| /* |
| * Peer synchro management. |
| * |
| * Copyright 2010 EXCELIANCE, Emeric Brun <ebrun@exceliance.fr> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <sys/socket.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| |
| #include <import/eb32tree.h> |
| #include <import/ebmbtree.h> |
| #include <import/ebpttree.h> |
| |
| #include <haproxy/api.h> |
| #include <haproxy/applet.h> |
| #include <haproxy/channel.h> |
| #include <haproxy/cli.h> |
| #include <haproxy/dict.h> |
| #include <haproxy/errors.h> |
| #include <haproxy/fd.h> |
| #include <haproxy/frontend.h> |
| #include <haproxy/net_helper.h> |
| #include <haproxy/obj_type-t.h> |
| #include <haproxy/peers.h> |
| #include <haproxy/proxy.h> |
| #include <haproxy/session-t.h> |
| #include <haproxy/signal.h> |
| #include <haproxy/stats-t.h> |
| #include <haproxy/stick_table.h> |
| #include <haproxy/stream.h> |
| #include <haproxy/stream_interface.h> |
| #include <haproxy/task.h> |
| #include <haproxy/thread.h> |
| #include <haproxy/time.h> |
| #include <haproxy/tools.h> |
| #include <haproxy/trace.h> |
| |
| |
| /*******************************/ |
| /* Current peer learning state */ |
| /*******************************/ |
| |
| /******************************/ |
| /* Current peers section resync state */ |
| /******************************/ |
| #define PEERS_F_RESYNC_LOCAL 0x00000001 /* Learn from local finished or no more needed */ |
| #define PEERS_F_RESYNC_REMOTE 0x00000002 /* Learn from remote finished or no more needed */ |
| #define PEERS_F_RESYNC_ASSIGN 0x00000004 /* A peer was assigned to learn our lesson */ |
| #define PEERS_F_RESYNC_PROCESS 0x00000008 /* The assigned peer was requested for resync */ |
| #define PEERS_F_RESYNC_LOCALTIMEOUT 0x00000010 /* Timeout waiting for a full resync from a local node */ |
| #define PEERS_F_RESYNC_REMOTETIMEOUT 0x00000020 /* Timeout waiting for a full resync from a remote node */ |
| #define PEERS_F_RESYNC_LOCALABORT 0x00000040 /* Session aborted learning from a local node */ |
| #define PEERS_F_RESYNC_REMOTEABORT 0x00000080 /* Session aborted learning from a remote node */ |
| #define PEERS_F_RESYNC_LOCALFINISHED 0x00000100 /* A local node teach us and was fully up to date */ |
| #define PEERS_F_RESYNC_REMOTEFINISHED 0x00000200 /* A remote node teach us and was fully up to date */ |
| #define PEERS_F_RESYNC_LOCALPARTIAL 0x00000400 /* A local node teach us but was partially up to date */ |
| #define PEERS_F_RESYNC_REMOTEPARTIAL 0x00000800 /* A remote node teach us but was partially up to date */ |
| #define PEERS_F_RESYNC_LOCALASSIGN 0x00001000 /* A local node was assigned for a full resync */ |
| #define PEERS_F_RESYNC_REMOTEASSIGN 0x00002000 /* A remote node was assigned for a full resync */ |
| #define PEERS_F_RESYNC_REQUESTED 0x00004000 /* A resync was explicitly requested */ |
| #define PEERS_F_DONOTSTOP 0x00010000 /* Main table sync task block process during soft stop |
| to push data to new process */ |
| |
| #define PEERS_RESYNC_STATEMASK (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE) |
| #define PEERS_RESYNC_FROMLOCAL 0x00000000 |
| #define PEERS_RESYNC_FROMREMOTE PEERS_F_RESYNC_LOCAL |
| #define PEERS_RESYNC_FINISHED (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE) |
| |
| /***********************************/ |
| /* Current shared table sync state */ |
| /***********************************/ |
| #define SHTABLE_F_TEACH_STAGE1 0x00000001 /* Teach state 1 complete */ |
| #define SHTABLE_F_TEACH_STAGE2 0x00000002 /* Teach state 2 complete */ |
| |
| /******************************/ |
| /* Remote peer teaching state */ |
| /******************************/ |
| #define PEER_F_TEACH_PROCESS 0x00000001 /* Teach a lesson to current peer */ |
| #define PEER_F_TEACH_FINISHED 0x00000008 /* Teach conclude, (wait for confirm) */ |
| #define PEER_F_TEACH_COMPLETE 0x00000010 /* All that we know already taught to current peer, used only for a local peer */ |
| #define PEER_F_LEARN_ASSIGN 0x00000100 /* Current peer was assigned for a lesson */ |
| #define PEER_F_LEARN_NOTUP2DATE 0x00000200 /* Learn from peer finished but peer is not up to date */ |
| #define PEER_F_ALIVE 0x20000000 /* Used to flag a peer a alive. */ |
| #define PEER_F_HEARTBEAT 0x40000000 /* Heartbeat message to send. */ |
| #define PEER_F_DWNGRD 0x80000000 /* When this flag is enabled, we must downgrade the supported version announced during peer sessions. */ |
| |
| #define PEER_TEACH_RESET ~(PEER_F_TEACH_PROCESS|PEER_F_TEACH_FINISHED) /* PEER_F_TEACH_COMPLETE should never be reset */ |
| #define PEER_LEARN_RESET ~(PEER_F_LEARN_ASSIGN|PEER_F_LEARN_NOTUP2DATE) |
| |
| #define PEER_RESYNC_TIMEOUT 5000 /* 5 seconds */ |
| #define PEER_RECONNECT_TIMEOUT 5000 /* 5 seconds */ |
| #define PEER_HEARTBEAT_TIMEOUT 3000 /* 3 seconds */ |
| |
| /* flags for "show peers" */ |
| #define PEERS_SHOW_F_DICT 0x00000001 /* also show the contents of the dictionary */ |
| |
| /*****************************/ |
| /* Sync message class */ |
| /*****************************/ |
| enum { |
| PEER_MSG_CLASS_CONTROL = 0, |
| PEER_MSG_CLASS_ERROR, |
| PEER_MSG_CLASS_STICKTABLE = 10, |
| PEER_MSG_CLASS_RESERVED = 255, |
| }; |
| |
| /*****************************/ |
| /* control message types */ |
| /*****************************/ |
| enum { |
| PEER_MSG_CTRL_RESYNCREQ = 0, |
| PEER_MSG_CTRL_RESYNCFINISHED, |
| PEER_MSG_CTRL_RESYNCPARTIAL, |
| PEER_MSG_CTRL_RESYNCCONFIRM, |
| PEER_MSG_CTRL_HEARTBEAT, |
| }; |
| |
| /*****************************/ |
| /* error message types */ |
| /*****************************/ |
| enum { |
| PEER_MSG_ERR_PROTOCOL = 0, |
| PEER_MSG_ERR_SIZELIMIT, |
| }; |
| |
| /* network key types; |
| * network types were directly and mistakenly |
| * mapped on sample types, to keep backward |
| * compatiblitiy we keep those values but |
| * we now use a internal/network mapping |
| * to avoid further mistakes adding or |
| * modifying internals types |
| */ |
| enum { |
| PEER_KT_ANY = 0, /* any type */ |
| PEER_KT_RESV1, /* UNUSED */ |
| PEER_KT_SINT, /* signed 64bits integer type */ |
| PEER_KT_RESV3, /* UNUSED */ |
| PEER_KT_IPV4, /* ipv4 type */ |
| PEER_KT_IPV6, /* ipv6 type */ |
| PEER_KT_STR, /* char string type */ |
| PEER_KT_BIN, /* buffer type */ |
| PEER_KT_TYPES /* number of types, must always be last */ |
| }; |
| |
| /* Map used to retrieve network type from internal type |
| * Note: Undeclared mapping maps entry to PEER_KT_ANY == 0 |
| */ |
| static int peer_net_key_type[SMP_TYPES] = { |
| [SMP_T_SINT] = PEER_KT_SINT, |
| [SMP_T_IPV4] = PEER_KT_IPV4, |
| [SMP_T_IPV6] = PEER_KT_IPV6, |
| [SMP_T_STR] = PEER_KT_STR, |
| [SMP_T_BIN] = PEER_KT_BIN, |
| }; |
| |
| /* Map used to retrieve internal type from external type |
| * Note: Undeclared mapping maps entry to SMP_T_ANY == 0 |
| */ |
| static int peer_int_key_type[PEER_KT_TYPES] = { |
| [PEER_KT_SINT] = SMP_T_SINT, |
| [PEER_KT_IPV4] = SMP_T_IPV4, |
| [PEER_KT_IPV6] = SMP_T_IPV6, |
| [PEER_KT_STR] = SMP_T_STR, |
| [PEER_KT_BIN] = SMP_T_BIN, |
| }; |
| |
| /* |
| * Parameters used by functions to build peer protocol messages. */ |
| struct peer_prep_params { |
| struct { |
| struct peer *peer; |
| } hello; |
| struct { |
| unsigned int st1; |
| } error_status; |
| struct { |
| struct stksess *stksess; |
| struct shared_table *shared_table; |
| unsigned int updateid; |
| int use_identifier; |
| int use_timed; |
| struct peer *peer; |
| } updt; |
| struct { |
| struct shared_table *shared_table; |
| } swtch; |
| struct { |
| struct shared_table *shared_table; |
| } ack; |
| struct { |
| unsigned char head[2]; |
| } control; |
| struct { |
| unsigned char head[2]; |
| } error; |
| }; |
| |
| /*******************************/ |
| /* stick table sync mesg types */ |
| /* Note: ids >= 128 contains */ |
| /* id message contains data */ |
| /*******************************/ |
| #define PEER_MSG_STKT_UPDATE 0x80 |
| #define PEER_MSG_STKT_INCUPDATE 0x81 |
| #define PEER_MSG_STKT_DEFINE 0x82 |
| #define PEER_MSG_STKT_SWITCH 0x83 |
| #define PEER_MSG_STKT_ACK 0x84 |
| #define PEER_MSG_STKT_UPDATE_TIMED 0x85 |
| #define PEER_MSG_STKT_INCUPDATE_TIMED 0x86 |
| /* All the stick-table message identifiers abova have the #7 bit set */ |
| #define PEER_MSG_STKT_BIT 7 |
| #define PEER_MSG_STKT_BIT_MASK (1 << PEER_MSG_STKT_BIT) |
| |
| /* The maximum length of an encoded data length. */ |
| #define PEER_MSG_ENC_LENGTH_MAXLEN 5 |
| |
| /* Minimum 64-bits value encoded with 2 bytes */ |
| #define PEER_ENC_2BYTES_MIN 0xf0 /* 0xf0 (or 240) */ |
| /* 3 bytes */ |
| #define PEER_ENC_3BYTES_MIN ((1ULL << 11) | PEER_ENC_2BYTES_MIN) /* 0x8f0 (or 2288) */ |
| /* 4 bytes */ |
| #define PEER_ENC_4BYTES_MIN ((1ULL << 18) | PEER_ENC_3BYTES_MIN) /* 0x408f0 (or 264432) */ |
| /* 5 bytes */ |
| #define PEER_ENC_5BYTES_MIN ((1ULL << 25) | PEER_ENC_4BYTES_MIN) /* 0x20408f0 (or 33818864) */ |
| /* 6 bytes */ |
| #define PEER_ENC_6BYTES_MIN ((1ULL << 32) | PEER_ENC_5BYTES_MIN) /* 0x1020408f0 (or 4328786160) */ |
| /* 7 bytes */ |
| #define PEER_ENC_7BYTES_MIN ((1ULL << 39) | PEER_ENC_6BYTES_MIN) /* 0x81020408f0 (or 554084600048) */ |
| /* 8 bytes */ |
| #define PEER_ENC_8BYTES_MIN ((1ULL << 46) | PEER_ENC_7BYTES_MIN) /* 0x4081020408f0 (or 70922828777712) */ |
| /* 9 bytes */ |
| #define PEER_ENC_9BYTES_MIN ((1ULL << 53) | PEER_ENC_8BYTES_MIN) /* 0x204081020408f0 (or 9078122083518704) */ |
| /* 10 bytes */ |
| #define PEER_ENC_10BYTES_MIN ((1ULL << 60) | PEER_ENC_9BYTES_MIN) /* 0x10204081020408f0 (or 1161999626690365680) */ |
| |
| /* #7 bit used to detect the last byte to be encoded */ |
| #define PEER_ENC_STOP_BIT 7 |
| /* The byte minimum value with #7 bit set */ |
| #define PEER_ENC_STOP_BYTE (1 << PEER_ENC_STOP_BIT) |
| /* The left most number of bits set for PEER_ENC_2BYTES_MIN */ |
| #define PEER_ENC_2BYTES_MIN_BITS 4 |
| |
| #define PEER_MSG_HEADER_LEN 2 |
| |
| #define PEER_STKT_CACHE_MAX_ENTRIES 128 |
| |
| /**********************************/ |
| /* Peer Session IO handler states */ |
| /**********************************/ |
| |
| enum { |
| PEER_SESS_ST_ACCEPT = 0, /* Initial state for session create by an accept, must be zero! */ |
| PEER_SESS_ST_GETVERSION, /* Validate supported protocol version */ |
| PEER_SESS_ST_GETHOST, /* Validate host ID correspond to local host id */ |
| PEER_SESS_ST_GETPEER, /* Validate peer ID correspond to a known remote peer id */ |
| /* after this point, data were possibly exchanged */ |
| PEER_SESS_ST_SENDSUCCESS, /* Send ret code 200 (success) and wait for message */ |
| PEER_SESS_ST_CONNECT, /* Initial state for session create on a connect, push presentation into buffer */ |
| PEER_SESS_ST_GETSTATUS, /* Wait for the welcome message */ |
| PEER_SESS_ST_WAITMSG, /* Wait for data messages */ |
| PEER_SESS_ST_EXIT, /* Exit with status code */ |
| PEER_SESS_ST_ERRPROTO, /* Send error proto message before exit */ |
| PEER_SESS_ST_ERRSIZE, /* Send error size message before exit */ |
| PEER_SESS_ST_END, /* Killed session */ |
| }; |
| |
| /***************************************************/ |
| /* Peer Session status code - part of the protocol */ |
| /***************************************************/ |
| |
| #define PEER_SESS_SC_CONNECTCODE 100 /* connect in progress */ |
| #define PEER_SESS_SC_CONNECTEDCODE 110 /* tcp connect success */ |
| |
| #define PEER_SESS_SC_SUCCESSCODE 200 /* accept or connect successful */ |
| |
| #define PEER_SESS_SC_TRYAGAIN 300 /* try again later */ |
| |
| #define PEER_SESS_SC_ERRPROTO 501 /* error protocol */ |
| #define PEER_SESS_SC_ERRVERSION 502 /* unknown protocol version */ |
| #define PEER_SESS_SC_ERRHOST 503 /* bad host name */ |
| #define PEER_SESS_SC_ERRPEER 504 /* unknown peer */ |
| |
| #define PEER_SESSION_PROTO_NAME "HAProxyS" |
| #define PEER_MAJOR_VER 2 |
| #define PEER_MINOR_VER 1 |
| #define PEER_DWNGRD_MINOR_VER 0 |
| |
| static size_t proto_len = sizeof(PEER_SESSION_PROTO_NAME) - 1; |
| struct peers *cfg_peers = NULL; |
| static void peer_session_forceshutdown(struct peer *peer); |
| |
| static struct ebpt_node *dcache_tx_insert(struct dcache *dc, |
| struct dcache_tx_entry *i); |
| static inline void flush_dcache(struct peer *peer); |
| |
| /* trace source and events */ |
| static void peers_trace(enum trace_level level, uint64_t mask, |
| const struct trace_source *src, |
| const struct ist where, const struct ist func, |
| const void *a1, const void *a2, const void *a3, const void *a4); |
| |
| static const struct trace_event peers_trace_events[] = { |
| #define PEERS_EV_UPDTMSG (1 << 0) |
| { .mask = PEERS_EV_UPDTMSG, .name = "updtmsg", .desc = "update message received" }, |
| #define PEERS_EV_ACKMSG (1 << 1) |
| { .mask = PEERS_EV_ACKMSG, .name = "ackmsg", .desc = "ack message received" }, |
| #define PEERS_EV_SWTCMSG (1 << 2) |
| { .mask = PEERS_EV_SWTCMSG, .name = "swtcmsg", .desc = "switch message received" }, |
| #define PEERS_EV_DEFMSG (1 << 3) |
| { .mask = PEERS_EV_DEFMSG, .name = "defmsg", .desc = "definition message received" }, |
| #define PEERS_EV_CTRLMSG (1 << 4) |
| { .mask = PEERS_EV_CTRLMSG, .name = "ctrlmsg", .desc = "control message sent/received" }, |
| #define PEERS_EV_SESSREL (1 << 5) |
| { .mask = PEERS_EV_SESSREL, .name = "sessrl", .desc = "peer session releasing" }, |
| #define PEERS_EV_PROTOERR (1 << 6) |
| { .mask = PEERS_EV_PROTOERR, .name = "protoerr", .desc = "protocol error" }, |
| }; |
| |
| static const struct name_desc peers_trace_lockon_args[4] = { |
| /* arg1 */ { /* already used by the connection */ }, |
| /* arg2 */ { .name="peers", .desc="Peers protocol" }, |
| /* arg3 */ { }, |
| /* arg4 */ { } |
| }; |
| |
| static const struct name_desc peers_trace_decoding[] = { |
| #define PEERS_VERB_CLEAN 1 |
| { .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" }, |
| { /* end */ } |
| }; |
| |
| |
| struct trace_source trace_peers = { |
| .name = IST("peers"), |
| .desc = "Peers protocol", |
| .arg_def = TRC_ARG1_CONN, /* TRACE()'s first argument is always a connection */ |
| .default_cb = peers_trace, |
| .known_events = peers_trace_events, |
| .lockon_args = peers_trace_lockon_args, |
| .decoding = peers_trace_decoding, |
| .report_events = ~0, /* report everything by default */ |
| }; |
| |
| /* Return peer control message types as strings (only for debugging purpose). */ |
| static inline char *ctrl_msg_type_str(unsigned int type) |
| { |
| switch (type) { |
| case PEER_MSG_CTRL_RESYNCREQ: |
| return "RESYNCREQ"; |
| case PEER_MSG_CTRL_RESYNCFINISHED: |
| return "RESYNCFINISHED"; |
| case PEER_MSG_CTRL_RESYNCPARTIAL: |
| return "RESYNCPARTIAL"; |
| case PEER_MSG_CTRL_RESYNCCONFIRM: |
| return "RESYNCCONFIRM"; |
| case PEER_MSG_CTRL_HEARTBEAT: |
| return "HEARTBEAT"; |
| default: |
| return "???"; |
| } |
| } |
| |
| #define TRACE_SOURCE &trace_peers |
| INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE); |
| |
| static void peers_trace(enum trace_level level, uint64_t mask, |
| const struct trace_source *src, |
| const struct ist where, const struct ist func, |
| const void *a1, const void *a2, const void *a3, const void *a4) |
| { |
