| /* |
| * Stream filters related variables and functions. |
| * |
| * Copyright (C) 2015 Qualys Inc., Christopher Faulet <cfaulet@qualys.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <common/buffer.h> |
| #include <common/debug.h> |
| #include <common/cfgparse.h> |
| #include <common/compat.h> |
| #include <common/config.h> |
| #include <common/errors.h> |
| #include <common/namespace.h> |
| #include <common/standard.h> |
| |
| #include <types/filters.h> |
| #include <types/proto_http.h> |
| |
| #include <proto/compression.h> |
| #include <proto/filters.h> |
| #include <proto/flt_http_comp.h> |
| #include <proto/proto_http.h> |
| #include <proto/stream.h> |
| #include <proto/stream_interface.h> |
| |
| /* Pool used to allocate filters */ |
| struct pool_head *pool2_filter = NULL; |
| |
| static int handle_analyzer_result(struct stream *s, struct channel *chn, unsigned int an_bit, int ret); |
| |
| /* - RESUME_FILTER_LOOP and RESUME_FILTER_END must always be used together. |
| * The first one begins a loop and the seconds one ends it. |
| * |
| * - BREAK_EXECUTION must be used to break the loop and set the filter from |
| * which to resume the next time. |
| * |
| * Here is an exemple: |
| * |
| * RESUME_FILTER_LOOP(stream, channel) { |
| * ... |
| * if (cond) |
| * BREAK_EXECUTION(stream, channel, label); |
| * ... |
| * } RESUME_FILTER_END; |
| * ... |
| * label: |
| * ... |
| * |
| */ |
| #define RESUME_FILTER_LOOP(strm, chn) \ |
| do { \ |
| struct filter *filter; \ |
| \ |
| if (strm_flt(strm)->current[CHN_IDX(chn)]) { \ |
| filter = strm_flt(strm)->current[CHN_IDX(chn)]; \ |
| strm_flt(strm)->current[CHN_IDX(chn)] = NULL; \ |
| goto resume_execution; \ |
| } \ |
| \ |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { \ |
| resume_execution: |
| |
| #define RESUME_FILTER_END \ |
| } \ |
| } while(0) |
| |
| #define BREAK_EXECUTION(strm, chn, label) \ |
| do { \ |
| strm_flt(strm)->current[CHN_IDX(chn)] = filter; \ |
| goto label; \ |
| } while (0) |
| |
| |
| /* List head of all known filter keywords */ |
| static struct flt_kw_list flt_keywords = { |
| .list = LIST_HEAD_INIT(flt_keywords.list) |
| }; |
| |
| /* |
| * Registers the filter keyword list <kwl> as a list of valid keywords for next |
| * parsing sessions. |
| */ |
| void |
| flt_register_keywords(struct flt_kw_list *kwl) |
| { |
| LIST_ADDQ(&flt_keywords.list, &kwl->list); |
| } |
| |
| /* |
| * Returns a pointer to the filter keyword <kw>, or NULL if not found. If the |
| * keyword is found with a NULL ->parse() function, then an attempt is made to |
| * find one with a valid ->parse() function. This way it is possible to declare |
| * platform-dependant, known keywords as NULL, then only declare them as valid |
| * if some options are met. Note that if the requested keyword contains an |
| * opening parenthesis, everything from this point is ignored. |
| */ |
| struct flt_kw * |
| flt_find_kw(const char *kw) |
| { |
| int index; |
| const char *kwend; |
| struct flt_kw_list *kwl; |
| struct flt_kw *ret = NULL; |
| |
| kwend = strchr(kw, '('); |
| if (!kwend) |
| kwend = kw + strlen(kw); |
| |
| list_for_each_entry(kwl, &flt_keywords.list, list) { |
| for (index = 0; kwl->kw[index].kw != NULL; index++) { |
| if ((strncmp(kwl->kw[index].kw, kw, kwend - kw) == 0) && |
| kwl->kw[index].kw[kwend-kw] == 0) { |
| if (kwl->kw[index].parse) |
| return &kwl->kw[index]; /* found it !*/ |
| else |
| ret = &kwl->kw[index]; /* may be OK */ |
| } |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * Dumps all registered "filter" keywords to the <out> string pointer. The |
| * unsupported keywords are only dumped if their supported form was not found. |
| */ |
| void |
| flt_dump_kws(char **out) |
