HA_ATOMIC_FETCH_AND(val, flags) __atomic_fetch_and(val, flags, __ATOMIC_RELAXED) |
| #define _HA_ATOMIC_FETCH_OR(val, flags) __atomic_fetch_or(val, flags, __ATOMIC_RELAXED) |
| #define _HA_ATOMIC_FETCH_ADD(val, i) __atomic_fetch_add(val, i, __ATOMIC_RELAXED) |
| #define _HA_ATOMIC_FETCH_SUB(val, i) __atomic_fetch_sub(val, i, __ATOMIC_RELAXED) |
| |
| #if defined(__GCC_ASM_FLAG_OUTPUTS__) && (defined(__i386__) || defined (__x86_64__)) |
| #define _HA_ATOMIC_BTS(val, bit) \ |
| ({ \ |
| unsigned char __ret; \ |
| if (sizeof(long) == 8 && sizeof(*(val)) == 8) { \ |
| asm volatile("lock btsq %2, %0\n" \ |
| : "+m" (*(val)), "=@ccc"(__ret) \ |
| : "Ir" ((unsigned long)(bit)) \ |
| : "cc"); \ |
| } else if (sizeof(*(val)) == 4) { \ |
| asm volatile("lock btsl %2, %0\n" \ |
| : "+m" (*(val)), "=@ccc"(__ret) \ |
| : "Ir" ((unsigned int)(bit)) \ |
| : "cc"); \ |
| } else if (sizeof(*(val)) == 2) { \ |
| asm volatile("lock btsw %2, %0\n" \ |
| : "+m" (*(val)), "=@ccc"(__ret) \ |
| : "Ir" ((unsigned short)(bit)) \ |
| : "cc"); \ |
| } else { \ |
| typeof(*(val)) __b_bts = (1UL << (bit)); \ |
| __ret = !!(__atomic_fetch_or((val), __b_bts, __ATOMIC_RELAXED) & __b_bts); \ |
| } \ |
| __ret; \ |
| }) |
| |
| #define _HA_ATOMIC_BTR(val, bit) \ |
| ({ \ |
| unsigned char __ret; \ |
| if (sizeof(long) == 8 && sizeof(*(val)) == 8) { \ |
| asm volatile("lock btrq %2, %0\n" \ |
| : "+m" (*(val)), "=@ccc"(__ret) \ |
| : "Ir" ((unsigned long)(bit)) \ |
| : "cc"); \ |
| } else if (sizeof(*(val)) == 4) { \ |
| asm volatile("lock btrl %2, %0\n" \ |
| : "+m" (*(val)), "=@ccc"(__ret) \ |
| : "Ir" ((unsigned int)(bit)) \ |
| : "cc"); \ |
| } else if (sizeof(*(val)) == 2) { \ |
| asm volatile("lock btrw %2, %0\n" \ |
| : "+m" (*(val)), "=@ccc"(__ret) \ |
| : "Ir" ((unsigned short)(bit)) \ |
| : "cc"); \ |
| } else { \ |
| typeof(*(val)) __b_bts = (1UL << (bit)); \ |
| __ret = !!(__atomic_fetch_and((val), ~__b_bts, __ATOMIC_RELAXED) & __b_bts); \ |
| } \ |
| __ret; \ |
| }) |
| |
| #else // not x86 or !__GCC_ASM_FLAG_OUTPUTS__ |
| |
| #define _HA_ATOMIC_BTS(val, bit) \ |
| ({ \ |
| typeof(*(val)) __b_bts = (1UL << (bit)); \ |
| __atomic_fetch_or((val), __b_bts, __ATOMIC_RELAXED) & __b_bts; \ |
| }) |
| |
| #define _HA_ATOMIC_BTR(val, bit) \ |
| ({ \ |
| typeof(*(val)) __b_btr = (1UL << (bit)); \ |
| __atomic_fetch_and((val), ~__b_btr, __ATOMIC_RELAXED) & __b_btr; \ |
| }) |
| #endif |
| |
| #define _HA_ATOMIC_CAS(val, old, new) __atomic_compare_exchange_n(val, old, new, 0, __ATOMIC_RELAXED, __ATOMIC_RELAXED) |
| /* warning, n is a pointer to the double value for dwcas */ |
| #define _HA_ATOMIC_DWCAS(val, o, n) __ha_cas_dw(val, o, n) |
| |
| #endif /* gcc >= 4.7 */ |
| |