| if (mask & (PEERS_EV_UPDTMSG|PEERS_EV_ACKMSG|PEERS_EV_SWTCMSG)) { |
| if (a2) { |
| const struct peer *peer = a2; |
| |
| chunk_appendf(&trace_buf, " peer=%s", peer->id); |
| } |
| if (a3) { |
| const char *p = a3; |
| |
| chunk_appendf(&trace_buf, " @%p", p); |
| } |
| if (a4) { |
| const size_t *val = a4; |
| |
| chunk_appendf(&trace_buf, " %llu", (unsigned long long)*val); |
| } |
| } |
| |
| if (mask & PEERS_EV_DEFMSG) { |
| if (a2) { |
| const struct peer *peer = a2; |
| |
| chunk_appendf(&trace_buf, " peer=%s", peer->id); |
| } |
| if (a3) { |
| const char *p = a3; |
| |
| chunk_appendf(&trace_buf, " @%p", p); |
| } |
| if (a4) { |
| const int *val = a4; |
| |
| chunk_appendf(&trace_buf, " %d", *val); |
| } |
| } |
| |
| if (mask & PEERS_EV_CTRLMSG) { |
| if (a2) { |
| const unsigned char *ctrl_msg_type = a2; |
| |
| chunk_appendf(&trace_buf, " %s", ctrl_msg_type_str(*ctrl_msg_type)); |
| |
| } |
| if (a3) { |
| const char *local_peer = a3; |
| |
| chunk_appendf(&trace_buf, " %s", local_peer); |
| } |
| |
| if (a4) { |
| const char *remote_peer = a4; |
| |
| chunk_appendf(&trace_buf, " -> %s", remote_peer); |
| } |
| } |
| |
| if (mask & (PEERS_EV_SESSREL|PEERS_EV_PROTOERR)) { |
| if (a2) { |
| const struct peer *peer = a2; |
| struct peers *peers = NULL; |
| |
| if (peer->appctx) { |
| struct stream_interface *si; |
| |
| si = cs_si(peer->appctx->owner); |
| if (si) { |
| struct stream *s = si_strm(si); |
| |
| peers = strm_fe(s)->parent; |
| } |
| } |
| |
| if (peers) |
| chunk_appendf(&trace_buf, " %s", peers->local->id); |
| chunk_appendf(&trace_buf, " -> %s", peer->id); |
| } |
| |
| if (a3) { |
| const int *prev_state = a3; |
| |
| chunk_appendf(&trace_buf, " prev_state=%d\n", *prev_state); |
| } |
| } |
| } |
| |
| static const char *statuscode_str(int statuscode) |
| { |
| switch (statuscode) { |
| case PEER_SESS_SC_CONNECTCODE: |
| return "CONN"; |
| case PEER_SESS_SC_CONNECTEDCODE: |
| return "HSHK"; |
| case PEER_SESS_SC_SUCCESSCODE: |
| return "ESTA"; |
| case PEER_SESS_SC_TRYAGAIN: |
| return "RETR"; |
| case PEER_SESS_SC_ERRPROTO: |
| return "PROT"; |
| case PEER_SESS_SC_ERRVERSION: |
| return "VERS"; |
| case PEER_SESS_SC_ERRHOST: |
| return "NAME"; |
| case PEER_SESS_SC_ERRPEER: |
| return "UNKN"; |
| default: |
| return "NONE"; |
| } |
| } |
| |
| /* This function encode an uint64 to 'dynamic' length format. |
| The encoded value is written at address *str, and the |
| caller must assure that size after *str is large enough. |
| At return, the *str is set at the next Byte after then |
| encoded integer. The function returns then length of the |
| encoded integer in Bytes */ |
| int intencode(uint64_t i, char **str) { |
| int idx = 0; |
| unsigned char *msg; |
| |
| msg = (unsigned char *)*str; |
| if (i < PEER_ENC_2BYTES_MIN) { |
| msg[0] = (unsigned char)i; |
| *str = (char *)&msg[idx+1]; |
| return (idx+1); |
| } |
| |
| msg[idx] =(unsigned char)i | PEER_ENC_2BYTES_MIN; |
| i = (i - PEER_ENC_2BYTES_MIN) >> PEER_ENC_2BYTES_MIN_BITS; |
| while (i >= PEER_ENC_STOP_BYTE) { |
| msg[++idx] = (unsigned char)i | PEER_ENC_STOP_BYTE; |
| i = (i - PEER_ENC_STOP_BYTE) >> PEER_ENC_STOP_BIT; |
| } |
| msg[++idx] = (unsigned char)i; |
| *str = (char *)&msg[idx+1]; |
| return (idx+1); |
| } |
| |
| |
| /* This function returns a decoded 64bits unsigned integer |
| * from a varint |
| * |
| * Calling: |
| * - *str must point on the first byte of the buffer to decode. |
| * - end must point on the next byte after the end of the buffer |
| * we are authorized to parse (buf + buflen) |
| * |
| * At return: |
| * |
| * On success *str will point at the byte following |
| * the fully decoded integer into the buffer. and |
| * the decoded value is returned. |
| * |
| * If end is reached before the integer was fully decoded, |
| * *str is set to NULL and the caller have to check this |
| * to know there is a decoding error. In this case |
| * the returned integer is also forced to 0 |
| */ |
| uint64_t intdecode(char **str, char *end) |
| { |
| unsigned char *msg; |
| uint64_t i; |
| int shift; |
| |
| if (!*str) |
| return 0; |
| |
| msg = (unsigned char *)*str; |
| if (msg >= (unsigned char *)end) |
| goto fail; |
| |
| i = *(msg++); |
| if (i >= PEER_ENC_2BYTES_MIN) { |
| shift = PEER_ENC_2BYTES_MIN_BITS; |
| do { |
| if (msg >= (unsigned char *)end) |
| goto fail; |
| i += (uint64_t)*msg << shift; |
| shift += PEER_ENC_STOP_BIT; |
| } while (*(msg++) >= PEER_ENC_STOP_BYTE); |
| } |
| *str = (char *)msg; |
| return i; |
| |
| fail: |
| *str = NULL; |
| return 0; |
| } |
| |
| /* |
| * Build a "hello" peer protocol message. |
| * Return the number of written bytes written to build this messages if succeeded, |
| * 0 if not. |
| */ |
| static int peer_prepare_hellomsg(char *msg, size_t size, struct peer_prep_params *p) |
| { |
| int min_ver, ret; |
| struct peer *peer; |
| |
| peer = p->hello.peer; |
| min_ver = (peer->flags & PEER_F_DWNGRD) ? PEER_DWNGRD_MINOR_VER : PEER_MINOR_VER; |
| /* Prepare headers */ |
| ret = snprintf(msg, size, PEER_SESSION_PROTO_NAME " %d.%d\n%s\n%s %d %d\n", |
| (int)PEER_MAJOR_VER, min_ver, peer->id, localpeer, (int)getpid(), (int)1); |
| if (ret >= size) |
| return 0; |
| |
| return ret; |
| } |
| |
| /* |
| * Build a "handshake succeeded" status message. |
| * Return the number of written bytes written to build this messages if succeeded, |
| * 0 if not. |
| */ |
| static int peer_prepare_status_successmsg(char *msg, size_t size, struct peer_prep_params *p) |
| { |
| int ret; |
| |
| ret = snprintf(msg, size, "%d\n", (int)PEER_SESS_SC_SUCCESSCODE); |
| if (ret >= size) |
| return 0; |
| |
| return ret; |
| } |
| |
| /* |
| * Build an error status message. |
| * Return the number of written bytes written to build this messages if succeeded, |
| * 0 if not. |
| */ |
| static int peer_prepare_status_errormsg(char *msg, size_t size, struct peer_prep_params *p) |
| { |
| int ret; |
| unsigned int st1; |
| |
| st1 = p->error_status.st1; |
| ret = snprintf(msg, size, "%d\n", st1); |
| if (ret >= size) |
| return 0; |
| |
| return ret; |
| } |
| |
| /* Set the stick-table UPDATE message type byte at <msg_type> address, |
| * depending on <use_identifier> and <use_timed> boolean parameters. |
| * Always successful. |
| */ |
| static inline void peer_set_update_msg_type(char *msg_type, int use_identifier, int use_timed) |
| { |
| if (use_timed) { |
| if (use_identifier) |
| *msg_type = PEER_MSG_STKT_UPDATE_TIMED; |
| else |
| *msg_type = PEER_MSG_STKT_INCUPDATE_TIMED; |
| } |
| else { |
| if (use_identifier) |
| *msg_type = PEER_MSG_STKT_UPDATE; |
| else |
| *msg_type = PEER_MSG_STKT_INCUPDATE; |
| } |
| } |
| /* |
| * This prepare the data update message on the stick session <ts>, <st> is the considered |
| * stick table. |
| * <msg> is a buffer of <size> to receive data message content |
| * If function returns 0, the caller should consider we were unable to encode this message (TODO: |
| * check size) |
| */ |
| static int peer_prepare_updatemsg(char *msg, size_t size, struct peer_prep_params *p) |
| { |
| uint32_t netinteger; |
| unsigned short datalen; |
| char *cursor, *datamsg; |
| unsigned int data_type; |
| void *data_ptr; |
| struct stksess *ts; |
| struct shared_table *st; |
| unsigned int updateid; |
| int use_identifier; |
| int use_timed; |
| struct peer *peer; |
| |
| ts = p->updt.stksess; |
| st = p->updt.shared_table; |
| updateid = p->updt.updateid; |
| use_identifier = p->updt.use_identifier; |
| use_timed = p->updt.use_timed; |
| peer = p->updt.peer; |
| |
| cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN; |
| |
| /* construct message */ |
| |
| /* check if we need to send the update identifier */ |
| if (!st->last_pushed || updateid < st->last_pushed || ((updateid - st->last_pushed) != 1)) { |
| use_identifier = 1; |
| } |
| |
| /* encode update identifier if needed */ |
| if (use_identifier) { |
| netinteger = htonl(updateid); |
| memcpy(cursor, &netinteger, sizeof(netinteger)); |
| cursor += sizeof(netinteger); |
| } |
| |
| if (use_timed) { |
| netinteger = htonl(tick_remain(now_ms, ts->expire)); |
| memcpy(cursor, &netinteger, sizeof(netinteger)); |
| cursor += sizeof(netinteger); |
| } |
| |
| /* encode the key */ |
| if (st->table->type == SMP_T_STR) { |
| int stlen = strlen((char *)ts->key.key); |
| |
| intencode(stlen, &cursor); |
| memcpy(cursor, ts->key.key, stlen); |
| cursor += stlen; |
| } |
| else if (st->table->type == SMP_T_SINT) { |
| netinteger = htonl(read_u32(ts->key.key)); |
| memcpy(cursor, &netinteger, sizeof(netinteger)); |
| cursor += sizeof(netinteger); |
| } |
| else { |
| memcpy(cursor, ts->key.key, st->table->key_size); |
| cursor += st->table->key_size; |
| } |
| |
| HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock); |
| /* encode values */ |
| for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) { |
| |
| data_ptr = stktable_data_ptr(st->table, ts, data_type); |
| if (data_ptr) { |
| /* in case of array all elements use |
| * the same std_type and they are linearly |
| * encoded. |
| */ |
| if (stktable_data_types[data_type].is_array) { |
| unsigned int idx = 0; |
| |
| switch (stktable_data_types[data_type].std_type) { |
| case STD_T_SINT: { |
| int data; |
| |
| do { |
| data = stktable_data_cast(data_ptr, std_t_sint); |
| intencode(data, &cursor); |
| |
| data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx); |
| } while(data_ptr); |
| break; |
| } |
| case STD_T_UINT: { |
| unsigned int data; |
| |
| do { |
| data = stktable_data_cast(data_ptr, std_t_uint); |
| intencode(data, &cursor); |
| |
| data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx); |
| } while(data_ptr); |
| break; |
| } |
| case STD_T_ULL: { |
| unsigned long long data; |
| |
| do { |
| data = stktable_data_cast(data_ptr, std_t_ull); |
| intencode(data, &cursor); |
| |
| data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx); |
| } while(data_ptr); |
| break; |
| } |
| case STD_T_FRQP: { |
| struct freq_ctr *frqp; |
| |
| do { |
| frqp = &stktable_data_cast(data_ptr, std_t_frqp); |
| intencode((unsigned int)(now_ms - frqp->curr_tick), &cursor); |
| intencode(frqp->curr_ctr, &cursor); |
| intencode(frqp->prev_ctr, &cursor); |
| |
| data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx); |
| } while(data_ptr); |
| break; |
| } |
| } |
| |
| /* array elements fully encoded |
| * proceed next data_type. |
| */ |
| continue; |
| } |
| switch (stktable_data_types[data_type].std_type) { |
| case STD_T_SINT: { |
| int data; |
| |
| data = stktable_data_cast(data_ptr, std_t_sint); |
| intencode(data, &cursor); |
| break; |
| } |
| case STD_T_UINT: { |
| unsigned int data; |
| |
| data = stktable_data_cast(data_ptr, std_t_uint); |
| intencode(data, &cursor); |
| break; |
| } |
| case STD_T_ULL: { |
| unsigned long long data; |
| |
| data = stktable_data_cast(data_ptr, std_t_ull); |
| intencode(data, &cursor); |
| break; |
| } |
| case STD_T_FRQP: { |
| struct freq_ctr *frqp; |
| |
| frqp = &stktable_data_cast(data_ptr, std_t_frqp); |
| intencode((unsigned int)(now_ms - frqp->curr_tick), &cursor); |
| intencode(frqp->curr_ctr, &cursor); |
| intencode(frqp->prev_ctr, &cursor); |
| break; |
| } |
| case STD_T_DICT: { |
| struct dict_entry *de; |
| struct ebpt_node *cached_de; |
| struct dcache_tx_entry cde = { }; |
| char *beg, *end; |
| size_t value_len, data_len; |
| struct dcache *dc; |
| |
| de = stktable_data_cast(data_ptr, std_t_dict); |
| if (!de) { |
| /* No entry */ |
| intencode(0, &cursor); |
| break; |
| } |
| |
| dc = peer->dcache; |
| cde.entry.key = de; |
| cached_de = dcache_tx_insert(dc, &cde); |
| if (cached_de == &cde.entry) { |
| if (cde.id + 1 >= PEER_ENC_2BYTES_MIN) |
| break; |
| /* Encode the length of the remaining data -> 1 */ |
| intencode(1, &cursor); |
| /* Encode the cache entry ID */ |
| intencode(cde.id + 1, &cursor); |
| } |
| else { |
| /* Leave enough room to encode the remaining data length. */ |
| end = beg = cursor + PEER_MSG_ENC_LENGTH_MAXLEN; |
| /* Encode the dictionary entry key */ |
| intencode(cde.id + 1, &end); |
| /* Encode the length of the dictionary entry data */ |
| value_len = de->len; |
| intencode(value_len, &end); |
| /* Copy the data */ |
| memcpy(end, de->value.key, value_len); |
| end += value_len; |
| /* Encode the length of the data */ |
| data_len = end - beg; |
| intencode(data_len, &cursor); |
| memmove(cursor, beg, data_len); |
| cursor += data_len; |
| } |
| break; |
| } |
| } |
| } |
| } |
| HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| /* Compute datalen */ |
| datalen = (cursor - datamsg); |
| |
| /* prepare message header */ |
| msg[0] = PEER_MSG_CLASS_STICKTABLE; |
| peer_set_update_msg_type(&msg[1], use_identifier, use_timed); |
| cursor = &msg[2]; |
| intencode(datalen, &cursor); |
| |
| /* move data after header */ |
| memmove(cursor, datamsg, datalen); |
| |
| /* return header size + data_len */ |
| return (cursor - msg) + datalen; |
| } |
| |
| /* |
| * This prepare the switch table message to targeted share table <st>. |
| * <msg> is a buffer of <size> to receive data message content |
| * If function returns 0, the caller should consider we were unable to encode this message (TODO: |
| * check size) |
| */ |
| static int peer_prepare_switchmsg(char *msg, size_t size, struct peer_prep_params *params) |
| { |
| int len; |
| unsigned short datalen; |
| struct buffer *chunk; |
| char *cursor, *datamsg, *chunkp, *chunkq; |
| uint64_t data = 0; |
| unsigned int data_type; |
| struct shared_table *st; |
| |
| st = params->swtch.shared_table; |
| cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN; |
| |
| /* Encode data */ |
| |
| /* encode local id */ |
| intencode(st->local_id, &cursor); |
| |
| /* encode table name */ |
| len = strlen(st->table->nid); |
| intencode(len, &cursor); |
| memcpy(cursor, st->table->nid, len); |
| cursor += len; |
| |
| /* encode table type */ |
| |
| intencode(peer_net_key_type[st->table->type], &cursor); |
| |
| /* encode table key size */ |
| intencode(st->table->key_size, &cursor); |
| |
| chunk = get_trash_chunk(); |
| chunkp = chunkq = chunk->area; |
| /* encode available known data types in table */ |
| for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) { |
| if (st->table->data_ofs[data_type]) { |
| /* stored data types parameters are all linearly encoded |
| * at the end of the 'table definition' message. |
| * |
| * Currently only array data_types and and data_types |
| * using freq_counter base type have parameters: |
| * |
| * - array has always at least one parameter set to the |
| * number of elements. |
| * |
| * - array of base-type freq_counters has an additional |
| * parameter set to the period used to compute those |
| * freq_counters. |
| * |
| * - simple freq counter has a parameter set to the period |
| * used to compute |
| * |
| * A set of parameter for a datatype MUST BE prefixed |
| * by the data-type id itself: |
| * This is useless because the data_types are ordered and |
| * the data_type bitfield already gives the information of |
| * stored types, but it was designed this way when the |