| { |
| struct flt_kw_list *kwl; |
| int index; |
| |
| *out = NULL; |
| list_for_each_entry(kwl, &flt_keywords.list, list) { |
| for (index = 0; kwl->kw[index].kw != NULL; index++) { |
| if (kwl->kw[index].parse || |
| flt_find_kw(kwl->kw[index].kw) == &kwl->kw[index]) { |
| memprintf(out, "%s[%4s] %s%s\n", *out ? *out : "", |
| kwl->scope, |
| kwl->kw[index].kw, |
| kwl->kw[index].parse ? "" : " (not supported)"); |
| } |
| } |
| } |
| } |
| |
| /* |
| * Parses the "filter" keyword. All keywords must be handled by filters |
| * themselves |
| */ |
| static int |
| parse_filter(char **args, int section_type, struct proxy *curpx, |
| struct proxy *defpx, const char *file, int line, char **err) |
| { |
| struct flt_conf *fconf = NULL; |
| |
| /* Filter cannot be defined on a default proxy */ |
| if (curpx == defpx) { |
| memprintf(err, "parsing [%s:%d] : %s is only allowed in a 'default' section.", |
| file, line, args[0]); |
| return -1; |
| } |
| if (!strcmp(args[0], "filter")) { |
| struct flt_kw *kw; |
| int cur_arg; |
| |
| if (!*args[1]) { |
| memprintf(err, |
| "parsing [%s:%d] : missing argument for '%s' in %s '%s'.", |
| file, line, args[0], proxy_type_str(curpx), curpx->id); |
| goto error; |
| } |
| fconf = calloc(1, sizeof(*fconf)); |
| if (!fconf) { |
| memprintf(err, "'%s' : out of memory", args[0]); |
| goto error; |
| } |
| |
| cur_arg = 1; |
| kw = flt_find_kw(args[cur_arg]); |
| if (kw) { |
| if (!kw->parse) { |
| memprintf(err, "parsing [%s:%d] : '%s' : " |
| "'%s' option is not implemented in this version (check build options).", |
| file, line, args[0], args[cur_arg]); |
| goto error; |
| } |
| if (kw->parse(args, &cur_arg, curpx, fconf, err) != 0) { |
| if (err && *err) |
| memprintf(err, "'%s' : '%s'", |
| args[0], *err); |
| else |
| memprintf(err, "'%s' : error encountered while processing '%s'", |
| args[0], args[cur_arg]); |
| goto error; |
| } |
| } |
| else { |
| flt_dump_kws(err); |
| indent_msg(err, 4); |
| memprintf(err, "'%s' : unknown keyword '%s'.%s%s", |
| args[0], args[cur_arg], |
| err && *err ? " Registered keywords :" : "", err && *err ? *err : ""); |
| goto error; |
| } |
| if (*args[cur_arg]) { |
| memprintf(err, "'%s %s' : unknown keyword '%s'.", |
| args[0], args[1], args[cur_arg]); |
| goto error; |
| } |
| |
| LIST_ADDQ(&curpx->filter_configs, &fconf->list); |
| } |
| return 0; |
| |
| error: |
| free(fconf); |
| return -1; |
| |
| |
| } |
| |
| /* |
| * Calls 'init' callback for all filters attached to a proxy. This happens after |
| * the configuration parsing. Filters can finish to fill their config. Returns |
| * (ERR_ALERT|ERR_FATAL) if an error occurs, 0 otherwise. |
| */ |
| int |
| flt_init(struct proxy *proxy) |
| { |
| struct flt_conf *fconf; |
| |
| list_for_each_entry(fconf, &proxy->filter_configs, list) { |
| if (fconf->ops->init && fconf->ops->init(proxy, fconf) < 0) |
| return ERR_ALERT|ERR_FATAL; |
| } |
| return 0; |
| } |
| |
| /* |
| * Calls 'check' callback for all filters attached to a proxy. This happens |
| * after the configuration parsing but before filters initialization. Returns |
| * the number of encountered errors. |
| */ |
| int |
| flt_check(struct proxy *proxy) |
| { |
| struct flt_conf *fconf; |
| int err = 0; |
| |
| list_for_each_entry(fconf, &proxy->filter_configs, list) { |
| if (fconf->ops->check) |
| err += fconf->ops->check(proxy, fconf); |
| } |
| err += check_legacy_http_comp_flt(proxy); |
| return err; |
| } |
| |
| /* |
| * Calls 'denit' callback for all filters attached to a proxy. This happens when |
| * HAProxy is stopped. |
| */ |
| void |
| flt_deinit(struct proxy *proxy) |
| { |
| struct flt_conf *fconf, *back; |
| |
| list_for_each_entry_safe(fconf, back, &proxy->filter_configs, list) { |
