blob: 60cbd22210f8bef978fa5aacbddaba37ad737a50 [file] [log] [blame]
/*
* Connection management functions
*
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <errno.h>
#include <import/ebmbtree.h>
#include <haproxy/api.h>
#include <haproxy/cfgparse.h>
#include <haproxy/connection.h>
#include <haproxy/conn_stream.h>
#include <haproxy/fd.h>
#include <haproxy/frontend.h>
#include <haproxy/hash.h>
#include <haproxy/list.h>
#include <haproxy/log-t.h>
#include <haproxy/namespace.h>
#include <haproxy/net_helper.h>
#include <haproxy/proto_tcp.h>
#include <haproxy/sample.h>
#include <haproxy/session.h>
#include <haproxy/stream_interface.h>
#include <haproxy/ssl_sock.h>
#include <haproxy/tools.h>
#include <haproxy/xxhash.h>
DECLARE_POOL(pool_head_connection, "connection", sizeof(struct connection));
DECLARE_POOL(pool_head_conn_hash_node, "conn_hash_node", sizeof(struct conn_hash_node));
DECLARE_POOL(pool_head_sockaddr, "sockaddr", sizeof(struct sockaddr_storage));
DECLARE_POOL(pool_head_authority, "authority", PP2_AUTHORITY_MAX);
struct idle_conns idle_conns[MAX_THREADS] = { };
struct xprt_ops *registered_xprt[XPRT_ENTRIES] = { NULL, };
/* List head of all known muxes for PROTO */
struct mux_proto_list mux_proto_list = {
.list = LIST_HEAD_INIT(mux_proto_list.list)
};
struct mux_stopping_data mux_stopping_data[MAX_THREADS];
/* disables sending of proxy-protocol-v2's LOCAL command */
static int pp2_never_send_local;
void conn_delete_from_tree(struct ebmb_node *node)
{
ebmb_delete(node);
}
int conn_create_mux(struct connection *conn)
{
if (conn_is_back(conn)) {
struct server *srv;
struct conn_stream *cs = conn->ctx;
struct session *sess = conn->owner;
if (conn->flags & CO_FL_ERROR)
goto fail;
if (sess && obj_type(sess->origin) == OBJ_TYPE_CHECK) {
if (conn_install_mux_chk(conn, conn->ctx, sess) < 0)
goto fail;
}
else if (conn_install_mux_be(conn, conn->ctx, sess, NULL) < 0)
goto fail;
srv = objt_server(conn->target);
/* If we're doing http-reuse always, and the connection is not
* private with available streams (an http2 connection), add it
* to the available list, so that others can use it right
* away. If the connection is private, add it in the session
* server list.
*/
if (srv && ((srv->proxy->options & PR_O_REUSE_MASK) == PR_O_REUSE_ALWS) &&
!(conn->flags & CO_FL_PRIVATE) && conn->mux->avail_streams(conn) > 0)
ebmb_insert(&srv->per_thr[tid].avail_conns, &conn->hash_node->node, sizeof(conn->hash_node->hash));
else if (conn->flags & CO_FL_PRIVATE) {
/* If it fail now, the same will be done in mux->detach() callback */
session_add_conn(sess, conn, conn->target);
}
return 0;
fail:
/* let the upper layer know the connection failed */
cs->data_cb->wake(cs);
return -1;
} else
return conn_complete_session(conn);
}
/* This is used at the end of the socket IOCB to possibly create the mux if it
* was not done yet, or wake it up if flags changed compared to old_flags or if
* need_wake insists on this. It returns <0 if the connection was destroyed and
* must not be used, >=0 otherwise.
*/
int conn_notify_mux(struct connection *conn, int old_flags, int forced_wake)
{
int ret = 0;
/* If we don't yet have a mux, that means we were waiting for
* information to create one, typically from the ALPN. If we're
* done with the handshake, attempt to create one.
*/
if (unlikely(!conn->mux) && !(conn->flags & CO_FL_WAIT_XPRT)) {
ret = conn_create_mux(conn);
if (ret < 0)
goto done;
}
/* The wake callback is normally used to notify the data layer about
* data layer activity (successful send/recv), connection establishment,
* shutdown and fatal errors. We need to consider the following
* situations to wake up the data layer :
* - change among the CO_FL_NOTIFY_DONE flags :
* SOCK_{RD,WR}_SH, ERROR,
* - absence of any of {L4,L6}_CONN and CONNECTED, indicating the
* end of handshake and transition to CONNECTED
* - raise of CONNECTED with HANDSHAKE down
* - end of HANDSHAKE with CONNECTED set
* - regular data layer activity
*
* One tricky case is the wake up on read0 or error on an idle
* backend connection, that can happen on a connection that is still
* polled while at the same moment another thread is about to perform a
* takeover. The solution against this is to remove the connection from
* the idle list if it was in it, and possibly reinsert it at the end
* if the connection remains valid. The cost is non-null (locked tree
* removal) but remains low given that this is extremely rarely called.
* In any case it's guaranteed by the FD's thread_mask that we're
* called from the same thread the connection is queued in.
*
* Note that the wake callback is allowed to release the connection and
* the fd (and return < 0 in this case).
*/
if ((forced_wake ||
((conn->flags ^ old_flags) & CO_FL_NOTIFY_DONE) ||
((old_flags & CO_FL_WAIT_XPRT) && !(conn->flags & CO_FL_WAIT_XPRT))) &&
conn->mux && conn->mux->wake) {
uint conn_in_list = conn->flags & CO_FL_LIST_MASK;
struct server *srv = objt_server(conn->target);
if (conn_in_list) {
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
conn_delete_from_tree(&conn->hash_node->node);
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
}
ret = conn->mux->wake(conn);
if (ret < 0)
goto done;
if (conn_in_list) {
struct eb_root *root = (conn_in_list == CO_FL_SAFE_LIST) ?
&srv->per_thr[tid].safe_conns :
&srv->per_thr[tid].idle_conns;
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
ebmb_insert(root, &conn->hash_node->node, sizeof(conn->hash_node->hash));
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
}
}
done:
return ret;
}
/* Change the mux for the connection.
* The caller should make sure he's not subscribed to the underlying XPRT.
*/
int conn_upgrade_mux_fe(struct connection *conn, void *ctx, struct buffer *buf,
struct ist mux_proto, int mode)
{
struct bind_conf *bind_conf = __objt_listener(conn->target)->bind_conf;
const struct mux_ops *old_mux, *new_mux;
void *old_mux_ctx;
const char *alpn_str = NULL;
int alpn_len = 0;
if (!mux_proto.len) {
conn_get_alpn(conn, &alpn_str, &alpn_len);
mux_proto = ist2(alpn_str, alpn_len);
}
new_mux = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_FE, mode);
old_mux = conn->mux;
/* No mux found */
if (!new_mux)
return -1;
/* Same mux, nothing to do */
if (old_mux == new_mux)
return 0;
old_mux_ctx = conn->ctx;
conn->mux = new_mux;
conn->ctx = ctx;
if (new_mux->init(conn, bind_conf->frontend, conn->owner, buf) == -1) {
/* The mux upgrade failed, so restore the old mux */
conn->ctx = old_mux_ctx;
conn->mux = old_mux;
return -1;
}
/* The mux was upgraded, destroy the old one */
*buf = BUF_NULL;
old_mux->destroy(old_mux_ctx);
return 0;
}
/* installs the best mux for incoming connection <conn> using the upper context
* <ctx>. If the mux protocol is forced, we use it to find the best
* mux. Otherwise we use the ALPN name, if any. Returns < 0 on error.
*/
int conn_install_mux_fe(struct connection *conn, void *ctx)
{
struct bind_conf *bind_conf = __objt_listener(conn->target)->bind_conf;
const struct mux_ops *mux_ops;
if (bind_conf->mux_proto)
mux_ops = bind_conf->mux_proto->mux;
else {
struct ist mux_proto;
const char *alpn_str = NULL;
int alpn_len = 0;
int mode;
if (bind_conf->frontend->mode == PR_MODE_HTTP)
mode = PROTO_MODE_HTTP;
else
mode = PROTO_MODE_TCP;
conn_get_alpn(conn, &alpn_str, &alpn_len);
mux_proto = ist2(alpn_str, alpn_len);
mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_FE, mode);
if (!mux_ops)
return -1;
}
return conn_install_mux(conn, mux_ops, ctx, bind_conf->frontend, conn->owner);
}
/* installs the best mux for outgoing connection <conn> using the upper context
* <ctx>. If the server mux protocol is forced, we use it to find the best mux.
* It's also possible to specify an alternative mux protocol <force_mux_ops>,
* in which case it will be used instead of the default server mux protocol.
*
* Returns < 0 on error.
*/
int conn_install_mux_be(struct connection *conn, void *ctx, struct session *sess,
const struct mux_ops *force_mux_ops)
{
struct server *srv = objt_server(conn->target);
struct proxy *prx = objt_proxy(conn->target);
const struct mux_ops *mux_ops;
if (srv)
prx = srv->proxy;
if (!prx) // target must be either proxy or server
return -1;
if (srv && srv->mux_proto && likely(!force_mux_ops)) {
mux_ops = srv->mux_proto->mux;
}
else if (srv && unlikely(force_mux_ops)) {
mux_ops = force_mux_ops;
}
else {
struct ist mux_proto;
const char *alpn_str = NULL;
int alpn_len = 0;
int mode;
if (prx->mode == PR_MODE_HTTP)
mode = PROTO_MODE_HTTP;
else
mode = PROTO_MODE_TCP;
conn_get_alpn(conn, &alpn_str, &alpn_len);
mux_proto = ist2(alpn_str, alpn_len);
mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_BE, mode);
if (!mux_ops)
return -1;
}
return conn_install_mux(conn, mux_ops, ctx, prx, sess);
}
/* installs the best mux for outgoing connection <conn> for a check using the
* upper context <ctx>. If the mux protocol is forced by the check, we use it to
* find the best mux. Returns < 0 on error.