| * push of period parameter was added for freq counters |
| * and we don't want to break the compatibility. |
| * |
| */ |
| if (stktable_data_types[data_type].is_array) { |
| /* This is an array type so we first encode |
| * the data_type itself to prefix parameters |
| */ |
| intencode(data_type, &chunkq); |
| |
| /* We encode the first parameter which is |
| * the number of elements of this array |
| */ |
| intencode(st->table->data_nbelem[data_type], &chunkq); |
| |
| /* for array of freq counters, there is an additional |
| * period parameter to encode |
| */ |
| if (stktable_data_types[data_type].std_type == STD_T_FRQP) |
| intencode(st->table->data_arg[data_type].u, &chunkq); |
| } |
| else if (stktable_data_types[data_type].std_type == STD_T_FRQP) { |
| /* this datatype is a simple freq counter not part |
| * of an array. We encode the data_type itself |
| * to prefix the 'period' parameter |
| */ |
| intencode(data_type, &chunkq); |
| intencode(st->table->data_arg[data_type].u, &chunkq); |
| } |
| /* set the bit corresponding to stored data type */ |
| data |= 1ULL << data_type; |
| } |
| } |
| intencode(data, &cursor); |
| |
| /* Encode stick-table entries duration. */ |
| intencode(st->table->expire, &cursor); |
| |
| if (chunkq > chunkp) { |
| chunk->data = chunkq - chunkp; |
| memcpy(cursor, chunk->area, chunk->data); |
| cursor += chunk->data; |
| } |
| |
| /* Compute datalen */ |
| datalen = (cursor - datamsg); |
| |
| /* prepare message header */ |
| msg[0] = PEER_MSG_CLASS_STICKTABLE; |
| msg[1] = PEER_MSG_STKT_DEFINE; |
| cursor = &msg[2]; |
| intencode(datalen, &cursor); |
| |
| /* move data after header */ |
| memmove(cursor, datamsg, datalen); |
| |
| /* return header size + data_len */ |
| return (cursor - msg) + datalen; |
| } |
| |
| /* |
| * This prepare the acknowledge message on the stick session <ts>, <st> is the considered |
| * stick table. |
| * <msg> is a buffer of <size> to receive data message content |
| * If function returns 0, the caller should consider we were unable to encode this message (TODO: |
| * check size) |
| */ |
| static int peer_prepare_ackmsg(char *msg, size_t size, struct peer_prep_params *p) |
| { |
| unsigned short datalen; |
| char *cursor, *datamsg; |
| uint32_t netinteger; |
| struct shared_table *st; |
| |
| cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN; |
| |
| st = p->ack.shared_table; |
| intencode(st->remote_id, &cursor); |
| netinteger = htonl(st->last_get); |
| memcpy(cursor, &netinteger, sizeof(netinteger)); |
| cursor += sizeof(netinteger); |
| |
| /* Compute datalen */ |
| datalen = (cursor - datamsg); |
| |
| /* prepare message header */ |
| msg[0] = PEER_MSG_CLASS_STICKTABLE; |
| msg[1] = PEER_MSG_STKT_ACK; |
| cursor = &msg[2]; |
| intencode(datalen, &cursor); |
| |
| /* move data after header */ |
| memmove(cursor, datamsg, datalen); |
| |
| /* return header size + data_len */ |
| return (cursor - msg) + datalen; |
| } |
| |
| /* |
| * Function to deinit connected peer |
| */ |
| void __peer_session_deinit(struct peer *peer) |
| { |
| struct stream_interface *si; |
| struct stream *s; |
| struct peers *peers; |
| |
| if (!peer->appctx) |
| return; |
| |
| si = cs_si(peer->appctx->owner); |
| if (!si) |
| return; |
| |
| s = si_strm(si); |
| if (!s) |
| return; |
| |
| peers = strm_fe(s)->parent; |
| if (!peers) |
| return; |
| |
| if (peer->appctx->st0 == PEER_SESS_ST_WAITMSG) |
| HA_ATOMIC_DEC(&connected_peers); |
| |
| HA_ATOMIC_DEC(&active_peers); |
| |
| flush_dcache(peer); |
| |
| /* Re-init current table pointers to force announcement on re-connect */ |
| peer->remote_table = peer->last_local_table = NULL; |
| peer->appctx = NULL; |
| if (peer->flags & PEER_F_LEARN_ASSIGN) { |
| /* unassign current peer for learning */ |
| peer->flags &= ~(PEER_F_LEARN_ASSIGN); |
| peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS); |
| |
| if (peer->local) |
| peers->flags |= PEERS_F_RESYNC_LOCALABORT; |
| else |
| peers->flags |= PEERS_F_RESYNC_REMOTEABORT; |
| /* reschedule a resync */ |
| peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(5000)); |
| } |
| /* reset teaching and learning flags to 0 */ |
| peer->flags &= PEER_TEACH_RESET; |
| peer->flags &= PEER_LEARN_RESET; |
| task_wakeup(peers->sync_task, TASK_WOKEN_MSG); |
| } |
| |
| /* |
| * Callback to release a session with a peer |
| */ |
| static void peer_session_release(struct appctx *appctx) |
| { |
| struct peer *peer = appctx->ctx.peers.ptr; |
| |
| TRACE_PROTO("releasing peer session", PEERS_EV_SESSREL, NULL, peer); |
| /* appctx->ctx.peers.ptr is not a peer session */ |
| if (appctx->st0 < PEER_SESS_ST_SENDSUCCESS) |
| return; |
| |
| /* peer session identified */ |
| if (peer) { |
| HA_SPIN_LOCK(PEER_LOCK, &peer->lock); |
| if (peer->appctx == appctx) |
| __peer_session_deinit(peer); |
| peer->flags &= ~PEER_F_ALIVE; |
| HA_SPIN_UNLOCK(PEER_LOCK, &peer->lock); |
| } |
| } |
| |
| /* Retrieve the major and minor versions of peers protocol |
| * announced by a remote peer. <str> is a null-terminated |
| * string with the following format: "<maj_ver>.<min_ver>". |
| */ |
| static int peer_get_version(const char *str, |
| unsigned int *maj_ver, unsigned int *min_ver) |
| { |
| unsigned int majv, minv; |
| const char *pos, *saved; |
| const char *end; |
| |
| saved = pos = str; |
| end = str + strlen(str); |
| |
| majv = read_uint(&pos, end); |
| if (saved == pos || *pos++ != '.') |
| return -1; |
| |
| saved = pos; |
| minv = read_uint(&pos, end); |
| if (saved == pos || pos != end) |
| return -1; |
| |
| *maj_ver = majv; |
| *min_ver = minv; |
| |
| return 0; |
| } |
| |
| /* |
| * Parse a line terminated by an optional '\r' character, followed by a mandatory |
| * '\n' character. |
| * Returns 1 if succeeded or 0 if a '\n' character could not be found, and -1 if |
| * a line could not be read because the communication channel is closed. |
| */ |
| static inline int peer_getline(struct appctx *appctx) |
| { |
| int n; |
| struct stream_interface *si = cs_si(appctx->owner); |
| |
| n = co_getline(si_oc(si), trash.area, trash.size); |
| if (!n) |
| return 0; |
| |
| if (n < 0 || trash.area[n - 1] != '\n') { |
| appctx->st0 = PEER_SESS_ST_END; |
| return -1; |
| } |
| |
| if (n > 1 && (trash.area[n - 2] == '\r')) |
| trash.area[n - 2] = 0; |
| else |
| trash.area[n - 1] = 0; |
| |
| co_skip(si_oc(si), n); |
| |
| return n; |
| } |
| |
| /* |
| * Send a message after having called <peer_prepare_msg> to build it. |
| * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appcxt st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_msg(struct appctx *appctx, |
| int (*peer_prepare_msg)(char *, size_t, struct peer_prep_params *), |
| struct peer_prep_params *params) |
| { |
| int ret, msglen; |
| struct stream_interface *si = cs_si(appctx->owner); |
| |
| msglen = peer_prepare_msg(trash.area, trash.size, params); |
| if (!msglen) { |
| /* internal error: message does not fit in trash */ |
| appctx->st0 = PEER_SESS_ST_END; |
| return 0; |
| } |
| |
| /* message to buffer */ |
| ret = ci_putblk(si_ic(si), trash.area, msglen); |
| if (ret <= 0) { |
| if (ret == -1) { |
| /* No more write possible */ |
| si_rx_room_blk(si); |
| return -1; |
| } |
| appctx->st0 = PEER_SESS_ST_END; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Send a hello message. |
| * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appcxt st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_hellomsg(struct appctx *appctx, struct peer *peer) |
| { |
| struct peer_prep_params p = { |
| .hello.peer = peer, |
| }; |
| |
| return peer_send_msg(appctx, peer_prepare_hellomsg, &p); |
| } |
| |
| /* |
| * Send a success peer handshake status message. |
| * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appcxt st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_status_successmsg(struct appctx *appctx) |
| { |
| return peer_send_msg(appctx, peer_prepare_status_successmsg, NULL); |
| } |
| |
| /* |
| * Send a peer handshake status error message. |
| * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appcxt st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_status_errormsg(struct appctx *appctx) |
| { |
| struct peer_prep_params p = { |
| .error_status.st1 = appctx->st1, |
| }; |
| |
| return peer_send_msg(appctx, peer_prepare_status_errormsg, &p); |
| } |
| |
| /* |
| * Send a stick-table switch message. |
| * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appcxt st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_switchmsg(struct shared_table *st, struct appctx *appctx) |
| { |
| struct peer_prep_params p = { |
| .swtch.shared_table = st, |
| }; |
| |
| return peer_send_msg(appctx, peer_prepare_switchmsg, &p); |
| } |
| |
| /* |
| * Send a stick-table update acknowledgement message. |
| * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appcxt st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_ackmsg(struct shared_table *st, struct appctx *appctx) |
| { |
| struct peer_prep_params p = { |
| .ack.shared_table = st, |
| }; |
| |
| return peer_send_msg(appctx, peer_prepare_ackmsg, &p); |
| } |
| |
| /* |
| * Send a stick-table update message. |
| * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appcxt st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_updatemsg(struct shared_table *st, struct appctx *appctx, struct stksess *ts, |
| unsigned int updateid, int use_identifier, int use_timed) |
| { |
| struct peer_prep_params p = { |
| .updt = { |
| .stksess = ts, |
| .shared_table = st, |
| .updateid = updateid, |
| .use_identifier = use_identifier, |
| .use_timed = use_timed, |
| .peer = appctx->ctx.peers.ptr, |
| }, |
| }; |
| |
| return peer_send_msg(appctx, peer_prepare_updatemsg, &p); |
| } |
| |
| /* |
| * Build a peer protocol control class message. |
| * Returns the number of written bytes used to build the message if succeeded, |
| * 0 if not. |
| */ |
| static int peer_prepare_control_msg(char *msg, size_t size, struct peer_prep_params *p) |
| { |
| if (size < sizeof p->control.head) |
| return 0; |
| |
| msg[0] = p->control.head[0]; |
| msg[1] = p->control.head[1]; |
| |
| return 2; |
| } |
| |
| /* |
| * Send a stick-table synchronization request message. |
| * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appctx st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_resync_reqmsg(struct appctx *appctx, |
| struct peer *peer, struct peers *peers) |
| { |
| struct peer_prep_params p = { |
| .control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_RESYNCREQ, }, |
| }; |
| |
| TRACE_PROTO("send control message", PEERS_EV_CTRLMSG, |
| NULL, &p.control.head[1], peers->local->id, peer->id); |
| |
| return peer_send_msg(appctx, peer_prepare_control_msg, &p); |
| } |
| |
| /* |
| * Send a stick-table synchronization confirmation message. |
| * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appctx st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_resync_confirmsg(struct appctx *appctx, |
| struct peer *peer, struct peers *peers) |
| { |
| struct peer_prep_params p = { |
| .control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_RESYNCCONFIRM, }, |
| }; |
| |
| TRACE_PROTO("send control message", PEERS_EV_CTRLMSG, |
| NULL, &p.control.head[1], peers->local->id, peer->id); |
| |
| return peer_send_msg(appctx, peer_prepare_control_msg, &p); |
| } |
| |
| /* |
| * Send a stick-table synchronization finished message. |
| * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appctx st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_resync_finishedmsg(struct appctx *appctx, |
| struct peer *peer, struct peers *peers) |
| { |
| struct peer_prep_params p = { |
| .control.head = { PEER_MSG_CLASS_CONTROL, }, |
| }; |
| |
| p.control.head[1] = (peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FINISHED ? |
| PEER_MSG_CTRL_RESYNCFINISHED : PEER_MSG_CTRL_RESYNCPARTIAL; |
| |
| TRACE_PROTO("send control message", PEERS_EV_CTRLMSG, |
| NULL, &p.control.head[1], peers->local->id, peer->id); |
| |
| return peer_send_msg(appctx, peer_prepare_control_msg, &p); |
| } |
| |
| /* |
| * Send a heartbeat message. |
| * Return 0 if the message could not be built modifying the appctx st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appctx st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_heartbeatmsg(struct appctx *appctx, |
| struct peer *peer, struct peers *peers) |
| { |
| struct peer_prep_params p = { |
| .control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_HEARTBEAT, }, |
| }; |
| |
| TRACE_PROTO("send control message", PEERS_EV_CTRLMSG, |
| NULL, &p.control.head[1], peers->local->id, peer->id); |
| |
| return peer_send_msg(appctx, peer_prepare_control_msg, &p); |
| } |
| |
| /* |
| * Build a peer protocol error class message. |
| * Returns the number of written bytes used to build the message if succeeded, |
| * 0 if not. |
| */ |
| static int peer_prepare_error_msg(char *msg, size_t size, struct peer_prep_params *p) |
| { |
| if (size < sizeof p->error.head) |
| return 0; |
| |
| msg[0] = p->error.head[0]; |
| msg[1] = p->error.head[1]; |
| |
| return 2; |
| } |
| |
| /* |
| * Send a "size limit reached" error message. |
| * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appctx st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_error_size_limitmsg(struct appctx *appctx) |
| { |
| struct peer_prep_params p = { |
| .error.head = { PEER_MSG_CLASS_ERROR, PEER_MSG_ERR_SIZELIMIT, }, |
| }; |
| |
| return peer_send_msg(appctx, peer_prepare_error_msg, &p); |
| } |
| |
| /* |
| * Send a "peer protocol" error message. |
| * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appctx st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_error_protomsg(struct appctx *appctx) |
| { |
| struct peer_prep_params p = { |
| .error.head = { PEER_MSG_CLASS_ERROR, PEER_MSG_ERR_PROTOCOL, }, |
| }; |
| |
| return peer_send_msg(appctx, peer_prepare_error_msg, &p); |
| } |
| |
| /* |
| * Function used to lookup for recent stick-table updates associated with |
| * <st> shared stick-table when a lesson must be taught a peer (PEER_F_LEARN_ASSIGN flag set). |
| */ |
| static inline struct stksess *peer_teach_process_stksess_lookup(struct shared_table *st) |
| { |
| struct eb32_node *eb; |
| |
| eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1); |
| if (!eb) { |
| eb = eb32_first(&st->table->updates); |
| if (!eb || (eb->key == st->last_pushed)) { |
| st->table->commitupdate = st->last_pushed = st->table->localupdate; |
| return NULL; |
| } |
| } |
| |
| /* if distance between the last pushed and the retrieved key |
| * is greater than the distance last_pushed and the local_update |
| * this means we are beyond localupdate. |
| */ |
| if ((eb->key - st->last_pushed) > (st->table->localupdate - st->last_pushed)) { |
| st->table->commitupdate = st->last_pushed = st->table->localupdate; |
| return NULL; |
| } |
| |
| return eb32_entry(eb, struct stksess, upd); |
| } |
| |
| /* |
| * Function used to lookup for recent stick-table updates associated with |
| * <st> shared stick-table during teach state 1 step. |
| */ |