| if (fconf->ops->deinit) |
| fconf->ops->deinit(proxy, fconf); |
| LIST_DEL(&fconf->list); |
| free(fconf); |
| } |
| } |
| |
| /* Attaches a filter to a stream. Returns -1 if an error occurs, 0 otherwise. */ |
| static int |
| flt_stream_add_filter(struct stream *s, struct flt_conf *fconf, unsigned int flags) |
| { |
| struct filter *f = pool_alloc2(pool2_filter); |
| if (!f) /* not enough memory */ |
| return -1; |
| memset(f, 0, sizeof(*f)); |
| f->config = fconf; |
| f->flags |= flags; |
| LIST_ADDQ(&strm_flt(s)->filters, &f->list); |
| strm_flt(s)->flags |= STRM_FLT_FL_HAS_FILTERS; |
| return 0; |
| } |
| |
| /* |
| * Called when a stream is created. It attaches all frontend filters to the |
| * stream. Returns -1 if an error occurs, 0 otherwise. |
| */ |
| int |
| flt_stream_init(struct stream *s) |
| { |
| struct flt_conf *fconf; |
| |
| memset(strm_flt(s), 0, sizeof(*strm_flt(s))); |
| LIST_INIT(&strm_flt(s)->filters); |
| list_for_each_entry(fconf, &strm_fe(s)->filter_configs, list) { |
| if (flt_stream_add_filter(s, fconf, 0) < 0) |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Called when a stream is closed or when analyze ends (For an HTTP stream, this |
| * happens after each request/response exchange). When analyze ends, backend |
| * filters are removed. When the stream is closed, all filters attached to the |
| * stream are removed. |
| */ |
| void |
| flt_stream_release(struct stream *s, int only_backend) |
| { |
| struct filter *filter, *back; |
| |
| list_for_each_entry_safe(filter, back, &strm_flt(s)->filters, list) { |
| if (!only_backend || (filter->flags & FLT_FL_IS_BACKEND_FILTER)) { |
| LIST_DEL(&filter->list); |
| pool_free2(pool2_filter, filter); |
| } |
| } |
| if (LIST_ISEMPTY(&strm_flt(s)->filters)) |
| strm_flt(s)->flags &= ~STRM_FLT_FL_HAS_FILTERS; |
| } |
| |
| /* |
| * Calls 'stream_start' for all filters attached to a stream. This happens when |
| * the stream is created, just after calling flt_stream_init |
| * function. Returns -1 if an error occurs, 0 otherwise. |
| */ |
| int |
| flt_stream_start(struct stream *s) |
| { |
| struct filter *filter; |
| |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| if (FLT_OPS(filter)->stream_start && FLT_OPS(filter)->stream_start(s, filter) < 0) |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Calls 'stream_stop' for all filters attached to a stream. This happens when |
| * the stream is stopped, just before calling flt_stream_release function. |
| */ |
| void |
| flt_stream_stop(struct stream *s) |
| { |
| struct filter *filter; |
| |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| if (FLT_OPS(filter)->stream_stop) |
| FLT_OPS(filter)->stream_stop(s, filter); |
| } |
| } |
| |
| /* |
| * Called when a backend is set for a stream. If the frontend and the backend |
| * are the same, this function does nothing. Else it attaches all backend |
| * filters to the stream. Returns -1 if an error occurs, 0 otherwise. |
| */ |
| int |
| flt_set_stream_backend(struct stream *s, struct proxy *be) |
| { |
| struct flt_conf *fconf; |
| |
| if (strm_fe(s) == be) |
| return 0; |
| |
| list_for_each_entry(fconf, &be->filter_configs, list) { |
| if (flt_stream_add_filter(s, fconf, FLT_FL_IS_BACKEND_FILTER) < 0) |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Calls 'http_data' callback for all "data" filters attached to a stream. This |
| * function is called when incoming data are available (excluding chunks |
| * envelope for chunked messages) in the AN_REQ_HTTP_XFER_BODY and |
| * AN_RES_HTTP_XFER_BODY analyzers. It takes care to update the next offset of |
| * filters and adjusts available data to be sure that a filter cannot parse more |