*/
int conn_install_mux_chk(struct connection *conn, void *ctx, struct session *sess)
{
struct check *check = objt_check(sess->origin);
struct server *srv = objt_server(conn->target);
struct proxy *prx = objt_proxy(conn->target);
const struct mux_ops *mux_ops;
if (!check) // Check must be defined
return -1;
if (srv)
prx = srv->proxy;
if (!prx) // target must be either proxy or server
return -1;
if (check->mux_proto)
mux_ops = check->mux_proto->mux;
else {
struct ist mux_proto;
const char *alpn_str = NULL;
int alpn_len = 0;
int mode;
if ((check->tcpcheck_rules->flags & TCPCHK_RULES_PROTO_CHK) == TCPCHK_RULES_HTTP_CHK)
mode = PROTO_MODE_HTTP;
else
mode = PROTO_MODE_TCP;
conn_get_alpn(conn, &alpn_str, &alpn_len);
mux_proto = ist2(alpn_str, alpn_len);
mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_BE, mode);
if (!mux_ops)
return -1;
}
return conn_install_mux(conn, mux_ops, ctx, prx, sess);
}
/* Set the ALPN of connection <conn> to <alpn>. If force is false, <alpn> must
* be a subset or identical to the registered protos for the parent SSL_CTX.
* In this case <alpn> must be a single protocol value, not a list.
*
* Returns 0 if ALPN is updated else -1.
*/
int conn_update_alpn(struct connection *conn, const struct ist alpn, int force)
{
#ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
size_t alpn_len = istlen(alpn);
char *ctx_alpn_str = NULL;
int ctx_alpn_len = 0, found = 0;
/* if not force, first search if alpn is a subset or identical to the
* parent SSL_CTX.
*/
if (!force) {
/* retrieve the SSL_CTX according to the connection side. */
if (conn_is_back(conn)) {
if (obj_type(conn->target) == OBJ_TYPE_SERVER) {
struct server *srv = __objt_server(conn->target);
ctx_alpn_str = srv->ssl_ctx.alpn_str;
ctx_alpn_len = srv->ssl_ctx.alpn_len;
}
}
else {
struct session *sess = conn->owner;
struct listener *li = sess->listener;
if (li->bind_conf && li->bind_conf->is_ssl) {
ctx_alpn_str = li->bind_conf->ssl_conf.alpn_str;
ctx_alpn_len = li->bind_conf->ssl_conf.alpn_len;
}
}
if (ctx_alpn_str) {
/* search if ALPN is present in SSL_CTX ALPN before
* using it.
*/
while (ctx_alpn_len) {
/* skip ALPN whose size is not 8 */
if (*ctx_alpn_str != alpn_len - 1) {
ctx_alpn_len -= *ctx_alpn_str + 1;
}
else {
if (isteqi(ist2(ctx_alpn_str, alpn_len), alpn)) {
found = 1;
break;
}
}
ctx_alpn_str += *ctx_alpn_str + 1;
/* This indicates an invalid ALPN formatted
* string and should never happen. */
BUG_ON(ctx_alpn_len < 0);
}
}
}
if (found || force) {
ssl_sock_set_alpn(conn, (const uchar *)istptr(alpn), istlen(alpn));
return 0;
}
#endif
return -1;
}
/* Initializes all required fields for a new connection. Note that it does the
* minimum acceptable initialization for a connection that already exists and
* is about to be reused. It also leaves the addresses untouched, which makes
* it usable across connection retries to reset a connection to a known state.
*/
void conn_init(struct connection *conn, void *target)
{
conn->obj_type = OBJ_TYPE_CONN;
conn->flags = CO_FL_NONE;
conn->mux = NULL;
conn->ctx = NULL;
conn->owner = NULL;
conn->send_proxy_ofs = 0;
conn->handle.fd = DEAD_FD_MAGIC;
conn->err_code = CO_ER_NONE;
conn->target = target;
conn->destroy_cb = NULL;
conn->proxy_netns = NULL;
MT_LIST_INIT(&conn->toremove_list);
if (conn_is_back(conn))
LIST_INIT(&conn->session_list);
else
LIST_INIT(&conn->stopping_list);
conn->subs = NULL;
conn->src = NULL;
conn->dst = NULL;
conn->proxy_authority = IST_NULL;
conn->proxy_unique_id = IST_NULL;
conn->qc = NULL;
conn->hash_node = NULL;
conn->xprt = NULL;
}
/* Tries to allocate a new connection and initialized its main fields. The
* connection is returned on success, NULL on failure. The connection must
* be released using pool_free() or conn_free().
*/
struct connection *conn_new(void *target)
{
struct connection *conn;
struct conn_hash_node *hash_node;
conn = pool_alloc(pool_head_connection);
if (unlikely(!conn))
return NULL;
conn_init(conn, target);
if (conn_is_back(conn)) {
if (obj_type(target) == OBJ_TYPE_SERVER)
srv_use_conn(__objt_server(target), conn);
hash_node = conn_alloc_hash_node(conn);
if (unlikely(!hash_node)) {
pool_free(pool_head_connection, conn);
return NULL;
}
conn->hash_node = hash_node;
}
return conn;
}
/* Releases a connection previously allocated by conn_new() */
void conn_free(struct connection *conn)
{
/* If the connection is owned by the session, remove it from its list
*/
if (conn_is_back(conn) && LIST_INLIST(&conn->session_list)) {
session_unown_conn(conn->owner, conn);
}
else if (!(conn->flags & CO_FL_PRIVATE)) {
if (obj_type(conn->target) == OBJ_TYPE_SERVER)
srv_release_conn(__objt_server(conn->target), conn);
}
/* Remove the conn from toremove_list.
*
* This is needed to prevent a double-free in case the connection was
* already scheduled from cleaning but is freed before via another
* call.
*/
MT_LIST_DELETE(&conn->toremove_list);
sockaddr_free(&conn->src);
sockaddr_free(&conn->dst);
pool_free(pool_head_authority, istptr(conn->proxy_authority));
conn->proxy_authority = IST_NULL;
pool_free(pool_head_uniqueid, istptr(conn->proxy_unique_id));
conn->proxy_unique_id = IST_NULL;
pool_free(pool_head_conn_hash_node, conn->hash_node);
conn->hash_node = NULL;
/* By convention we always place a NULL where the ctx points to if the
* mux is null. It may have been used to store the connection as a
* stream_interface's end point for example.
*/
if (conn->ctx != NULL && conn->mux == NULL)
*(void **)conn->ctx = NULL;
conn_force_unsubscribe(conn);
pool_free(pool_head_connection, conn);
}
struct conn_hash_node *conn_alloc_hash_node(struct connection *conn)
{
struct conn_hash_node *hash_node = NULL;
hash_node = pool_zalloc(pool_head_conn_hash_node);
if (unlikely(!hash_node))
return NULL;
hash_node->conn = conn;
return hash_node;
}
/* Allocates a struct sockaddr from the pool if needed, assigns it to *sap and
* returns it. If <sap> is NULL, the address is always allocated and returned.
* if <sap> is non-null, an address will only be allocated if it points to a
* non-null pointer. In this case the allocated address will be assigned there.
* If <orig> is non-null and <len> positive, the address in <sa> will be copied
* into the allocated address. In both situations the new pointer is returned.
*/
struct sockaddr_storage *sockaddr_alloc(struct sockaddr_storage **sap, const struct sockaddr_storage *orig, socklen_t len)
{
struct sockaddr_storage *sa;
if (sap && *sap)
return *sap;
sa = pool_alloc(pool_head_sockaddr);
if (sa && orig && len > 0)
memcpy(sa, orig, len);
if (sap)
*sap = sa;
return sa;
}
/* Releases the struct sockaddr potentially pointed to by <sap> to the pool. It
* may be NULL or may point to NULL. If <sap> is not NULL, a NULL is placed
* there.
*/
void sockaddr_free(struct sockaddr_storage **sap)
{
if (!sap)
return;
pool_free(pool_head_sockaddr, *sap);
*sap = NULL;
}
/* Try to add a handshake pseudo-XPRT. If the connection's first XPRT is
* raw_sock, then just use the new XPRT as the connection XPRT, otherwise
* call the xprt's add_xprt() method.
* Returns 0 on success, or non-zero on failure.
*/
int xprt_add_hs(struct connection *conn)
{
void *xprt_ctx = NULL;
const struct xprt_ops *ops = xprt_get(XPRT_HANDSHAKE);
void *nextxprt_ctx = NULL;
const struct xprt_ops *nextxprt_ops = NULL;
if (conn->flags & CO_FL_ERROR)
return -1;
if (ops->init(conn, &xprt_ctx) < 0)
return -1;
if (conn->xprt == xprt_get(XPRT_RAW)) {
nextxprt_ctx = conn->xprt_ctx;
nextxprt_ops = conn->xprt;
conn->xprt_ctx = xprt_ctx;
conn->xprt = ops;
} else {
if (conn->xprt->add_xprt(conn, conn->xprt_ctx, xprt_ctx, ops,
&nextxprt_ctx, &nextxprt_ops) != 0) {
ops->close(conn, xprt_ctx);
return -1;
}
}
if (ops->add_xprt(conn, xprt_ctx, nextxprt_ctx, nextxprt_ops, NULL, NULL) != 0) {
ops->close(conn, xprt_ctx);
return -1;
}
return 0;
}
/* returns a human-readable error code for conn->err_code, or NULL if the code
* is unknown.