| static inline struct stksess *peer_teach_stage1_stksess_lookup(struct shared_table *st) |
| { |
| struct eb32_node *eb; |
| |
| eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1); |
| if (!eb) { |
| st->flags |= SHTABLE_F_TEACH_STAGE1; |
| eb = eb32_first(&st->table->updates); |
| if (eb) |
| st->last_pushed = eb->key - 1; |
| return NULL; |
| } |
| |
| return eb32_entry(eb, struct stksess, upd); |
| } |
| |
| /* |
| * Function used to lookup for recent stick-table updates associated with |
| * <st> shared stick-table during teach state 2 step. |
| */ |
| static inline struct stksess *peer_teach_stage2_stksess_lookup(struct shared_table *st) |
| { |
| struct eb32_node *eb; |
| |
| eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1); |
| if (!eb || eb->key > st->teaching_origin) { |
| st->flags |= SHTABLE_F_TEACH_STAGE2; |
| return NULL; |
| } |
| |
| return eb32_entry(eb, struct stksess, upd); |
| } |
| |
| /* |
| * Generic function to emit update messages for <st> stick-table when a lesson must |
| * be taught to the peer <p>. |
| * <locked> must be set to 1 if the shared table <st> is already locked when entering |
| * this function, 0 if not. |
| * |
| * This function temporary unlock/lock <st> when it sends stick-table updates or |
| * when decrementing its refcount in case of any error when it sends this updates. |
| * |
| * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appcxt st0 |
| * returned value equal to PEER_SESS_ST_END. |
| * If it returns 0 or -1, this function leave <st> locked if already locked when entering this function |
| * unlocked if not already locked when entering this function. |
| */ |
| static inline int peer_send_teachmsgs(struct appctx *appctx, struct peer *p, |
| struct stksess *(*peer_stksess_lookup)(struct shared_table *), |
| struct shared_table *st, int locked) |
| { |
| int ret, new_pushed, use_timed; |
| |
| ret = 1; |
| use_timed = 0; |
| if (st != p->last_local_table) { |
| ret = peer_send_switchmsg(st, appctx); |
| if (ret <= 0) |
| return ret; |
| |
| p->last_local_table = st; |
| } |
| |
| if (peer_stksess_lookup != peer_teach_process_stksess_lookup) |
| use_timed = !(p->flags & PEER_F_DWNGRD); |
| |
| /* We force new pushed to 1 to force identifier in update message */ |
| new_pushed = 1; |
| |
| if (!locked) |
| HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock); |
| |
| while (1) { |
| struct stksess *ts; |
| unsigned updateid; |
| |
| /* push local updates */ |
| ts = peer_stksess_lookup(st); |
| if (!ts) |
| break; |
| |
| updateid = ts->upd.key; |
| ts->ref_cnt++; |
| HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock); |
| |
| ret = peer_send_updatemsg(st, appctx, ts, updateid, new_pushed, use_timed); |
| if (ret <= 0) { |
| HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock); |
| ts->ref_cnt--; |
| if (!locked) |
| HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock); |
| return ret; |
| } |
| |
| HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock); |
| ts->ref_cnt--; |
| st->last_pushed = updateid; |
| |
| if (peer_stksess_lookup == peer_teach_process_stksess_lookup && |
| (int)(st->last_pushed - st->table->commitupdate) > 0) |
| st->table->commitupdate = st->last_pushed; |
| |
| /* identifier may not needed in next update message */ |
| new_pushed = 0; |
| } |
| |
| out: |
| if (!locked) |
| HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock); |
| return 1; |
| } |
| |
| /* |
| * Function to emit update messages for <st> stick-table when a lesson must |
| * be taught to the peer <p> (PEER_F_LEARN_ASSIGN flag set). |
| * |
| * Note that <st> shared stick-table is locked when calling this function. |
| * |
| * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appcxt st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_teach_process_msgs(struct appctx *appctx, struct peer *p, |
| struct shared_table *st) |
| { |
| return peer_send_teachmsgs(appctx, p, peer_teach_process_stksess_lookup, st, 1); |
| } |
| |
| /* |
| * Function to emit update messages for <st> stick-table when a lesson must |
| * be taught to the peer <p> during teach state 1 step. |
| * |
| * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appcxt st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_teach_stage1_msgs(struct appctx *appctx, struct peer *p, |
| struct shared_table *st) |
| { |
| return peer_send_teachmsgs(appctx, p, peer_teach_stage1_stksess_lookup, st, 0); |
| } |
| |
| /* |
| * Function to emit update messages for <st> stick-table when a lesson must |
| * be taught to the peer <p> during teach state 1 step. |
| * |
| * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. |
| * Returns -1 if there was not enough room left to send the message, |
| * any other negative returned value must be considered as an error with an appcxt st0 |
| * returned value equal to PEER_SESS_ST_END. |
| */ |
| static inline int peer_send_teach_stage2_msgs(struct appctx *appctx, struct peer *p, |
| struct shared_table *st) |
| { |
| return peer_send_teachmsgs(appctx, p, peer_teach_stage2_stksess_lookup, st, 0); |
| } |
| |
| |
| /* |
| * Function used to parse a stick-table update message after it has been received |
| * by <p> peer with <msg_cur> as address of the pointer to the position in the |
| * receipt buffer with <msg_end> being position of the end of the stick-table message. |
| * Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error |
| * was encountered. |
| * <exp> must be set if the stick-table entry expires. |
| * <updt> must be set for PEER_MSG_STKT_UPDATE or PEER_MSG_STKT_UPDATE_TIMED stick-table |
| * messages, in this case the stick-table update message is received with a stick-table |
| * update ID. |
| * <totl> is the length of the stick-table update message computed upon receipt. |
| */ |
| static int peer_treat_updatemsg(struct appctx *appctx, struct peer *p, int updt, int exp, |
| char **msg_cur, char *msg_end, int msg_len, int totl) |
| { |
| struct stream_interface *si = cs_si(appctx->owner); |
| struct shared_table *st = p->remote_table; |
| struct stksess *ts, *newts; |
| uint32_t update; |
| int expire; |
| unsigned int data_type; |
| void *data_ptr; |
| |
| TRACE_ENTER(PEERS_EV_UPDTMSG, NULL, p); |
| /* Here we have data message */ |
| if (!st) |
| goto ignore_msg; |
| |
| expire = MS_TO_TICKS(st->table->expire); |
| |
| if (updt) { |
| if (msg_len < sizeof(update)) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p); |
| goto malformed_exit; |
| } |
| |
| memcpy(&update, *msg_cur, sizeof(update)); |
| *msg_cur += sizeof(update); |
| st->last_get = htonl(update); |
| } |
| else { |
| st->last_get++; |
| } |
| |
| if (exp) { |
| size_t expire_sz = sizeof expire; |
| |
| if (*msg_cur + expire_sz > msg_end) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, |
| NULL, p, *msg_cur); |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, |
| NULL, p, msg_end, &expire_sz); |
| goto malformed_exit; |
| } |
| |
| memcpy(&expire, *msg_cur, expire_sz); |
| *msg_cur += expire_sz; |
| expire = ntohl(expire); |
| } |
| |
| newts = stksess_new(st->table, NULL); |
| if (!newts) |
| goto ignore_msg; |
| |
| if (st->table->type == SMP_T_STR) { |
| unsigned int to_read, to_store; |
| |
| to_read = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p); |
| goto malformed_free_newts; |
| } |
| |
| to_store = MIN(to_read, st->table->key_size - 1); |
| if (*msg_cur + to_store > msg_end) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, |
| NULL, p, *msg_cur); |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, |
| NULL, p, msg_end, &to_store); |
| goto malformed_free_newts; |
| } |
| |
| memcpy(newts->key.key, *msg_cur, to_store); |
| newts->key.key[to_store] = 0; |
| *msg_cur += to_read; |
| } |
| else if (st->table->type == SMP_T_SINT) { |
| unsigned int netinteger; |
| |
| if (*msg_cur + sizeof(netinteger) > msg_end) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, |
| NULL, p, *msg_cur); |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, |
| NULL, p, msg_end); |
| goto malformed_free_newts; |
| } |
| |
| memcpy(&netinteger, *msg_cur, sizeof(netinteger)); |
| netinteger = ntohl(netinteger); |
| memcpy(newts->key.key, &netinteger, sizeof(netinteger)); |
| *msg_cur += sizeof(netinteger); |
| } |
| else { |
| if (*msg_cur + st->table->key_size > msg_end) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, |
| NULL, p, *msg_cur); |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, |
| NULL, p, msg_end, &st->table->key_size); |
| goto malformed_free_newts; |
| } |
| |
| memcpy(newts->key.key, *msg_cur, st->table->key_size); |
| *msg_cur += st->table->key_size; |
| } |
| |
| /* lookup for existing entry */ |
| ts = stktable_set_entry(st->table, newts); |
| if (ts != newts) { |
| stksess_free(st->table, newts); |
| newts = NULL; |
| } |
| |
| HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); |
| |
| for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) { |
| uint64_t decoded_int; |
| unsigned int idx; |
| int ignore; |
| |
| if (!((1ULL << data_type) & st->remote_data)) |
| continue; |
| |
| ignore = stktable_data_types[data_type].is_local; |
| |
| if (stktable_data_types[data_type].is_array) { |
| /* in case of array all elements |
| * use the same std_type and they |
| * are linearly encoded. |
| * The number of elements was provided |
| * by table definition message |
| */ |
| switch (stktable_data_types[data_type].std_type) { |
| case STD_T_SINT: |
| for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) { |
| decoded_int = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p); |
| goto malformed_unlock; |
| } |
| |
| data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, idx); |
| if (data_ptr && !ignore) |
| stktable_data_cast(data_ptr, std_t_sint) = decoded_int; |
| } |
| break; |
| case STD_T_UINT: |
| for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) { |
| decoded_int = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p); |
| goto malformed_unlock; |
| } |
| |
| data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, idx); |
| if (data_ptr && !ignore) |
| stktable_data_cast(data_ptr, std_t_uint) = decoded_int; |
| } |
| break; |
| case STD_T_ULL: |
| for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) { |
| decoded_int = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p); |
| goto malformed_unlock; |
| } |
| |
| data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, idx); |
| if (data_ptr && !ignore) |
| stktable_data_cast(data_ptr, std_t_ull) = decoded_int; |
| } |
| break; |
| case STD_T_FRQP: |
| for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) { |
| struct freq_ctr data; |
| |
| /* First bit is reserved for the freq_ctr lock |
| * Note: here we're still protected by the stksess lock |
| * so we don't need to update the update the freq_ctr |
| * using its internal lock. |
| */ |
| |
| decoded_int = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p); |
| goto malformed_unlock; |
| } |
| |
| data.curr_tick = tick_add(now_ms, -decoded_int) & ~0x1; |
| data.curr_ctr = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p); |
| goto malformed_unlock; |
| } |
| |
| data.prev_ctr = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p); |
| goto malformed_unlock; |
| } |
| |
| data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, idx); |
| if (data_ptr && !ignore) |
| stktable_data_cast(data_ptr, std_t_frqp) = data; |
| } |
| break; |
| } |
| |
| /* array is fully decoded |
| * proceed next data_type. |
| */ |
| continue; |
| } |
| decoded_int = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p); |
| goto malformed_unlock; |
| } |
| |
| switch (stktable_data_types[data_type].std_type) { |
| case STD_T_SINT: |
| data_ptr = stktable_data_ptr(st->table, ts, data_type); |
| if (data_ptr && !ignore) |
| stktable_data_cast(data_ptr, std_t_sint) = decoded_int; |
| break; |
| |
| case STD_T_UINT: |
| data_ptr = stktable_data_ptr(st->table, ts, data_type); |
| if (data_ptr && !ignore) |
| stktable_data_cast(data_ptr, std_t_uint) = decoded_int; |
| break; |
| |
| case STD_T_ULL: |
| data_ptr = stktable_data_ptr(st->table, ts, data_type); |
| if (data_ptr && !ignore) |
| stktable_data_cast(data_ptr, std_t_ull) = decoded_int; |
| break; |
| |
| case STD_T_FRQP: { |
| struct freq_ctr data; |
| |
| /* First bit is reserved for the freq_ctr lock |
| Note: here we're still protected by the stksess lock |
| so we don't need to update the update the freq_ctr |
| using its internal lock. |
| */ |
| |
| data.curr_tick = tick_add(now_ms, -decoded_int) & ~0x1; |
| data.curr_ctr = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p); |
| goto malformed_unlock; |
| } |
| |
| data.prev_ctr = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p); |
| goto malformed_unlock; |
| } |
| |
| data_ptr = stktable_data_ptr(st->table, ts, data_type); |
| if (data_ptr && !ignore) |
| stktable_data_cast(data_ptr, std_t_frqp) = data; |
| break; |
| } |
| case STD_T_DICT: { |
| struct buffer *chunk; |
| size_t data_len, value_len; |
| unsigned int id; |
| struct dict_entry *de; |
| struct dcache *dc; |
| char *end; |
| |
| if (!decoded_int) { |
| /* No entry. */ |
| break; |
| } |
| data_len = decoded_int; |
| if (*msg_cur + data_len > msg_end) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, |
| NULL, p, *msg_cur); |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, |
| NULL, p, msg_end, &data_len); |
| goto malformed_unlock; |
| } |
| |
| /* Compute the end of the current data, <msg_end> being at the end of |
| * the entire message. |
| */ |
| end = *msg_cur + data_len; |
| id = intdecode(msg_cur, end); |
| if (!*msg_cur || !id) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, |
| NULL, p, *msg_cur, &id); |
| goto malformed_unlock; |
| } |
| |
| dc = p->dcache; |
| if (*msg_cur == end) { |
| /* Dictionary entry key without value. */ |
| if (id > dc->max_entries) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, |
| NULL, p, NULL, &id); |
| goto malformed_unlock; |
| } |
| /* IDs sent over the network are numbered from 1. */ |
| de = dc->rx[id - 1].de; |
| } |
| else { |
| chunk = get_trash_chunk(); |
| value_len = intdecode(msg_cur, end); |
| if (!*msg_cur || *msg_cur + value_len > end || |
| unlikely(value_len + 1 >= chunk->size)) { |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, |
| NULL, p, *msg_cur, &value_len); |
| TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, |
| NULL, p, end, &chunk->size); |
| goto malformed_unlock; |
| } |
| |
| chunk_memcpy(chunk, *msg_cur, value_len); |
| chunk->area[chunk->data] = '\0'; |
| *msg_cur += value_len; |
| |
| de = dict_insert(&server_key_dict, chunk->area); |
| dict_entry_unref(&server_key_dict, dc->rx[id - 1].de); |
| dc->rx[id - 1].de = de; |
| } |
| if (de) { |
| data_ptr = stktable_data_ptr(st->table, ts, data_type); |
| if (data_ptr && !ignore) { |
| HA_ATOMIC_INC(&de->refcount); |
| stktable_data_cast(data_ptr, std_t_dict) = de; |
| } |
| } |
| break; |
| } |
| } |
| } |
| /* Force new expiration */ |
| ts->expire = tick_add(now_ms, expire); |
| |
| HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); |
