| /* |
| * Name server resolution |
| * |
| * Copyright 2014 Baptiste Assmann <bedis9@gmail.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| |
| #include <sys/types.h> |
| |
| #include <common/time.h> |
| #include <common/ticks.h> |
| |
| #include <import/lru.h> |
| #include <import/xxhash.h> |
| |
| #include <types/applet.h> |
| #include <types/cli.h> |
| #include <types/global.h> |
| #include <types/dns.h> |
| #include <types/proto_udp.h> |
| #include <types/stats.h> |
| |
| #include <proto/channel.h> |
| #include <proto/cli.h> |
| #include <proto/checks.h> |
| #include <proto/dns.h> |
| #include <proto/fd.h> |
| #include <proto/log.h> |
| #include <proto/server.h> |
| #include <proto/task.h> |
| #include <proto/proto_udp.h> |
| #include <proto/stream_interface.h> |
| |
| struct list dns_resolvers = LIST_HEAD_INIT(dns_resolvers); |
| struct dns_resolution *resolution = NULL; |
| |
| static int64_t dns_query_id_seed; /* random seed */ |
| |
| static struct lru64_head *dns_lru_tree; |
| static int dns_cache_size = 1024; /* arbitrary DNS cache size */ |
| |
| /* proto_udp callback functions for a DNS resolution */ |
| struct dgram_data_cb resolve_dgram_cb = { |
| .recv = dns_resolve_recv, |
| .send = dns_resolve_send, |
| }; |
| |
| /* local function prototypes */ |
| static int dns_run_resolution(struct dns_requester *requester); |
| |
| #if DEBUG |
| /* |
| * go through the resolutions associated to a resolvers section and print the ID and hostname in |
| * domain name format |
| * should be used for debug purpose only |
| */ |
| void dns_print_current_resolutions(struct dns_resolvers *resolvers) |
| { |
| list_for_each_entry(resolution, &resolvers->resolution.curr, list) { |
| printf(" resolution %d for %s\n", resolution->query_id, resolution->hostname_dn); |
| } |
| } |
| #endif |
| |
| void dump_dns_config() |
| { |
| struct dns_resolvers *curr_resolvers = NULL; |
| struct dns_nameserver *curr_nameserver = NULL; |
| struct dns_resolution *curr_resolution = NULL; |
| struct dns_requester *curr_requester = NULL; |
| |
| printf("===============\n"); |
| list_for_each_entry(curr_resolvers, &dns_resolvers, list) { |
| printf("Resolvers: %s\n", curr_resolvers->id); |
| |
| printf(" nameservers:\n"); |
| list_for_each_entry(curr_nameserver, &curr_resolvers->nameserver_list, list) { |
| printf(" %s\n", curr_nameserver->id); |
| } |
| |
| /* |
| printf(" resolution.pool list:\n"); |
| list_for_each_entry(curr_resolution, &curr_resolvers->resolution.pool, list) { |
| printf(" %p\n", curr_resolution); |
| } |
| */ |
| |
| printf(" resolution.wait list:\n"); |
| list_for_each_entry(curr_resolution, &curr_resolvers->resolution.wait, list) { |
| printf(" %p %s\n", curr_resolution, curr_resolution->hostname_dn); |
| printf(" requester.wait list:\n"); |
| list_for_each_entry(curr_requester, &curr_resolution->requester.wait, list) { |
| printf(" %p %s %d\n", curr_requester, objt_server(curr_requester->requester)->id, curr_requester->prefered_query_type); |
| } |
| printf(" requester.curr list:\n"); |
| list_for_each_entry(curr_requester, &curr_resolution->requester.curr, list) { |
| printf(" %p %s %d\n", curr_requester, objt_server(curr_requester->requester)->id, curr_requester->prefered_query_type); |
| } |
| } |
| printf(" resolution.curr list:\n"); |
| list_for_each_entry(curr_resolution, &curr_resolvers->resolution.curr, list) { |
| printf(" %p %s\n", curr_resolution, curr_resolution->hostname_dn); |
| printf(" requester.wait list:\n"); |
| list_for_each_entry(curr_requester, &curr_resolution->requester.wait, list) { |
| printf(" %p %s %d\n", curr_requester, objt_server(curr_requester->requester)->id, curr_requester->prefered_query_type); |
| } |
| printf(" requester.curr list:\n"); |
| list_for_each_entry(curr_requester, &curr_resolution->requester.curr, list) { |
| printf(" %p %s %d\n", curr_requester, objt_server(curr_requester->requester)->id, curr_requester->prefered_query_type); |
| } |
| } |
| } |
| |
| printf("===============\n"); |
| } |
| |
| /* |
| * Initiates a new name resolution: |
| * - generates a query id |
| * - configure the resolution structure |
| * - startup the resolvers task if required |
| * |
| * returns: |
| * - 0 if everything started properly |
| * - -1 in case of error or if resolution already running |
| */ |
| int dns_trigger_resolution(struct dns_resolution *resolution) |
| { |
| struct dns_requester *requester = NULL, *tmprequester; |
| struct dns_resolvers *resolvers = NULL; |
| int inter; |
| |
| /* process the element of the wait queue */ |
| list_for_each_entry_safe(requester, tmprequester, &resolution->requester.wait, list) { |
| inter = 0; |
| |
| switch (obj_type(requester->requester)) { |
| case OBJ_TYPE_SERVER: |
| inter = objt_server(requester->requester)->check.inter; |
| resolvers = objt_server(requester->requester)->resolvers; |
| break; |
| case OBJ_TYPE_NONE: |
| default: |
| return -1; |
| } |
| |
| /* if data is fresh enough, let's use it */ |
| if (!tick_is_expired(tick_add(resolution->last_resolution, inter), now_ms)) { |
| /* we only use cache if the response there is valid. |
| * If not valid, we run the resolution and move the requester to |
| * the run queue. */ |
| if (resolution->status != RSLV_STATUS_VALID) { |
| LIST_DEL(&requester->list); |
| LIST_ADDQ(&resolution->requester.curr, &requester->list); |
| dns_run_resolution(requester); |
| continue; |
| } |
| |
| requester->requester_cb(requester, NULL); |
| } |
| else { |
| LIST_DEL(&requester->list); |
| LIST_ADDQ(&resolution->requester.curr, &requester->list); |
| dns_run_resolution(requester); |
| } |
| } |
| |
| if (resolvers) |
| dns_update_resolvers_timeout(resolvers); |
| |
| return 0; |
| } |
| |
| /* |
| * Prepare and send a DNS resolution. |
| * |
| * Return code: |
| * - 0 if no error occured |
| * - -1 in case of error |
| */ |
| static int |
| dns_run_resolution(struct dns_requester *requester) |
| { |
| struct dns_resolution *resolution; |
| struct dns_resolvers *resolvers; |
| int query_id, query_type, i; |
| struct proxy *proxy; |
| |
| resolution = NULL; |
| resolvers = NULL; |
| proxy = NULL; |
| query_type = -1; |
| switch (obj_type(requester->requester)) { |
| case OBJ_TYPE_SERVER: |
| resolution = objt_server(requester->requester)->resolution; |
| resolvers = objt_server(requester->requester)->resolvers; |
| proxy = objt_server(requester->requester)->proxy; |
| query_type = requester->prefered_query_type; |
| break; |
| case OBJ_TYPE_NONE: |
| default: |
| return -1; |
| } |
| |
| /* |
| * check if a resolution has already been started for this server |
| * return directly to avoid resolution pill up. |
| */ |
| if (resolution->step != RSLV_STEP_NONE) |
| return 0; |
| |
| /* generates a query id */ |
| i = 0; |
| do { |
| query_id = dns_rnd16(); |
| /* we do try only 100 times to find a free query id */ |
| if (i++ > 100) { |
| chunk_printf(&trash, "could not generate a query id for %s, in resolvers %s", |
| resolution->hostname_dn, resolvers->id); |
| |
| if (proxy) |
| send_log(proxy, LOG_NOTICE, "%s.\n", trash.str); |
| return -1; |
| } |
| } while (eb32_lookup(&resolvers->query_ids, query_id)); |
| |
| /* move the resolution into the run queue */ |
| LIST_DEL(&resolution->list); |
| LIST_ADDQ(&resolvers->resolution.curr, &resolution->list); |
| |
| /* now update resolution parameters */ |
| resolution->query_id = query_id; |
| resolution->qid.key = query_id; |
| resolution->step = RSLV_STEP_RUNNING; |
| resolution->query_type = query_type; |
| resolution->try = resolvers->resolve_retries; |
| resolution->try_cname = 0; |
| resolution->nb_responses = 0; |
| eb32_insert(&resolvers->query_ids, &resolution->qid); |
| |
| dns_send_query(resolution); |
| resolution->try -= 1; |
| |
| /* update wakeup date if this resolution is the only one in the FIFO list */ |
| if (dns_check_resolution_queue(resolvers) == 1) { |
| /* update task timeout */ |
| dns_update_resolvers_timeout(resolvers); |
| task_queue(resolvers->t); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * check if there is more than 1 resolution in the resolver's resolution list |
| * return value: |
| * 0: empty list |
| * 1: exactly one entry in the list |
| * 2: more than one entry in the list |
| */ |
| int dns_check_resolution_queue(struct dns_resolvers *resolvers) |
| { |
| |
| if (LIST_ISEMPTY(&resolvers->resolution.curr)) |
| return 0; |
| |
| if ((resolvers->resolution.curr.n) && (resolvers->resolution.curr.n == resolvers->resolution.curr.p)) |
| return 1; |
| |
| if (! ((resolvers->resolution.curr.n == resolvers->resolution.curr.p) |
| && (&resolvers->resolution.curr != resolvers->resolution.curr.n))) |
| return 2; |
| |
| return 0; |
| } |
| |
| /* |
| * reset some resolution parameters to initial values and also delete the |
| * query ID from the resolver's tree. |
| */ |
| void dns_reset_resolution(struct dns_resolution *resolution) |
| { |
| /* update resolution status */ |
| resolution->step = RSLV_STEP_NONE; |
| |
| resolution->try = 0; |
| resolution->try_cname = 0; |