*/
const char *conn_err_code_str(struct connection *c)
{
switch (c->err_code) {
case CO_ER_NONE: return "Success";
case CO_ER_CONF_FDLIM: return "Reached configured maxconn value";
case CO_ER_PROC_FDLIM: return "Too many sockets on the process";
case CO_ER_SYS_FDLIM: return "Too many sockets on the system";
case CO_ER_SYS_MEMLIM: return "Out of system buffers";
case CO_ER_NOPROTO: return "Protocol or address family not supported";
case CO_ER_SOCK_ERR: return "General socket error";
case CO_ER_PORT_RANGE: return "Source port range exhausted";
case CO_ER_CANT_BIND: return "Can't bind to source address";
case CO_ER_FREE_PORTS: return "Out of local source ports on the system";
case CO_ER_ADDR_INUSE: return "Local source address already in use";
case CO_ER_PRX_EMPTY: return "Connection closed while waiting for PROXY protocol header";
case CO_ER_PRX_ABORT: return "Connection error while waiting for PROXY protocol header";
case CO_ER_PRX_TIMEOUT: return "Timeout while waiting for PROXY protocol header";
case CO_ER_PRX_TRUNCATED: return "Truncated PROXY protocol header received";
case CO_ER_PRX_NOT_HDR: return "Received something which does not look like a PROXY protocol header";
case CO_ER_PRX_BAD_HDR: return "Received an invalid PROXY protocol header";
case CO_ER_PRX_BAD_PROTO: return "Received an unhandled protocol in the PROXY protocol header";
case CO_ER_CIP_EMPTY: return "Connection closed while waiting for NetScaler Client IP header";
case CO_ER_CIP_ABORT: return "Connection error while waiting for NetScaler Client IP header";
case CO_ER_CIP_TIMEOUT: return "Timeout while waiting for a NetScaler Client IP header";
case CO_ER_CIP_TRUNCATED: return "Truncated NetScaler Client IP header received";
case CO_ER_CIP_BAD_MAGIC: return "Received an invalid NetScaler Client IP magic number";
case CO_ER_CIP_BAD_PROTO: return "Received an unhandled protocol in the NetScaler Client IP header";
case CO_ER_SSL_EMPTY: return "Connection closed during SSL handshake";
case CO_ER_SSL_ABORT: return "Connection error during SSL handshake";
case CO_ER_SSL_TIMEOUT: return "Timeout during SSL handshake";
case CO_ER_SSL_TOO_MANY: return "Too many SSL connections";
case CO_ER_SSL_NO_MEM: return "Out of memory when initializing an SSL connection";
case CO_ER_SSL_RENEG: return "Rejected a client-initiated SSL renegotiation attempt";
case CO_ER_SSL_CA_FAIL: return "SSL client CA chain cannot be verified";
case CO_ER_SSL_CRT_FAIL: return "SSL client certificate not trusted";
case CO_ER_SSL_MISMATCH: return "Server presented an SSL certificate different from the configured one";
case CO_ER_SSL_MISMATCH_SNI: return "Server presented an SSL certificate different from the expected one";
case CO_ER_SSL_HANDSHAKE: return "SSL handshake failure";
case CO_ER_SSL_HANDSHAKE_HB: return "SSL handshake failure after heartbeat";
case CO_ER_SSL_KILLED_HB: return "Stopped a TLSv1 heartbeat attack (CVE-2014-0160)";
case CO_ER_SSL_NO_TARGET: return "Attempt to use SSL on an unknown target (internal error)";
case CO_ER_SSL_EARLY_FAILED: return "Server refused early data";
case CO_ER_SOCKS4_SEND: return "SOCKS4 Proxy write error during handshake";
case CO_ER_SOCKS4_RECV: return "SOCKS4 Proxy read error during handshake";
case CO_ER_SOCKS4_DENY: return "SOCKS4 Proxy deny the request";
case CO_ER_SOCKS4_ABORT: return "SOCKS4 Proxy handshake aborted by server";
case CO_ERR_SSL_FATAL: return "SSL fatal error";
}
return NULL;
}
/* Send a message over an established connection. It makes use of send() and
* returns the same return code and errno. If the socket layer is not ready yet
* then -1 is returned and ENOTSOCK is set into errno. If the fd is not marked
* as ready, or if EAGAIN or ENOTCONN is returned, then we return 0. It returns
* EMSGSIZE if called with a zero length message. The purpose is to simplify
* some rare attempts to directly write on the socket from above the connection
* (typically send_proxy). In case of EAGAIN, the fd is marked as "cant_send".
* It automatically retries on EINTR. Other errors cause the connection to be
* marked as in error state. It takes similar arguments as send() except the
* first one which is the connection instead of the file descriptor. <flags>
* only support CO_SFL_MSG_MORE.
*/
int conn_ctrl_send(struct connection *conn, const void *buf, int len, int flags)
{
const struct buffer buffer = b_make((char*)buf, len, 0, len);
const struct xprt_ops *xprt = xprt_get(XPRT_RAW);
int ret;
ret = -1;
errno = ENOTSOCK;
if (conn->flags & CO_FL_SOCK_WR_SH)
goto fail;
if (!conn_ctrl_ready(conn))
goto fail;
errno = EMSGSIZE;
if (!len)
goto fail;
/* snd_buf() already takes care of updating conn->flags and handling
* the FD polling status.
*/
ret = xprt->snd_buf(conn, NULL, &buffer, buffer.data, flags);
if (conn->flags & CO_FL_ERROR)
ret = -1;
return ret;
fail:
conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH | CO_FL_ERROR;
return ret;
}
/* Called from the upper layer, to unsubscribe <es> from events <event_type>.
* The event subscriber <es> is not allowed to change from a previous call as
* long as at least one event is still subscribed. The <event_type> must only
* be a combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0.
*/
int conn_unsubscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es)
{
BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV));
BUG_ON(conn->subs && conn->subs != es);
es->events &= ~event_type;
if (!es->events)
conn->subs = NULL;
if (conn_ctrl_ready(conn) && conn->ctrl->ignore_events)
conn->ctrl->ignore_events(conn, event_type);
return 0;
}
/* Called from the upper layer, to subscribe <es> to events <event_type>.
* The <es> struct is not allowed to differ from the one passed during a
* previous call to subscribe(). If the connection's ctrl layer is ready,
* the wait_event is immediately woken up and the subcription is cancelled.
* It always returns zero.
*/
int conn_subscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es)
{
int ret = 0;
BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV));
BUG_ON(conn->subs && conn->subs != es);
if (conn->subs && (conn->subs->events & event_type) == event_type)
return 0;
if (conn_ctrl_ready(conn) && conn->ctrl->check_events) {
ret = conn->ctrl->check_events(conn, event_type);
if (ret)
tasklet_wakeup(es->tasklet);
}
es->events = (es->events | event_type) & ~ret;
conn->subs = es->events ? es : NULL;
return 0;
}
/* Drains possibly pending incoming data on the connection and update the flags
* accordingly. This is used to know whether we need to disable lingering on
* close. Returns non-zero if it is safe to close without disabling lingering,
* otherwise zero. The CO_FL_SOCK_RD_SH flag may also be updated if the incoming
* shutdown was reported by the ->drain() function.
*/
int conn_ctrl_drain(struct connection *conn)
{
int ret = 0;
if (!conn_ctrl_ready(conn) || conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH))
ret = 1;
else if (conn->ctrl->drain) {
ret = conn->ctrl->drain(conn);
if (ret)
conn->flags |= CO_FL_SOCK_RD_SH;
}
return ret;
}
/*
* Get data length from tlv
*/
static inline size_t get_tlv_length(const struct tlv *src)
{
return (src->length_hi << 8) | src->length_lo;
}
/* This handshake handler waits a PROXY protocol header at the beginning of the
* raw data stream. The header looks like this :
*
* "PROXY" <SP> PROTO <SP> SRC3 <SP> DST3 <SP> SRC4 <SP> <DST4> "\r\n"
*
* There must be exactly one space between each field. Fields are :
* - PROTO : layer 4 protocol, which must be "TCP4" or "TCP6".
* - SRC3 : layer 3 (eg: IP) source address in standard text form
* - DST3 : layer 3 (eg: IP) destination address in standard text form
* - SRC4 : layer 4 (eg: TCP port) source address in standard text form
* - DST4 : layer 4 (eg: TCP port) destination address in standard text form
*
* This line MUST be at the beginning of the buffer and MUST NOT wrap.
*
* The header line is small and in all cases smaller than the smallest normal
* TCP MSS. So it MUST always be delivered as one segment, which ensures we
* can safely use MSG_PEEK and avoid buffering.
*
* Once the data is fetched, the values are set in the connection's address
* fields, and data are removed from the socket's buffer. The function returns
* zero if it needs to wait for more data or if it fails, or 1 if it completed
* and removed itself.