| stktable_touch_remote(st->table, ts, 1); |
| TRACE_LEAVE(PEERS_EV_UPDTMSG, NULL, p); |
| return 1; |
| |
| ignore_msg: |
| /* skip consumed message */ |
| co_skip(si_oc(si), totl); |
| TRACE_DEVEL("leaving in error", PEERS_EV_UPDTMSG); |
| return 0; |
| |
| malformed_unlock: |
| /* malformed message */ |
| HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); |
| stktable_touch_remote(st->table, ts, 1); |
| appctx->st0 = PEER_SESS_ST_ERRPROTO; |
| TRACE_DEVEL("leaving in error", PEERS_EV_UPDTMSG); |
| return 0; |
| |
| malformed_free_newts: |
| /* malformed message */ |
| stksess_free(st->table, newts); |
| malformed_exit: |
| appctx->st0 = PEER_SESS_ST_ERRPROTO; |
| TRACE_DEVEL("leaving in error", PEERS_EV_UPDTMSG); |
| return 0; |
| } |
| |
| /* |
| * Function used to parse a stick-table update acknowledgement message after it |
| * has been received by <p> peer with <msg_cur> as address of the pointer to the position in the |
| * receipt buffer with <msg_end> being the position of the end of the stick-table message. |
| * Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error |
| * was encountered. |
| * Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO. |
| */ |
| static inline int peer_treat_ackmsg(struct appctx *appctx, struct peer *p, |
| char **msg_cur, char *msg_end) |
| { |
| /* ack message */ |
| uint32_t table_id ; |
| uint32_t update; |
| struct shared_table *st; |
| |
| /* ignore ack during teaching process */ |
| if (p->flags & PEER_F_TEACH_PROCESS) |
| return 1; |
| |
| table_id = intdecode(msg_cur, msg_end); |
| if (!*msg_cur || (*msg_cur + sizeof(update) > msg_end)) { |
| /* malformed message */ |
| |
| TRACE_PROTO("malformed message", PEERS_EV_ACKMSG, |
| NULL, p, *msg_cur); |
| appctx->st0 = PEER_SESS_ST_ERRPROTO; |
| return 0; |
| } |
| |
| memcpy(&update, *msg_cur, sizeof(update)); |
| update = ntohl(update); |
| |
| for (st = p->tables; st; st = st->next) { |
| if (st->local_id == table_id) { |
| st->update = update; |
| break; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Function used to parse a stick-table switch message after it has been received |
| * by <p> peer with <msg_cur> as address of the pointer to the position in the |
| * receipt buffer with <msg_end> being the position of the end of the stick-table message. |
| * Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error |
| * was encountered. |
| * Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO. |
| */ |
| static inline int peer_treat_switchmsg(struct appctx *appctx, struct peer *p, |
| char **msg_cur, char *msg_end) |
| { |
| struct shared_table *st; |
| int table_id; |
| |
| table_id = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_SWTCMSG, NULL, p); |
| /* malformed message */ |
| appctx->st0 = PEER_SESS_ST_ERRPROTO; |
| return 0; |
| } |
| |
| p->remote_table = NULL; |
| for (st = p->tables; st; st = st->next) { |
| if (st->remote_id == table_id) { |
| p->remote_table = st; |
| break; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Function used to parse a stick-table definition message after it has been received |
| * by <p> peer with <msg_cur> as address of the pointer to the position in the |
| * receipt buffer with <msg_end> being the position of the end of the stick-table message. |
| * Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error |
| * was encountered. |
| * <totl> is the length of the stick-table update message computed upon receipt. |
| * Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO. |
| */ |
| static inline int peer_treat_definemsg(struct appctx *appctx, struct peer *p, |
| char **msg_cur, char *msg_end, int totl) |
| { |
| struct stream_interface *si = cs_si(appctx->owner); |
| int table_id_len; |
| struct shared_table *st; |
| int table_type; |
| int table_keylen; |
| int table_id; |
| uint64_t table_data; |
| |
| table_id = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p); |
| goto malformed_exit; |
| } |
| |
| table_id_len = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p, *msg_cur); |
| goto malformed_exit; |
| } |
| |
| p->remote_table = NULL; |
| if (!table_id_len || (*msg_cur + table_id_len) >= msg_end) { |
| TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p, *msg_cur, &table_id_len); |
| goto malformed_exit; |
| } |
| |
| for (st = p->tables; st; st = st->next) { |
| /* Reset IDs */ |
| if (st->remote_id == table_id) |
| st->remote_id = 0; |
| |
| if (!p->remote_table && (table_id_len == strlen(st->table->nid)) && |
| (memcmp(st->table->nid, *msg_cur, table_id_len) == 0)) |
| p->remote_table = st; |
| } |
| |
| if (!p->remote_table) { |
| TRACE_PROTO("ignored message", PEERS_EV_DEFMSG, NULL, p); |
| goto ignore_msg; |
| } |
| |
| *msg_cur += table_id_len; |
| if (*msg_cur >= msg_end) { |
| TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p); |
| goto malformed_exit; |
| } |
| |
| table_type = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p); |
| goto malformed_exit; |
| } |
| |
| table_keylen = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p); |
| goto malformed_exit; |
| } |
| |
| table_data = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p); |
| goto malformed_exit; |
| } |
| |
| if (p->remote_table->table->type != peer_int_key_type[table_type] |
| || p->remote_table->table->key_size != table_keylen) { |
| p->remote_table = NULL; |
| TRACE_PROTO("ignored message", PEERS_EV_DEFMSG, NULL, p); |
| goto ignore_msg; |
| } |
| |
| /* Check if there there is the additional expire data */ |
| intdecode(msg_cur, msg_end); |
| if (*msg_cur) { |
| uint64_t data_type; |
| uint64_t type; |
| |
| /* This define contains the expire data so we consider |
| * it also contain all data_types parameters. |
| */ |
| for (data_type = 0; data_type < STKTABLE_DATA_TYPES; data_type++) { |
| if (table_data & (1ULL << data_type)) { |
| if (stktable_data_types[data_type].is_array) { |
| /* This should be an array |
| * so we parse the data_type prefix |
| * because we must have parameters. |
| */ |
| type = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| p->remote_table = NULL; |
| TRACE_PROTO("missing meta data for array", PEERS_EV_DEFMSG, NULL, p); |
| goto ignore_msg; |
| } |
| |
| /* check if the data_type match the current from the bitfield */ |
| if (type != data_type) { |
| p->remote_table = NULL; |
| TRACE_PROTO("meta data mismatch type", PEERS_EV_DEFMSG, NULL, p); |
| goto ignore_msg; |
| } |
| |
| /* decode the nbelem of the array */ |
| p->remote_table->remote_data_nbelem[type] = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| p->remote_table = NULL; |
| TRACE_PROTO("missing array size meta data for array", PEERS_EV_DEFMSG, NULL, p); |
| goto ignore_msg; |
| } |
| |
| /* if it is an array of frqp, we must also have the period to decode */ |
| if (stktable_data_types[data_type].std_type == STD_T_FRQP) { |
| intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| p->remote_table = NULL; |
| TRACE_PROTO("missing period for frqp", PEERS_EV_DEFMSG, NULL, p); |
| goto ignore_msg; |
| } |
| } |
| } |
| else if (stktable_data_types[data_type].std_type == STD_T_FRQP) { |
| /* This should be a std freq counter data_type |
| * so we parse the data_type prefix |
| * because we must have parameters. |
| */ |
| type = intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| p->remote_table = NULL; |
| TRACE_PROTO("missing meta data for frqp", PEERS_EV_DEFMSG, NULL, p); |
| goto ignore_msg; |
| } |
| |
| /* check if the data_type match the current from the bitfield */ |
| if (type != data_type) { |
| p->remote_table = NULL; |
| TRACE_PROTO("meta data mismatch type", PEERS_EV_DEFMSG, NULL, p); |
| goto ignore_msg; |
| } |
| |
| /* decode the period */ |
| intdecode(msg_cur, msg_end); |
| if (!*msg_cur) { |
| p->remote_table = NULL; |
| TRACE_PROTO("missing period for frqp", PEERS_EV_DEFMSG, NULL, p); |
| goto ignore_msg; |
| } |
| } |
| } |
| } |
| } |
| else { |
| uint64_t data_type; |
| |
| /* There is not additional data but |
| * array size parameter is mandatory to parse array |
| * so we consider an error if an array data_type is define |
| * but there is no additional data. |
| */ |
| for (data_type = 0; data_type < STKTABLE_DATA_TYPES; data_type++) { |
| if (table_data & (1ULL << data_type)) { |
| if (stktable_data_types[data_type].is_array) { |
| p->remote_table = NULL; |
| TRACE_PROTO("missing array size meta data for array", PEERS_EV_DEFMSG, NULL, p); |
| goto ignore_msg; |
| } |
| } |
| } |
| } |
| |
| p->remote_table->remote_data = table_data; |
| p->remote_table->remote_id = table_id; |
| return 1; |
| |
| ignore_msg: |
| co_skip(si_oc(si), totl); |
| return 0; |
| |
| malformed_exit: |
| /* malformed message */ |
| appctx->st0 = PEER_SESS_ST_ERRPROTO; |
| return 0; |
| } |
| |
| /* |
| * Receive a stick-table message or pre-parse any other message. |
| * The message's header will be sent into <msg_head> which must be at least |
| * <msg_head_sz> bytes long (at least 7 to store 32-bit variable lengths). |
| * The first two bytes are always read, and the rest is only read if the |
| * first bytes indicate a stick-table message. If the message is a stick-table |
| * message, the varint is decoded and the equivalent number of bytes will be |
| * copied into the trash at trash.area. <totl> is incremented by the number of |
| * bytes read EVEN IN CASE OF INCOMPLETE MESSAGES. |
| * Returns 1 if there was no error, if not, returns 0 if not enough data were available, |
| * -1 if there was an error updating the appctx state st0 accordingly. |
| */ |
| static inline int peer_recv_msg(struct appctx *appctx, char *msg_head, size_t msg_head_sz, |
| uint32_t *msg_len, int *totl) |
| { |
| int reql; |
| struct stream_interface *si = cs_si(appctx->owner); |
| char *cur; |
| |
| reql = co_getblk(si_oc(si), msg_head, 2 * sizeof(char), *totl); |
| if (reql <= 0) /* closed or EOL not found */ |
| goto incomplete; |
| |
| *totl += reql; |
| |
| if (!(msg_head[1] & PEER_MSG_STKT_BIT_MASK)) |
| return 1; |
| |
| /* This is a stick-table message, let's go on */ |
| |
| /* Read and Decode message length */ |
| msg_head += *totl; |
| msg_head_sz -= *totl; |
| reql = co_data(si_oc(si)) - *totl; |
| if (reql > msg_head_sz) |
| reql = msg_head_sz; |
| |
| reql = co_getblk(si_oc(si), msg_head, reql, *totl); |
| if (reql <= 0) /* closed */ |
| goto incomplete; |
| |
| cur = msg_head; |
| *msg_len = intdecode(&cur, cur + reql); |
| if (!cur) { |
| /* the number is truncated, did we read enough ? */ |
| if (reql < msg_head_sz) |
| goto incomplete; |
| |
| /* malformed message */ |
| TRACE_PROTO("malformed message: too large length encoding", PEERS_EV_UPDTMSG); |
| appctx->st0 = PEER_SESS_ST_ERRPROTO; |
| return -1; |
| } |
| *totl += cur - msg_head; |
| |
| /* Read message content */ |
| if (*msg_len) { |
| if (*msg_len > trash.size) { |
| /* Status code is not success, abort */ |
| appctx->st0 = PEER_SESS_ST_ERRSIZE; |
| return -1; |
| } |
| |
| reql = co_getblk(si_oc(si), trash.area, *msg_len, *totl); |
| if (reql <= 0) /* closed */ |
| goto incomplete; |
| *totl += reql; |
| } |
| |
| return 1; |
| |
| incomplete: |
| if (reql < 0 || (si_oc(si)->flags & (CF_SHUTW|CF_SHUTW_NOW))) { |
| /* there was an error or the message was truncated */ |
| appctx->st0 = PEER_SESS_ST_END; |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Treat the awaited message with <msg_head> as header.* |
| * Return 1 if succeeded, 0 if not. |
| */ |
| static inline int peer_treat_awaited_msg(struct appctx *appctx, struct peer *peer, unsigned char *msg_head, |
| char **msg_cur, char *msg_end, int msg_len, int totl) |
| { |
| struct stream_interface *si = cs_si(appctx->owner); |
| struct stream *s = si_strm(si); |
| struct peers *peers = strm_fe(s)->parent; |
| |
| if (msg_head[0] == PEER_MSG_CLASS_CONTROL) { |
| if (msg_head[1] == PEER_MSG_CTRL_RESYNCREQ) { |
| struct shared_table *st; |
| /* Reset message: remote need resync */ |
| |
| TRACE_PROTO("received control message", PEERS_EV_CTRLMSG, |
| NULL, &msg_head[1], peers->local->id, peer->id); |
| /* prepare tables for a global push */ |
| for (st = peer->tables; st; st = st->next) { |
| st->teaching_origin = st->last_pushed = st->update; |
| st->flags = 0; |
| } |
| |
| /* reset teaching flags to 0 */ |
| peer->flags &= PEER_TEACH_RESET; |
| |
| /* flag to start to teach lesson */ |
| peer->flags |= PEER_F_TEACH_PROCESS; |
| peers->flags |= PEERS_F_RESYNC_REQUESTED; |
| } |
| else if (msg_head[1] == PEER_MSG_CTRL_RESYNCFINISHED) { |
| TRACE_PROTO("received control message", PEERS_EV_CTRLMSG, |
| NULL, &msg_head[1], peers->local->id, peer->id); |
| if (peer->flags & PEER_F_LEARN_ASSIGN) { |
| peer->flags &= ~PEER_F_LEARN_ASSIGN; |
| peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS); |
| peers->flags |= (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE); |
| if (peer->local) |
| peers->flags |= PEERS_F_RESYNC_LOCALFINISHED; |
| else |
| peers->flags |= PEERS_F_RESYNC_REMOTEFINISHED; |
| } |
| peer->confirm++; |
| } |
| else if (msg_head[1] == PEER_MSG_CTRL_RESYNCPARTIAL) { |
| TRACE_PROTO("received control message", PEERS_EV_CTRLMSG, |
| NULL, &msg_head[1], peers->local->id, peer->id); |
| if (peer->flags & PEER_F_LEARN_ASSIGN) { |
| peer->flags &= ~PEER_F_LEARN_ASSIGN; |
| peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS); |
| |
| if (peer->local) |
| peers->flags |= PEERS_F_RESYNC_LOCALPARTIAL; |
| else |
| peers->flags |= PEERS_F_RESYNC_REMOTEPARTIAL; |
| peer->flags |= PEER_F_LEARN_NOTUP2DATE; |
| peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT)); |
| task_wakeup(peers->sync_task, TASK_WOKEN_MSG); |
| } |
| peer->confirm++; |
| } |
| else if (msg_head[1] == PEER_MSG_CTRL_RESYNCCONFIRM) { |
| struct shared_table *st; |
| |
| TRACE_PROTO("received control message", PEERS_EV_CTRLMSG, |
| NULL, &msg_head[1], peers->local->id, peer->id); |
| /* If stopping state */ |
| if (stopping) { |
| /* Close session, push resync no more needed */ |
| peer->flags |= PEER_F_TEACH_COMPLETE; |
| appctx->st0 = PEER_SESS_ST_END; |
| return 0; |
| } |
| for (st = peer->tables; st; st = st->next) { |
| st->update = st->last_pushed = st->teaching_origin; |
| st->flags = 0; |
| } |
| |
| /* reset teaching flags to 0 */ |
| peer->flags &= PEER_TEACH_RESET; |
| } |
| else if (msg_head[1] == PEER_MSG_CTRL_HEARTBEAT) { |
| TRACE_PROTO("received control message", PEERS_EV_CTRLMSG, |
| NULL, &msg_head[1], peers->local->id, peer->id); |
| peer->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT)); |
| peer->rx_hbt++; |
| } |
| } |
| else if (msg_head[0] == PEER_MSG_CLASS_STICKTABLE) { |
| if (msg_head[1] == PEER_MSG_STKT_DEFINE) { |
| if (!peer_treat_definemsg(appctx, peer, msg_cur, msg_end, totl)) |
| return 0; |
| } |
| else if (msg_head[1] == PEER_MSG_STKT_SWITCH) { |
| if (!peer_treat_switchmsg(appctx, peer, msg_cur, msg_end)) |
| return 0; |
| } |
| else if (msg_head[1] == PEER_MSG_STKT_UPDATE || |
| msg_head[1] == PEER_MSG_STKT_INCUPDATE || |
| msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED || |
| msg_head[1] == PEER_MSG_STKT_INCUPDATE_TIMED) { |
| int update, expire; |