| /* Here come a few architecture-specific double-word CAS and barrier |
| * implementations. |
| */ |
| |
| #ifdef __x86_64__ |
| |
| static __inline void |
| __ha_barrier_load(void) |
| { |
| __asm __volatile("lfence" ::: "memory"); |
| } |
| |
| static __inline void |
| __ha_barrier_store(void) |
| { |
| __asm __volatile("sfence" ::: "memory"); |
| } |
| |
| static __inline void |
| __ha_barrier_full(void) |
| { |
| __asm __volatile("mfence" ::: "memory"); |
| } |
| |
| /* Use __ha_barrier_atomic* when you're trying to protect data that are |
| * are modified using _HA_ATOMIC* |
| */ |
| static __inline void |
| __ha_barrier_atomic_load(void) |
| { |
| __asm __volatile("" ::: "memory"); |
| } |
| |
| static __inline void |
| __ha_barrier_atomic_store(void) |
| { |
| __asm __volatile("" ::: "memory"); |
| } |
| |
| static __inline void |
| __ha_barrier_atomic_full(void) |
| { |
| __asm __volatile("" ::: "memory"); |
| } |
| |
| static __inline int |
| __ha_cas_dw(void *target, void *compare, const void *set) |
| { |
| char ret; |
| |
| __asm __volatile("lock cmpxchg16b %0; setz %3" |
| : "+m" (*(void **)target), |
| "=a" (((void **)compare)[0]), |
| "=d" (((void **)compare)[1]), |
| "=q" (ret) |
| : "a" (((void **)compare)[0]), |
| "d" (((void **)compare)[1]), |
| "b" (((const void **)set)[0]), |
| "c" (((const void **)set)[1]) |
| : "memory", "cc"); |
| return (ret); |
| } |
| |
| /* short-lived CPU relaxation */ |
| #define __ha_cpu_relax() ({ asm volatile("rep;nop\n"); 1; }) |
| |
| #elif defined(__arm__) && (defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__)) |
| |
| static __inline void |
| __ha_barrier_load(void) |
| { |
| __asm __volatile("dmb" ::: "memory"); |
| } |
| |
| static __inline void |
| __ha_barrier_store(void) |
| { |
| __asm __volatile("dsb" ::: "memory"); |
| } |
| |
| static __inline void |
| __ha_barrier_full(void) |
| { |
| __asm __volatile("dmb" ::: "memory"); |
| } |
| |
| /* Use __ha_barrier_atomic* when you're trying to protect data that are |
| * are modified using _HA_ATOMIC* |
| */ |
| static __inline void |
| __ha_barrier_atomic_load(void) |
| { |
| __asm __volatile("dmb" ::: "memory"); |
| } |
| |
| static __inline void |
| __ha_barrier_atomic_store(void) |
| { |
| __asm __volatile("dsb" ::: "memory"); |
| } |
| |
| static __inline void |
| __ha_barrier_atomic_full(void) |
| { |
| __asm __volatile("dmb" ::: "memory"); |
| } |
| |
| static __inline int __ha_cas_dw(void *target, void *compare, const void *set) |
| { |
| uint64_t previous; |
| int tmp; |
| |
| __asm __volatile("1:" |
| "ldrexd %0, [%4];" |
| "cmp %Q0, %Q2;" |
| "ittt eq;" |
| "cmpeq %R0, %R2;" |
| "strexdeq %1, %3, [%4];" |
| "cmpeq %1, #1;" |