*/
int conn_recv_proxy(struct connection *conn, int flag)
{
struct session *sess = conn->owner;
char *line, *end;
struct proxy_hdr_v2 *hdr_v2;
const char v2sig[] = PP2_SIGNATURE;
size_t total_v2_len;
size_t tlv_offset = 0;
int ret;
if (!conn_ctrl_ready(conn))
goto fail;
if (!fd_recv_ready(conn->handle.fd))
goto not_ready;
while (1) {
ret = recv(conn->handle.fd, trash.area, trash.size, MSG_PEEK);
if (ret < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN) {
fd_cant_recv(conn->handle.fd);
goto not_ready;
}
goto recv_abort;
}
trash.data = ret;
break;
}
if (!trash.data) {
/* client shutdown */
conn->err_code = CO_ER_PRX_EMPTY;
goto fail;
}
conn->flags &= ~CO_FL_WAIT_L4_CONN;
if (trash.data < 6)
goto missing;
line = trash.area;
end = trash.area + trash.data;
/* Decode a possible proxy request, fail early if it does not match */
if (strncmp(line, "PROXY ", 6) != 0)
goto not_v1;
line += 6;
if (trash.data < 9) /* shortest possible line */
goto missing;
if (memcmp(line, "TCP4 ", 5) == 0) {
u32 src3, dst3, sport, dport;
line += 5;
src3 = inetaddr_host_lim_ret(line, end, &line);
if (line == end)
goto missing;
if (*line++ != ' ')
goto bad_header;
dst3 = inetaddr_host_lim_ret(line, end, &line);
if (line == end)
goto missing;
if (*line++ != ' ')
goto bad_header;
sport = read_uint((const char **)&line, end);
if (line == end)
goto missing;
if (*line++ != ' ')
goto bad_header;
dport = read_uint((const char **)&line, end);
if (line > end - 2)
goto missing;
if (*line++ != '\r')
goto bad_header;
if (*line++ != '\n')
goto bad_header;
if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0))
goto fail;
/* update the session's addresses and mark them set */
((struct sockaddr_in *)sess->src)->sin_family = AF_INET;
((struct sockaddr_in *)sess->src)->sin_addr.s_addr = htonl(src3);
((struct sockaddr_in *)sess->src)->sin_port = htons(sport);
((struct sockaddr_in *)sess->dst)->sin_family = AF_INET;
((struct sockaddr_in *)sess->dst)->sin_addr.s_addr = htonl(dst3);
((struct sockaddr_in *)sess->dst)->sin_port = htons(dport);
sess->flags |= SESS_FL_ADDR_FROM_SET | SESS_FL_ADDR_TO_SET;
}
else if (memcmp(line, "TCP6 ", 5) == 0) {
u32 sport, dport;
char *src_s;
char *dst_s, *sport_s, *dport_s;
struct in6_addr src3, dst3;
line += 5;
src_s = line;
dst_s = sport_s = dport_s = NULL;
while (1) {
if (line > end - 2) {
goto missing;
}
else if (*line == '\r') {
*line = 0;
line++;
if (*line++ != '\n')
goto bad_header;
break;
}
if (*line == ' ') {
*line = 0;
if (!dst_s)
dst_s = line + 1;
else if (!sport_s)
sport_s = line + 1;
else if (!dport_s)
dport_s = line + 1;
}
line++;
}
if (!dst_s || !sport_s || !dport_s)
goto bad_header;
sport = read_uint((const char **)&sport_s,dport_s - 1);
if (*sport_s != 0)
goto bad_header;
dport = read_uint((const char **)&dport_s,line - 2);
if (*dport_s != 0)
goto bad_header;
if (inet_pton(AF_INET6, src_s, (void *)&src3) != 1)
goto bad_header;
if (inet_pton(AF_INET6, dst_s, (void *)&dst3) != 1)
goto bad_header;
if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0))
goto fail;
/* update the session's addresses and mark them set */
((struct sockaddr_in6 *)sess->src)->sin6_family = AF_INET6;
memcpy(&((struct sockaddr_in6 *)sess->src)->sin6_addr, &src3, sizeof(struct in6_addr));
((struct sockaddr_in6 *)sess->src)->sin6_port = htons(sport);
((struct sockaddr_in6 *)sess->dst)->sin6_family = AF_INET6;
memcpy(&((struct sockaddr_in6 *)sess->dst)->sin6_addr, &dst3, sizeof(struct in6_addr));
((struct sockaddr_in6 *)sess->dst)->sin6_port = htons(dport);
sess->flags |= SESS_FL_ADDR_FROM_SET | SESS_FL_ADDR_TO_SET;
}
else if (memcmp(line, "UNKNOWN\r\n", 9) == 0) {
/* This can be a UNIX socket forwarded by an haproxy upstream */
line += 9;
}
else {
/* The protocol does not match something known (TCP4/TCP6/UNKNOWN) */
conn->err_code = CO_ER_PRX_BAD_PROTO;
goto fail;
}
trash.data = line - trash.area;
goto eat_header;
not_v1:
/* try PPv2 */
if (trash.data < PP2_HEADER_LEN)
goto missing;
hdr_v2 = (struct proxy_hdr_v2 *) trash.area;
if (memcmp(hdr_v2->sig, v2sig, PP2_SIGNATURE_LEN) != 0 ||
(hdr_v2->ver_cmd & PP2_VERSION_MASK) != PP2_VERSION) {
conn->err_code = CO_ER_PRX_NOT_HDR;
goto fail;
}
total_v2_len = PP2_HEADER_LEN + ntohs(hdr_v2->len);
if (trash.data < total_v2_len)
goto missing;
switch (hdr_v2->ver_cmd & PP2_CMD_MASK) {
case 0x01: /* PROXY command */
switch (hdr_v2->fam) {
case 0x11: /* TCPv4 */
if (ntohs(hdr_v2->len) < PP2_ADDR_LEN_INET)
goto bad_header;
if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0))
goto fail;
((struct sockaddr_in *)sess->src)->sin_family = AF_INET;
((struct sockaddr_in *)sess->src)->sin_addr.s_addr = hdr_v2->addr.ip4.src_addr;
((struct sockaddr_in *)sess->src)->sin_port = hdr_v2->addr.ip4.src_port;
((struct sockaddr_in *)sess->dst)->sin_family = AF_INET;
((struct sockaddr_in *)sess->dst)->sin_addr.s_addr = hdr_v2->addr.ip4.dst_addr;
((struct sockaddr_in *)sess->dst)->sin_port = hdr_v2->addr.ip4.dst_port;
sess->flags |= SESS_FL_ADDR_FROM_SET | SESS_FL_ADDR_TO_SET;
tlv_offset = PP2_HEADER_LEN + PP2_ADDR_LEN_INET;
break;
case 0x21: /* TCPv6 */
if (ntohs(hdr_v2->len) < PP2_ADDR_LEN_INET6)
goto bad_header;
if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0))
goto fail;
((struct sockaddr_in6 *)sess->src)->sin6_family = AF_INET6;
memcpy(&((struct sockaddr_in6 *)sess->src)->sin6_addr, hdr_v2->addr.ip6.src_addr, 16);
((struct sockaddr_in6 *)sess->src)->sin6_port = hdr_v2->addr.ip6.src_port;
((struct sockaddr_in6 *)sess->dst)->sin6_family = AF_INET6;
memcpy(&((struct sockaddr_in6 *)sess->dst)->sin6_addr, hdr_v2->addr.ip6.dst_addr, 16);
((struct sockaddr_in6 *)sess->dst)->sin6_port = hdr_v2->addr.ip6.dst_port;
sess->flags |= SESS_FL_ADDR_FROM_SET | SESS_FL_ADDR_TO_SET;
tlv_offset = PP2_HEADER_LEN + PP2_ADDR_LEN_INET6;
break;
}
/* TLV parsing */
while (tlv_offset < total_v2_len) {
struct tlv *tlv_packet;
struct ist tlv;
/* Verify that we have at least TLV_HEADER_SIZE bytes left */
if (tlv_offset + TLV_HEADER_SIZE > total_v2_len)
goto bad_header;
tlv_packet = (struct tlv *) &trash.area[tlv_offset];
tlv = ist2((const char *)tlv_packet->value, get_tlv_length(tlv_packet));
tlv_offset += istlen(tlv) + TLV_HEADER_SIZE;
/* Verify that the TLV length does not exceed the total PROXYv2 length */
if (tlv_offset > total_v2_len)
goto bad_header;
switch (tlv_packet->type) {
case PP2_TYPE_CRC32C: {
uint32_t n_crc32c;
/* Verify that this TLV is exactly 4 bytes long */
if (istlen(tlv) != 4)
goto bad_header;
n_crc32c = read_n32(istptr(tlv));
write_n32(istptr(tlv), 0); // compute with CRC==0
if (hash_crc32c(trash.area, total_v2_len) != n_crc32c)
goto bad_header;
break;
}
#ifdef USE_NS
case PP2_TYPE_NETNS: {
const struct netns_entry *ns;
ns = netns_store_lookup(istptr(tlv), istlen(tlv));
if (ns)
conn->proxy_netns = ns;
break;
}
#endif
case PP2_TYPE_AUTHORITY: {
if (istlen(tlv) > PP2_AUTHORITY_MAX)
goto bad_header;
conn->proxy_authority = ist2(pool_alloc(pool_head_authority), 0);
if (!isttest(conn->proxy_authority))
goto fail;
if (istcpy(&conn->proxy_authority, tlv, PP2_AUTHORITY_MAX) < 0) {
/* This is technically unreachable, because we verified above
* that the TLV value fits.
*/
goto fail;
}
break;
}
case PP2_TYPE_UNIQUE_ID: {
if (istlen(tlv) > UNIQUEID_LEN)
goto bad_header;
conn->proxy_unique_id = ist2(pool_alloc(pool_head_uniqueid), 0);
if (!isttest(conn->proxy_unique_id))
goto fail;
if (istcpy(&conn->proxy_unique_id, tlv, UNIQUEID_LEN) < 0) {
/* This is technically unreachable, because we verified above
* that the TLV value fits.
*/
goto fail;
}
break;
}
default:
break;
}
}
/* Verify that the PROXYv2 header ends at a TLV boundary.
* This is technically unreachable, because the TLV parsing already
* verifies that a TLV does not exceed the total length and also
* that there is space for a TLV header.
*/
if (tlv_offset != total_v2_len)
goto bad_header;
/* unsupported protocol, keep local connection address */
break;
case 0x00: /* LOCAL command */
/* keep local connection address for LOCAL */
break;
default:
goto bad_header; /* not a supported command */
}
trash.data = total_v2_len;
goto eat_header;
eat_header:
/* remove the PROXY line from the request. For this we re-read the
* exact line at once. If we don't get the exact same result, we
* fail.
*/
while (1) {
ssize_t len2 = recv(conn->handle.fd, trash.area, trash.data, 0);
if (len2 < 0 && errno == EINTR)
continue;
if (len2 != trash.data)
goto recv_abort;
break;
}
conn->flags &= ~flag;
conn->flags |= CO_FL_RCVD_PROXY;
return 1;
not_ready:
return 0;
missing:
/* Missing data. Since we're using MSG_PEEK, we can only poll again if
* we have not read anything. Otherwise we need to fail because we won't
* be able to poll anymore.
*/
conn->err_code = CO_ER_PRX_TRUNCATED;
goto fail;
bad_header:
/* This is not a valid proxy protocol header */
conn->err_code = CO_ER_PRX_BAD_HDR;
goto fail;
recv_abort:
conn->err_code = CO_ER_PRX_ABORT;
conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
goto fail;
fail:
conn->flags |= CO_FL_ERROR;
return 0;
}
/* This handshake handler waits a NetScaler Client IP insertion header
* at the beginning of the raw data stream. The header format is
* described in doc/netscaler-client-ip-insertion-protocol.txt
*
* This line MUST be at the beginning of the buffer and MUST NOT be
* fragmented.
*
* The header line is small and in all cases smaller than the smallest normal
* TCP MSS. So it MUST always be delivered as one segment, which ensures we
* can safely use MSG_PEEK and avoid buffering.
*
* Once the data is fetched, the values are set in the connection's address
* fields, and data are removed from the socket's buffer. The function returns
* zero if it needs to wait for more data or if it fails, or 1 if it completed
* and removed itself.
*/
int conn_recv_netscaler_cip(struct connection *conn, int flag)
{
struct session *sess = conn->owner;
char *line;
uint32_t hdr_len;
uint8_t ip_ver;
int ret;
if (!conn_ctrl_ready(conn))
goto fail;
if (!fd_recv_ready(conn->handle.fd))
goto not_ready;
while (1) {
ret = recv(conn->handle.fd, trash.area, trash.size, MSG_PEEK);
if (ret < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN) {
fd_cant_recv(conn->handle.fd);
goto not_ready;
}
goto recv_abort;
}
trash.data = ret;
break;
}
conn->flags &= ~CO_FL_WAIT_L4_CONN;
if (!trash.data) {
/* client shutdown */
conn->err_code = CO_ER_CIP_EMPTY;
goto fail;
}
/* Fail if buffer length is not large enough to contain
* CIP magic, header length or
* CIP magic, CIP length, CIP type, header length */
if (trash.data < 12)
goto missing;
line = trash.area;
/* Decode a possible NetScaler Client IP request, fail early if
* it does not match */
if (ntohl(read_u32(line)) != __objt_listener(conn->target)->bind_conf->ns_cip_magic)
goto bad_magic;
/* Legacy CIP protocol */
if ((trash.area[8] & 0xD0) == 0x40) {
hdr_len = ntohl(read_u32((line+4)));
line += 8;
}
/* Standard CIP protocol */
else if (trash.area[8] == 0x00) {
hdr_len = ntohs(read_u32((line+10)));
line += 12;
}
/* Unknown CIP protocol */
else {
conn->err_code = CO_ER_CIP_BAD_PROTO;
goto fail;
}
/* Fail if buffer length is not large enough to contain
* a minimal IP header */
if (trash.data < 20)
goto missing;
/* Get IP version from the first four bits */
ip_ver = (*line & 0xf0) >> 4;
if (ip_ver == 4) {
struct ip *hdr_ip4;
struct my_tcphdr *hdr_tcp;
hdr_ip4 = (struct ip *)line;
if (trash.data < 40 || trash.data < hdr_len) {
/* Fail if buffer length is not large enough to contain
* IPv4 header, TCP header */
goto missing;
}
else if (hdr_ip4->ip_p != IPPROTO_TCP) {
/* The protocol does not include a TCP header */
conn->err_code = CO_ER_CIP_BAD_PROTO;
goto fail;
}
hdr_tcp = (struct my_tcphdr *)(line + (hdr_ip4->ip_hl * 4));
if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0))
goto fail;
/* update the session's addresses and mark them set */
((struct sockaddr_in *)sess->src)->sin_family = AF_INET;
((struct sockaddr_in *)sess->src)->sin_addr.s_addr = hdr_ip4->ip_src.s_addr;
((struct sockaddr_in *)sess->src)->sin_port = hdr_tcp->source;
((struct sockaddr_in *)sess->dst)->sin_family = AF_INET;
((struct sockaddr_in *)sess->dst)->sin_addr.s_addr = hdr_ip4->ip_dst.s_addr;
((struct sockaddr_in *)sess->dst)->sin_port = hdr_tcp->dest;
sess->flags |= SESS_FL_ADDR_FROM_SET | SESS_FL_ADDR_TO_SET;
}
else if (ip_ver == 6) {
struct ip6_hdr *hdr_ip6;
struct my_tcphdr *hdr_tcp;
hdr_ip6 = (struct ip6_hdr *)line;
if (trash.data < 60 || trash.data < hdr_len) {
/* Fail if buffer length is not large enough to contain
* IPv6 header, TCP header */
goto missing;
}
else if (hdr_ip6->ip6_nxt != IPPROTO_TCP) {
/* The protocol does not include a TCP header */
conn->err_code = CO_ER_CIP_BAD_PROTO;
goto fail;
}
hdr_tcp = (struct my_tcphdr *)(line + sizeof(struct ip6_hdr));
if (!sess || !sockaddr_alloc(&sess->src, NULL, 0) || !sockaddr_alloc(&sess->dst, NULL, 0))
goto fail;
/* update the session's addresses and mark them set */
((struct sockaddr_in6 *)sess->src)->sin6_family = AF_INET6;
((struct sockaddr_in6 *)sess->src)->sin6_addr = hdr_ip6->ip6_src;
((struct sockaddr_in6 *)sess->src)->sin6_port = hdr_tcp->source;
((struct sockaddr_in6 *)sess->dst)->sin6_family = AF_INET6;
((struct sockaddr_in6 *)sess->dst)->sin6_addr = hdr_ip6->ip6_dst;
((struct sockaddr_in6 *)sess->dst)->sin6_port = hdr_tcp->dest;
sess->flags |= SESS_FL_ADDR_FROM_SET | SESS_FL_ADDR_TO_SET;
}
else {
/* The protocol does not match something known (IPv4/IPv6) */
conn->err_code = CO_ER_CIP_BAD_PROTO;
goto fail;
}
line += hdr_len;
trash.data = line - trash.area;
/* remove the NetScaler Client IP header from the request. For this
* we re-read the exact line at once. If we don't get the exact same
* result, we fail.
*/
while (1) {
int len2 = recv(conn->handle.fd, trash.area, trash.data, 0);
if (len2 < 0 && errno == EINTR)
continue;
if (len2 != trash.data)
goto recv_abort;
break;
}
conn->flags &= ~flag;
return 1;
not_ready:
return 0;
missing:
/* Missing data. Since we're using MSG_PEEK, we can only poll again if
* we have not read anything. Otherwise we need to fail because we won't
* be able to poll anymore.
*/
conn->err_code = CO_ER_CIP_TRUNCATED;
goto fail;
bad_magic:
conn->err_code = CO_ER_CIP_BAD_MAGIC;
goto fail;
recv_abort:
conn->err_code = CO_ER_CIP_ABORT;
conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
goto fail;
fail:
conn->flags |= CO_FL_ERROR;
return 0;
}
int conn_send_socks4_proxy_request(struct connection *conn)
{
struct socks4_request req_line;
if (!conn_ctrl_ready(conn))
goto out_error;
if (!conn_get_dst(conn))
goto out_error;
req_line.version = 0x04;
req_line.command = 0x01;
req_line.port = get_net_port(conn->dst);
req_line.ip = is_inet_addr(conn->dst);
memcpy(req_line.user_id, "HAProxy\0", 8);
if (conn->send_proxy_ofs > 0) {
/*
* This is the first call to send the request
*/
conn->send_proxy_ofs = -(int)sizeof(req_line);
}
if (conn->send_proxy_ofs < 0) {
int ret = 0;
/* we are sending the socks4_req_line here. If the data layer
* has a pending write, we'll also set MSG_MORE.
*/
ret = conn_ctrl_send(
conn,
((char *)(&req_line)) + (sizeof(req_line)+conn->send_proxy_ofs),
-conn->send_proxy_ofs,
(conn->subs && conn->subs->events & SUB_RETRY_SEND) ? CO_SFL_MSG_MORE : 0);
DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Before send remain is [%d], sent [%d]\n",
conn->handle.fd, -conn->send_proxy_ofs, ret);
if (ret < 0) {
goto out_error;
}
conn->send_proxy_ofs += ret; /* becomes zero once complete */
if (conn->send_proxy_ofs != 0) {
goto out_wait;
}
}
/* OK we've the whole request sent */
conn->flags &= ~CO_FL_SOCKS4_SEND;
/* The connection is ready now, simply return and let the connection
* handler notify upper layers if needed.
*/
conn->flags &= ~CO_FL_WAIT_L4_CONN;
if (conn->flags & CO_FL_SEND_PROXY) {
/*
* Get the send_proxy_ofs ready for the send_proxy due to we are
* reusing the "send_proxy_ofs", and SOCKS4 handshake should be done
* before sending PROXY Protocol.
*/
conn->send_proxy_ofs = 1;
}
return 1;
out_error:
/* Write error on the file descriptor */
conn->flags |= CO_FL_ERROR;
if (conn->err_code == CO_ER_NONE) {
conn->err_code = CO_ER_SOCKS4_SEND;
}
return 0;
out_wait:
return 0;
}
int conn_recv_socks4_proxy_response(struct connection *conn)
{
char line[SOCKS4_HS_RSP_LEN];
int ret;
if (!conn_ctrl_ready(conn))
goto fail;
if (!fd_recv_ready(conn->handle.fd))
goto not_ready;
while (1) {
/* SOCKS4 Proxy will response with 8 bytes, 0x00 | 0x5A | 0x00 0x00 | 0x00 0x00 0x00 0x00
* Try to peek into it, before all 8 bytes ready.
*/
ret = recv(conn->handle.fd, line, SOCKS4_HS_RSP_LEN, MSG_PEEK);
if (ret == 0) {
/* the socket has been closed or shutdown for send */
DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received ret[%d], errno[%d], looks like the socket has been closed or shutdown for send\n",
conn->handle.fd, ret, errno);
if (conn->err_code == CO_ER_NONE) {
conn->err_code = CO_ER_SOCKS4_RECV;
}
goto fail;
}
if (ret > 0) {
if (ret == SOCKS4_HS_RSP_LEN) {
DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received 8 bytes, the response is [%02X|%02X|%02X %02X|%02X %02X %02X %02X]\n",
conn->handle.fd, line[0], line[1], line[2], line[3], line[4], line[5], line[6], line[7]);
}else{
DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received ret[%d], first byte is [%02X], last bye is [%02X]\n", conn->handle.fd, ret, line[0], line[ret-1]);
}
} else {
DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: Received ret[%d], errno[%d]\n", conn->handle.fd, ret, errno);
}
if (ret < 0) {
if (errno == EINTR) {
continue;
}
if (errno == EAGAIN) {
fd_cant_recv(conn->handle.fd);
goto not_ready;
}
goto recv_abort;
}
break;
}
conn->flags &= ~CO_FL_WAIT_L4_CONN;
if (ret < SOCKS4_HS_RSP_LEN) {
/* Missing data. Since we're using MSG_PEEK, we can only poll again if
* we are not able to read enough data.
*/
goto not_ready;
}
/*
* Base on the SOCSK4 protocol:
*
* +----+----+----+----+----+----+----+----+
* | VN | CD | DSTPORT | DSTIP |
* +----+----+----+----+----+----+----+----+
* # of bytes: 1 1 2 4
* VN is the version of the reply code and should be 0. CD is the result
* code with one of the following values:
* 90: request granted
* 91: request rejected or failed
* 92: request rejected because SOCKS server cannot connect to identd on the client
* 93: request rejected because the client program and identd report different user-ids
* The remaining fields are ignored.
*/
if (line[1] != 90) {
conn->flags &= ~CO_FL_SOCKS4_RECV;
DPRINTF(stderr, "SOCKS PROXY HS FD[%04X]: FAIL, the response is [%02X|%02X|%02X %02X|%02X %02X %02X %02X]\n",
conn->handle.fd, line[0], line[1], line[2], line[3], line[4], line[5], line[6], line[7]);
if (conn->err_code == CO_ER_NONE) {
conn->err_code = CO_ER_SOCKS4_DENY;
}
goto fail;
}
/* remove the 8 bytes response from the stream */
while (1) {
ret = recv(conn->handle.fd, line, SOCKS4_HS_RSP_LEN, 0);
if (ret < 0 && errno == EINTR) {
continue;
}
if (ret != SOCKS4_HS_RSP_LEN) {
if (conn->err_code == CO_ER_NONE) {
conn->err_code = CO_ER_SOCKS4_RECV;
}
goto fail;
}
break;
}
conn->flags &= ~CO_FL_SOCKS4_RECV;
return 1;
not_ready:
return 0;
recv_abort:
if (conn->err_code == CO_ER_NONE) {
conn->err_code = CO_ER_SOCKS4_ABORT;
}
conn->flags |= (CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH);
goto fail;
fail:
conn->flags |= CO_FL_ERROR;
return 0;
}
/* Lists the known proto mux on <out>. This function is used by "haproxy -vv"
* and is suitable for early boot just after the "REGISTER" stage because it
* doesn't depend on anything to be already allocated.
*/
void list_mux_proto(FILE *out)
{
struct mux_proto_list *item;
struct ist proto;
char *mode, *side;
int done;
fprintf(out, "Available multiplexer protocols :\n"
"(protocols marked as <default> cannot be specified using 'proto' keyword)\n");
list_for_each_entry(item, &mux_proto_list.list, list) {
proto = item->token;
if (item->mode == PROTO_MODE_ANY)
mode = "TCP|HTTP";
else if (item->mode == PROTO_MODE_TCP)
mode = "TCP";
else if (item->mode == PROTO_MODE_HTTP)
mode = "HTTP";
else
mode = "NONE";
if (item->side == PROTO_SIDE_BOTH)
side = "FE|BE";
else if (item->side == PROTO_SIDE_FE)
side = "FE";
else if (item->side == PROTO_SIDE_BE)
side = "BE";
else
side = "NONE";
fprintf(out, " %15s : mode=%-10s side=%-8s mux=%-8s flags=",
(proto.len ? proto.ptr : "<default>"), mode, side, item->mux->name);
done = 0;
/* note: the block below could be simplied using macros but for only
* 4 flags it's not worth it.
*/
if (item->mux->flags & MX_FL_HTX)
done |= fprintf(out, "%sHTX", done ? "|" : "");
if (item->mux->flags & MX_FL_CLEAN_ABRT)
done |= fprintf(out, "%sCLEAN_ABRT", done ? "|" : "");
if (item->mux->flags & MX_FL_HOL_RISK)
done |= fprintf(out, "%sHOL_RISK", done ? "|" : "");
if (item->mux->flags & MX_FL_NO_UPG)
done |= fprintf(out, "%sNO_UPG", done ? "|" : "");
fprintf(out, "\n");
}
}
/* Makes a PROXY protocol line from the two addresses. The output is sent to
* buffer <buf> for a maximum size of <buf_len> (including the trailing zero).
* It returns the number of bytes composing this line (including the trailing
* LF), or zero in case of failure (eg: not enough space). It supports TCP4,
* TCP6 and "UNKNOWN" formats. If any of <src> or <dst> is null, UNKNOWN is
* emitted as well.
*/
static int make_proxy_line_v1(char *buf, int buf_len, const struct sockaddr_storage *src, const struct sockaddr_storage *dst)
{
int ret = 0;
char * protocol;
char src_str[MAX(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)];
char dst_str[MAX(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)];
in_port_t src_port;
in_port_t dst_port;
if ( !src
|| !dst
|| (src->ss_family != AF_INET && src->ss_family != AF_INET6)
|| (dst->ss_family != AF_INET && dst->ss_family != AF_INET6)) {
/* unknown family combination */
ret = snprintf(buf, buf_len, "PROXY UNKNOWN\r\n");
if (ret >= buf_len)
return 0;
return ret;
}
/* IPv4 for both src and dst */
if (src->ss_family == AF_INET && dst->ss_family == AF_INET) {
protocol = "TCP4";
if (!inet_ntop(AF_INET, &((struct sockaddr_in *)src)->sin_addr, src_str, sizeof(src_str)))
return 0;
src_port = ((struct sockaddr_in *)src)->sin_port;
if (!inet_ntop(AF_INET, &((struct sockaddr_in *)dst)->sin_addr, dst_str, sizeof(dst_str)))
return 0;
dst_port = ((struct sockaddr_in *)dst)->sin_port;
}
/* IPv6 for at least one of src and dst */
else {
struct in6_addr tmp;
protocol = "TCP6";
if (src->ss_family == AF_INET) {
/* Convert src to IPv6 */
v4tov6(&tmp, &((struct sockaddr_in *)src)->sin_addr);
src_port = ((struct sockaddr_in *)src)->sin_port;
}
else {
tmp = ((struct sockaddr_in6 *)src)->sin6_addr;
src_port = ((struct sockaddr_in6 *)src)->sin6_port;
}
if (!inet_ntop(AF_INET6, &tmp, src_str, sizeof(src_str)))
return 0;
if (dst->ss_family == AF_INET) {
/* Convert dst to IPv6 */
v4tov6(&tmp, &((struct sockaddr_in *)dst)->sin_addr);
dst_port = ((struct sockaddr_in *)dst)->sin_port;
}
else {
tmp = ((struct sockaddr_in6 *)dst)->sin6_addr;
dst_port = ((struct sockaddr_in6 *)dst)->sin6_port;
}
if (!inet_ntop(AF_INET6, &tmp, dst_str, sizeof(dst_str)))
return 0;
}
ret = snprintf(buf, buf_len, "PROXY %s %s %s %u %u\r\n", protocol, src_str, dst_str, ntohs(src_port), ntohs(dst_port));
if (ret >= buf_len)
return 0;
return ret;
}
static int make_tlv(char *dest, int dest_len, char type, uint16_t length, const char *value)
{
struct tlv *tlv;
if (!dest || (length + sizeof(*tlv) > dest_len))
return 0;
tlv = (struct tlv *)dest;
tlv->type = type;
tlv->length_hi = length >> 8;
tlv->length_lo = length & 0x00ff;
memcpy(tlv->value, value, length);
return length + sizeof(*tlv);
}
/* Note: <remote> is explicitly allowed to be NULL */
static int make_proxy_line_v2(char *buf, int buf_len, struct server *srv, struct connection *remote, struct stream *strm)
{
const char pp2_signature[] = PP2_SIGNATURE;
void *tlv_crc32c_p = NULL;
int ret = 0;
struct proxy_hdr_v2 *hdr = (struct proxy_hdr_v2 *)buf;
struct sockaddr_storage null_addr = { .ss_family = 0 };
const struct sockaddr_storage *src = &null_addr;
const struct sockaddr_storage *dst = &null_addr;
const char *value;
int value_len;
if (buf_len < PP2_HEADER_LEN)
return 0;
memcpy(hdr->sig, pp2_signature, PP2_SIGNATURE_LEN);
if (strm) {
src = si_src(&strm->si[0]);
dst = si_dst(&strm->si[0]);
}
else if (remote && conn_get_src(remote) && conn_get_dst(remote)) {
src = conn_src(remote);
dst = conn_dst(remote);
}
/* At least one of src or dst is not of AF_INET or AF_INET6 */
if ( !src
|| !dst
|| (!pp2_never_send_local && conn_is_back(remote)) // locally initiated connection
|| (src->ss_family != AF_INET && src->ss_family != AF_INET6)
|| (dst->ss_family != AF_INET && dst->ss_family != AF_INET6)) {
if (buf_len < PP2_HDR_LEN_UNSPEC)
return 0;
hdr->ver_cmd = PP2_VERSION | PP2_CMD_LOCAL;
hdr->fam = PP2_FAM_UNSPEC | PP2_TRANS_UNSPEC;
ret = PP2_HDR_LEN_UNSPEC;
}
else {
hdr->ver_cmd = PP2_VERSION | PP2_CMD_PROXY;
/* IPv4 for both src and dst */
if (src->ss_family == AF_INET && dst->ss_family == AF_INET) {
if (buf_len < PP2_HDR_LEN_INET)
return 0;
hdr->fam = PP2_FAM_INET | PP2_TRANS_STREAM;
hdr->addr.ip4.src_addr = ((struct sockaddr_in *)src)->sin_addr.s_addr;
hdr->addr.ip4.src_port = ((struct sockaddr_in *)src)->sin_port;
hdr->addr.ip4.dst_addr = ((struct sockaddr_in *)dst)->sin_addr.s_addr;
hdr->addr.ip4.dst_port = ((struct sockaddr_in *)dst)->sin_port;
ret = PP2_HDR_LEN_INET;
}
/* IPv6 for at least one of src and dst */
else {
struct in6_addr tmp;
if (buf_len < PP2_HDR_LEN_INET6)
return 0;
hdr->fam = PP2_FAM_INET6 | PP2_TRANS_STREAM;
if (src->ss_family == AF_INET) {
v4tov6(&tmp, &((struct sockaddr_in *)src)->sin_addr);
memcpy(hdr->addr.ip6.src_addr, &tmp, 16);
hdr->addr.ip6.src_port = ((struct sockaddr_in *)src)->sin_port;
}
else {
memcpy(hdr->addr.ip6.src_addr, &((struct sockaddr_in6 *)src)->sin6_addr, 16);
hdr->addr.ip6.src_port = ((struct sockaddr_in6 *)src)->sin6_port;
}
if (dst->ss_family == AF_INET) {
v4tov6(&tmp, &((struct sockaddr_in *)dst)->sin_addr);
memcpy(hdr->addr.ip6.dst_addr, &tmp, 16);
hdr->addr.ip6.dst_port = ((struct sockaddr_in *)dst)->sin_port;
}
else {
memcpy(hdr->addr.ip6.dst_addr, &((struct sockaddr_in6 *)dst)->sin6_addr, 16);
hdr->addr.ip6.dst_port = ((struct sockaddr_in6 *)dst)->sin6_port;
}
ret = PP2_HDR_LEN_INET6;
}
}
if (srv->pp_opts & SRV_PP_V2_CRC32C) {
uint32_t zero_crc32c = 0;
if ((buf_len - ret) < sizeof(struct tlv))
return 0;
tlv_crc32c_p = (void *)((struct tlv *)&buf[ret])->value;
ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_CRC32C, sizeof(zero_crc32c), (const char *)&zero_crc32c);
}
if (remote && conn_get_alpn(remote, &value, &value_len)) {
if ((buf_len - ret) < sizeof(struct tlv))
return 0;
ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_ALPN, value_len, value);
}
if (srv->pp_opts & SRV_PP_V2_AUTHORITY) {
value = NULL;
if (remote && isttest(remote->proxy_authority)) {
value = istptr(remote->proxy_authority);
value_len = istlen(remote->proxy_authority);
}
#ifdef USE_OPENSSL
else {
if ((value = ssl_sock_get_sni(remote)))
value_len = strlen(value);
}
#endif
if (value) {
if ((buf_len - ret) < sizeof(struct tlv))
return 0;
ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_AUTHORITY, value_len, value);
}
}
if (strm && (srv->pp_opts & SRV_PP_V2_UNIQUE_ID)) {
struct session* sess = strm_sess(strm);
struct ist unique_id = stream_generate_unique_id(strm, &sess->fe->format_unique_id);
value = unique_id.ptr;
value_len = unique_id.len;
if (value_len >= 0) {
if ((buf_len - ret) < sizeof(struct tlv))
return 0;
ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_UNIQUE_ID, value_len, value);
}
}
#ifdef USE_OPENSSL
if (srv->pp_opts & SRV_PP_V2_SSL) {
struct tlv_ssl *tlv;
int ssl_tlv_len = 0;
if ((buf_len - ret) < sizeof(struct tlv_ssl))
return 0;
tlv = (struct tlv_ssl *)&buf[ret];
memset(tlv, 0, sizeof(struct tlv_ssl));
ssl_tlv_len += sizeof(struct tlv_ssl);
tlv->tlv.type = PP2_TYPE_SSL;
if (conn_is_ssl(remote)) {
tlv->client |= PP2_CLIENT_SSL;
value = ssl_sock_get_proto_version(remote);
if (value) {
ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len-ret-ssl_tlv_len), PP2_SUBTYPE_SSL_VERSION, strlen(value), value);
}
if (ssl_sock_get_cert_used_sess(remote)) {
tlv->client |= PP2_CLIENT_CERT_SESS;
tlv->verify = htonl(ssl_sock_get_verify_result(remote));
if (ssl_sock_get_cert_used_conn(remote))
tlv->client |= PP2_CLIENT_CERT_CONN;
}
if (srv->pp_opts & SRV_PP_V2_SSL_CN) {
struct buffer *cn_trash = get_trash_chunk();
if (ssl_sock_get_remote_common_name(remote, cn_trash) > 0) {
ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_CN,
cn_trash->data,
cn_trash->area);
}
}
if (srv->pp_opts & SRV_PP_V2_SSL_KEY_ALG) {
struct buffer *pkey_trash = get_trash_chunk();
if (ssl_sock_get_pkey_algo(remote, pkey_trash) > 0) {
ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_KEY_ALG,
pkey_trash->data,
pkey_trash->area);
}
}
if (srv->pp_opts & SRV_PP_V2_SSL_SIG_ALG) {
value = ssl_sock_get_cert_sig(remote);
if (value) {
ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_SIG_ALG, strlen(value), value);
}
}
if (srv->pp_opts & SRV_PP_V2_SSL_CIPHER) {
value = ssl_sock_get_cipher_name(remote);
if (value) {
ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_SUBTYPE_SSL_CIPHER, strlen(value), value);
}
}
}
tlv->tlv.length_hi = (uint16_t)(ssl_tlv_len - sizeof(struct tlv)) >> 8;
tlv->tlv.length_lo = (uint16_t)(ssl_tlv_len - sizeof(struct tlv)) & 0x00ff;
ret += ssl_tlv_len;
}
#endif
#ifdef USE_NS
if (remote && (remote->proxy_netns)) {
if ((buf_len - ret) < sizeof(struct tlv))
return 0;
ret += make_tlv(&buf[ret], (buf_len - ret), PP2_TYPE_NETNS, remote->proxy_netns->name_len, remote->proxy_netns->node.key);
}
#endif
hdr->len = htons((uint16_t)(ret - PP2_HEADER_LEN));
if (tlv_crc32c_p) {
write_u32(tlv_crc32c_p, htonl(hash_crc32c(buf, ret)));
}
return ret;
}
/* Note: <remote> is explicitly allowed to be NULL */
int make_proxy_line(char *buf, int buf_len, struct server *srv, struct connection *remote, struct stream *strm)
{
int ret = 0;
if (srv && (srv->pp_opts & SRV_PP_V2)) {
ret = make_proxy_line_v2(buf, buf_len, srv, remote, strm);
}
else {
const struct sockaddr_storage *src = NULL;
const struct sockaddr_storage *dst = NULL;
if (strm) {
src = si_src(&strm->si[0]);
dst = si_dst(&strm->si[0]);
}
else if (remote && conn_get_src(remote) && conn_get_dst(remote)) {
src = conn_src(remote);
dst = conn_dst(remote);
}
if (src && dst)
ret = make_proxy_line_v1(buf, buf_len, src, dst);
else
ret = make_proxy_line_v1(buf, buf_len, NULL, NULL);
}
return ret;
}
/* returns 0 on success */
static int cfg_parse_pp2_never_send_local(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(0, args, err, NULL))
return -1;
pp2_never_send_local = 1;
return 0;
}
/* extracts some info from the connection and appends them to buffer <buf>. The
* connection's pointer, its direction, target (fe/be/srv), xprt/ctrl, source
* when set, destination when set, are printed in a compact human-readable format
* fitting on a single line. This is handy to complete traces or debug output.
* It is permitted to pass a NULL conn pointer. The number of characters emitted
* is returned. A prefix <pfx> might be prepended before the first field if not
* NULL.
*/
int conn_append_debug_info(struct buffer *buf, const struct connection *conn, const char *pfx)
{
const struct listener *li;
const struct server *sv;
const struct proxy *px;
char addr[40];
int old_len = buf->data;
if (!conn)
return 0;
chunk_appendf(buf, "%sconn=%p(%s)", pfx ? pfx : "", conn, conn_is_back(conn) ? "OUT" : "IN");
if ((li = objt_listener(conn->target)))
chunk_appendf(buf, " fe=%s", li->bind_conf->frontend->id);
else if ((sv = objt_server(conn->target)))
chunk_appendf(buf, " sv=%s/%s", sv->proxy->id, sv->id);
else if ((px = objt_proxy(conn->target)))
chunk_appendf(buf, " be=%s", px->id);
chunk_appendf(buf, " %s/%s", conn_get_xprt_name(conn), conn_get_ctrl_name(conn));
if (conn->flags & CO_FL_ADDR_FROM_SET && addr_to_str(conn->src, addr, sizeof(addr)))
chunk_appendf(buf, " src=%s:%d", addr, get_host_port(conn->src));
if (conn->flags & CO_FL_ADDR_TO_SET && addr_to_str(conn->dst, addr, sizeof(addr)))
chunk_appendf(buf, " dst=%s:%d", addr, get_host_port(conn->dst));
return buf->data - old_len;
}
/* return the major HTTP version as 1 or 2 depending on how the request arrived
* before being processed.