| * data than its predecessors. A filter can choose to not consume all available |
| * data. Returns -1 if an error occurs, the number of consumed bytes otherwise. |
| */ |
| int |
| flt_http_data(struct stream *s, struct http_msg *msg) |
| { |
| struct filter *filter; |
| struct buffer *buf = msg->chn->buf; |
| unsigned int buf_i; |
| int ret = 0; |
| |
| /* Save buffer state */ |
| buf_i = buf->i; |
| |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| unsigned int *nxt; |
| |
| /* Call "data" filters only */ |
| if (!IS_DATA_FILTER(filter, msg->chn)) |
| continue; |
| |
| /* If the HTTP parser is ahead, we update the next offset of the |
| * current filter. This happens for chunked messages, at the |
| * begining of a new chunk. */ |
| nxt = &FLT_NXT(filter, msg->chn); |
| if (msg->next > *nxt) |
| *nxt = msg->next; |
| |
| if (FLT_OPS(filter)->http_data) { |
| ret = FLT_OPS(filter)->http_data(s, filter, msg); |
| if (ret < 0) |
| break; |
| |
| /* Update the next offset of the current filter */ |
| *nxt += ret; |
| |
| /* And set this value as the bound for the next |
| * filter. It will not able to parse more data than this |
| * one. */ |
| buf->i = *nxt; |
| } |
| else { |
| /* Consume all available data and update the next offset |
| * of the current filter. buf->i is untouched here. */ |
| ret = MIN(msg->chunk_len + msg->next, buf->i) - *nxt; |
| *nxt += ret; |
| } |
| } |
| |
| /* Restore the original buffer state */ |
| buf->i = buf_i; |
| |
| return ret; |
| } |
| |
| /* |
| * Calls 'http_chunk_trailers' callback for all "data" filters attached to a |
| * stream. This function is called for chunked messages only when a part of the |
| * trailers was parsed in the AN_REQ_HTTP_XFER_BODY and AN_RES_HTTP_XFER_BODY |
| * analyzers. Filters can know how much data were parsed by the HTTP parsing |
| * until the last call with the msg->sol value. Returns a negative value if an |
| * error occurs, any other value otherwise. |
| */ |
| int |
| flt_http_chunk_trailers(struct stream *s, struct http_msg *msg) |
| { |
| struct filter *filter; |
| int ret = 1; |
| |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| unsigned int *nxt; |
| |
| /* Call "data" filters only */ |
| if (!IS_DATA_FILTER(filter, msg->chn)) |
| continue; |
| |
| /* Be sure to set the next offset of the filter at the right |
| * place. This is really useful when the first part of the |
| * trailers was parsed. */ |
| nxt = &FLT_NXT(filter, msg->chn); |
| *nxt = msg->next; |
| |
| if (FLT_OPS(filter)->http_chunk_trailers) { |
| ret = FLT_OPS(filter)->http_chunk_trailers(s, filter, msg); |
| if (ret < 0) |
| break; |
| } |
| /* Update the next offset of the current filter. Here all data |
| * are always consumed. */ |
| *nxt += msg->sol; |
| } |
| return ret; |
| } |
| |
| /* |
| * Calls 'http_end' callback for all filters attached to a stream. All filters |
| * are called here, but only if there is at least one "data" filter. This |
| * functions is called when all data were parsed and forwarded. 'http_end' |
| * callback is resumable, so this function returns a negative value if an error |
| * occurs, 0 if it needs to wait for some reason, any other value otherwise. |
| */ |
| int |
| flt_http_end(struct stream *s, struct http_msg *msg) |
| { |
| int ret = 1; |
| |
| RESUME_FILTER_LOOP(s, msg->chn) { |
| if (FLT_OPS(filter)->http_end) { |
| ret = FLT_OPS(filter)->http_end(s, filter, msg); |
| if (ret <= 0) |
| BREAK_EXECUTION(s, msg->chn, end); |
| } |
| } RESUME_FILTER_END; |
| end: |
| return ret; |
| } |
| |
| /* |
| * Calls 'http_reset' callback for all filters attached to a stream. This |
| * happens when a 100-continue response is received. |
| */ |
| void |
| flt_http_reset(struct stream *s, struct http_msg *msg) |