| |
| update = msg_head[1] == PEER_MSG_STKT_UPDATE || msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED; |
| expire = msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED || msg_head[1] == PEER_MSG_STKT_INCUPDATE_TIMED; |
| if (!peer_treat_updatemsg(appctx, peer, update, expire, |
| msg_cur, msg_end, msg_len, totl)) |
| return 0; |
| |
| } |
| else if (msg_head[1] == PEER_MSG_STKT_ACK) { |
| if (!peer_treat_ackmsg(appctx, peer, msg_cur, msg_end)) |
| return 0; |
| } |
| } |
| else if (msg_head[0] == PEER_MSG_CLASS_RESERVED) { |
| appctx->st0 = PEER_SESS_ST_ERRPROTO; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| |
| /* |
| * Send any message to <peer> peer. |
| * Returns 1 if succeeded, or -1 or 0 if failed. |
| * -1 means an internal error occurred, 0 is for a peer protocol error leading |
| * to a peer state change (from the peer I/O handler point of view). |
| */ |
| static inline int peer_send_msgs(struct appctx *appctx, |
| struct peer *peer, struct peers *peers) |
| { |
| int repl; |
| |
| /* Need to request a resync */ |
| if ((peer->flags & PEER_F_LEARN_ASSIGN) && |
| (peers->flags & PEERS_F_RESYNC_ASSIGN) && |
| !(peers->flags & PEERS_F_RESYNC_PROCESS)) { |
| |
| repl = peer_send_resync_reqmsg(appctx, peer, peers); |
| if (repl <= 0) |
| return repl; |
| |
| peers->flags |= PEERS_F_RESYNC_PROCESS; |
| } |
| |
| /* Nothing to read, now we start to write */ |
| if (peer->tables) { |
| struct shared_table *st; |
| struct shared_table *last_local_table; |
| |
| last_local_table = peer->last_local_table; |
| if (!last_local_table) |
| last_local_table = peer->tables; |
| st = last_local_table->next; |
| |
| while (1) { |
| if (!st) |
| st = peer->tables; |
| |
| /* It remains some updates to ack */ |
| if (st->last_get != st->last_acked) { |
| repl = peer_send_ackmsg(st, appctx); |
| if (repl <= 0) |
| return repl; |
| |
| st->last_acked = st->last_get; |
| } |
| |
| if (!(peer->flags & PEER_F_TEACH_PROCESS)) { |
| HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock); |
| if (!(peer->flags & PEER_F_LEARN_ASSIGN) && |
| (st->last_pushed != st->table->localupdate)) { |
| |
| repl = peer_send_teach_process_msgs(appctx, peer, st); |
| if (repl <= 0) { |
| HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock); |
| return repl; |
| } |
| } |
| HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock); |
| } |
| else if (!(peer->flags & PEER_F_TEACH_FINISHED)) { |
| if (!(st->flags & SHTABLE_F_TEACH_STAGE1)) { |
| repl = peer_send_teach_stage1_msgs(appctx, peer, st); |
| if (repl <= 0) |
| return repl; |
| } |
| |
| if (!(st->flags & SHTABLE_F_TEACH_STAGE2)) { |
| repl = peer_send_teach_stage2_msgs(appctx, peer, st); |
| if (repl <= 0) |
| return repl; |
| } |
| } |
| |
| if (st == last_local_table) |
| break; |
| st = st->next; |
| } |
| } |
| |
| if ((peer->flags & PEER_F_TEACH_PROCESS) && !(peer->flags & PEER_F_TEACH_FINISHED)) { |
| repl = peer_send_resync_finishedmsg(appctx, peer, peers); |
| if (repl <= 0) |
| return repl; |
| |
| /* flag finished message sent */ |
| peer->flags |= PEER_F_TEACH_FINISHED; |
| } |
| |
| /* Confirm finished or partial messages */ |
| while (peer->confirm) { |
| repl = peer_send_resync_confirmsg(appctx, peer, peers); |
| if (repl <= 0) |
| return repl; |
| |
| peer->confirm--; |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Read and parse a first line of a "hello" peer protocol message. |
| * Returns 0 if could not read a line, -1 if there was a read error or |
| * the line is malformed, 1 if succeeded. |
| */ |
| static inline int peer_getline_version(struct appctx *appctx, |
| unsigned int *maj_ver, unsigned int *min_ver) |
| { |
| int reql; |
| |
| reql = peer_getline(appctx); |
| if (!reql) |
| return 0; |
| |
| if (reql < 0) |
| return -1; |
| |
| /* test protocol */ |
| if (strncmp(PEER_SESSION_PROTO_NAME " ", trash.area, proto_len + 1) != 0) { |
| appctx->st0 = PEER_SESS_ST_EXIT; |
| appctx->st1 = PEER_SESS_SC_ERRPROTO; |
| return -1; |
| } |
| if (peer_get_version(trash.area + proto_len + 1, maj_ver, min_ver) == -1 || |
| *maj_ver != PEER_MAJOR_VER || *min_ver > PEER_MINOR_VER) { |
| appctx->st0 = PEER_SESS_ST_EXIT; |
| appctx->st1 = PEER_SESS_SC_ERRVERSION; |
| return -1; |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Read and parse a second line of a "hello" peer protocol message. |
| * Returns 0 if could not read a line, -1 if there was a read error or |
| * the line is malformed, 1 if succeeded. |
| */ |
| static inline int peer_getline_host(struct appctx *appctx) |
| { |
| int reql; |
| |
| reql = peer_getline(appctx); |
| if (!reql) |
| return 0; |
| |
| if (reql < 0) |
| return -1; |
| |
| /* test hostname match */ |
| if (strcmp(localpeer, trash.area) != 0) { |
| appctx->st0 = PEER_SESS_ST_EXIT; |
| appctx->st1 = PEER_SESS_SC_ERRHOST; |
| return -1; |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Read and parse a last line of a "hello" peer protocol message. |
| * Returns 0 if could not read a character, -1 if there was a read error or |
| * the line is malformed, 1 if succeeded. |
| * Set <curpeer> accordingly (the remote peer sending the "hello" message). |
| */ |
| static inline int peer_getline_last(struct appctx *appctx, struct peer **curpeer) |
| { |
| char *p; |
| int reql; |
| struct peer *peer; |
| struct stream_interface *si = cs_si(appctx->owner); |
| struct stream *s = si_strm(si); |
| struct peers *peers = strm_fe(s)->parent; |
| |
| reql = peer_getline(appctx); |
| if (!reql) |
| return 0; |
| |
| if (reql < 0) |
| return -1; |
| |
| /* parse line "<peer name> <pid> <relative_pid>" */ |
| p = strchr(trash.area, ' '); |
| if (!p) { |
| appctx->st0 = PEER_SESS_ST_EXIT; |
| appctx->st1 = PEER_SESS_SC_ERRPROTO; |
| return -1; |
| } |
| *p = 0; |
| |
| /* lookup known peer */ |
| for (peer = peers->remote; peer; peer = peer->next) { |
| if (strcmp(peer->id, trash.area) == 0) |
| break; |
| } |
| |
| /* if unknown peer */ |
| if (!peer) { |
| appctx->st0 = PEER_SESS_ST_EXIT; |
| appctx->st1 = PEER_SESS_SC_ERRPEER; |
| return -1; |
| } |
| *curpeer = peer; |
| |
| return 1; |
| } |
| |
| /* |
| * Init <peer> peer after having accepted it at peer protocol level. |
| */ |
| static inline void init_accepted_peer(struct peer *peer, struct peers *peers) |
| { |
| struct shared_table *st; |
| |
| peer->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT)); |
| /* Register status code */ |
| peer->statuscode = PEER_SESS_SC_SUCCESSCODE; |
| peer->last_hdshk = now_ms; |
| |
| /* Awake main task */ |
| task_wakeup(peers->sync_task, TASK_WOKEN_MSG); |
| |
| /* Init confirm counter */ |
| peer->confirm = 0; |
| |
| /* Init cursors */ |
| for (st = peer->tables; st ; st = st->next) { |
| st->last_get = st->last_acked = 0; |
| HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock); |
| /* if st->update appears to be in future it means |
| * that the last acked value is very old and we |
| * remain unconnected a too long time to use this |
| * acknowlegement as a reset. |
| * We should update the protocol to be able to |
| * signal the remote peer that it needs a full resync. |
| * Here a partial fix consist to set st->update at |
| * the max past value |
| */ |
| if ((int)(st->table->localupdate - st->update) < 0) |
| st->update = st->table->localupdate + (2147483648U); |
| st->teaching_origin = st->last_pushed = st->update; |
| st->flags = 0; |
| if ((int)(st->last_pushed - st->table->commitupdate) > 0) |
| st->table->commitupdate = st->last_pushed; |
| HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock); |
| } |
| |
| /* reset teaching and learning flags to 0 */ |
| peer->flags &= PEER_TEACH_RESET; |
| peer->flags &= PEER_LEARN_RESET; |
| |
| /* if current peer is local */ |
| if (peer->local) { |
| /* if current host need resyncfrom local and no process assigned */ |
| if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMLOCAL && |
| !(peers->flags & PEERS_F_RESYNC_ASSIGN)) { |
| /* assign local peer for a lesson, consider lesson already requested */ |
| peer->flags |= PEER_F_LEARN_ASSIGN; |
| peers->flags |= (PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS); |
| peers->flags |= PEERS_F_RESYNC_LOCALASSIGN; |
| } |
| |
| } |
| else if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE && |
| !(peers->flags & PEERS_F_RESYNC_ASSIGN)) { |
| /* assign peer for a lesson */ |
| peer->flags |= PEER_F_LEARN_ASSIGN; |
| peers->flags |= PEERS_F_RESYNC_ASSIGN; |
| peers->flags |= PEERS_F_RESYNC_REMOTEASSIGN; |
| } |
| } |
| |
| /* |
| * Init <peer> peer after having connected it at peer protocol level. |
| */ |
| static inline void init_connected_peer(struct peer *peer, struct peers *peers) |
| { |
| struct shared_table *st; |
| |
| peer->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT)); |
| /* Init cursors */ |
| for (st = peer->tables; st ; st = st->next) { |
| st->last_get = st->last_acked = 0; |
| HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock); |
| /* if st->update appears to be in future it means |
| * that the last acked value is very old and we |
| * remain unconnected a too long time to use this |
| * acknowlegement as a reset. |
| * We should update the protocol to be able to |
| * signal the remote peer that it needs a full resync. |
| * Here a partial fix consist to set st->update at |
| * the max past value. |
| */ |
| if ((int)(st->table->localupdate - st->update) < 0) |
| st->update = st->table->localupdate + (2147483648U); |
| st->teaching_origin = st->last_pushed = st->update; |
| st->flags = 0; |
| if ((int)(st->last_pushed - st->table->commitupdate) > 0) |
| st->table->commitupdate = st->last_pushed; |
| HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock); |
| } |
| |
| /* Init confirm counter */ |
| peer->confirm = 0; |
| |
| /* reset teaching and learning flags to 0 */ |
| peer->flags &= PEER_TEACH_RESET; |
| peer->flags &= PEER_LEARN_RESET; |
| |
| /* If current peer is local */ |
| if (peer->local) { |
| /* flag to start to teach lesson */ |
| peer->flags |= PEER_F_TEACH_PROCESS; |
| } |
| else if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE && |
| !(peers->flags & PEERS_F_RESYNC_ASSIGN)) { |
| /* If peer is remote and resync from remote is needed, |
| and no peer currently assigned */ |
| |
| /* assign peer for a lesson */ |
| peer->flags |= PEER_F_LEARN_ASSIGN; |
| peers->flags |= PEERS_F_RESYNC_ASSIGN; |
| peers->flags |= PEERS_F_RESYNC_REMOTEASSIGN; |
| } |
| } |
| |
| /* |
| * IO Handler to handle message exchange with a peer |
| */ |
| static void peer_io_handler(struct appctx *appctx) |
| { |
| struct stream_interface *si = cs_si(appctx->owner); |
| struct stream *s = si_strm(si); |
| struct peers *curpeers = strm_fe(s)->parent; |
| struct peer *curpeer = NULL; |
| int reql = 0; |
| int repl = 0; |
| unsigned int maj_ver, min_ver; |
| int prev_state; |
| |
| /* Check if the input buffer is available. */ |
| if (si_ic(si)->buf.size == 0) { |
| si_rx_room_blk(si); |
| goto out; |
| } |
| |
| while (1) { |
| prev_state = appctx->st0; |
| switchstate: |
| maj_ver = min_ver = (unsigned int)-1; |
| switch(appctx->st0) { |
| case PEER_SESS_ST_ACCEPT: |
| prev_state = appctx->st0; |
| appctx->ctx.peers.ptr = NULL; |
| appctx->st0 = PEER_SESS_ST_GETVERSION; |
| /* fall through */ |
| case PEER_SESS_ST_GETVERSION: |
| prev_state = appctx->st0; |
| reql = peer_getline_version(appctx, &maj_ver, &min_ver); |
| if (reql <= 0) { |
| if (!reql) |
| goto out; |
| goto switchstate; |
| } |
| |
| appctx->st0 = PEER_SESS_ST_GETHOST; |
| /* fall through */ |
| case PEER_SESS_ST_GETHOST: |
| prev_state = appctx->st0; |
| reql = peer_getline_host(appctx); |
| if (reql <= 0) { |
| if (!reql) |
| goto out; |
| goto switchstate; |
| } |
| |
| appctx->st0 = PEER_SESS_ST_GETPEER; |
| /* fall through */ |
| case PEER_SESS_ST_GETPEER: { |
| prev_state = appctx->st0; |
| reql = peer_getline_last(appctx, &curpeer); |
| if (reql <= 0) { |
| if (!reql) |
| goto out; |
| goto switchstate; |
| } |
| |
| HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock); |
| if (curpeer->appctx && curpeer->appctx != appctx) { |
| if (curpeer->local) { |
| /* Local connection, reply a retry */ |
| appctx->st0 = PEER_SESS_ST_EXIT; |
| appctx->st1 = PEER_SESS_SC_TRYAGAIN; |
| goto switchstate; |
| } |
| |
| /* we're killing a connection, we must apply a random delay before |
| * retrying otherwise the other end will do the same and we can loop |
| * for a while. |
| */ |
| curpeer->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000)); |
| peer_session_forceshutdown(curpeer); |
| curpeer->heartbeat = TICK_ETERNITY; |
| curpeer->coll++; |
| } |
| if (maj_ver != (unsigned int)-1 && min_ver != (unsigned int)-1) { |
| if (min_ver == PEER_DWNGRD_MINOR_VER) { |
| curpeer->flags |= PEER_F_DWNGRD; |
| } |
| else { |
| curpeer->flags &= ~PEER_F_DWNGRD; |
| } |
| } |
| curpeer->appctx = appctx; |
| curpeer->flags |= PEER_F_ALIVE; |
| appctx->ctx.peers.ptr = curpeer; |
| appctx->st0 = PEER_SESS_ST_SENDSUCCESS; |
| _HA_ATOMIC_INC(&active_peers); |
| } |
| /* fall through */ |
| case PEER_SESS_ST_SENDSUCCESS: { |
| prev_state = appctx->st0; |
| if (!curpeer) { |
| curpeer = appctx->ctx.peers.ptr; |
| HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock); |
| if (curpeer->appctx != appctx) { |
| appctx->st0 = PEER_SESS_ST_END; |
| goto switchstate; |
| } |
| } |
| |
| repl = peer_send_status_successmsg(appctx); |
| if (repl <= 0) { |
| if (repl == -1) |
| goto out; |
| goto switchstate; |
| } |
| |
| init_accepted_peer(curpeer, curpeers); |
| |
| /* switch to waiting message state */ |
| _HA_ATOMIC_INC(&connected_peers); |
| appctx->st0 = PEER_SESS_ST_WAITMSG; |
| goto switchstate; |
| } |
| case PEER_SESS_ST_CONNECT: { |
| prev_state = appctx->st0; |
| if (!curpeer) { |
| curpeer = appctx->ctx.peers.ptr; |
| HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock); |
| if (curpeer->appctx != appctx) { |
| appctx->st0 = PEER_SESS_ST_END; |
| goto switchstate; |
| } |
| } |
| |
| repl = peer_send_hellomsg(appctx, curpeer); |
| if (repl <= 0) { |
| if (repl == -1) |
| goto out; |
| goto switchstate; |
| } |
| |
| /* switch to the waiting statuscode state */ |
| appctx->st0 = PEER_SESS_ST_GETSTATUS; |
| } |
| /* fall through */ |
| case PEER_SESS_ST_GETSTATUS: { |
| prev_state = appctx->st0; |
| if (!curpeer) { |
| curpeer = appctx->ctx.peers.ptr; |
| HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock); |
| if (curpeer->appctx != appctx) { |
| appctx->st0 = PEER_SESS_ST_END; |
| goto switchstate; |
| } |
| } |
| |
| if (si_ic(si)->flags & CF_WRITE_PARTIAL) |
| curpeer->statuscode = PEER_SESS_SC_CONNECTEDCODE; |
| |
| reql = peer_getline(appctx); |
| if (!reql) |
| goto out; |
| |
| if (reql < 0) |
| goto switchstate; |
| |
| /* Register status code */ |
| curpeer->statuscode = atoi(trash.area); |
| curpeer->last_hdshk = now_ms; |
| |
| /* Awake main task */ |
| task_wakeup(curpeers->sync_task, TASK_WOKEN_MSG); |
| |
| /* If status code is success */ |
| if (curpeer->statuscode == PEER_SESS_SC_SUCCESSCODE) { |
| init_connected_peer(curpeer, curpeers); |
| } |
| else { |