| resolution->last_resolution = now_ms; |
| resolution->nb_responses = 0; |
| |
| /* clean up query id */ |
| eb32_delete(&resolution->qid); |
| resolution->query_id = 0; |
| resolution->qid.key = 0; |
| } |
| |
| /* |
| * function called when a network IO is generated on a name server socket for an incoming packet |
| * It performs the following actions: |
| * - check if the packet requires processing (not outdated resolution) |
| * - ensure the DNS packet received is valid and call requester's callback |
| * - call requester's error callback if invalid response |
| * - check the dn_name in the packet against the one sent |
| */ |
| void dns_resolve_recv(struct dgram_conn *dgram) |
| { |
| struct dns_nameserver *nameserver, *tmpnameserver; |
| struct dns_resolvers *resolvers; |
| struct dns_resolution *resolution = NULL; |
| struct dns_query_item *query; |
| unsigned char buf[DNS_MAX_UDP_MESSAGE + 1]; |
| unsigned char *bufend; |
| int fd, buflen, dns_resp, need_resend = 0; |
| unsigned short query_id; |
| struct eb32_node *eb; |
| struct lru64 *lru = NULL; |
| struct dns_requester *requester = NULL, *tmprequester = NULL; |
| |
| fd = dgram->t.sock.fd; |
| |
| /* check if ready for reading */ |
| if (!fd_recv_ready(fd)) |
| return; |
| |
| /* no need to go further if we can't retrieve the nameserver */ |
| if ((nameserver = dgram->owner) == NULL) |
| return; |
| |
| resolvers = nameserver->resolvers; |
| |
| /* process all pending input messages */ |
| while (1) { |
| /* read message received */ |
| memset(buf, '\0', DNS_MAX_UDP_MESSAGE + 1); |
| if ((buflen = recv(fd, (char*)buf , DNS_MAX_UDP_MESSAGE, 0)) < 0) { |
| /* FIXME : for now we consider EAGAIN only */ |
| fd_cant_recv(fd); |
| break; |
| } |
| |
| /* message too big */ |
| if (buflen > DNS_MAX_UDP_MESSAGE) { |
| nameserver->counters.too_big += 1; |
| continue; |
| } |
| |
| /* initializing variables */ |
| bufend = buf + buflen; /* pointer to mark the end of the buffer */ |
| |
| /* read the query id from the packet (16 bits) */ |
| if (buf + 2 > bufend) { |
| nameserver->counters.invalid += 1; |
| continue; |
| } |
| query_id = dns_response_get_query_id(buf); |
| |
| /* search the query_id in the pending resolution tree */ |
| eb = eb32_lookup(&resolvers->query_ids, query_id); |
| if (eb == NULL) { |
| /* unknown query id means an outdated response and can be safely ignored */ |
| nameserver->counters.outdated += 1; |
| continue; |
| } |
| |
| /* known query id means a resolution in prgress */ |
| resolution = eb32_entry(eb, struct dns_resolution, qid); |
| |
| if (!resolution) { |
| nameserver->counters.outdated += 1; |
| continue; |
| } |
| |
| /* number of responses received */ |
| resolution->nb_responses += 1; |
| |
| dns_resp = dns_validate_dns_response(buf, bufend, resolution); |
| |
| switch (dns_resp) { |
| case DNS_RESP_VALID: |
| need_resend = 0; |
| break; |
| |
| case DNS_RESP_INVALID: |
| case DNS_RESP_QUERY_COUNT_ERROR: |
| case DNS_RESP_WRONG_NAME: |
| if (resolution->status != RSLV_STATUS_INVALID) { |
| resolution->status = RSLV_STATUS_INVALID; |
| resolution->last_status_change = now_ms; |
| } |
| nameserver->counters.invalid += 1; |
| need_resend = 0; |
| break; |
| |
| case DNS_RESP_ANCOUNT_ZERO: |
| if (resolution->status != RSLV_STATUS_OTHER) { |
| resolution->status = RSLV_STATUS_OTHER; |
| resolution->last_status_change = now_ms; |
| } |
| nameserver->counters.any_err += 1; |
| need_resend = 1; |
| break; |
| |
| case DNS_RESP_NX_DOMAIN: |
| if (resolution->status != RSLV_STATUS_NX) { |
| resolution->status = RSLV_STATUS_NX; |
| resolution->last_status_change = now_ms; |
| } |
| nameserver->counters.nx += 1; |
| need_resend = 0; |
| break; |
| |
| case DNS_RESP_REFUSED: |
| if (resolution->status != RSLV_STATUS_REFUSED) { |
| resolution->status = RSLV_STATUS_REFUSED; |
| resolution->last_status_change = now_ms; |
| } |
| nameserver->counters.refused += 1; |
| need_resend = 0; |
| break; |
| |
| case DNS_RESP_CNAME_ERROR: |
| if (resolution->status != RSLV_STATUS_OTHER) { |
| resolution->status = RSLV_STATUS_OTHER; |
| resolution->last_status_change = now_ms; |
| } |
| nameserver->counters.cname_error += 1; |
| need_resend = 1; |
| break; |
| |
| case DNS_RESP_TRUNCATED: |
| if (resolution->status != RSLV_STATUS_OTHER) { |
| resolution->status = RSLV_STATUS_OTHER; |
| resolution->last_status_change = now_ms; |
| } |
| nameserver->counters.truncated += 1; |
| need_resend = 1; |
| break; |
| |
| case DNS_RESP_NO_EXPECTED_RECORD: |
| if (resolution->status != RSLV_STATUS_OTHER) { |
| resolution->status = RSLV_STATUS_OTHER; |
| resolution->last_status_change = now_ms; |
| } |
| nameserver->counters.other += 1; |
| need_resend = 1; |
| break; |
| |
| case DNS_RESP_ERROR: |
| case DNS_RESP_INTERNAL: |
| if (resolution->status != RSLV_STATUS_OTHER) { |
| resolution->status = RSLV_STATUS_OTHER; |
| resolution->last_status_change = now_ms; |
| } |
| nameserver->counters.other += 1; |
| need_resend = 1; |
| break; |
| } |
| |
| /* some error codes trigger a re-send of the query, but switching the |
| * query type. |
| * This is the case for the following error codes: |
| * DNS_RESP_ANCOUNT_ZERO |
| * DNS_RESP_TRUNCATED |
| * DNS_RESP_ERROR |
| * DNS_RESP_INTERNAL |
| * DNS_RESP_NO_EXPECTED_RECORD |
| * DNS_RESP_CNAME_ERROR |
| */ |
| if (need_resend) { |
| int family_prio; |
| int res_preferred_afinet, res_preferred_afinet6; |
| |
| requester = LIST_NEXT(&resolution->requester.curr, struct dns_requester *, list); |
| switch (obj_type(requester->requester)) { |
| case OBJ_TYPE_SERVER: |
| family_prio = objt_server(requester->requester)->dns_opts.family_prio; |
| break; |
| case OBJ_TYPE_NONE: |
| default: |
| family_prio = AF_INET6; |
| } |
| res_preferred_afinet = family_prio == AF_INET && resolution->query_type == DNS_RTYPE_A; |
| res_preferred_afinet6 = family_prio == AF_INET6 && resolution->query_type == DNS_RTYPE_AAAA; |
| if ((res_preferred_afinet || res_preferred_afinet6) |
| || (resolution->try > 0)) { |
| /* let's change the query type */ |
| if (res_preferred_afinet6) { |
| /* fallback from AAAA to A */ |
| resolution->query_type = DNS_RTYPE_A; |
| } |
| else if (res_preferred_afinet) { |
| /* fallback from A to AAAA */ |
| resolution->query_type = DNS_RTYPE_AAAA; |
| } |
| else { |
| resolution->try -= 1; |
| if (family_prio == AF_INET) { |
| resolution->query_type = DNS_RTYPE_A; |
| } else { |
| resolution->query_type = DNS_RTYPE_AAAA; |
| } |
| } |
| |
| dns_send_query(resolution); |
| /* |
| * move the resolution to the last element of the FIFO queue |
| * and update timeout wakeup based on the new first entry |
| */ |
| if (dns_check_resolution_queue(resolvers) > 1) { |
| /* second resolution becomes first one */ |
| LIST_DEL(&resolution->list); |
| /* ex first resolution goes to the end of the queue */ |
| LIST_ADDQ(&resolvers->resolution.curr, &resolution->list); |
| } |
| |
| dns_update_resolvers_timeout(resolvers); |
| goto next_packet; |
| } |
| |
| /* if we're there, this means that we already ran out of chances to re-send |
| * the query */ |
| list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) { |
| requester->requester_error_cb(requester, dns_resp); |
| } |
| goto next_packet; |
| } |
| |
| /* now processing those error codes only: |
| * DNS_RESP_NX_DOMAIN |
| * DNS_RESP_REFUSED |
| */ |
| if (dns_resp != DNS_RESP_VALID) { |
| /* now parse list of requesters currently waiting for this resolution */ |
| list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) { |
| requester->requester_error_cb(requester, dns_resp); |
| |
| /* we can move the requester the wait queue */ |
| LIST_DEL(&requester->list); |
| LIST_ADDQ(&resolution->requester.wait, &requester->list); |
| } |
| goto next_packet; |
| } |
| |
| /* Now let's check the query's dname corresponds to the one we sent. |
| * We can check only the first query of the list. We send one query at a time |
| * so we get one query in the response */ |
| query = LIST_NEXT(&resolution->response.query_list, struct dns_query_item *, list); |
| if (query && memcmp(query->name, resolution->hostname_dn, resolution->hostname_dn_len) != 0) { |
| nameserver->counters.other += 1; |
| /* now parse list of requesters currently waiting for this resolution */ |
| list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) { |
| requester->requester_error_cb(requester, DNS_RESP_WRONG_NAME); |
| /* we can move the requester the wait queue */ |
| LIST_DEL(&requester->list); |
| LIST_ADDQ(&resolution->requester.wait, &requester->list); |
| } |
| goto next_packet; |
| } |
| |
| /* no errors, we can save the response in the cache */ |
| if (dns_lru_tree) { |
| unsigned long long seed = 1; |
| struct chunk *buf = get_trash_chunk(); |
| struct chunk *tmp = NULL; |
| |
| chunk_reset(buf); |
| tmp = dns_cache_key(resolution->query_type, resolution->hostname_dn, |
| resolution->hostname_dn_len, buf); |
| if (!tmp) { |
| nameserver->counters.other += 1; |
| /* now parse list of requesters currently waiting for this resolution */ |
| list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) { |