| { |
| struct filter *filter; |
| |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| if (FLT_OPS(filter)->http_reset) |
| FLT_OPS(filter)->http_reset(s, filter, msg); |
| } |
| } |
| |
| /* |
| * Calls 'http_reply' callback for all filters attached to a stream when HA |
| * decides to stop the HTTP message processing. |
| */ |
| void |
| flt_http_reply(struct stream *s, short status, const struct chunk *msg) |
| { |
| struct filter *filter; |
| |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| if (FLT_OPS(filter)->http_reply) |
| FLT_OPS(filter)->http_reply(s, filter, status, msg); |
| } |
| } |
| |
| /* |
| * Calls 'http_forward_data' callback for all "data" filters attached to a |
| * stream. This function is called when some data can be forwarded in the |
| * AN_REQ_HTTP_XFER_BODY and AN_RES_HTTP_XFER_BODY analyzers. It takes care to |
| * update the forward offset of filters and adjusts "forwardable" data to be |
| * sure that a filter cannot forward more data than its predecessors. A filter |
| * can choose to not forward all parsed data. Returns a negative value if an |
| * error occurs, else the number of forwarded bytes. |
| */ |
| int |
| flt_http_forward_data(struct stream *s, struct http_msg *msg, unsigned int len) |
| { |
| struct filter *filter; |
| int ret = len; |
| |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| unsigned int *nxt, *fwd; |
| |
| /* Call "data" filters only */ |
| if (!IS_DATA_FILTER(filter, msg->chn)) |
| continue; |
| |
| /* If the HTTP parser is ahead, we update the next offset of the |
| * current filter. This happens for chunked messages, when the |
| * chunk envelope is parsed. */ |
| nxt = &FLT_NXT(filter, msg->chn); |
| fwd = &FLT_FWD(filter, msg->chn); |
| if (msg->next > *nxt) |
| *nxt = msg->next; |
| |
| if (FLT_OPS(filter)->http_forward_data) { |
| /* Remove bytes that the current filter considered as |
| * forwarded */ |
| ret = FLT_OPS(filter)->http_forward_data(s, filter, msg, ret - *fwd); |
| if (ret < 0) |
| goto end; |
| } |
| |
| /* Adjust bytes that the current filter considers as |
| * forwarded */ |
| *fwd += ret; |
| |
| /* And set this value as the bound for the next filter. It will |
| * not able to forward more data than the current one. */ |
| ret = *fwd; |
| } |
| |
| if (!ret) |
| goto end; |
| |
| /* Finally, adjust filters offsets by removing data that HAProxy will |
| * forward. */ |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| if (!IS_DATA_FILTER(filter, msg->chn)) |
| continue; |
| FLT_NXT(filter, msg->chn) -= ret; |
| FLT_FWD(filter, msg->chn) -= ret; |
| } |
| end: |
| return ret; |
| } |
| |
| /* |
| * Calls 'channel_start_analyze' callback for all filters attached to a |
| * stream. This function is called when we start to analyze a request or a |
| * response. For frontend filters, it is called before all other analyzers. For |
| * backend ones, it is called before all backend |
| * analyzers. 'channel_start_analyze' callback is resumable, so this function |
| * returns 0 if an error occurs or if it needs to wait, any other value |
| * otherwise. |
| */ |
| int |
| flt_start_analyze(struct stream *s, struct channel *chn, unsigned int an_bit) |
| { |
| int ret = 1; |
| |
| /* If this function is called, this means there is at least one filter, |
| * so we do not need to check the filter list's emptiness. */ |
| |
| RESUME_FILTER_LOOP(s, chn) { |
| if (an_bit == AN_FLT_START_BE && !(filter->flags & FLT_FL_IS_BACKEND_FILTER)) |
| continue; |
| |
| FLT_NXT(filter, chn) = 0; |
| FLT_FWD(filter, chn) = 0; |
| |
| if (FLT_OPS(filter)->channel_start_analyze) { |
| ret = FLT_OPS(filter)->channel_start_analyze(s, filter, chn); |
| if (ret <= 0) |