| if (curpeer->statuscode == PEER_SESS_SC_ERRVERSION) |
| curpeer->flags |= PEER_F_DWNGRD; |
| /* Status code is not success, abort */ |
| appctx->st0 = PEER_SESS_ST_END; |
| goto switchstate; |
| } |
| _HA_ATOMIC_INC(&connected_peers); |
| appctx->st0 = PEER_SESS_ST_WAITMSG; |
| } |
| /* fall through */ |
| case PEER_SESS_ST_WAITMSG: { |
| uint32_t msg_len = 0; |
| char *msg_cur = trash.area; |
| char *msg_end = trash.area; |
| unsigned char msg_head[7]; // 2 + 5 for varint32 |
| int totl = 0; |
| |
| prev_state = appctx->st0; |
| if (!curpeer) { |
| curpeer = appctx->ctx.peers.ptr; |
| HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock); |
| if (curpeer->appctx != appctx) { |
| appctx->st0 = PEER_SESS_ST_END; |
| goto switchstate; |
| } |
| } |
| |
| reql = peer_recv_msg(appctx, (char *)msg_head, sizeof msg_head, &msg_len, &totl); |
| if (reql <= 0) { |
| if (reql == -1) |
| goto switchstate; |
| goto send_msgs; |
| } |
| |
| msg_end += msg_len; |
| if (!peer_treat_awaited_msg(appctx, curpeer, msg_head, &msg_cur, msg_end, msg_len, totl)) |
| goto switchstate; |
| |
| curpeer->flags |= PEER_F_ALIVE; |
| |
| /* skip consumed message */ |
| co_skip(si_oc(si), totl); |
| /* loop on that state to peek next message */ |
| goto switchstate; |
| |
| send_msgs: |
| if (curpeer->flags & PEER_F_HEARTBEAT) { |
| curpeer->flags &= ~PEER_F_HEARTBEAT; |
| repl = peer_send_heartbeatmsg(appctx, curpeer, curpeers); |
| if (repl <= 0) { |
| if (repl == -1) |
| goto out; |
| goto switchstate; |
| } |
| curpeer->tx_hbt++; |
| } |
| /* we get here when a peer_recv_msg() returns 0 in reql */ |
| repl = peer_send_msgs(appctx, curpeer, curpeers); |
| if (repl <= 0) { |
| if (repl == -1) |
| goto out; |
| goto switchstate; |
| } |
| |
| /* noting more to do */ |
| goto out; |
| } |
| case PEER_SESS_ST_EXIT: |
| if (prev_state == PEER_SESS_ST_WAITMSG) |
| _HA_ATOMIC_DEC(&connected_peers); |
| prev_state = appctx->st0; |
| if (peer_send_status_errormsg(appctx) == -1) |
| goto out; |
| appctx->st0 = PEER_SESS_ST_END; |
| goto switchstate; |
| case PEER_SESS_ST_ERRSIZE: { |
| if (prev_state == PEER_SESS_ST_WAITMSG) |
| _HA_ATOMIC_DEC(&connected_peers); |
| prev_state = appctx->st0; |
| if (peer_send_error_size_limitmsg(appctx) == -1) |
| goto out; |
| appctx->st0 = PEER_SESS_ST_END; |
| goto switchstate; |
| } |
| case PEER_SESS_ST_ERRPROTO: { |
| TRACE_PROTO("protocol error", PEERS_EV_PROTOERR, |
| NULL, curpeer, &prev_state); |
| if (curpeer) |
| curpeer->proto_err++; |
| if (prev_state == PEER_SESS_ST_WAITMSG) |
| _HA_ATOMIC_DEC(&connected_peers); |
| prev_state = appctx->st0; |
| if (peer_send_error_protomsg(appctx) == -1) { |
| TRACE_PROTO("could not send error message", PEERS_EV_PROTOERR); |
| goto out; |
| } |
| appctx->st0 = PEER_SESS_ST_END; |
| prev_state = appctx->st0; |
| } |
| /* fall through */ |
| case PEER_SESS_ST_END: { |
| if (prev_state == PEER_SESS_ST_WAITMSG) |
| _HA_ATOMIC_DEC(&connected_peers); |
| prev_state = appctx->st0; |
| if (curpeer) { |
| HA_SPIN_UNLOCK(PEER_LOCK, &curpeer->lock); |
| curpeer = NULL; |
| } |
| si_shutw(si); |
| si_shutr(si); |
| si_ic(si)->flags |= CF_READ_NULL; |
| goto out; |
| } |
| } |
| } |
| out: |
| si_oc(si)->flags |= CF_READ_DONTWAIT; |
| |
| if (curpeer) |
| HA_SPIN_UNLOCK(PEER_LOCK, &curpeer->lock); |
| return; |
| } |
| |
| static struct applet peer_applet = { |
| .obj_type = OBJ_TYPE_APPLET, |
| .name = "<PEER>", /* used for logging */ |
| .fct = peer_io_handler, |
| .release = peer_session_release, |
| }; |
| |
| |
| /* |
| * Use this function to force a close of a peer session |
| */ |
| static void peer_session_forceshutdown(struct peer *peer) |
| { |
| struct appctx *appctx = peer->appctx; |
| |
| /* Note that the peer sessions which have just been created |
| * (->st0 == PEER_SESS_ST_CONNECT) must not |
| * be shutdown, if not, the TCP session will never be closed |
| * and stay in CLOSE_WAIT state after having been closed by |
| * the remote side. |
| */ |
| if (!appctx || appctx->st0 == PEER_SESS_ST_CONNECT) |
| return; |
| |
| if (appctx->applet != &peer_applet) |
| return; |
| |
| __peer_session_deinit(peer); |
| |
| appctx->st0 = PEER_SESS_ST_END; |
| appctx_wakeup(appctx); |
| } |
| |
| /* Pre-configures a peers frontend to accept incoming connections */ |
| void peers_setup_frontend(struct proxy *fe) |
| { |
| fe->last_change = now.tv_sec; |
| fe->cap = PR_CAP_FE | PR_CAP_BE; |
| fe->mode = PR_MODE_PEERS; |
| fe->maxconn = 0; |
| fe->conn_retries = CONN_RETRIES; |
| fe->timeout.client = MS_TO_TICKS(5000); |
| fe->accept = frontend_accept; |
| fe->default_target = &peer_applet.obj_type; |
| fe->options2 |= PR_O2_INDEPSTR | PR_O2_SMARTCON | PR_O2_SMARTACC; |
| } |
| |
| /* |
| * Create a new peer session in assigned state (connect will start automatically) |
| */ |
| static struct appctx *peer_session_create(struct peers *peers, struct peer *peer) |
| { |
| struct proxy *p = peers->peers_fe; /* attached frontend */ |
| struct appctx *appctx; |
| struct session *sess; |
| struct conn_stream *cs; |
| struct stream *s; |
| struct sockaddr_storage *addr = NULL; |
| |
| peer->new_conn++; |
| peer->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT)); |
| peer->heartbeat = TICK_ETERNITY; |
| peer->statuscode = PEER_SESS_SC_CONNECTCODE; |
| peer->last_hdshk = now_ms; |
| s = NULL; |
| |
| appctx = appctx_new(&peer_applet, NULL); |
| if (!appctx) |
| goto out_close; |
| |
| appctx->st0 = PEER_SESS_ST_CONNECT; |
| appctx->ctx.peers.ptr = (void *)peer; |
| |
| sess = session_new(p, NULL, &appctx->obj_type); |
| if (!sess) { |
| ha_alert("out of memory in peer_session_create().\n"); |
| goto out_free_appctx; |
| } |
| |
| if (!sockaddr_alloc(&addr, &peer->addr, sizeof(peer->addr))) |
| goto out_free_sess; |
| |
| cs = cs_new_from_applet(appctx->endp, sess, &BUF_NULL); |
| if (!cs) { |
| ha_alert("Failed to initialize stream in peer_session_create().\n"); |
| goto out_free_addr; |
| } |
| |
| s = DISGUISE(cs_strm(cs)); |
| |
| /* applet is waiting for data */ |
| si_cant_get(cs_si(s->csf)); |
| appctx_wakeup(appctx); |
| |
| /* initiate an outgoing connection */ |
| cs_si(s->csb)->dst = addr; |
| cs_si(s->csb)->flags |= SI_FL_NOLINGER; |
| s->flags = SF_ASSIGNED|SF_ADDR_SET; |
| s->target = peer_session_target(peer, s); |
| |
| s->do_log = NULL; |
| s->uniq_id = 0; |
| |
| s->res.flags |= CF_READ_DONTWAIT; |
| |
| peer->appctx = appctx; |
| _HA_ATOMIC_INC(&active_peers); |
| return appctx; |
| |
| /* Error unrolling */ |
| out_free_addr: |
| sockaddr_free(&addr); |
| out_free_sess: |
| session_free(sess); |
| out_free_appctx: |
| appctx_free(appctx); |
| out_close: |
| return NULL; |
| } |
| |
| /* |
| * Task processing function to manage re-connect, peer session |
| * tasks wakeup on local update and heartbeat. Let's keep it exported so that it |
| * resolves in stack traces and "show tasks". |
| */ |
| struct task *process_peer_sync(struct task * task, void *context, unsigned int state) |
| { |
| struct peers *peers = context; |
| struct peer *ps; |
| struct shared_table *st; |
| |
| task->expire = TICK_ETERNITY; |
| |
| if (!peers->peers_fe) { |
| /* this one was never started, kill it */ |
| signal_unregister_handler(peers->sighandler); |
| task_destroy(peers->sync_task); |
| peers->sync_task = NULL; |
| return NULL; |
| } |
| |
| /* Acquire lock for all peers of the section */ |
| for (ps = peers->remote; ps; ps = ps->next) |
| HA_SPIN_LOCK(PEER_LOCK, &ps->lock); |
| |
| if (!stopping) { |
| /* Normal case (not soft stop)*/ |
| |
| /* resync timeout set to TICK_ETERNITY means we just start |
| * a new process and timer was not initialized. |
| * We must arm this timer to switch to a request to a remote |
| * node if incoming connection from old local process never |
| * comes. |
| */ |
| if (peers->resync_timeout == TICK_ETERNITY) |
| peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT)); |
| |
| if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMLOCAL) && |
| (!nb_oldpids || tick_is_expired(peers->resync_timeout, now_ms)) && |
| !(peers->flags & PEERS_F_RESYNC_ASSIGN)) { |
| /* Resync from local peer needed |
| no peer was assigned for the lesson |
| and no old local peer found |
| or resync timeout expire */ |
| |
| /* flag no more resync from local, to try resync from remotes */ |
| peers->flags |= PEERS_F_RESYNC_LOCAL; |
| peers->flags |= PEERS_F_RESYNC_LOCALTIMEOUT; |
| |
| /* reschedule a resync */ |
| peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT)); |
| } |
| |
| /* For each session */ |
| for (ps = peers->remote; ps; ps = ps->next) { |
| /* For each remote peers */ |
| if (!ps->local) { |
| if (!ps->appctx) { |
| /* no active peer connection */ |
| if (ps->statuscode == 0 || |
| ((ps->statuscode == PEER_SESS_SC_CONNECTCODE || |
| ps->statuscode == PEER_SESS_SC_SUCCESSCODE || |
| ps->statuscode == PEER_SESS_SC_CONNECTEDCODE) && |
| tick_is_expired(ps->reconnect, now_ms))) { |
| /* connection never tried |
| * or previous peer connection established with success |
| * or previous peer connection failed while connecting |
| * and reconnection timer is expired */ |
| |
| /* retry a connect */ |
| ps->appctx = peer_session_create(peers, ps); |
| } |
| else if (!tick_is_expired(ps->reconnect, now_ms)) { |
| /* If previous session failed during connection |
| * but reconnection timer is not expired */ |
| |
| /* reschedule task for reconnect */ |
| task->expire = tick_first(task->expire, ps->reconnect); |
| } |
| /* else do nothing */ |
| } /* !ps->appctx */ |
| else if (ps->statuscode == PEER_SESS_SC_SUCCESSCODE) { |
| /* current peer connection is active and established */ |
| if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE) && |
| !(peers->flags & PEERS_F_RESYNC_ASSIGN) && |
| !(ps->flags & PEER_F_LEARN_NOTUP2DATE)) { |
| /* Resync from a remote is needed |
| * and no peer was assigned for lesson |
| * and current peer may be up2date */ |
| |
| /* assign peer for the lesson */ |
| ps->flags |= PEER_F_LEARN_ASSIGN; |
| peers->flags |= PEERS_F_RESYNC_ASSIGN; |
| peers->flags |= PEERS_F_RESYNC_REMOTEASSIGN; |
| |
| /* wake up peer handler to handle a request of resync */ |
| appctx_wakeup(ps->appctx); |
| } |
| else { |
| int update_to_push = 0; |
| |
| /* Awake session if there is data to push */ |
| for (st = ps->tables; st ; st = st->next) { |
| if (st->last_pushed != st->table->localupdate) { |
| /* wake up the peer handler to push local updates */ |
| update_to_push = 1; |
| /* There is no need to send a heartbeat message |
| * when some updates must be pushed. The remote |
| * peer will consider <ps> peer as alive when it will |
| * receive these updates. |
| */ |
| ps->flags &= ~PEER_F_HEARTBEAT; |
| /* Re-schedule another one later. */ |
| ps->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT)); |
| /* We are going to send updates, let's ensure we will |
| * come back to send heartbeat messages or to reconnect. |
| */ |
| task->expire = tick_first(ps->reconnect, ps->heartbeat); |
| appctx_wakeup(ps->appctx); |
| break; |
| } |
| } |
| /* When there are updates to send we do not reconnect |
| * and do not send heartbeat message either. |
| */ |
| if (!update_to_push) { |
| if (tick_is_expired(ps->reconnect, now_ms)) { |
| if (ps->flags & PEER_F_ALIVE) { |
| /* This peer was alive during a 'reconnect' period. |
| * Flag it as not alive again for the next period. |
| */ |
| ps->flags &= ~PEER_F_ALIVE; |
| ps->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT)); |
| } |
| else { |
| ps->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000)); |
| ps->heartbeat = TICK_ETERNITY; |
| peer_session_forceshutdown(ps); |
| ps->no_hbt++; |
| } |
| } |
| else if (tick_is_expired(ps->heartbeat, now_ms)) { |
| ps->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT)); |
| ps->flags |= PEER_F_HEARTBEAT; |
| appctx_wakeup(ps->appctx); |
| } |
| task->expire = tick_first(ps->reconnect, ps->heartbeat); |
| } |
| } |
| /* else do nothing */ |
| } /* SUCCESSCODE */ |
| } /* !ps->peer->local */ |
| } /* for */ |
| |
| /* Resync from remotes expired: consider resync is finished */ |
| if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE) && |
| !(peers->flags & PEERS_F_RESYNC_ASSIGN) && |
| tick_is_expired(peers->resync_timeout, now_ms)) { |
| /* Resync from remote peer needed |
| * no peer was assigned for the lesson |
| * and resync timeout expire */ |
| |
| /* flag no more resync from remote, consider resync is finished */ |
| peers->flags |= PEERS_F_RESYNC_REMOTE; |
| peers->flags |= PEERS_F_RESYNC_REMOTETIMEOUT; |
| } |
| |
| if ((peers->flags & PEERS_RESYNC_STATEMASK) != PEERS_RESYNC_FINISHED) { |
| /* Resync not finished*/ |
| /* reschedule task to resync timeout if not expired, to ended resync if needed */ |
| if (!tick_is_expired(peers->resync_timeout, now_ms)) |
| task->expire = tick_first(task->expire, peers->resync_timeout); |
| } |
| } /* !stopping */ |
| else { |
| /* soft stop case */ |
| if (state & TASK_WOKEN_SIGNAL) { |
| /* We've just received the signal */ |
| if (!(peers->flags & PEERS_F_DONOTSTOP)) { |
| /* add DO NOT STOP flag if not present */ |
| _HA_ATOMIC_INC(&jobs); |
| peers->flags |= PEERS_F_DONOTSTOP; |
| |
| /* disconnect all connected peers to process a local sync |
| * this must be done only the first time we are switching |
| * in stopping state |
| */ |
| for (ps = peers->remote; ps; ps = ps->next) { |
| /* we're killing a connection, we must apply a random delay before |
| * retrying otherwise the other end will do the same and we can loop |
| * for a while. |
| */ |
| ps->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000)); |
| if (ps->appctx) { |
| peer_session_forceshutdown(ps); |
| } |
| } |
| } |
| } |
| |
| ps = peers->local; |
| if (ps->flags & PEER_F_TEACH_COMPLETE) { |
| if (peers->flags & PEERS_F_DONOTSTOP) { |
| /* resync of new process was complete, current process can die now */ |
| _HA_ATOMIC_DEC(&jobs); |
| peers->flags &= ~PEERS_F_DONOTSTOP; |
| for (st = ps->tables; st ; st = st->next) |
| HA_ATOMIC_DEC(&st->table->refcnt); |
| } |
| } |
| else if (!ps->appctx) { |
| /* If there's no active peer connection */ |
| if (ps->statuscode == 0 || |
| ps->statuscode == PEER_SESS_SC_SUCCESSCODE || |
| ps->statuscode == PEER_SESS_SC_CONNECTEDCODE || |
| ps->statuscode == PEER_SESS_SC_TRYAGAIN) { |
| /* connection never tried |
| * or previous peer connection was successfully established |
| * or previous tcp connect succeeded but init state incomplete |
| * or during previous connect, peer replies a try again statuscode */ |
| |
| /* connect to the local peer if we must push a local sync */ |
| if (peers->flags & PEERS_F_DONOTSTOP) { |
| peer_session_create(peers, ps); |
| } |
| } |
| else { |
| /* Other error cases */ |
| if (peers->flags & PEERS_F_DONOTSTOP) { |
| /* unable to resync new process, current process can die now */ |
| _HA_ATOMIC_DEC(&jobs); |
| peers->flags &= ~PEERS_F_DONOTSTOP; |
| for (st = ps->tables; st ; st = st->next) |
| HA_ATOMIC_DEC(&st->table->refcnt); |
| } |
| } |
| } |
| else if (ps->statuscode == PEER_SESS_SC_SUCCESSCODE ) { |