*
* WARNING: Should be updated if a new major HTTP version is added.
*/
static int
smp_fetch_fc_http_major(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn = NULL;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[0] == 'b') ? cs_conn(__objt_check(smp->sess->origin)->cs) : NULL;
else
conn = (kw[0] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(smp->strm->csb) : NULL;
/* No connection or a connection with a RAW muxx */
if (!conn || (conn->mux && !(conn->mux->flags & MX_FL_HTX)))
return 0;
/* No mux install, this may change */
if (!conn->mux) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
smp->data.type = SMP_T_SINT;
smp->data.u.sint = (strcmp(conn_get_mux_name(conn), "H2") == 0) ? 2 : 1;
return 1;
}
/* fetch if the received connection used a PROXY protocol header */
int smp_fetch_fc_rcvd_proxy(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
conn = objt_conn(smp->sess->origin);
if (!conn)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
smp->flags = 0;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = (conn->flags & CO_FL_RCVD_PROXY) ? 1 : 0;
return 1;
}
/* fetch the authority TLV from a PROXY protocol header */
int smp_fetch_fc_pp_authority(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
conn = objt_conn(smp->sess->origin);
if (!conn)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (!isttest(conn->proxy_authority))
return 0;
smp->flags = 0;
smp->data.type = SMP_T_STR;
smp->data.u.str.area = istptr(conn->proxy_authority);
smp->data.u.str.data = istlen(conn->proxy_authority);
return 1;
}
/* fetch the unique ID TLV from a PROXY protocol header */
int smp_fetch_fc_pp_unique_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
conn = objt_conn(smp->sess->origin);
if (!conn)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
if (!isttest(conn->proxy_unique_id))
return 0;
smp->flags = 0;
smp->data.type = SMP_T_STR;
smp->data.u.str.area = istptr(conn->proxy_unique_id);
smp->data.u.str.data = istlen(conn->proxy_unique_id);
return 1;
}
/* fetch the error code of a connection */
int smp_fetch_fc_err(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[0] == 'b') ? cs_conn(__objt_check(smp->sess->origin)->cs) : NULL;
else
conn = (kw[0] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(smp->strm->csb) : NULL;
if (!conn)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
smp->flags = 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = (unsigned long long int)conn->err_code;
return 1;
}
/* fetch a string representation of the error code of a connection */
int smp_fetch_fc_err_str(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *conn;
const char *err_code_str;
if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
conn = (kw[0] == 'b') ? cs_conn(__objt_check(smp->sess->origin)->cs) : NULL;
else
conn = (kw[0] != 'b') ? objt_conn(smp->sess->origin) :
smp->strm ? cs_conn(smp->strm->csb) : NULL;
if (!conn)
return 0;
if (conn->flags & CO_FL_WAIT_XPRT && !conn->err_code) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
err_code_str = conn_err_code_str(conn);
if (!err_code_str)
return 0;
smp->flags = 0;
smp->data.type = SMP_T_STR;
smp->data.u.str.area = (char*)err_code_str;
smp->data.u.str.data = strlen(err_code_str);
return 1;
}
/* Note: must not be declared <const> as its list will be overwritten.
* Note: fetches that may return multiple types must be declared as the lowest
* common denominator, the type that can be casted into all other ones. For
* instance v4/v6 must be declared v4.
*/
static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
{ "bc_err", smp_fetch_fc_err, 0, NULL, SMP_T_SINT, SMP_USE_L4SRV },
{ "bc_err_str", smp_fetch_fc_err_str, 0, NULL, SMP_T_STR, SMP_USE_L4SRV },
{ "bc_http_major", smp_fetch_fc_http_major, 0, NULL, SMP_T_SINT, SMP_USE_L4SRV },
{ "fc_err", smp_fetch_fc_err, 0, NULL, SMP_T_SINT, SMP_USE_L4CLI },
{ "fc_err_str", smp_fetch_fc_err_str, 0, NULL, SMP_T_STR, SMP_USE_L4CLI },
{ "fc_http_major", smp_fetch_fc_http_major, 0, NULL, SMP_T_SINT, SMP_USE_L4CLI },
{ "fc_rcvd_proxy", smp_fetch_fc_rcvd_proxy, 0, NULL, SMP_T_BOOL, SMP_USE_L4CLI },
{ "fc_pp_authority", smp_fetch_fc_pp_authority, 0, NULL, SMP_T_STR, SMP_USE_L4CLI },
{ "fc_pp_unique_id", smp_fetch_fc_pp_unique_id, 0, NULL, SMP_T_STR, SMP_USE_L4CLI },
{ /* END */ },
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &sample_fetch_keywords);
static struct cfg_kw_list cfg_kws = {ILH, {
{ CFG_GLOBAL, "pp2-never-send-local", cfg_parse_pp2_never_send_local },
{ /* END */ },
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
/* private function to handle sockaddr as input for connection hash */
static void conn_calculate_hash_sockaddr(const struct sockaddr_storage *ss,
char *buf, size_t *idx,
enum conn_hash_params_t *hash_flags,
enum conn_hash_params_t param_type_addr,
enum conn_hash_params_t param_type_port)
{
struct sockaddr_in *addr;
struct sockaddr_in6 *addr6;
switch (ss->ss_family) {
case AF_INET:
addr = (struct sockaddr_in *)ss;
conn_hash_update(buf, idx,
&addr->sin_addr, sizeof(addr->sin_addr),
hash_flags, param_type_addr);
if (addr->sin_port) {
conn_hash_update(buf, idx,
&addr->sin_port, sizeof(addr->sin_port),
hash_flags, param_type_port);
}
break;
case AF_INET6:
addr6 = (struct sockaddr_in6 *)ss;
conn_hash_update(buf, idx,
&addr6->sin6_addr, sizeof(addr6->sin6_addr),
hash_flags, param_type_addr);
if (addr6->sin6_port) {
conn_hash_update(buf, idx,
&addr6->sin6_port, sizeof(addr6->sin6_port),
hash_flags, param_type_port);
}
break;
}
}
/* Generate the hash of a connection with params as input
* Each non-null field of params is taken into account for the hash calcul.
*/
uint64_t conn_hash_prehash(char *buf, size_t size)
{
return XXH64(buf, size, 0);
}
/* Append <data> into <buf> at <idx> offset in preparation for connection hash
* calcul. <idx> is incremented beyond data <size>. In the same time, <flags>
* are updated with <type> for the hash header.
*/
void conn_hash_update(char *buf, size_t *idx,
const void *data, size_t size,
enum conn_hash_params_t *flags,
enum conn_hash_params_t type)
{
memcpy(&buf[*idx], data, size);
*idx += size;
*flags |= type;
}
uint64_t conn_hash_digest(char *buf, size_t bufsize,
enum conn_hash_params_t flags)
{
const uint64_t flags_u64 = (uint64_t)flags;
const uint64_t hash = XXH64(buf, bufsize, 0);
return (flags_u64 << CONN_HASH_PAYLOAD_LEN) | CONN_HASH_GET_PAYLOAD(hash);
}
uint64_t conn_calculate_hash(const struct conn_hash_params *params)
{
char *buf;
size_t idx = 0;
uint64_t hash = 0;
enum conn_hash_params_t hash_flags = 0;
buf = trash.area;
conn_hash_update(buf, &idx, &params->target, sizeof(params->target), &hash_flags, 0);
if (params->sni_prehash) {
conn_hash_update(buf, &idx,
&params->sni_prehash, sizeof(params->sni_prehash),
&hash_flags, CONN_HASH_PARAMS_TYPE_SNI);
}
if (params->dst_addr) {
conn_calculate_hash_sockaddr(params->dst_addr,
buf, &idx, &hash_flags,
CONN_HASH_PARAMS_TYPE_DST_ADDR,
CONN_HASH_PARAMS_TYPE_DST_PORT);
}
if (params->src_addr) {
conn_calculate_hash_sockaddr(params->src_addr,
buf, &idx, &hash_flags,
CONN_HASH_PARAMS_TYPE_SRC_ADDR,
CONN_HASH_PARAMS_TYPE_SRC_PORT);
}
if (params->proxy_prehash) {
conn_hash_update(buf, &idx,
&params->proxy_prehash, sizeof(params->proxy_prehash),
&hash_flags, CONN_HASH_PARAMS_TYPE_PROXY);
}
hash = conn_hash_digest(buf, idx, hash_flags);
return hash;
}
/* Handler of the task of mux_stopping_data.
* Called on soft-stop.
*/
static struct task *mux_stopping_process(struct task *t, void *ctx, unsigned int state)
{
struct connection *conn, *back;
list_for_each_entry_safe(conn, back, &mux_stopping_data[tid].list, stopping_list) {
if (conn->mux && conn->mux->wake)
conn->mux->wake(conn);
}
return t;
}
static int allocate_mux_cleanup(void)
{
/* allocates the thread bound mux_stopping_data task */
mux_stopping_data[tid].task = task_new_here();
if (!mux_stopping_data[tid].task) {
ha_alert("Failed to allocate the task for connection cleanup on thread %d.\n", tid);
return 0;
}
mux_stopping_data[tid].task->process = mux_stopping_process;
LIST_INIT(&mux_stopping_data[tid].list);
return 1;
}
REGISTER_PER_THREAD_ALLOC(allocate_mux_cleanup);
static int deallocate_mux_cleanup(void)
{
task_destroy(mux_stopping_data[tid].task);
return 1;
}
REGISTER_PER_THREAD_FREE(deallocate_mux_cleanup);