| BREAK_EXECUTION(s, chn, end); |
| } |
| } RESUME_FILTER_END; |
| |
| end: |
| return handle_analyzer_result(s, chn, an_bit, ret); |
| } |
| |
| /* |
| * Calls 'channel_analyze' callback for all filters attached to a stream. This |
| * function is called before each analyzer attached to a channel, expects |
| * analyzers responsible for data sending. 'channel_analyze' callback is |
| * resumable, so this function returns 0 if an error occurs or if it needs to |
| * wait, any other value otherwise. |
| */ |
| int |
| flt_analyze(struct stream *s, struct channel *chn, unsigned int an_bit) |
| { |
| int ret = 1; |
| |
| RESUME_FILTER_LOOP(s, chn) { |
| if (FLT_OPS(filter)->channel_analyze) { |
| ret = FLT_OPS(filter)->channel_analyze(s, filter, chn, an_bit); |
| if (ret <= 0) |
| BREAK_EXECUTION(s, chn, check_result); |
| } |
| } RESUME_FILTER_END; |
| |
| check_result: |
| return handle_analyzer_result(s, chn, 0, ret); |
| } |
| |
| /* |
| * This function do the same that the previsous one, but for the |
| * AN_FLT_HTTP_HDRS analyzer. The difference is what is done when all filters |
| * have been called. Returns 0 if an error occurs or if it needs to wait, any |
| * other value otherwise. |
| */ |
| int |
| flt_analyze_http_headers(struct stream *s, struct channel *chn, unsigned int an_bit) |
| { |
| struct filter *filter; |
| int ret = 1; |
| |
| RESUME_FILTER_LOOP(s, chn) { |
| if (FLT_OPS(filter)->channel_analyze) { |
| ret = FLT_OPS(filter)->channel_analyze(s, filter, chn, an_bit); |
| if (ret <= 0) |
| BREAK_EXECUTION(s, chn, check_result); |
| } |
| } RESUME_FILTER_END; |
| |
| /* We increase next offset of all "data" filters after all processing on |
| * headers because any filter can alter them. So the definitive size of |
| * headers (msg->sov) is only known when all filters have been |
| * called. */ |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| /* Handle "data" filters only */ |
| if (!IS_DATA_FILTER(filter, chn)) |
| continue; |
| |
| FLT_NXT(filter, chn) = ((chn->flags & CF_ISRESP) |
| ? s->txn->rsp.sov : s->txn->req.sov); |
| } |
| |
| check_result: |
| return handle_analyzer_result(s, chn, an_bit, ret); |
| } |
| |
| /* |
| * Calls 'channel_end_analyze' callback for all filters attached to a |
| * stream. This function is called when we stop to analyze a request or a |
| * response. It is called after all other analyzers. 'channel_end_analyze' |
| * callback is resumable, so this function returns 0 if an error occurs or if it |
| * needs to wait, any other value otherwise. |
| */ |
| int |
| flt_end_analyze(struct stream *s, struct channel *chn, unsigned int an_bit) |
| { |
| int ret = 1; |
| |
| RESUME_FILTER_LOOP(s, chn) { |
| FLT_NXT(filter, chn) = 0; |
| FLT_FWD(filter, chn) = 0; |
| unregister_data_filter(s, chn, filter); |
| |
| if (FLT_OPS(filter)->channel_end_analyze) { |
| ret = FLT_OPS(filter)->channel_end_analyze(s, filter, chn); |
| if (ret <= 0) |
| BREAK_EXECUTION(s, chn, end); |
| } |
| } RESUME_FILTER_END; |
| |
| end: |
| ret = handle_analyzer_result(s, chn, an_bit, ret); |
| |
| /* Check if 'channel_end_analyze' callback has been called for the |
| * request and the response. */ |
| if (!(s->req.analysers & AN_FLT_END) && !(s->res.analysers & AN_FLT_END)) { |
| /* When we are waiting for a new request, so we must reset |
| * stream analyzers. The input must not be closed the request |
| * channel, else it is useless to wait. */ |
| if (s->txn && (s->txn->flags & TX_WAIT_NEXT_RQ) && !channel_input_closed(&s->req)) { |
| s->req.analysers = strm_li(s) ? strm_li(s)->analysers : 0; |
| s->res.analysers = 0; |
| } |
| |
| /* Remove backend filters from the list */ |
| flt_stream_release(s, 1); |
| } |
| else if (ret) { |