| /* current peer connection is active and established |
| * wake up all peer handlers to push remaining local updates */ |
| for (st = ps->tables; st ; st = st->next) { |
| if (st->last_pushed != st->table->localupdate) { |
| appctx_wakeup(ps->appctx); |
| break; |
| } |
| } |
| } |
| } /* stopping */ |
| |
| /* Release lock for all peers of the section */ |
| for (ps = peers->remote; ps; ps = ps->next) |
| HA_SPIN_UNLOCK(PEER_LOCK, &ps->lock); |
| |
| /* Wakeup for re-connect */ |
| return task; |
| } |
| |
| |
| /* |
| * returns 0 in case of error. |
| */ |
| int peers_init_sync(struct peers *peers) |
| { |
| struct peer * curpeer; |
| |
| for (curpeer = peers->remote; curpeer; curpeer = curpeer->next) { |
| peers->peers_fe->maxconn += 3; |
| } |
| |
| peers->sync_task = task_new_anywhere(); |
| if (!peers->sync_task) |
| return 0; |
| |
| peers->sync_task->process = process_peer_sync; |
| peers->sync_task->context = (void *)peers; |
| peers->sighandler = signal_register_task(0, peers->sync_task, 0); |
| task_wakeup(peers->sync_task, TASK_WOKEN_INIT); |
| return 1; |
| } |
| |
| /* |
| * Allocate a cache a dictionary entries used upon transmission. |
| */ |
| static struct dcache_tx *new_dcache_tx(size_t max_entries) |
| { |
| struct dcache_tx *d; |
| struct ebpt_node *entries; |
| |
| d = malloc(sizeof *d); |
| entries = calloc(max_entries, sizeof *entries); |
| if (!d || !entries) |
| goto err; |
| |
| d->lru_key = 0; |
| d->prev_lookup = NULL; |
| d->cached_entries = EB_ROOT_UNIQUE; |
| d->entries = entries; |
| |
| return d; |
| |
| err: |
| free(d); |
| free(entries); |
| return NULL; |
| } |
| |
| /* |
| * Allocate a cache of dictionary entries with <name> as name and <max_entries> |
| * as maximum of entries. |
| * Return the dictionary cache if succeeded, NULL if not. |
| * Must be deallocated calling free_dcache(). |
| */ |
| static struct dcache *new_dcache(size_t max_entries) |
| { |
| struct dcache_tx *dc_tx; |
| struct dcache *dc; |
| struct dcache_rx *dc_rx; |
| |
| dc = calloc(1, sizeof *dc); |
| dc_tx = new_dcache_tx(max_entries); |
| dc_rx = calloc(max_entries, sizeof *dc_rx); |
| if (!dc || !dc_tx || !dc_rx) |
| goto err; |
| |
| dc->tx = dc_tx; |
| dc->rx = dc_rx; |
| dc->max_entries = max_entries; |
| |
| return dc; |
| |
| err: |
| free(dc); |
| free(dc_tx); |
| free(dc_rx); |
| return NULL; |
| } |
| |
| /* |
| * Look for the dictionary entry with the value of <i> in <d> cache of dictionary |
| * entries used upon transmission. |
| * Return the entry if found, NULL if not. |
| */ |
| static struct ebpt_node *dcache_tx_lookup_value(struct dcache_tx *d, |
| struct dcache_tx_entry *i) |
| { |
| return ebpt_lookup(&d->cached_entries, i->entry.key); |
| } |
| |
| /* |
| * Flush <dc> cache. |
| * Always succeeds. |
| */ |
| static inline void flush_dcache(struct peer *peer) |
| { |
| int i; |
| struct dcache *dc = peer->dcache; |
| |
| for (i = 0; i < dc->max_entries; i++) { |
| ebpt_delete(&dc->tx->entries[i]); |
| dc->tx->entries[i].key = NULL; |
| dict_entry_unref(&server_key_dict, dc->rx[i].de); |
| dc->rx[i].de = NULL; |
| } |
| dc->tx->prev_lookup = NULL; |
| dc->tx->lru_key = 0; |
| |
| memset(dc->rx, 0, dc->max_entries * sizeof *dc->rx); |
| } |
| |
| /* |
| * Insert a dictionary entry in <dc> cache part used upon transmission (->tx) |
| * with information provided by <i> dictionary cache entry (especially the value |
| * to be inserted if not already). Return <i> if already present in the cache |
| * or something different of <i> if not. |
| */ |
| static struct ebpt_node *dcache_tx_insert(struct dcache *dc, struct dcache_tx_entry *i) |
| { |
| struct dcache_tx *dc_tx; |
| struct ebpt_node *o; |
| |
| dc_tx = dc->tx; |
| |
| if (dc_tx->prev_lookup && dc_tx->prev_lookup->key == i->entry.key) { |
| o = dc_tx->prev_lookup; |
| } else { |
| o = dcache_tx_lookup_value(dc_tx, i); |
| if (o) { |
| /* Save it */ |
| dc_tx->prev_lookup = o; |
| } |
| } |
| |
| if (o) { |
| /* Copy the ID. */ |
| i->id = o - dc->tx->entries; |
| return &i->entry; |
| } |
| |
| /* The new entry to put in cache */ |
| dc_tx->prev_lookup = o = &dc_tx->entries[dc_tx->lru_key]; |
| |
| ebpt_delete(o); |
| o->key = i->entry.key; |
| ebpt_insert(&dc_tx->cached_entries, o); |
| i->id = dc_tx->lru_key; |
| |
| /* Update the index for the next entry to put in cache */ |
| dc_tx->lru_key = (dc_tx->lru_key + 1) & (dc->max_entries - 1); |
| |
| return o; |
| } |
| |
| /* |
| * Allocate a dictionary cache for each peer of <peers> section. |
| * Return 1 if succeeded, 0 if not. |
| */ |
| int peers_alloc_dcache(struct peers *peers) |
| { |
| struct peer *p; |
| |
| for (p = peers->remote; p; p = p->next) { |
| p->dcache = new_dcache(PEER_STKT_CACHE_MAX_ENTRIES); |
| if (!p->dcache) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Function used to register a table for sync on a group of peers |
| * Returns 0 in case of success. |
| */ |
| int peers_register_table(struct peers *peers, struct stktable *table) |
| { |
| struct shared_table *st; |
| struct peer * curpeer; |
| int id = 0; |
| int retval = 0; |
| |
| for (curpeer = peers->remote; curpeer; curpeer = curpeer->next) { |
| st = calloc(1,sizeof(*st)); |
| if (!st) { |
| retval = 1; |
| break; |
| } |
| st->table = table; |
| st->next = curpeer->tables; |
| if (curpeer->tables) |
| id = curpeer->tables->local_id; |
| st->local_id = id + 1; |
| |
| /* If peer is local we inc table |
| * refcnt to protect against flush |
| * until this process pushed all |
| * table content to the new one |
| */ |
| if (curpeer->local) |
| HA_ATOMIC_INC(&st->table->refcnt); |
| curpeer->tables = st; |
| } |
| |
| table->sync_task = peers->sync_task; |
| |
| return retval; |
| } |
| |
| /* |
| * Parse the "show peers" command arguments. |
| * Returns 0 if succeeded, 1 if not with the ->msg of the appctx set as |
| * error message. |
| */ |
| static int cli_parse_show_peers(char **args, char *payload, struct appctx *appctx, void *private) |
| { |
| appctx->ctx.cfgpeers.target = NULL; |
| |
| if (strcmp(args[2], "dict") == 0) { |
| /* show the dictionaries (large dump) */ |
| appctx->ctx.cfgpeers.flags |= PEERS_SHOW_F_DICT; |
| args++; |
| } else if (strcmp(args[2], "-") == 0) |
| args++; // allows to show a section called "dict" |
| |
| if (*args[2]) { |
| struct peers *p; |
| |
| for (p = cfg_peers; p; p = p->next) { |
| if (strcmp(p->id, args[2]) == 0) { |
| appctx->ctx.cfgpeers.target = p; |
| break; |
| } |
| } |
| |
| if (!p) |
| return cli_err(appctx, "No such peers\n"); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This function dumps the peer state information of <peers> "peers" section. |
| * Returns 0 if the output buffer is full and needs to be called again, non-zero if not. |
| * Dedicated to be called by cli_io_handler_show_peers() cli I/O handler. |
| */ |
| static int peers_dump_head(struct buffer *msg, struct stream_interface *si, struct peers *peers) |
| { |
| struct tm tm; |
| |
| get_localtime(peers->last_change, &tm); |
| chunk_appendf(msg, "%p: [%02d/%s/%04d:%02d:%02d:%02d] id=%s disabled=%d flags=0x%x resync_timeout=%s task_calls=%u\n", |
| peers, |
| tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900, |
| tm.tm_hour, tm.tm_min, tm.tm_sec, |
| peers->id, peers->disabled, peers->flags, |
| peers->resync_timeout ? |
| tick_is_expired(peers->resync_timeout, now_ms) ? "<PAST>" : |
| human_time(TICKS_TO_MS(peers->resync_timeout - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>", |
| peers->sync_task ? peers->sync_task->calls : 0); |
| |
| if (ci_putchk(si_ic(si), msg) == -1) { |
| si_rx_room_blk(si); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * This function dumps <peer> state information. |
| * Returns 0 if the output buffer is full and needs to be called again, non-zero |
| * if not. Dedicated to be called by cli_io_handler_show_peers() cli I/O handler. |
| */ |
| static int peers_dump_peer(struct buffer *msg, struct stream_interface *si, struct peer *peer, int flags) |
| { |
| struct connection *conn; |
| char pn[INET6_ADDRSTRLEN]; |
| struct stream_interface *peer_si; |
| struct stream *peer_s; |
| struct appctx *appctx; |
| struct shared_table *st; |
| |
| addr_to_str(&peer->addr, pn, sizeof pn); |
| chunk_appendf(msg, " %p: id=%s(%s,%s) addr=%s:%d last_status=%s", |
| peer, peer->id, |
| peer->local ? "local" : "remote", |
| peer->appctx ? "active" : "inactive", |
| pn, get_host_port(&peer->addr), |
| statuscode_str(peer->statuscode)); |
| |
| chunk_appendf(msg, " last_hdshk=%s\n", |
| peer->last_hdshk ? human_time(TICKS_TO_MS(now_ms - peer->last_hdshk), |
| TICKS_TO_MS(1000)) : "<NEVER>"); |
| |
| chunk_appendf(msg, " reconnect=%s", |
| peer->reconnect ? |
| tick_is_expired(peer->reconnect, now_ms) ? "<PAST>" : |
| human_time(TICKS_TO_MS(peer->reconnect - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>"); |
| |
| chunk_appendf(msg, " heartbeat=%s", |
| peer->heartbeat ? |
| tick_is_expired(peer->heartbeat, now_ms) ? "<PAST>" : |
| human_time(TICKS_TO_MS(peer->heartbeat - now_ms), |
| TICKS_TO_MS(1000)) : "<NEVER>"); |
| |
| chunk_appendf(msg, " confirm=%u tx_hbt=%u rx_hbt=%u no_hbt=%u new_conn=%u proto_err=%u coll=%u\n", |
| peer->confirm, peer->tx_hbt, peer->rx_hbt, |
| peer->no_hbt, peer->new_conn, peer->proto_err, peer->coll); |
| |
| chunk_appendf(&trash, " flags=0x%x", peer->flags); |
| |
| appctx = peer->appctx; |
| if (!appctx) |
| goto table_info; |
| |
| chunk_appendf(&trash, " appctx:%p st0=%d st1=%d task_calls=%u", appctx, appctx->st0, appctx->st1, |
| appctx->t ? appctx->t->calls : 0); |
| |
| peer_si = cs_si(peer->appctx->owner); |
| if (!peer_si) |
| goto table_info; |
| |
| peer_s = si_strm(peer_si); |
| if (!peer_s) |
| goto table_info; |
| |
| chunk_appendf(&trash, " state=%s", si_state_str(si_opposite(peer_si)->state)); |
| |
| conn = objt_conn(strm_orig(peer_s)); |
| if (conn) |
| chunk_appendf(&trash, "\n xprt=%s", conn_get_xprt_name(conn)); |
| |
| switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) { |
| case AF_INET: |
| case AF_INET6: |
| chunk_appendf(&trash, " src=%s:%d", pn, get_host_port(conn->src)); |
| break; |
| case AF_UNIX: |
| chunk_appendf(&trash, " src=unix:%d", strm_li(peer_s)->luid); |
| break; |
| } |
| |
| switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) { |
| case AF_INET: |
| case AF_INET6: |
| chunk_appendf(&trash, " addr=%s:%d", pn, get_host_port(conn->dst)); |
| break; |
| case AF_UNIX: |
| chunk_appendf(&trash, " addr=unix:%d", strm_li(peer_s)->luid); |
| break; |
| } |
| |
| table_info: |
| if (peer->remote_table) |
| chunk_appendf(&trash, "\n remote_table:%p id=%s local_id=%d remote_id=%d", |
| peer->remote_table, |
| peer->remote_table->table->id, |
| peer->remote_table->local_id, |
| peer->remote_table->remote_id); |
| |
| if (peer->last_local_table) |
| chunk_appendf(&trash, "\n last_local_table:%p id=%s local_id=%d remote_id=%d", |
| peer->last_local_table, |
| peer->last_local_table->table->id, |
| peer->last_local_table->local_id, |
| peer->last_local_table->remote_id); |
| |
| if (peer->tables) { |
| chunk_appendf(&trash, "\n shared tables:"); |
| for (st = peer->tables; st; st = st->next) { |
| int i, count; |
| struct stktable *t; |
| struct dcache *dcache; |
| |
| t = st->table; |
| dcache = peer->dcache; |
| |
| chunk_appendf(&trash, "\n %p local_id=%d remote_id=%d " |
| "flags=0x%x remote_data=0x%llx", |
| st, st->local_id, st->remote_id, |
| st->flags, (unsigned long long)st->remote_data); |
| chunk_appendf(&trash, "\n last_acked=%u last_pushed=%u last_get=%u" |
| " teaching_origin=%u update=%u", |
| st->last_acked, st->last_pushed, st->last_get, |
| st->teaching_origin, st->update); |
| chunk_appendf(&trash, "\n table:%p id=%s update=%u localupdate=%u" |
| " commitupdate=%u refcnt=%u", |
| t, t->id, t->update, t->localupdate, t->commitupdate, t->refcnt); |
| if (flags & PEERS_SHOW_F_DICT) { |
| chunk_appendf(&trash, "\n TX dictionary cache:"); |
| count = 0; |
| for (i = 0; i < dcache->max_entries; i++) { |
| struct ebpt_node *node; |
| struct dict_entry *de; |
| |
| node = &dcache->tx->entries[i]; |
| if (!node->key) |
| break; |
| |
| if (!count++) |
| chunk_appendf(&trash, "\n "); |
| de = node->key; |
| chunk_appendf(&trash, " %3u -> %s", i, (char *)de->value.key); |
| count &= 0x3; |
| } |
| chunk_appendf(&trash, "\n RX dictionary cache:"); |
| count = 0; |
| for (i = 0; i < dcache->max_entries; i++) { |
| if (!count++) |
| chunk_appendf(&trash, "\n "); |
| chunk_appendf(&trash, " %3u -> %s", i, |
| dcache->rx[i].de ? |
| (char *)dcache->rx[i].de->value.key : "-"); |
| count &= 0x3; |
| } |
| } else { |
| chunk_appendf(&trash, "\n Dictionary cache not dumped (use \"show peers dict\")"); |
| } |
| } |
| } |
| |
| end: |
| chunk_appendf(&trash, "\n"); |
| if (ci_putchk(si_ic(si), msg) == -1) { |
| si_rx_room_blk(si); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * This function dumps all the peers of "peers" section. |
| * Returns 0 if the output buffer is full and needs to be called |
| * again, non-zero if not. It proceeds in an isolated thread, so |
| * there is no thread safety issue here. |
| */ |
| static int cli_io_handler_show_peers(struct appctx *appctx) |
| { |
| int show_all; |
| int ret = 0, first_peers = 1; |
| struct stream_interface *si = cs_si(appctx->owner); |
| |
| thread_isolate(); |
| |
| show_all = !appctx->ctx.cfgpeers.target; |
| |
| chunk_reset(&trash); |
| |
| while (appctx->st2 != STAT_ST_FIN) { |
| switch (appctx->st2) { |
| case STAT_ST_INIT: |
| if (show_all) |
| appctx->ctx.cfgpeers.peers = cfg_peers; |
| else |
| appctx->ctx.cfgpeers.peers = appctx->ctx.cfgpeers.target; |
| |
| appctx->st2 = STAT_ST_LIST; |
| /* fall through */ |
| |
| case STAT_ST_LIST: |
| if (!appctx->ctx.cfgpeers.peers) { |
| /* No more peers list. */ |
| appctx->st2 = STAT_ST_END; |
| } |
| else { |
| if (!first_peers) |
| chunk_appendf(&trash, "\n"); |
| else |
| first_peers = 0; |
| if (!peers_dump_head(&trash, si, appctx->ctx.cfgpeers.peers)) |
| goto out; |
| |
| appctx->ctx.cfgpeers.peer = appctx->ctx.cfgpeers.peers->remote; |
| appctx->ctx.cfgpeers.peers = appctx->ctx.cfgpeers.peers->next; |
| appctx->st2 = STAT_ST_INFO; |
| } |
| break; |
| |
| case STAT_ST_INFO: |
| if (!appctx->ctx.cfgpeers.peer) { |
| /* End of peer list */ |
| if (show_all) |
| appctx->st2 = STAT_ST_LIST; |
| else |
| appctx->st2 = STAT_ST_END; |
| } |
| else { |
| if (!peers_dump_peer(&trash, si, appctx->ctx.cfgpeers.peer, appctx->ctx.cfgpeers.flags)) |
| goto out; |
| |
| appctx->ctx.cfgpeers.peer = appctx->ctx.cfgpeers.peer->next; |
| } |
| break; |
| |
| case STAT_ST_END: |
| appctx->st2 = STAT_ST_FIN; |
| break; |
| } |
| } |
| ret = 1; |
| out: |
| thread_release(); |
| return ret; |
| } |
| |
| /* |
| * CLI keywords. |
| */ |
| static struct cli_kw_list cli_kws = {{ }, { |
| { { "show", "peers", NULL }, "show peers [dict|-] [section] : dump some information about all the peers or this peers section", cli_parse_show_peers, cli_io_handler_show_peers, }, |
| {}, |
| }}; |
| |
| /* Register cli keywords */ |
| INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws); |