| requester->requester_error_cb(requester, DNS_RESP_ERROR); |
| /* we can move the requester the wait queue */ |
| LIST_DEL(&requester->list); |
| LIST_ADDQ(&resolution->requester.wait, &requester->list); |
| } |
| goto next_packet; |
| } |
| |
| lru = lru64_get(XXH64(buf->str, buf->len, seed), |
| dns_lru_tree, nameserver->resolvers, 1); |
| |
| lru64_commit(lru, resolution, nameserver->resolvers, 1, NULL); |
| } |
| |
| if (resolution->status != RSLV_STATUS_VALID) { |
| resolution->status = RSLV_STATUS_VALID; |
| resolution->last_status_change = now_ms; |
| } |
| |
| nameserver->counters.valid += 1; |
| /* now parse list of requesters currently waiting for this resolution */ |
| tmpnameserver = nameserver; |
| list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) { |
| requester->requester_cb(requester, tmpnameserver); |
| /* we can move the requester the wait queue */ |
| LIST_DEL(&requester->list); |
| LIST_ADDQ(&resolution->requester.wait, &requester->list); |
| /* first response is managed by the server, others are from the cache */ |
| tmpnameserver = NULL; |
| } |
| |
| next_packet: |
| /* resolution may be NULL when we receive an ICMP unreachable packet */ |
| if (resolution && LIST_ISEMPTY(&resolution->requester.curr)) { |
| /* move the resolution into the wait queue */ |
| LIST_DEL(&resolution->list); |
| LIST_ADDQ(&resolvers->resolution.wait, &resolution->list); |
| /* update last resolution date and time */ |
| resolution->last_resolution = now_ms; |
| /* reset current status flag */ |
| resolution->step = RSLV_STEP_NONE; |
| /* reset values */ |
| dns_reset_resolution(resolution); |
| } |
| |
| } // end of while "packets" loop |
| |
| dns_update_resolvers_timeout(nameserver->resolvers); |
| } |
| |
| /* |
| * function called when a resolvers network socket is ready to send data |
| * It performs the following actions: |
| */ |
| void dns_resolve_send(struct dgram_conn *dgram) |
| { |
| int fd; |
| struct dns_nameserver *nameserver; |
| struct dns_resolvers *resolvers; |
| struct dns_resolution *resolution; |
| |
| fd = dgram->t.sock.fd; |
| |
| /* check if ready for sending */ |
| if (!fd_send_ready(fd)) |
| return; |
| |
| /* we don't want/need to be waked up any more for sending */ |
| fd_stop_send(fd); |
| |
| /* no need to go further if we can't retrieve the nameserver */ |
| if ((nameserver = dgram->owner) == NULL) |
| return; |
| |
| resolvers = nameserver->resolvers; |
| resolution = LIST_NEXT(&resolvers->resolution.curr, struct dns_resolution *, list); |
| |
| dns_send_query(resolution); |
| dns_update_resolvers_timeout(resolvers); |
| } |
| |
| /* |
| * forge and send a DNS query to resolvers associated to a resolution |
| * It performs the following actions: |
| * returns: |
| * 0 in case of error or safe ignorance |
| * 1 if no error |
| */ |
| int dns_send_query(struct dns_resolution *resolution) |
| { |
| struct dns_resolvers *resolvers = NULL; |
| struct dns_nameserver *nameserver; |
| struct dns_requester *requester = NULL; |
| int ret, bufsize, fd; |
| |
| /* nothing to do */ |
| if (LIST_ISEMPTY(&resolution->requester.curr)) |
| return 0; |
| |
| requester = LIST_NEXT(&resolution->requester.curr, struct dns_requester *, list); |
| |
| switch (obj_type(requester->requester)) { |
| case OBJ_TYPE_SERVER: |
| resolvers = objt_server(requester->requester)->resolvers; |
| break; |
| case OBJ_TYPE_NONE: |
| default: |
| return 0; |
| } |
| |
| if (!resolvers) |
| return 0; |
| |
| bufsize = dns_build_query(resolution->query_id, resolution->query_type, resolution->hostname_dn, |
| resolution->hostname_dn_len, trash.str, trash.size); |
| |
| if (bufsize == -1) |
| return 0; |
| |
| list_for_each_entry(nameserver, &resolvers->nameserver_list, list) { |
| fd = nameserver->dgram->t.sock.fd; |
| errno = 0; |
| |
| ret = send(fd, trash.str, bufsize, 0); |
| |
| if (ret > 0) |
| nameserver->counters.sent += 1; |
| |
| if (ret == 0 || errno == EAGAIN) { |
| /* nothing written, let's update the poller that we wanted to send |
| * but we were not able to */ |
| fd_want_send(fd); |
| fd_cant_send(fd); |
| } |
| } |
| |
| /* update resolution */ |
| resolution->nb_responses = 0; |
| resolution->last_sent_packet = now_ms; |
| |
| return 1; |
| } |
| |
| /* |
| * update a resolvers' task timeout for next wake up |
| */ |
| void dns_update_resolvers_timeout(struct dns_resolvers *resolvers) |
| { |
| struct dns_resolution *resolution; |
| struct dns_requester *requester; |
| |
| if ((LIST_ISEMPTY(&resolvers->resolution.curr)) && (LIST_ISEMPTY(&resolvers->resolution.wait))) { |
| resolvers->t->expire = TICK_ETERNITY; |
| } |
| else if (!LIST_ISEMPTY(&resolvers->resolution.curr)) { |
| resolution = LIST_NEXT(&resolvers->resolution.curr, struct dns_resolution *, list); |
| if (!resolvers->t->expire || tick_is_le(resolvers->t->expire, tick_add(resolution->last_sent_packet, resolvers->timeout.retry))) { |
| resolvers->t->expire = tick_add(resolution->last_sent_packet, resolvers->timeout.retry); |
| } |
| } |
| else if (!LIST_ISEMPTY(&resolvers->resolution.wait)) { |
| int valid_period, inter, need_wakeup; |
| struct dns_resolution *res_back; |
| need_wakeup = 0; |
| list_for_each_entry_safe(resolution, res_back, &resolvers->resolution.wait, list) { |
| valid_period = 0; |
| inter = 0; |
| |
| requester = LIST_NEXT(&resolution->requester.wait, struct dns_requester *, list); |
| |
| switch (obj_type(requester->requester)) { |
| case OBJ_TYPE_SERVER: |
| valid_period = objt_server(requester->requester)->check.inter; |
| break; |
| case OBJ_TYPE_NONE: |
| default: |
| continue; |
| } |
| |
| if (resolvers->hold.valid < valid_period) |
| inter = resolvers->hold.valid; |
| else |
| inter = valid_period; |
| |
| if (tick_is_expired(tick_add(resolution->last_resolution, inter), now_ms)) { |
| switch (obj_type(requester->requester)) { |
| case OBJ_TYPE_SERVER: |
| dns_trigger_resolution(objt_server(requester->requester)->resolution); |
| break; |
| case OBJ_TYPE_NONE: |
| default: |
| ;; |
| } |
| } |
| else { |
| need_wakeup = 1; |
| } |
| } |
| /* in such case, we wake up in 1s */ |
| if (need_wakeup) { |
| int r = 1000; |
| |
| resolution = LIST_NEXT(&resolvers->resolution.wait, struct dns_resolution *, list); |
| if (tick_is_le(resolvers->t->expire, tick_add(now_ms, r))) |
| resolvers->t->expire = tick_add(now_ms, r); |
| resolvers->t->expire = tick_add(now_ms, 1000); |
| } |
| } |
| |
| task_queue(resolvers->t); |
| } |
| |
| /* |
| * Analyse, re-build and copy the name <name> from the DNS response packet <buffer>. |
| * <name> must point to the 'data_len' information or pointer 'c0' for compressed data. |
| * The result is copied into <dest>, ensuring we don't overflow using <dest_len> |
| * Returns the number of bytes the caller can move forward. If 0 it means an error occured |
| * while parsing the name. |
| * <offset> is the number of bytes the caller could move forward. |
| */ |
| int dns_read_name(unsigned char *buffer, unsigned char *bufend, unsigned char *name, char *destination, int dest_len, int *offset) |
| { |
| int nb_bytes = 0, n = 0; |
| int label_len; |
| unsigned char *reader = name; |
| char *dest = destination; |
| |
| while (1) { |
| /* name compression is in use */ |
| if ((*reader & 0xc0) == 0xc0) { |
| /* a pointer must point BEFORE current position */ |
| if ((buffer + reader[1]) > reader) { |
| goto out_error; |
| } |
| |
| n = dns_read_name(buffer, bufend, buffer + reader[1], dest, dest_len - nb_bytes, offset); |
| if (n == 0) |
| goto out_error; |
| |
| dest += n; |
| nb_bytes += n; |
| goto out; |
| } |
| |
| label_len = *reader; |
| if (label_len == 0) |
| goto out; |
| /* Check if: |
| * - we won't read outside the buffer |
| * - there is enough place in the destination |
| */ |
| if ((reader + label_len >= bufend) || (nb_bytes + label_len >= dest_len)) |
| goto out_error; |
| |
| /* +1 to take label len + label string */ |
| label_len += 1; |
| |
| memcpy(dest, reader, label_len); |
| |
| dest += label_len; |
| nb_bytes += label_len; |
| reader += label_len; |
| } |
| |
| out: |
| /* offset computation: |
| * parse from <name> until finding either NULL or a pointer "c0xx" |
| */ |
| reader = name; |
| *offset = 0; |
| while (reader < bufend) { |
| if ((reader[0] & 0xc0) == 0xc0) { |
| *offset += 2; |
| break; |
| } |
| else if (*reader == 0) { |
| *offset += 1; |
| break; |
| } |
| *offset += 1; |
| ++reader; |
| } |
| |
| return nb_bytes; |
| |
| out_error: |
| return 0; |
| } |
| |
| /* |
| * Function to validate that the buffer DNS response provided in <resp> and |
| * finishing before <bufend> is valid from a DNS protocol point of view. |
| * |
| * The result is stored in <resolution>' response, buf_response, response_query_records |
| * and response_answer_records members. |
| * |
| * This function returns one of the DNS_RESP_* code to indicate the type of |
| * error found. |
| */ |
| int dns_validate_dns_response(unsigned char *resp, unsigned char *bufend, struct dns_resolution *resolution) |
| { |
| unsigned char *reader; |