| "beq 1b;" |
| : "=&r" (previous), "=&r" (tmp) |
| : "r" (*(uint64_t *)compare), "r" (*(uint64_t *)set), "r" (target) |
| : "memory", "cc"); |
| tmp = (previous == *(uint64_t *)compare); |
| *(uint64_t *)compare = previous; |
| return (tmp); |
| } |
| |
| /* short-lived CPU relaxation */ |
| #define __ha_cpu_relax() ({ asm volatile(""); 1; }) |
| |
| #elif defined (__aarch64__) |
| |
| static __inline void |
| __ha_barrier_load(void) |
| { |
| __asm __volatile("dmb ishld" ::: "memory"); |
| } |
| |
| static __inline void |
| __ha_barrier_store(void) |
| { |
| __asm __volatile("dmb ishst" ::: "memory"); |
| } |
| |
| static __inline void |
| __ha_barrier_full(void) |
| { |
| __asm __volatile("dmb ish" ::: "memory"); |
| } |
| |
| /* Use __ha_barrier_atomic* when you're trying to protect data that are |
| * are modified using _HA_ATOMIC* |
| */ |
| static __inline void |
| __ha_barrier_atomic_load(void) |
| { |
| __asm __volatile("dmb ishld" ::: "memory"); |
| } |
| |
| static __inline void |
| __ha_barrier_atomic_store(void) |
| { |
| __asm __volatile("dmb ishst" ::: "memory"); |
| } |
| |
| static __inline void |
| __ha_barrier_atomic_full(void) |
| { |
| __asm __volatile("dmb ish" ::: "memory"); |
| } |
| |
| /* short-lived CPU relaxation; this was shown to improve fairness on |
| * modern ARMv8 cores such as Neoverse N1. |
| */ |
| #define __ha_cpu_relax() ({ asm volatile("isb" ::: "memory"); 1; }) |
| |
| #if defined(__ARM_FEATURE_ATOMICS) && !defined(__clang__) // ARMv8.1-A atomics |
| |
| /* returns 0 on failure, non-zero on success */ |
| static forceinline int __ha_cas_dw(void *target, void *compare, const void *set) |
| { |
| /* There's no status set by the CASP instruction so we need to keep a |
| * copy of the original registers and compare them afterwards to detect |
| * if we could apply the change. In order to pass a pair, we simply map |
| * a register pair on a struct so that the compiler can emit register |
| * pairs that we can use thanks to the undocumented "%H" modifier |
| * mentioned on the link below: |
| * https://patchwork.ozlabs.org/project/gcc/patch/59368A74.2060908@foss.arm.com/ |
| */ |
| struct pair { uint64_t r[2]; }; |
| register struct pair bck = *(struct pair *)compare; |
| register struct pair cmp asm("x0") = bck; |
| register struct pair new asm("x2") = *(const struct pair*)set; |
| int ret; |
| |
| __asm__ __volatile__("casp %0, %H0, %2, %H2, [%1]\n" |
| : "+r" (cmp) // %0 |
| : "r" (target), // %1 |
| "r" (new) // %2 |
| : "memory"); |
| |
| /* if the old value is still the same unchanged, we won, otherwise we |
| * store the refreshed old value. |
| */ |
| ret = cmp.r[0] == bck.r[0] && cmp.r[1] == bck.r[1]; |
| if (unlikely(!ret)) { |
| /* update the old value on failure. Note that in this case the |
| * caller will likely relax and jump backwards so we don't care |
| * about this cost provided that it doesn't enlarge the fast |
| * code path. |
| */ |
| *(struct pair *)compare = cmp; |
| } |
| return ret; |
| } |
| |
| #elif defined(__SIZEOF_INT128__) && defined(_ARM_FEATURE_ATOMICS) // 128-bit and ARMv8.1-A will work |
| |
| /* According to https://gcc.gnu.org/onlinedocs/gcc/_005f_005fatomic-Builtins.html |
| * we can use atomics on __int128. The availability of CAS is defined there: |
| * https://gcc.gnu.org/onlinedocs/cpp/Common-Predefined-Macros.html |
| * However these usually involve a function call which can be expensive for some |
| * cases, but gcc 10.2 and above can reroute the function call to either LL/SC for |
| * v8.0 or LSE for v8.1+, which allows to use a more scalable version on v8.1+ at |
| * the extra cost of a function call. |
| */ |
| |
| /* returns 0 on failure, non-zero on success */ |
| static __inline int __ha_cas_dw(void *target, void *compare, const void *set) |
| { |
| return __atomic_compare_exchange((__int128*)target, (__int128*)compare, (const __int128*)set, |
| 0, __ATOMIC_RELAXED, __ATOMIC_RELAXED); |
| } |
| |
| #else // neither ARMv8.1-A atomics nor 128-bit atomics |
| |
| /* returns 0 on failure, non-zero on success */ |
| static __inline int __ha_cas_dw(void *target, void *compare, void *set) |
| { |
| void *value[2]; |
| uint64_t tmp1, tmp2; |
| |
| __asm__ __volatile__("1:" |
| "ldxp %0, %1, [%4]\n" |
| "mov %2, %0\n" |
| "mov %3, %1\n" |
| "eor %0, %0, %5\n" |
| "eor %1, %1, %6\n" |
| "orr %1, %0, %1\n" |
| "mov %w0, #0\n" |
| "cbnz %1, 2f\n" |
| "stxp %w0, %7, %8, [%4]\n" |
| "cbnz %w0, 1b\n" |
| "mov %w0, #1\n" |
| "2:" |
| : "=&r" (tmp1), "=&r" (tmp2), "=&r" (value[0]), "=&r" (value[1]) |
| : "r" (target), "r" (((void **)(compare))[0]), "r" (((void **)(compare))[1]), "r" (((void **)(set))[0]), "r" (((void **)(set))[1]) |
| : "cc", "memory"); |
| |
| memcpy(compare, &value, sizeof(value)); |
| return (tmp1); |
| } |
| #endif // ARMv8.1-A atomics |
| |
| #else /* unknown / unhandled architecture, fall back to generic barriers */ |
| |
| #define __ha_barrier_atomic_load __sync_synchronize |
| #define __ha_barrier_atomic_store __sync_synchronize |
| #define __ha_barrier_atomic_full __sync_synchronize |
| #define __ha_barrier_load __sync_synchronize |
| #define __ha_barrier_store __sync_synchronize |
| #define __ha_barrier_full __sync_synchronize |
| /* Note: there is no generic DWCAS */ |
| |
| /* short-lived CPU relaxation */ |
| #define __ha_cpu_relax() ({ asm volatile(""); 1; }) |
| |
| #endif /* end of arch-specific barrier/dwcas */ |
| |
| static inline void __ha_compiler_barrier(void) |
| { |
| __asm __volatile("" ::: "memory"); |
| } |
| |
| #endif /* USE_THREAD */ |
| |
| |
| /* fallbacks to remap all undefined _HA_ATOMIC_* on to their safe equivalent */ |
| #ifndef _HA_ATOMIC_BTR |
| #define _HA_ATOMIC_BTR HA_ATOMIC_BTR |
| #endif /* !_HA_ATOMIC_BTR */ |
| |
| #ifndef _HA_ATOMIC_BTS |
| #define _HA_ATOMIC_BTS HA_ATOMIC_BTS |
| #endif /* !_HA_ATOMIC_BTS */ |
| |
| #ifndef _HA_ATOMIC_CAS |
| #define _HA_ATOMIC_CAS HA_ATOMIC_CAS |
| #endif /* !_HA_ATOMIC_CAS */ |
| |
| #ifndef _HA_ATOMIC_DWCAS |
| #define _HA_ATOMIC_DWCAS HA_ATOMIC_DWCAS |
| #endif /* !_HA_ATOMIC_CAS */ |
| |
| #ifndef _HA_ATOMIC_ADD |
| #define _HA_ATOMIC_ADD HA_ATOMIC_ADD |
| #endif /* !_HA_ATOMIC_ADD */ |
| |
| #ifndef _HA_ATOMIC_ADD_FETCH |
| #define _HA_ATOMIC_ADD_FETCH HA_ATOMIC_ADD_FETCH |
| #endif /* !_HA_ATOMIC_ADD_FETCH */ |
| |
| #ifndef _HA_ATOMIC_FETCH_ADD |
| #define _HA_ATOMIC_FETCH_ADD HA_ATOMIC_FETCH_ADD |
| #endif /* !_HA_ATOMIC_FETCH_ADD */ |
| |
| #ifndef _HA_ATOMIC_SUB |
| #define _HA_ATOMIC_SUB HA_ATOMIC_SUB |
| #endif /* !_HA_ATOMIC_SUB */ |
| |
| #ifndef _HA_ATOMIC_SUB_FETCH |
| #define _HA_ATOMIC_SUB_FETCH HA_ATOMIC_SUB_FETCH |
| #endif /* !_HA_ATOMIC_SUB_FETCH */ |
| |
| #ifndef _HA_ATOMIC_FETCH_SUB |
| #define _HA_ATOMIC_FETCH_SUB HA_ATOMIC_FETCH_SUB |
| #endif /* !_HA_ATOMIC_FETCH_SUB */ |
| |
| #ifndef _HA_ATOMIC_INC |
| #define _HA_ATOMIC_INC HA_ATOMIC_INC |
| #endif /* !_HA_ATOMIC_INC */ |
| |
| #ifndef _HA_ATOMIC_DEC |
| #define _HA_ATOMIC_DEC HA_ATOMIC_DEC |
| #endif /* !_HA_ATOMIC_DEC */ |
| |
| #ifndef _HA_ATOMIC_AND |
| #define _HA_ATOMIC_AND HA_ATOMIC_AND |
| #endif /* !_HA_ATOMIC_AND */ |
| |
| #ifndef _HA_ATOMIC_AND_FETCH |
| #define _HA_ATOMIC_AND_FETCH HA_ATOMIC_AND_FETCH |
| #endif /* !_HA_ATOMIC_AND_FETCH */ |
| |
| #ifndef _HA_ATOMIC_FETCH_AND |
| #define _HA_ATOMIC_FETCH_AND HA_ATOMIC_FETCH_AND |
| #endif /* !_HA_ATOMIC_FETCH_AND */ |
| |
| #ifndef _HA_ATOMIC_OR |
| #define _HA_ATOMIC_OR HA_ATOMIC_OR |
| #endif /* !_HA_ATOMIC_OR */ |
| |
| #ifndef _HA_ATOMIC_OR_FETCH |
| #define _HA_ATOMIC_OR_FETCH HA_ATOMIC_OR_FETCH |
| #endif /* !_HA_ATOMIC_OR_FETCH */ |
| |
| #ifndef _HA_ATOMIC_FETCH_OR |
| #define _HA_ATOMIC_FETCH_OR HA_ATOMIC_FETCH_OR |
| #endif /* !_HA_ATOMIC_FETCH_OR */ |
| |
| #ifndef _HA_ATOMIC_XCHG |
| #define _HA_ATOMIC_XCHG HA_ATOMIC_XCHG |
| #endif /* !_HA_ATOMIC_XCHG */ |
| |
| #ifndef _HA_ATOMIC_STORE |
| #define _HA_ATOMIC_STORE HA_ATOMIC_STORE |
| #endif /* !_HA_ATOMIC_STORE */ |
| |
| #ifndef _HA_ATOMIC_LOAD |
| #define _HA_ATOMIC_LOAD HA_ATOMIC_LOAD |
| #endif /* !_HA_ATOMIC_LOAD */ |
| |
| #endif /* _HAPROXY_ATOMIC_H */ |