| /* Analyzer ends only for one channel. So wake up the stream to |
| * be sure to process it for the other side as soon as |
| * possible. */ |
| task_wakeup(s->task, TASK_WOKEN_MSG); |
| } |
| return ret; |
| } |
| |
| |
| /* |
| * Calls 'tcp_data' callback for all "data" filters attached to a stream. This |
| * function is called when incoming data are available. It takes care to update |
| * the next offset of filters and adjusts available data to be sure that a |
| * filter cannot parse more data than its predecessors. A filter can choose to |
| * not consume all available data. Returns -1 if an error occurs, the number of |
| * consumed bytes otherwise. |
| */ |
| static int |
| flt_data(struct stream *s, struct channel *chn) |
| { |
| struct filter *filter; |
| struct buffer *buf = chn->buf; |
| unsigned int buf_i; |
| int ret = 0; |
| |
| /* Save buffer state */ |
| buf_i = buf->i; |
| |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| unsigned int *nxt; |
| |
| /* Call "data" filters only */ |
| if (!IS_DATA_FILTER(filter, chn)) |
| continue; |
| |
| nxt = &FLT_NXT(filter, chn); |
| if (FLT_OPS(filter)->tcp_data) { |
| ret = FLT_OPS(filter)->tcp_data(s, filter, chn); |
| if (ret < 0) |
| break; |
| |
| /* Increase next offset of the current filter */ |
| *nxt += ret; |
| |
| /* And set this value as the bound for the next |
| * filter. It will not able to parse more data than the |
| * current one. */ |
| buf->i = *nxt; |
| } |
| else { |
| /* Consume all available data */ |
| *nxt = buf->i; |
| } |
| |
| /* Update <ret> value to be sure to have the last one when we |
| * exit from the loop. This value will be used to know how much |
| * data are "forwardable" */ |
| ret = *nxt; |
| } |
| |
| /* Restore the original buffer state */ |
| chn->buf->i = buf_i; |
| |
| return ret; |
| } |
| |
| /* |
| * Calls 'tcp_forward_data' callback for all "data" filters attached to a |
| * stream. This function is called when some data can be forwarded. It takes |
| * care to update the forward offset of filters and adjusts "forwardable" data |
| * to be sure that a filter cannot forward more data than its predecessors. A |
| * filter can choose to not forward all parsed data. Returns a negative value if |
| * an error occurs, else the number of forwarded bytes. |
| */ |
| static int |
| flt_forward_data(struct stream *s, struct channel *chn, unsigned int len) |
| { |
| struct filter *filter; |
| int ret = len; |
| |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| unsigned int *fwd; |
| |
| /* Call "data" filters only */ |
| if (!IS_DATA_FILTER(filter, chn)) |
| continue; |
| |
| fwd = &FLT_FWD(filter, chn); |
| if (FLT_OPS(filter)->tcp_forward_data) { |
| /* Remove bytes that the current filter considered as |
| * forwarded */ |
| ret = FLT_OPS(filter)->tcp_forward_data(s, filter, chn, ret - *fwd); |
| if (ret < 0) |
| goto end; |
| } |
| |
| /* Adjust bytes that the current filter considers as |
| * forwarded */ |
| *fwd += ret; |
| |
| /* And set this value as the bound for the next filter. It will |
| * not able to forward more data than the current one. */ |
| ret = *fwd; |
| } |
| |
| if (!ret) |
| goto end; |
| |
| /* Finally, adjust filters offsets by removing data that HAProxy will |
| * forward. */ |
| list_for_each_entry(filter, &strm_flt(s)->filters, list) { |
| if (!IS_DATA_FILTER(filter, chn)) |
| continue; |
| FLT_NXT(filter, chn) -= ret; |
| FLT_FWD(filter, chn) -= ret; |
| } |
| |
| end: |
| return ret; |
| } |
| |
| /* |
| * Called when TCP data must be filtered on a channel. This function is the |
| * AN_FLT_XFER_DATA analyzer. When called, it is responsible to forward data |
| * when the proxy is not in http mode. Behind the scene, it calls consecutively |