| char *previous_dname, tmpname[DNS_MAX_NAME_SIZE]; |
| int len, flags, offset, ret; |
| int dns_query_record_id, dns_answer_record_id; |
| int nb_saved_records; |
| struct dns_query_item *dns_query; |
| struct dns_answer_item *dns_answer_record; |
| struct dns_response_packet *dns_p; |
| struct chunk *dns_response_buffer; |
| |
| reader = resp; |
| len = 0; |
| previous_dname = NULL; |
| |
| /* initialization of response buffer and structure */ |
| dns_p = &resolution->response; |
| dns_response_buffer = &resolution->response_buffer; |
| memset(dns_p, '\0', sizeof(struct dns_response_packet)); |
| chunk_reset(dns_response_buffer); |
| |
| /* query id */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.id = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* |
| * flags and rcode are stored over 2 bytes |
| * First byte contains: |
| * - response flag (1 bit) |
| * - opcode (4 bits) |
| * - authoritative (1 bit) |
| * - truncated (1 bit) |
| * - recursion desired (1 bit) |
| */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| |
| flags = reader[0] * 256 + reader[1]; |
| |
| if (flags & DNS_FLAG_TRUNCATED) |
| return DNS_RESP_TRUNCATED; |
| |
| if ((flags & DNS_FLAG_REPLYCODE) != DNS_RCODE_NO_ERROR) { |
| if ((flags & DNS_FLAG_REPLYCODE) == DNS_RCODE_NX_DOMAIN) |
| return DNS_RESP_NX_DOMAIN; |
| else if ((flags & DNS_FLAG_REPLYCODE) == DNS_RCODE_REFUSED) |
| return DNS_RESP_REFUSED; |
| |
| return DNS_RESP_ERROR; |
| } |
| |
| /* move forward 2 bytes for flags */ |
| reader += 2; |
| |
| /* 2 bytes for question count */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.qdcount = reader[0] * 256 + reader[1]; |
| /* (for now) we send one query only, so we expect only one in the response too */ |
| if (dns_p->header.qdcount != 1) |
| return DNS_RESP_QUERY_COUNT_ERROR; |
| if (dns_p->header.qdcount > DNS_MAX_QUERY_RECORDS) |
| return DNS_RESP_INVALID; |
| reader += 2; |
| |
| /* 2 bytes for answer count */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.ancount = reader[0] * 256 + reader[1]; |
| if (dns_p->header.ancount == 0) |
| return DNS_RESP_ANCOUNT_ZERO; |
| /* check if too many records are announced */ |
| if (dns_p->header.ancount > DNS_MAX_ANSWER_RECORDS) |
| return DNS_RESP_INVALID; |
| reader += 2; |
| |
| /* 2 bytes authority count */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.nscount = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* 2 bytes additional count */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.arcount = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* parsing dns queries */ |
| LIST_INIT(&dns_p->query_list); |
| for (dns_query_record_id = 0; dns_query_record_id < dns_p->header.qdcount; dns_query_record_id++) { |
| /* use next pre-allocated dns_query_item after ensuring there is |
| * still one available. |
| * It's then added to our packet query list. |
| */ |
| if (dns_query_record_id > DNS_MAX_QUERY_RECORDS) |
| return DNS_RESP_INVALID; |
| dns_query = &resolution->response_query_records[dns_query_record_id]; |
| LIST_ADDQ(&dns_p->query_list, &dns_query->list); |
| |
| /* name is a NULL terminated string in our case, since we have |
| * one query per response and the first one can't be compressed |
| * (using the 0x0c format) |
| */ |
| offset = 0; |
| len = dns_read_name(resp, bufend, reader, dns_query->name, DNS_MAX_NAME_SIZE, &offset); |
| |
| if (len == 0) |
| return DNS_RESP_INVALID; |
| |
| reader += offset; |
| previous_dname = dns_query->name; |
| |
| /* move forward 2 bytes for question type */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_query->type = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* move forward 2 bytes for question class */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_query->class = reader[0] * 256 + reader[1]; |
| reader += 2; |
| } |
| |
| /* now parsing response records */ |
| LIST_INIT(&dns_p->answer_list); |
| nb_saved_records = 0; |
| for (dns_answer_record_id = 0; dns_answer_record_id < dns_p->header.ancount; dns_answer_record_id++) { |
| if (reader >= bufend) |
| return DNS_RESP_INVALID; |
| |
| /* pull next response record from the list, if still one available, then add it |
| * to the record list */ |
| if (dns_answer_record_id > DNS_MAX_ANSWER_RECORDS) |
| return DNS_RESP_INVALID; |
| dns_answer_record = &resolution->response_answer_records[dns_answer_record_id]; |
| LIST_ADDQ(&dns_p->answer_list, &dns_answer_record->list); |
| |
| offset = 0; |
| len = dns_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset); |
| |
| if (len == 0) |
| return DNS_RESP_INVALID; |
| |
| /* check if the current record dname is valid. |
| * previous_dname points either to queried dname or last CNAME target |
| */ |
| if (memcmp(previous_dname, tmpname, len) != 0) { |
| if (dns_answer_record_id == 0) { |
| /* first record, means a mismatch issue between queried dname |
| * and dname found in the first record */ |
| return DNS_RESP_INVALID; |
| } else { |
| /* if not the first record, this means we have a CNAME resolution |
| * error */ |
| return DNS_RESP_CNAME_ERROR; |
| } |
| |
| } |
| |
| dns_answer_record->name = chunk_newstr(dns_response_buffer); |
| if (dns_answer_record->name == NULL) |
| return DNS_RESP_INVALID; |
| |
| ret = chunk_strncat(dns_response_buffer, tmpname, len); |
| if (ret == 0) |
| return DNS_RESP_INVALID; |
| |
| reader += offset; |
| if (reader >= bufend) |
| return DNS_RESP_INVALID; |
| |
| if (reader >= bufend) |
| return DNS_RESP_INVALID; |
| |
| /* 2 bytes for record type (A, AAAA, CNAME, etc...) */ |
| if (reader + 2 > bufend) |
| return DNS_RESP_INVALID; |
| dns_answer_record->type = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* 2 bytes for class (2) */ |
| if (reader + 2 > bufend) |
| return DNS_RESP_INVALID; |
| dns_answer_record->class = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* 4 bytes for ttl (4) */ |
| if (reader + 4 > bufend) |
| return DNS_RESP_INVALID; |
| dns_answer_record->ttl = reader[0] * 16777216 + reader[1] * 65536 |
| + reader[2] * 256 + reader[3]; |
| reader += 4; |
| |
| /* now reading data len */ |
| if (reader + 2 > bufend) |
| return DNS_RESP_INVALID; |
| dns_answer_record->data_len = reader[0] * 256 + reader[1]; |
| |
| /* move forward 2 bytes for data len */ |
| reader += 2; |
| |
| /* analyzing record content */ |
| switch (dns_answer_record->type) { |
| case DNS_RTYPE_A: |
| /* ipv4 is stored on 4 bytes */ |
| if (dns_answer_record->data_len != 4) |
| return DNS_RESP_INVALID; |
| dns_answer_record->address.sa_family = AF_INET; |
| memcpy(&(((struct sockaddr_in *)&dns_answer_record->address)->sin_addr), |
| reader, dns_answer_record->data_len); |
| break; |
| |
| case DNS_RTYPE_CNAME: |
| /* check if this is the last record and update the caller about the status: |
| * no IP could be found and last record was a CNAME. Could be triggered |
| * by a wrong query type |
| * |
| * + 1 because dns_answer_record_id starts at 0 while number of answers |
| * is an integer and starts at 1. |
| */ |
| if (dns_answer_record_id + 1 == dns_p->header.ancount) |
| return DNS_RESP_CNAME_ERROR; |
| |
| offset = 0; |
| len = dns_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset); |
| |
| if (len == 0) |
| return DNS_RESP_INVALID; |
| |
| dns_answer_record->target = chunk_newstr(dns_response_buffer); |
| if (dns_answer_record->target == NULL) |
| return DNS_RESP_INVALID; |
| |
| ret = chunk_strncat(dns_response_buffer, tmpname, len); |
| if (ret == 0) |
| return DNS_RESP_INVALID; |
| |
| previous_dname = dns_answer_record->target; |
| |
| break; |
| |
| case DNS_RTYPE_AAAA: |
| /* ipv6 is stored on 16 bytes */ |
| if (dns_answer_record->data_len != 16) |
| return DNS_RESP_INVALID; |
| dns_answer_record->address.sa_family = AF_INET6; |
| memcpy(&(((struct sockaddr_in6 *)&dns_answer_record->address)->sin6_addr), |
| reader, dns_answer_record->data_len); |
| break; |
| |
| } /* switch (record type) */ |
| |
| /* increment the counter for number of records saved into our local response */ |
| nb_saved_records += 1; |
| |
| /* move forward dns_answer_record->data_len for analyzing next record in the response */ |
| reader += dns_answer_record->data_len; |
| } /* for i 0 to ancount */ |
| |
| /* let's add a last \0 to close our last string */ |
| ret = chunk_strncat(dns_response_buffer, "\0", 1); |
| if (ret == 0) |
| return DNS_RESP_INVALID; |
| |
| /* save the number of records we really own */ |
| dns_p->header.ancount = nb_saved_records; |
| |
| return DNS_RESP_VALID; |
| } |
| |
| /* |
| * search dn_name resolution in resp. |
| * If existing IP not found, return the first IP matching family_priority, |
| * otherwise, first ip found |
| * The following tasks are the responsibility of the caller: |
| * - <dns_p> contains an error free DNS response |
| * For both cases above, dns_validate_dns_response is required |
| * returns one of the DNS_UPD_* code |
| */ |
| #define DNS_MAX_IP_REC 20 |
| int dns_get_ip_from_response(struct dns_response_packet *dns_p, |
| struct dns_options *dns_opts, void *currentip, |
| short currentip_sin_family, |
| void **newip, short *newip_sin_family, |
| void *owner) |
| { |
| struct dns_answer_item *record; |
| int family_priority; |
| int i, currentip_found; |
| unsigned char *newip4, *newip6; |
| struct { |
| void *ip; |
| unsigned char type; |
| } rec[DNS_MAX_IP_REC]; |
| int currentip_sel; |
| int j; |
| int rec_nb = 0; |
| int score, max_score; |
| |
| family_priority = dns_opts->family_prio; |
| *newip = newip4 = newip6 = NULL; |
| currentip_found = 0; |
| *newip_sin_family = AF_UNSPEC; |
| |
| /* now parsing response records */ |
| list_for_each_entry(record, &dns_p->answer_list, list) { |
| /* analyzing record content */ |
| switch (record->type) { |
| case DNS_RTYPE_A: |
| /* Store IPv4, only if some room is avalaible. */ |
| if (rec_nb < DNS_MAX_IP_REC) { |
| rec[rec_nb].ip = &(((struct sockaddr_in *)&record->address)->sin_addr); |
| rec[rec_nb].type = AF_INET; |
| rec_nb++; |
| } |
| break; |
| |
| /* we're looking for IPs only. CNAME validation is done when |
| * parsing the response buffer for the first time */ |
| case DNS_RTYPE_CNAME: |
| break; |
| |
| case DNS_RTYPE_AAAA: |
| /* Store IPv6, only if some room is avalaible. */ |
| if (rec_nb < DNS_MAX_IP_REC) { |
| rec[rec_nb].ip = &(((struct sockaddr_in6 *)&record->address)->sin6_addr); |
| rec[rec_nb].type = AF_INET6; |
| rec_nb++; |
| } |
| break; |
| |
| } /* switch (record type) */ |
| } /* list for each record entries */ |
| |
| /* Select an IP regarding configuration preference. |
| * Top priority is the prefered network ip version, |
| * second priority is the prefered network. |
| * the last priority is the currently used IP, |
| * |
| * For these three priorities, a score is calculated. The |
| * weight are: |
| * 8 - prefered netwok ip version. |
| * 4 - prefered network. |
| * 2 - if the ip in the record is not affected to any other server in the same backend (duplication) |
| * 1 - current ip. |
| * The result with the biggest score is returned. |
| */ |
| max_score = -1; |
| for (i = 0; i < rec_nb; i++) { |
| int record_ip_already_affected = 0; |
| |
| score = 0; |
| |
| /* Check for prefered ip protocol. */ |
| if (rec[i].type == family_priority) |
| score += 8; |
| |
| /* Check for prefered network. */ |
| for (j = 0; j < dns_opts->pref_net_nb; j++) { |
| |
| /* Compare only the same adresses class. */ |
| if (dns_opts->pref_net[j].family != rec[i].type) |
| continue; |
| |
| if ((rec[i].type == AF_INET && |
| in_net_ipv4(rec[i].ip, |
| &dns_opts->pref_net[j].mask.in4, |
| &dns_opts->pref_net[j].addr.in4)) || |
| (rec[i].type == AF_INET6 && |
| in_net_ipv6(rec[i].ip, |
| &dns_opts->pref_net[j].mask.in6, |
| &dns_opts->pref_net[j].addr.in6))) { |
| score += 4; |
| break; |
| } |
| } |
| |
| /* Check if the IP found in the record is already affected to a member of a group. |
| * If yes, the score should be incremented by 2. |
| */ |
| if (owner) { |
| if (snr_check_ip_callback(owner, rec[i].ip, &rec[i].type)) |
| record_ip_already_affected = 1; |
| } |
| if (record_ip_already_affected == 0) |
| score += 2; |
| |
| /* Check for current ip matching. */ |
| if (rec[i].type == currentip_sin_family && |
| ((currentip_sin_family == AF_INET && |
| memcmp(rec[i].ip, currentip, 4) == 0) || |
| (currentip_sin_family == AF_INET6 && |
| memcmp(rec[i].ip, currentip, 16) == 0))) { |
| score += 1; |
| currentip_sel = 1; |
| } else |
| currentip_sel = 0; |
| |
| |
| /* Keep the address if the score is better than the previous |
| * score. The maximum score is 15, if this value is reached, |
| * we break the parsing. Implicitly, this score is reached |
| * the ip selected is the current ip. |
| */ |
| if (score > max_score) { |
| if (rec[i].type == AF_INET) |
| newip4 = rec[i].ip; |
| else |
| newip6 = rec[i].ip; |
| currentip_found = currentip_sel; |
| if (score == 15) |
| return DNS_UPD_NO; |
| max_score = score; |
| } |
| } |
| |
| /* no IP found in the response */ |
| if (!newip4 && !newip6) { |
| return DNS_UPD_NO_IP_FOUND; |
| } |
| |
| /* case when the caller looks first for an IPv4 address */ |
| if (family_priority == AF_INET) { |
| if (newip4) { |
| *newip = newip4; |
| *newip_sin_family = AF_INET; |
| if (currentip_found == 1) |
| return DNS_UPD_NO; |
| goto return_DNS_UPD_SRVIP_NOT_FOUND; |
| } |
| else if (newip6) { |
| *newip = newip6; |
| *newip_sin_family = AF_INET6; |
| if (currentip_found == 1) |
| return DNS_UPD_NO; |
| goto return_DNS_UPD_SRVIP_NOT_FOUND; |
| } |
| } |
| /* case when the caller looks first for an IPv6 address */ |
| else if (family_priority == AF_INET6) { |
| if (newip6) { |
| *newip = newip6; |
| *newip_sin_family = AF_INET6; |
| if (currentip_found == 1) |
| return DNS_UPD_NO; |
| goto return_DNS_UPD_SRVIP_NOT_FOUND; |
| } |
| else if (newip4) { |
| *newip = newip4; |
| *newip_sin_family = AF_INET; |
| if (currentip_found == 1) |
| return DNS_UPD_NO; |
| goto return_DNS_UPD_SRVIP_NOT_FOUND; |
| } |
| } |
| /* case when the caller have no preference (we prefer IPv6) */ |
| else if (family_priority == AF_UNSPEC) { |
| if (newip6) { |
| *newip = newip6; |
| *newip_sin_family = AF_INET6; |
| if (currentip_found == 1) |
| return DNS_UPD_NO; |
| goto return_DNS_UPD_SRVIP_NOT_FOUND; |
| } |
| else if (newip4) { |
| *newip = newip4; |
| *newip_sin_family = AF_INET; |
| if (currentip_found == 1) |
| return DNS_UPD_NO; |
| goto return_DNS_UPD_SRVIP_NOT_FOUND; |
| } |
| } |
| |
| /* no reason why we should change the server's IP address */ |
| return DNS_UPD_NO; |
| |
| return_DNS_UPD_SRVIP_NOT_FOUND: |
| list_for_each_entry(record, &dns_p->answer_list, list) { |
| /* move the first record to the end of the list, for internal round robin */ |
| if (record) { |
| LIST_DEL(&record->list); |
| LIST_ADDQ(&dns_p->answer_list, &record->list); |
| break; |
| } |
| } |
| return DNS_UPD_SRVIP_NOT_FOUND; |
| } |
| |
| /* |
| * returns the query id contained in a DNS response |
| */ |
| unsigned short dns_response_get_query_id(unsigned char *resp) |
| { |
| /* read the query id from the response */ |
| return resp[0] * 256 + resp[1]; |
| } |
| |
| /* |
| * used during haproxy's init phase |
| * parses resolvers sections and initializes: |
| * - task (time events) for each resolvers section |
| * - the datagram layer (network IO events) for each nameserver |
| * It takes one argument: |
| * - close_first takes 2 values: 0 or 1. If 1, the connection is closed first. |
| * returns: |
| * 0 in case of error |
| * 1 when no error |
| */ |
| int dns_init_resolvers(int close_socket) |
| { |
| struct dns_resolvers *curr_resolvers; |
| struct dns_nameserver *curnameserver; |
| struct dns_resolution *resolution, *res_back; |
| struct dgram_conn *dgram; |
| struct task *t; |
| int fd; |
| |
| /* initialize our DNS resolution cache */ |
| dns_lru_tree = lru64_new(dns_cache_size); |
| |
| /* give a first random value to our dns query_id seed */ |
| dns_query_id_seed = random(); |
| |
| /* run through the resolvers section list */ |
| list_for_each_entry(curr_resolvers, &dns_resolvers, list) { |
| /* create the task associated to the resolvers section */ |
| if ((t = task_new()) == NULL) { |
| Alert("Starting [%s] resolvers: out of memory.\n", curr_resolvers->id); |
| return 0; |
| } |
| |
| /* update task's parameters */ |
| t->process = dns_process_resolve; |
| t->context = curr_resolvers; |
| |
| /* no need to keep the new task if one is already affected to our resolvers |
| * section */ |
| if (!curr_resolvers->t) |
| curr_resolvers->t = t; |
| else |
| task_free(t); |
| |
| list_for_each_entry(curnameserver, &curr_resolvers->nameserver_list, list) { |
| dgram = NULL; |
| |
| if (close_socket == 1) { |
| if (curnameserver->dgram) { |
| fd_delete(curnameserver->dgram->t.sock.fd); |
| memset(curnameserver->dgram, '\0', sizeof(*dgram)); |
| dgram = curnameserver->dgram; |
| } |
| } |
| |
| /* allocate memory only if it has not already been allocated |
| * by a previous call to this function */ |
| if (!dgram && (dgram = calloc(1, sizeof(*dgram))) == NULL) { |
| Alert("Starting [%s/%s] nameserver: out of memory.\n", curr_resolvers->id, |
| curnameserver->id); |
| return 0; |
| } |
| /* update datagram's parameters */ |
| dgram->owner = (void *)curnameserver; |
| dgram->data = &resolve_dgram_cb; |
| |
| /* create network UDP socket for this nameserver */ |
| if ((fd = socket(curnameserver->addr.ss_family, SOCK_DGRAM, IPPROTO_UDP)) == -1) { |
| Alert("Starting [%s/%s] nameserver: can't create socket.\n", curr_resolvers->id, |
| curnameserver->id); |
| free(dgram); |
| dgram = NULL; |
| return 0; |
| } |
| |
| /* "connect" the UDP socket to the name server IP */ |
| if (connect(fd, (struct sockaddr*)&curnameserver->addr, get_addr_len(&curnameserver->addr)) == -1) { |
| Alert("Starting [%s/%s] nameserver: can't connect socket.\n", curr_resolvers->id, |
| curnameserver->id); |
| close(fd); |
| free(dgram); |
| dgram = NULL; |
| return 0; |
| } |
| |
| /* make the socket non blocking */ |
| fcntl(fd, F_SETFL, O_NONBLOCK); |
| |
| /* add the fd in the fd list and update its parameters */ |
| fd_insert(fd); |
| fdtab[fd].owner = dgram; |
| fdtab[fd].iocb = dgram_fd_handler; |
| fd_want_recv(fd); |
| dgram->t.sock.fd = fd; |
| |
| /* update nameserver's datagram property */ |
| curnameserver->dgram = dgram; |
| |
| continue; |
| } |
| |
| if (close_socket == 0) |
| continue; |
| |
| /* now, we can trigger DNS resolution */ |
| list_for_each_entry_safe(resolution, res_back, &curr_resolvers->resolution.wait, list) { |
| /* if there is no requester in the wait queue, no need to trigger the resolution */ |
| if (LIST_ISEMPTY(&resolution->requester.wait)) |
| continue; |
| |
| dns_trigger_resolution(resolution); |
| } |
| |
| /* task can be queued */ |
| task_queue(t); |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Allocate a pool of resolution to a resolvers section. |
| * Each resolution is associated with a UUID. |
| * |
| * Return code: |
| * - 0 if everything went smoothly |
| * - -1 if an error occured |
| */ |
| int dns_alloc_resolution_pool(struct dns_resolvers *resolvers) |
| { |
| int i; |
| struct dns_resolution *resolution; |
| |
| /* return if a pool has already been set for this resolvers */ |
| if (!LIST_ISEMPTY(&resolvers->resolution.pool)) { |
| return 0; |
| } |
| |
| for (i = 0; i < resolvers->resolution_pool_size; i++) { |
| resolution = dns_alloc_resolution(); |
| if (!resolution) { |
| Alert("Starting [%s] resolvers: can't allocate memory for DNS resolution pool.\n", resolvers->id); |
| return -1; |
| } |
| resolution->uuid = i; |
| LIST_ADDQ(&resolvers->resolution.pool, &resolution->list); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Forge a DNS query. It needs the following information from the caller: |
| * - <query_id>: the DNS query id corresponding to this query |
| * - <query_type>: DNS_RTYPE_* request DNS record type (A, AAAA, ANY, etc...) |
| * - <hostname_dn>: hostname in domain name format |
| * - <hostname_dn_len>: length of <hostname_dn> |
| * To store the query, the caller must pass a buffer <buf> and its size <bufsize> |
| * |
| * the DNS query is stored in <buf> |
| * returns: |
| * -1 if <buf> is too short |
| */ |
| int dns_build_query(int query_id, int query_type, char *hostname_dn, int hostname_dn_len, char *buf, int bufsize) |
| { |
| struct dns_header *dns; |
| struct dns_question qinfo; |
| char *ptr, *bufend; |
| |
| memset(buf, '\0', bufsize); |
| ptr = buf; |
| bufend = buf + bufsize; |
| |
| /* check if there is enough room for DNS headers */ |
| if (ptr + sizeof(struct dns_header) >= bufend) |
| return -1; |
| |
| /* set dns query headers */ |
| dns = (struct dns_header *)ptr; |
| dns->id = (unsigned short) htons(query_id); |
| dns->flags = htons(0x0100); /* qr=0, opcode=0, aa=0, tc=0, rd=1, ra=0, z=0, rcode=0 */ |
| dns->qdcount = htons(1); /* 1 question */ |
| dns->ancount = 0; |
| dns->nscount = 0; |
| dns->arcount = 0; |
| |
| /* move forward ptr */ |
| ptr += sizeof(struct dns_header); |
| |
| /* check if there is enough room for query hostname */ |
| if ((ptr + hostname_dn_len) >= bufend) |
| return -1; |
| |
| /* set up query hostname */ |
| memcpy(ptr, hostname_dn, hostname_dn_len); |
| ptr[hostname_dn_len + 1] = '\0'; |
| |
| /* move forward ptr */ |
| ptr += (hostname_dn_len + 1); |
| |
| /* check if there is enough room for query hostname*/ |
| if (ptr + sizeof(struct dns_question) >= bufend) |
| return -1; |
| |
| /* set up query info (type and class) */ |
| qinfo.qtype = htons(query_type); |
| qinfo.qclass = htons(DNS_RCLASS_IN); |
| memcpy(ptr, &qinfo, sizeof(qinfo)); |
| |
| ptr += sizeof(struct dns_question); |
| |
| return ptr - buf; |
| } |
| |
| /* |
| * turn a string into domain name label: |
| * www.haproxy.org into 3www7haproxy3org |
| * if dn memory is pre-allocated, you must provide its size in dn_len |
| * if dn memory isn't allocated, dn_len must be set to 0. |
| * In the second case, memory will be allocated. |
| * in case of error, -1 is returned, otherwise, number of bytes copied in dn |
| */ |
| char *dns_str_to_dn_label(const char *string, char *dn, int dn_len) |
| { |
| char *c, *d; |
| int i, offset; |
| |
| /* offset between string size and theorical dn size */ |
| offset = 1; |
| |
| /* |
| * first, get the size of the string turned into its domain name version |
| * This function also validates the string respect the RFC |
| */ |
| if ((i = dns_str_to_dn_label_len(string)) == -1) |
| return NULL; |
| |
| /* yes, so let's check there is enough memory */ |
| if (dn_len < i + offset) |
| return NULL; |
| |
| i = strlen(string); |
| memcpy(dn + offset, string, i); |
| dn[i + offset] = '\0'; |
| /* avoid a '\0' at the beginning of dn string which may prevent the for loop |
| * below from working. |
| * Actually, this is the reason of the offset. */ |
| dn[0] = '0'; |
| |
| for (c = dn; *c ; ++c) { |
| /* c points to the first '0' char or a dot, which we don't want to read */ |
| d = c + offset; |
| i = 0; |
| while (*d != '.' && *d) { |
| i++; |
| d++; |
| } |
| *c = i; |
| |
| c = d - 1; /* because of c++ of the for loop */ |
| } |
| |
| return dn; |
| } |
| |
| /* |
| * compute and return the length of <string> it it were translated into domain name |
| * label: |
| * www.haproxy.org into 3www7haproxy3org would return 16 |
| * NOTE: add +1 for '\0' when allocating memory ;) |
| */ |
| int dns_str_to_dn_label_len(const char *string) |
| { |
| return strlen(string) + 1; |
| } |
| |
| /* |
| * validates host name: |
| * - total size |
| * - each label size individually |
| * returns: |
| * 0 in case of error. If <err> is not NULL, an error message is stored there. |
| * 1 when no error. <err> is left unaffected. |
| */ |
| int dns_hostname_validation(const char *string, char **err) |
| { |
| const char *c, *d; |
| int i; |
| |
| if (strlen(string) > DNS_MAX_NAME_SIZE) { |
| if (err) |
| *err = DNS_TOO_LONG_FQDN; |
| return 0; |
| } |
| |
| c = string; |
| while (*c) { |
| d = c; |
| |
| i = 0; |
| while (*d != '.' && *d && i <= DNS_MAX_LABEL_SIZE) { |
| i++; |
| if (!((*d == '-') || (*d == '_') || |
| ((*d >= 'a') && (*d <= 'z')) || |
| ((*d >= 'A') && (*d <= 'Z')) || |
| ((*d >= '0') && (*d <= '9')))) { |
| if (err) |
| *err = DNS_INVALID_CHARACTER; |
| return 0; |
| } |
| d++; |
| } |
| |
| if ((i >= DNS_MAX_LABEL_SIZE) && (d[i] != '.')) { |
| if (err) |
| *err = DNS_LABEL_TOO_LONG; |
| return 0; |
| } |
| |
| if (*d == '\0') |
| goto out; |
| |
| c = ++d; |
| } |
| out: |
| return 1; |
| } |
| |
| /* |
| * 2 bytes random generator to generate DNS query ID |
| */ |
| uint16_t dns_rnd16(void) |
| { |
| dns_query_id_seed ^= dns_query_id_seed << 13; |
| dns_query_id_seed ^= dns_query_id_seed >> 7; |
| dns_query_id_seed ^= dns_query_id_seed << 17; |
| return dns_query_id_seed; |
| } |
| |
| |
| /* |
| * function called when a timeout occurs during name resolution process |
| * if max number of tries is reached, then stop, otherwise, retry. |
| */ |
| struct task *dns_process_resolve(struct task *t) |
| { |
| struct dns_resolvers *resolvers = t->context; |
| struct dns_resolution *resolution, *res_back; |
| int res_preferred_afinet, res_preferred_afinet6; |
| struct dns_options *dns_opts = NULL; |
| |
| /* if both there is no resolution in the run queue, we can re-schedule a wake up */ |
| if (LIST_ISEMPTY(&resolvers->resolution.curr)) { |
| /* no first entry, so wake up was useless */ |
| dns_update_resolvers_timeout(resolvers); |
| return t; |
| } |
| |
| /* look for the first resolution which is not expired */ |
| list_for_each_entry_safe(resolution, res_back, &resolvers->resolution.curr, list) { |
| struct dns_requester *requester = NULL; |
| |
| /* when we find the first resolution in the future, then we can stop here */ |
| if (tick_is_le(now_ms, resolution->last_sent_packet)) |
| goto out; |
| |
| if (LIST_ISEMPTY(&resolution->requester.curr)) |
| goto out; |
| |
| /* |
| * if current resolution has been tried too many times and finishes in timeout |
| * we update its status and remove it from the list |
| */ |
| if (resolution->try <= 0) { |
| struct dns_requester *tmprequester; |
| /* clean up resolution information and remove from the list */ |
| dns_reset_resolution(resolution); |
| |
| LIST_DEL(&resolution->list); |
| LIST_ADDQ(&resolvers->resolution.wait, &resolution->list); |
| |
| if (resolution->status != RSLV_STATUS_TIMEOUT) { |
| resolution->status = RSLV_STATUS_TIMEOUT; |
| resolution->last_status_change = now_ms; |
| } |
| |
| /* notify the result to the requesters */ |
| list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) { |
| requester->requester_error_cb(requester, DNS_RESP_TIMEOUT); |
| LIST_DEL(&requester->list); |
| LIST_ADDQ(&resolution->requester.wait, &requester->list); |
| } |
| goto out; |
| } |
| |
| resolution->try -= 1; |
| |
| /* running queue is empty, nothing to do but wait */ |
| if (LIST_ISEMPTY(&resolution->requester.curr)) |
| goto out; |
| |
| requester = LIST_NEXT(&resolution->requester.curr, struct dns_requester *, list); |
| |
| switch (obj_type(requester->requester)) { |
| case OBJ_TYPE_SERVER: |
| dns_opts = &(objt_server(requester->requester)->dns_opts); |
| break; |
| |
| case OBJ_TYPE_NONE: |
| default: |
| /* clean up resolution information and remove from the list */ |
| dns_reset_resolution(resolution); |
| |
| LIST_DEL(&resolution->list); |
| LIST_ADDQ(&resolvers->resolution.wait, &resolution->list); |
| |
| /* notify the result to the requester */ |
| requester->requester_error_cb(requester, DNS_RESP_INTERNAL); |
| goto out; |
| } |
| |
| res_preferred_afinet = dns_opts->family_prio == AF_INET && resolution->query_type == DNS_RTYPE_A; |
| res_preferred_afinet6 = dns_opts->family_prio == AF_INET6 && resolution->query_type == DNS_RTYPE_AAAA; |
| |
| /* let's change the query type if needed */ |
| if (res_preferred_afinet6) { |
| /* fallback from AAAA to A */ |
| resolution->query_type = DNS_RTYPE_A; |
| } |
| else if (res_preferred_afinet) { |
| /* fallback from A to AAAA */ |
| resolution->query_type = DNS_RTYPE_AAAA; |
| } |
| |
| /* resend the DNS query */ |
| dns_send_query(resolution); |
| |
| /* check if we have more than one resolution in the list */ |
| if (dns_check_resolution_queue(resolvers) > 1) { |
| /* move the rsolution to the end of the list */ |
| LIST_DEL(&resolution->list); |
| LIST_ADDQ(&resolvers->resolution.curr, &resolution->list); |
| } |
| } |
| |
| out: |
| dns_update_resolvers_timeout(resolvers); |
| return t; |
| } |
| |
| /* |
| * build a dns cache key composed as follow: |
| * <query type>#<hostname in domain name format> |
| * and store it into <str>. |
| * It's up to the caller to allocate <buf> and to reset it. |
| * The function returns NULL in case of error (IE <buf> too small) or a pointer |
| * to buf if successful |
| */ |
| struct chunk * |
| dns_cache_key(int query_type, char *hostname_dn, int hostname_dn_len, struct chunk *buf) |
| { |
| int len, size; |
| char *str; |
| |
| str = buf->str; |
| len = buf->len; |
| size = buf->size; |
| |
| switch (query_type) { |
| case DNS_RTYPE_A: |
| if (len + 1 > size) |
| return NULL; |
| memcpy(&str[len], "A", 1); |
| len += 1; |
| break; |
| case DNS_RTYPE_AAAA: |
| if (len + 4 > size) |
| return NULL; |
| memcpy(&str[len], "AAAA", 4); |
| len += 4; |
| break; |
| default: |
| return NULL; |
| } |
| |
| if (len + 1 > size) |
| return NULL; |
| memcpy(&str[len], "#", 1); |
| len += 1; |
| |
| if (len + hostname_dn_len + 1 > size) // +1 for trailing zero |
| return NULL; |
| memcpy(&str[len], hostname_dn, hostname_dn_len); |
| len += hostname_dn_len; |
| str[len] = '\0'; |
| |
| return buf; |
| } |
| |
| /* |
| * returns a pointer to a cache entry which may still be considered as up to date |
| * by the caller. |
| * returns NULL if no entry can be found or if the data found is outdated. |
| */ |
| struct lru64 * |
| dns_cache_lookup(int query_type, char *hostname_dn, int hostname_dn_len, int valid_period, void *cache_domain) { |
| struct lru64 *elem = NULL; |
| struct dns_resolution *resolution = NULL; |
| struct dns_resolvers *resolvers = NULL; |
| struct dns_requester *requester = NULL; |
| int inter = 0; |
| struct chunk *buf = get_trash_chunk(); |
| struct chunk *tmp = NULL; |
| |
| if (!dns_lru_tree) |
| return NULL; |
| |
| chunk_reset(buf); |
| tmp = dns_cache_key(query_type, hostname_dn, hostname_dn_len, buf); |
| if (tmp == NULL) |
| return NULL; |
| |
| elem = lru64_lookup(XXH64(buf->str, buf->len, 1), dns_lru_tree, cache_domain, 1); |
| |
| if (!elem || !elem->data) |
| return NULL; |
| |
| resolution = elem->data; |
| |
| /* since we can change the fqdn of a server at run time, it may happen that |
| * we got an innacurate elem. |
| * This is because resolution->hostname_dn points to (owner)->hostname_dn (which |
| * may be changed at run time) |
| */ |
| if ((hostname_dn_len == resolution->hostname_dn_len) && |
| (memcmp(hostname_dn, resolution->hostname_dn, hostname_dn_len) != 0)) { |
| return NULL; |
| } |
| |
| requester = LIST_NEXT(&resolution->requester.wait, struct dns_requester *, list); |
| |
| switch (obj_type(requester->requester)) { |
| case OBJ_TYPE_SERVER: |
| resolvers = objt_server(requester->requester)->resolvers; |
| break; |
| case OBJ_TYPE_NONE: |
| default: |
| return NULL; |
| } |
| |
| if (!resolvers) |
| return NULL; |
| |
| if (resolvers->hold.valid < valid_period) |
| inter = resolvers->hold.valid; |
| else |
| inter = valid_period; |
| |
| if (!tick_is_expired(tick_add(resolution->last_resolution, inter), now_ms)) |
| return elem; |
| |
| return NULL; |
| } |
| |
| /* if an arg is found, it sets the resolvers section pointer into cli.p0 */ |
| static int cli_parse_stat_resolvers(char **args, struct appctx *appctx, void *private) |
| { |
| struct dns_resolvers *presolvers; |
| |
| if (*args[3]) { |
| list_for_each_entry(presolvers, &dns_resolvers, list) { |
| if (strcmp(presolvers->id, args[3]) == 0) { |
| appctx->ctx.cli.p0 = presolvers; |
| break; |
| } |
| } |
| if (appctx->ctx.cli.p0 == NULL) { |
| appctx->ctx.cli.msg = "Can't find that resolvers section\n"; |
| appctx->st0 = CLI_ST_PRINT; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * if <resolution> is provided, then the function skips the memory allocation part. |
| * It does the linking only. |
| * |
| * if <resolution> is NULL, the function links a dns resolution to a requester: |
| * - it allocates memory for the struct requester used to link |
| * the resolution to the requester |
| * - it configures the resolution if this is the first requester to be linked to it |
| * - it updates the requester with a pointer to the resolution |
| * |
| * Return code: |
| * - 0 if everything happened smoothly |
| * - -1 if an error occured. Of course, no resolution is linked to the requester |
| */ |
| int dns_link_resolution(void *requester, int requester_type, struct dns_resolution *resolution) |
| { |
| struct dns_resolution *tmpresolution = NULL; |
| struct dns_requester *tmprequester = NULL; |
| struct dns_resolvers *resolvers = NULL; |
| char *hostname_dn = NULL; |
| int new_resolution; |
| |
| if (!resolution) { |
| tmprequester = calloc(1, sizeof(*tmprequester)); |
| if (!tmprequester) |
| return -1; |
| |
| switch (requester_type) { |
| case OBJ_TYPE_SERVER: |
| tmprequester->requester = &((struct server *)requester)->obj_type; |
| hostname_dn = objt_server(tmprequester->requester)->hostname_dn; |
| resolvers = objt_server(tmprequester->requester)->resolvers; |
| switch (objt_server(tmprequester->requester)->dns_opts.family_prio) { |
| case AF_INET: |
| tmprequester->prefered_query_type = DNS_RTYPE_A; |
| break; |
| default: |
| tmprequester->prefered_query_type = DNS_RTYPE_AAAA; |
| } |
| |
| break; |
| case OBJ_TYPE_NONE: |
| default: |
| free(tmprequester); |
| return -1; |
| } |
| |
| /* get a resolution from the resolvers' wait queue or pool */ |
| tmpresolution = dns_resolution_list_get(resolvers, hostname_dn, tmprequester->prefered_query_type); |
| if (!tmpresolution) { |
| free(tmprequester); |
| return -1; |
| } |
| } |
| else { |
| tmpresolution = resolution; |
| |
| switch (requester_type) { |
| case OBJ_TYPE_SERVER: |
| tmprequester = ((struct server *)requester)->dns_requester; |
| resolvers = ((struct server *)requester)->resolvers; |
| break; |
| case OBJ_TYPE_NONE: |
| default: |
| return -1; |
| } |
| } |
| |
| /* flag this resolution as NEW if applicable (not already linked to any requester). |
| * this is required to decide which parameters we have to update on the resolution. |
| * If new, it means we pulled up the resolution from the resolvers' pool. |
| */ |
| if (LIST_ISEMPTY(&tmpresolution->requester.wait)) { |
| new_resolution = 1; |
| } |
| else |
| new_resolution = 0; |
| |
| /* those parameters are related to the requester type */ |
| switch (obj_type(tmprequester->requester)) { |
| case OBJ_TYPE_SERVER: |
| /* some parameters should be set only if the resolution is brand new */ |
| if (new_resolution) { |
| tmpresolution->query_type = tmprequester->prefered_query_type; |
| tmpresolution->hostname_dn = objt_server(tmprequester->requester)->hostname_dn; |
| tmpresolution->hostname_dn_len = objt_server(tmprequester->requester)->hostname_dn_len; |
| } |
| |
| /* update requester as well, only if we just allocated it */ |
| objt_server(tmprequester->requester)->resolution = tmpresolution; |
| if (!resolution) { |
| tmprequester->requester_cb = snr_resolution_cb; |
| tmprequester->requester_error_cb = snr_resolution_error_cb; |
| objt_server(tmprequester->requester)->dns_requester = tmprequester; |
| } |
| break; |
| case OBJ_TYPE_NONE: |
| default: |
| free(tmprequester); |
| return -1; |
| } |
| |
| /* update some parameters only if this is a brand new resolution */ |
| if (new_resolution) { |
| /* move the resolution to the requesters' wait queue */ |
| LIST_DEL(&tmpresolution->list); |
| LIST_ADDQ(&resolvers->resolution.wait, &tmpresolution->list); |
| |
| tmpresolution->status = RSLV_STATUS_NONE; |
| tmpresolution->step = RSLV_STEP_NONE; |
| tmpresolution->revision = 1; |
| } |
| |
| /* add the requester to the resolution's wait queue */ |
| if (resolution) |
| LIST_DEL(&tmprequester->list); |
| LIST_ADDQ(&tmpresolution->requester.wait, &tmprequester->list); |
| |
| return 0; |
| } |
| |
| /* |
| * pick up an available resolution from the different resolution list associated to a resolvers section, |
| * in this order: |
| * 1. check in resolution.curr for the same hostname and query_type |
| * 2. check in resolution.wait for the same hostname and query_type |
| * 3. take an available resolution from resolution.pool |
| * |
| * return an available resolution, NULL if none found. |
| */ |
| struct dns_resolution *dns_resolution_list_get(struct dns_resolvers *resolvers, char *hostname_dn, int query_type) |
| { |
| struct dns_resolution *resolution, *tmpresolution; |
| struct dns_requester *requester; |
| |
| /* search for same hostname and query type in resolution.curr */ |
| list_for_each_entry_safe(resolution, tmpresolution, &resolvers->resolution.curr, list) { |
| requester = NULL; |
| |
| if (!LIST_ISEMPTY(&resolution->requester.wait)) |
| requester = LIST_NEXT(&resolution->requester.wait, struct dns_requester *, list); |
| else if (!LIST_ISEMPTY(&resolution->requester.curr)) |
| requester = LIST_NEXT(&resolution->requester.curr, struct dns_requester *, list); |
| |
| if (!requester) |
| continue; |
| |
| if ((query_type == requester->prefered_query_type) && |
| (strcmp(hostname_dn, resolution->hostname_dn) == 0)) { |
| return resolution; |
| } |
| } |
| |
| /* search for same hostname and query type in resolution.wait */ |
| list_for_each_entry_safe(resolution, tmpresolution, &resolvers->resolution.wait, list) { |
| requester = NULL; |
| |
| if (!LIST_ISEMPTY(&resolution->requester.wait)) |
| requester = LIST_NEXT(&resolution->requester.wait, struct dns_requester *, list); |
| else if (!LIST_ISEMPTY(&resolution->requester.curr)) |
| requester = LIST_NEXT(&resolution->requester.curr, struct dns_requester *, list); |
| |
| if (!requester) |
| continue; |
| |
| if ((query_type == requester->prefered_query_type) && |
| (strcmp(hostname_dn, resolution->hostname_dn) == 0)) { |
| return resolution; |
| } |
| } |
| |
| /* take the first one (hopefully) from the pool */ |
| list_for_each_entry_safe(resolution, tmpresolution, &resolvers->resolution.pool, list) { |
| if (LIST_ISEMPTY(&resolution->requester.wait)) { |
| return resolution; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* This function allocates memory for a DNS resolution structure. |
| * It's up to the caller to set the parameters |
| * Returns a pointer to the structure resolution or NULL if memory could |
| * not be allocated. |
| */ |
| struct dns_resolution *dns_alloc_resolution(void) |
| { |
| struct dns_resolution *resolution = NULL; |
| char *buffer = NULL; |
| |
| resolution = calloc(1, sizeof(*resolution)); |
| buffer = calloc(1, global.tune.bufsize); |
| |
| if (!resolution || !buffer) { |
| free(buffer); |
| free(resolution); |
| return NULL; |
| } |
| |
| chunk_init(&resolution->response_buffer, buffer, global.tune.bufsize); |
| LIST_INIT(&resolution->requester.wait); |
| LIST_INIT(&resolution->requester.curr); |
| |
| return resolution; |
| } |
| |
| /* This function free the memory allocated to a DNS resolution */ |
| void dns_free_resolution(struct dns_resolution *resolution) |
| { |
| chunk_destroy(&resolution->response_buffer); |
| free(resolution); |
| |
| return; |
| } |
| |
| /* this function free a resolution from its requester(s) and move it back to the pool */ |
| void dns_resolution_free(struct dns_resolvers *resolvers, struct dns_resolution *resolution) |
| { |
| struct dns_requester *requester, *tmprequester; |
| |
| /* clean up configuration */ |
| dns_reset_resolution(resolution); |
| resolution->hostname_dn = NULL; |
| resolution->hostname_dn_len = 0; |
| |
| list_for_each_entry_safe(requester, tmprequester, &resolution->requester.wait, list) { |
| LIST_DEL(&requester->list); |
| } |
| list_for_each_entry_safe(requester, tmprequester, &resolution->requester.curr, list) { |
| LIST_DEL(&requester->list); |
| } |
| |
| LIST_DEL(&resolution->list); |
| LIST_ADDQ(&resolvers->resolution.pool, &resolution->list); |
| |
| return; |
| } |
| |
| /* |
| * this function remove a requester from a resolution |
| * and takes care of all the consequences. |
| * It also cleans up some parameters from the requester |
| */ |
| void dns_rm_requester_from_resolution(struct dns_requester *requester, struct dns_resolution *resolution) |
| { |
| char *hostname_dn; |
| struct dns_requester *tmprequester; |
| |
| /* resolution is still used by other requesters, we need to move |
| * some pointers to an other requester if needed |
| */ |
| switch (obj_type(requester->requester)) { |
| case OBJ_TYPE_SERVER: |
| hostname_dn = objt_server(requester->requester)->hostname_dn; |
| break; |
| case OBJ_TYPE_NONE: |
| default: |
| hostname_dn = NULL; |
| break; |
| } |
| |
| if (resolution->hostname_dn != hostname_dn) |
| return; |
| |
| /* First, we need to find this other requester */ |
| tmprequester = NULL; |
| list_for_each_entry(tmprequester, &resolution->requester.wait, list) { |
| if (tmprequester != requester) |
| break; |
| } |
| if (!tmprequester) { |
| /* if we can't find it in wait queue, let's get one in run queue */ |
| list_for_each_entry(tmprequester, &resolution->requester.curr, list) { |
| if (tmprequester != requester) |
| break; |
| } |
| } |
| |
| /* move hostname_dn related pointers to the next requester */ |
| switch (obj_type(tmprequester->requester)) { |
| case OBJ_TYPE_SERVER: |
| resolution->hostname_dn = objt_server(tmprequester->requester)->hostname_dn; |
| resolution->hostname_dn_len = objt_server(tmprequester->requester)->hostname_dn_len; |
| break; |
| case OBJ_TYPE_NONE: |
| default: |
| ;; |
| } |
| |
| |
| /* clean up the requester */ |
| LIST_DEL(&requester->list); |
| switch (obj_type(requester->requester)) { |
| case OBJ_TYPE_SERVER: |
| objt_server(requester->requester)->resolution = NULL; |
| break; |
| case OBJ_TYPE_NONE: |
| default: |
| ;; |
| } |
| } |
| |
| /* This function dumps counters from all resolvers section and associated name |
| * servers. It returns 0 if the output buffer is full and it needs to be called |
| * again, otherwise non-zero. It may limit itself to the resolver pointed to by |
| * <cli.p0> if it's not null. |
| */ |
| static int cli_io_handler_dump_resolvers_to_buffer(struct appctx *appctx) |
| { |
| struct stream_interface *si = appctx->owner; |
| struct dns_resolvers *presolvers; |
| struct dns_nameserver *pnameserver; |
| |
| chunk_reset(&trash); |
| |
| switch (appctx->st2) { |
| case STAT_ST_INIT: |
| appctx->st2 = STAT_ST_LIST; /* let's start producing data */ |
| /* fall through */ |
| |
| case STAT_ST_LIST: |
| if (LIST_ISEMPTY(&dns_resolvers)) { |
| chunk_appendf(&trash, "No resolvers found\n"); |
| } |
| else { |
| list_for_each_entry(presolvers, &dns_resolvers, list) { |
| if (appctx->ctx.cli.p0 != NULL && appctx->ctx.cli.p0 != presolvers) |
| continue; |
| |
| chunk_appendf(&trash, "Resolvers section %s\n", presolvers->id); |
| list_for_each_entry(pnameserver, &presolvers->nameserver_list, list) { |
| chunk_appendf(&trash, " nameserver %s:\n", pnameserver->id); |
| chunk_appendf(&trash, " sent: %ld\n", pnameserver->counters.sent); |
| chunk_appendf(&trash, " valid: %ld\n", pnameserver->counters.valid); |
| chunk_appendf(&trash, " update: %ld\n", pnameserver->counters.update); |
| chunk_appendf(&trash, " cname: %ld\n", pnameserver->counters.cname); |
| chunk_appendf(&trash, " cname_error: %ld\n", pnameserver->counters.cname_error); |
| chunk_appendf(&trash, " any_err: %ld\n", pnameserver->counters.any_err); |
| chunk_appendf(&trash, " nx: %ld\n", pnameserver->counters.nx); |
| chunk_appendf(&trash, " timeout: %ld\n", pnameserver->counters.timeout); |
| chunk_appendf(&trash, " refused: %ld\n", pnameserver->counters.refused); |
| chunk_appendf(&trash, " other: %ld\n", pnameserver->counters.other); |
| chunk_appendf(&trash, " invalid: %ld\n", pnameserver->counters.invalid); |
| chunk_appendf(&trash, " too_big: %ld\n", pnameserver->counters.too_big); |
| chunk_appendf(&trash, " truncated: %ld\n", pnameserver->counters.truncated); |
| chunk_appendf(&trash, " outdated: %ld\n", pnameserver->counters.outdated); |
| } |
| } |
| } |
| |
| /* display response */ |
| if (bi_putchk(si_ic(si), &trash) == -1) { |
| /* let's try again later from this session. We add ourselves into |
| * this session's users so that it can remove us upon termination. |
| */ |
| si->flags |= SI_FL_WAIT_ROOM; |
| return 0; |
| } |
| |
| appctx->st2 = STAT_ST_FIN; |
| /* fall through */ |
| |
| default: |
| appctx->st2 = STAT_ST_FIN; |
| return 1; |
| } |
| } |
| |
| /* register cli keywords */ |
| static struct cli_kw_list cli_kws = {{ },{ |
| { { "show", "stat", "resolvers", NULL }, "show stat resolvers [id]: dumps counters from all resolvers section and\n" |
| " associated name servers", |
| cli_parse_stat_resolvers, cli_io_handler_dump_resolvers_to_buffer }, |
| {{},} |
| }}; |
| |
| |
| __attribute__((constructor)) |
| static void __dns_init(void) |
| { |
| cli_register_kw(&cli_kws); |
| } |
| |