| * 'tcp_data' and 'tcp_forward_data' callbacks for all "data" filters attached |
| * to a stream. Returns 0 if an error occurs or if it needs to wait, any other |
| * value otherwise. |
| */ |
| int |
| flt_xfer_data(struct stream *s, struct channel *chn, unsigned int an_bit) |
| { |
| int ret = 1; |
| |
| /* If there is no "data" filters, we do nothing */ |
| if (!HAS_DATA_FILTERS(s, chn)) |
| goto end; |
| |
| /* Be sure that the output is still opened. Else we stop the data |
| * filtering. */ |
| if ((chn->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) || |
| ((chn->flags & CF_SHUTW) && (chn->to_forward || chn->buf->o))) |
| goto end; |
| |
| /* Let all "data" filters parsing incoming data */ |
| ret = flt_data(s, chn); |
| if (ret < 0) |
| goto end; |
| |
| /* And forward them */ |
| ret = flt_forward_data(s, chn, ret); |
| if (ret < 0) |
| goto end; |
| |
| /* Consume data that all filters consider as forwarded. */ |
| b_adv(chn->buf, ret); |
| |
| /* Stop waiting data if the input in closed and no data is pending or if |
| * the output is closed. */ |
| if ((chn->flags & CF_SHUTW) || |
| ((chn->flags & CF_SHUTR) && !buffer_pending(chn->buf))) { |
| ret = 1; |
| goto end; |
| } |
| |
| /* Wait for data */ |
| return 0; |
| end: |
| /* Terminate the data filtering. If <ret> is negative, an error was |
| * encountered during the filtering. */ |
| return handle_analyzer_result(s, chn, an_bit, ret); |
| } |
| |
| /* |
| * Handles result of filter's analyzers. It returns 0 if an error occurs or if |
| * it needs to wait, any other value otherwise. |
| */ |
| static int |
| handle_analyzer_result(struct stream *s, struct channel *chn, |
| unsigned int an_bit, int ret) |
| { |
| int finst; |
| |
| if (ret < 0) |
| goto return_bad_req; |
| else if (!ret) |
| goto wait; |
| |
| /* End of job, return OK */ |
| if (an_bit) { |
| chn->analysers &= ~an_bit; |
| chn->analyse_exp = TICK_ETERNITY; |
| } |
| return 1; |
| |
| return_bad_req: |
| /* An error occurs */ |
| channel_abort(&s->req); |
| channel_abort(&s->res); |
| |
| if (!(chn->flags & CF_ISRESP)) { |
| s->req.analysers &= AN_FLT_END; |
| finst = SF_FINST_R; |
| /* FIXME: incr counters */ |
| } |
| else { |
| s->res.analysers &= AN_FLT_END; |
| finst = SF_FINST_H; |
| /* FIXME: incr counters */ |
| } |
| |
| if (s->txn) { |
| /* Do not do that when we are waiting for the next request */ |
| if (s->txn->status) |
| http_reply_and_close(s, s->txn->status, NULL); |
| else { |
| s->txn->status = 400; |
| http_reply_and_close(s, 400, http_error_message(s, HTTP_ERR_400)); |
| } |
| } |
| |
| if (!(s->flags & SF_ERR_MASK)) |
| s->flags |= SF_ERR_PRXCOND; |
| if (!(s->flags & SF_FINST_MASK)) |
| s->flags |= finst; |
| return 0; |
| |
| wait: |
| if (!(chn->flags & CF_ISRESP)) |
| channel_dont_connect(chn); |
| return 0; |
| } |
| |
| |
| /* Note: must not be declared <const> as its list will be overwritten. |
| * Please take care of keeping this list alphabetically sorted, doing so helps |
| * all code contributors. |
| * Optional keywords are also declared with a NULL ->parse() function so that |
| * the config parser can report an appropriate error when a known keyword was |
| * not enabled. */ |
| static struct cfg_kw_list cfg_kws = {ILH, { |
| { CFG_LISTEN, "filter", parse_filter }, |
| { 0, NULL, NULL }, |
| } |
| }; |
| |
| __attribute__((constructor)) |
| static void |
| __filters_init(void) |
| { |
| pool2_filter = create_pool("filter", sizeof(struct filter), MEM_F_SHARED); |
| cfg_register_keywords(&cfg_kws); |
| } |
| |
| __attribute__((destructor)) |
| static void |
| __filters_deinit(void) |
| { |
| pool_destroy2(pool2_filter); |
| } |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |