blob: bf7f55c7e8f717d77322f9b38bf8bab9f7ff7bf2 [file] [log] [blame]
/*
* Client-side variables and functions.
*
* Copyright 2000-2008 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/time.h>
#include <types/global.h>
#include <proto/acl.h>
#include <proto/buffers.h>
#include <proto/client.h>
#include <proto/fd.h>
#include <proto/log.h>
#include <proto/hdr_idx.h>
#include <proto/proto_http.h>
#include <proto/session.h>
#include <proto/stream_interface.h>
#include <proto/stream_sock.h>
#include <proto/task.h>
/* Retrieves the original destination address used by the client, and sets the
* SN_FRT_ADDR_SET flag.
*/
void get_frt_addr(struct session *s)
{
socklen_t namelen = sizeof(s->frt_addr);
if (get_original_dst(s->cli_fd, (struct sockaddr_in *)&s->frt_addr, &namelen) == -1)
getsockname(s->cli_fd, (struct sockaddr *)&s->frt_addr, &namelen);
s->flags |= SN_FRT_ADDR_SET;
}
/*
* FIXME: This should move to the STREAM_SOCK code then split into TCP and HTTP.
*/
/*
* this function is called on a read event from a listen socket, corresponding
* to an accept. It tries to accept as many connections as possible.
* It returns 0.
*/
int event_accept(int fd) {
struct listener *l = fdtab[fd].owner;
struct proxy *p = (struct proxy *)l->private; /* attached frontend */
struct session *s;
struct http_txn *txn;
struct task *t;
int cfd;
int max_accept = global.tune.maxaccept;
while (p->feconn < p->maxconn && max_accept--) {
struct sockaddr_storage addr;
socklen_t laddr = sizeof(addr);
if ((cfd = accept(fd, (struct sockaddr *)&addr, &laddr)) == -1) {
switch (errno) {
case EAGAIN:
case EINTR:
case ECONNABORTED:
return 0; /* nothing more to accept */
case ENFILE:
send_log(p, LOG_EMERG,
"Proxy %s reached system FD limit at %d. Please check system tunables.\n",
p->id, maxfd);
return 0;
case EMFILE:
send_log(p, LOG_EMERG,
"Proxy %s reached process FD limit at %d. Please check 'ulimit-n' and restart.\n",
p->id, maxfd);
return 0;
case ENOBUFS:
case ENOMEM:
send_log(p, LOG_EMERG,
"Proxy %s reached system memory limit at %d sockets. Please check system tunables.\n",
p->id, maxfd);
return 0;
default:
return 0;
}
}
if ((s = pool_alloc2(pool2_session)) == NULL) { /* disable this proxy for a while */
Alert("out of memory in event_accept().\n");
EV_FD_CLR(fd, DIR_RD);
p->state = PR_STIDLE;
goto out_close;
}
LIST_ADDQ(&sessions, &s->list);
s->flags = 0;
s->term_trace = 0;
/* if this session comes from a known monitoring system, we want to ignore
* it as soon as possible, which means closing it immediately for TCP.
*/
if (addr.ss_family == AF_INET &&
p->mon_mask.s_addr &&
(((struct sockaddr_in *)&addr)->sin_addr.s_addr & p->mon_mask.s_addr) == p->mon_net.s_addr) {
if (p->mode == PR_MODE_TCP) {
close(cfd);
pool_free2(pool2_session, s);
continue;
}
s->flags |= SN_MONITOR;
}
if ((t = pool_alloc2(pool2_task)) == NULL) { /* disable this proxy for a while */
Alert("out of memory in event_accept().\n");
EV_FD_CLR(fd, DIR_RD);
p->state = PR_STIDLE;
goto out_free_session;
}
s->cli_addr = addr;
if (cfd >= global.maxsock) {
Alert("accept(): not enough free sockets. Raise -n argument. Giving up.\n");
goto out_free_task;
}
if ((fcntl(cfd, F_SETFL, O_NONBLOCK) == -1) ||
(setsockopt(cfd, IPPROTO_TCP, TCP_NODELAY,
(char *) &one, sizeof(one)) == -1)) {
Alert("accept(): cannot set the socket in non blocking mode. Giving up\n");
goto out_free_task;
}
if (p->options & PR_O_TCP_CLI_KA)
setsockopt(cfd, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(one));
if (p->options & PR_O_TCP_NOLING)
setsockopt(cfd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger));
task_init(t);
t->process = process_session;
t->context = s;
s->task = t;
s->be = s->fe = p;
/* in HTTP mode, content switching requires that the backend
* first points to the same proxy as the frontend. However, in
* TCP mode there will be no header processing so any default
* backend must be assigned if set.
*/
if (p->mode == PR_MODE_TCP) {
if (p->defbe.be)
s->be = p->defbe.be;
s->flags |= SN_BE_ASSIGNED;
}
s->cli_state = CL_STDATA;
s->req = s->rep = NULL; /* will be allocated later */
s->si[0].state = s->si[0].prev_state = SI_ST_EST;
s->si[0].err_type = SI_ET_NONE;
s->si[0].err_loc = NULL;
s->si[0].owner = t;
s->si[0].shutr = stream_sock_shutr;
s->si[0].shutw = stream_sock_shutw;
s->si[0].fd = cfd;
s->si[0].flags = SI_FL_NONE;
s->si[0].exp = TICK_ETERNITY;
s->cli_fd = cfd;
s->si[1].state = s->si[1].prev_state = SI_ST_INI;
s->si[1].err_type = SI_ET_NONE;
s->si[1].err_loc = NULL;
s->si[1].owner = t;
s->si[1].shutr = stream_sock_shutr;
s->si[1].shutw = stream_sock_shutw;
s->si[1].exp = TICK_ETERNITY;
s->si[1].fd = -1; /* just to help with debugging */
s->si[1].flags = SI_FL_NONE;
s->srv = s->prev_srv = s->srv_conn = NULL;
s->pend_pos = NULL;
s->conn_retries = s->be->conn_retries;
/* FIXME: the logs are horribly complicated now, because they are
* defined in <p>, <p>, and later <be> and <be>.
*/
if (s->flags & SN_MONITOR)
s->logs.logwait = 0;
else
s->logs.logwait = p->to_log;
if (s->logs.logwait & LW_REQ)
s->do_log = http_sess_log;
else
s->do_log = tcp_sess_log;
if (p->mode == PR_MODE_HTTP)
s->srv_error = http_return_srv_error;
else
s->srv_error = NULL;
s->logs.accept_date = date; /* user-visible date for logging */
s->logs.tv_accept = now; /* corrected date for internal use */
tv_zero(&s->logs.tv_request);
s->logs.t_queue = -1;
s->logs.t_connect = -1;
s->logs.t_data = -1;
s->logs.t_close = 0;
s->logs.bytes_in = s->logs.bytes_out = 0;
s->logs.prx_queue_size = 0; /* we get the number of pending conns before us */
s->logs.srv_queue_size = 0; /* we will get this number soon */
s->data_source = DATA_SRC_NONE;
s->uniq_id = totalconn;
p->cum_feconn++; /* cum_beconn will be increased once assigned */
txn = &s->txn;
txn->flags = 0;
/* Those variables will be checked and freed if non-NULL in
* session.c:session_free(). It is important that they are
* properly initialized.
*/
txn->srv_cookie = NULL;
txn->cli_cookie = NULL;
txn->uri = NULL;
txn->req.cap = NULL;
txn->rsp.cap = NULL;
txn->hdr_idx.v = NULL;
txn->hdr_idx.size = txn->hdr_idx.used = 0;
if (p->mode == PR_MODE_HTTP) {
txn->status = -1;
txn->req.hdr_content_len = 0LL;
txn->rsp.hdr_content_len = 0LL;
txn->req.msg_state = HTTP_MSG_RQBEFORE; /* at the very beginning of the request */
txn->rsp.msg_state = HTTP_MSG_RPBEFORE; /* at the very beginning of the response */
txn->req.sol = txn->req.eol = NULL;
txn->req.som = txn->req.eoh = 0; /* relative to the buffer */
txn->auth_hdr.len = -1;
if (p->nb_req_cap > 0) {
if ((txn->req.cap = pool_alloc2(p->req_cap_pool)) == NULL)
goto out_fail_reqcap; /* no memory */
memset(txn->req.cap, 0, p->nb_req_cap*sizeof(char *));
}
if (p->nb_rsp_cap > 0) {
if ((txn->rsp.cap = pool_alloc2(p->rsp_cap_pool)) == NULL)
goto out_fail_rspcap; /* no memory */
memset(txn->rsp.cap, 0, p->nb_rsp_cap*sizeof(char *));
}
txn->hdr_idx.size = MAX_HTTP_HDR;
if ((txn->hdr_idx.v = pool_alloc2(p->hdr_idx_pool)) == NULL)
goto out_fail_idx; /* no memory */
hdr_idx_init(&txn->hdr_idx);
}
if ((p->mode == PR_MODE_TCP || p->mode == PR_MODE_HTTP)
&& (p->logfac1 >= 0 || p->logfac2 >= 0)) {
if (p->to_log) {
/* we have the client ip */
if (s->logs.logwait & LW_CLIP)
if (!(s->logs.logwait &= ~LW_CLIP))
s->do_log(s);
}
else if (s->cli_addr.ss_family == AF_INET) {
char pn[INET_ADDRSTRLEN], sn[INET_ADDRSTRLEN];
if (!(s->flags & SN_FRT_ADDR_SET))
get_frt_addr(s);
if (inet_ntop(AF_INET, (const void *)&((struct sockaddr_in *)&s->frt_addr)->sin_addr,
sn, sizeof(sn)) &&
inet_ntop(AF_INET, (const void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr,
pn, sizeof(pn))) {
send_log(p, LOG_INFO, "Connect from %s:%d to %s:%d (%s/%s)\n",
pn, ntohs(((struct sockaddr_in *)&s->cli_addr)->sin_port),
sn, ntohs(((struct sockaddr_in *)&s->frt_addr)->sin_port),
p->id, (p->mode == PR_MODE_HTTP) ? "HTTP" : "TCP");
}
}
else {
char pn[INET6_ADDRSTRLEN], sn[INET6_ADDRSTRLEN];
if (!(s->flags & SN_FRT_ADDR_SET))
get_frt_addr(s);
if (inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)&s->frt_addr)->sin6_addr,
sn, sizeof(sn)) &&
inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)&s->cli_addr)->sin6_addr,
pn, sizeof(pn))) {
send_log(p, LOG_INFO, "Connect from %s:%d to %s:%d (%s/%s)\n",
pn, ntohs(((struct sockaddr_in6 *)&s->cli_addr)->sin6_port),
sn, ntohs(((struct sockaddr_in6 *)&s->frt_addr)->sin6_port),
p->id, (p->mode == PR_MODE_HTTP) ? "HTTP" : "TCP");
}
}
}
if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
int len;
if (!(s->flags & SN_FRT_ADDR_SET))
get_frt_addr(s);
if (s->cli_addr.ss_family == AF_INET) {
char pn[INET_ADDRSTRLEN];
inet_ntop(AF_INET,
(const void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr,
pn, sizeof(pn));
len = sprintf(trash, "%08x:%s.accept(%04x)=%04x from [%s:%d]\n",
s->uniq_id, p->id, (unsigned short)fd, (unsigned short)cfd,
pn, ntohs(((struct sockaddr_in *)&s->cli_addr)->sin_port));
}
else {
char pn[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6,
(const void *)&((struct sockaddr_in6 *)(&s->cli_addr))->sin6_addr,
pn, sizeof(pn));
len = sprintf(trash, "%08x:%s.accept(%04x)=%04x from [%s:%d]\n",
s->uniq_id, p->id, (unsigned short)fd, (unsigned short)cfd,
pn, ntohs(((struct sockaddr_in6 *)(&s->cli_addr))->sin6_port));
}
write(1, trash, len);
}
if ((s->req = pool_alloc2(pool2_buffer)) == NULL)
goto out_fail_req; /* no memory */
buffer_init(s->req);
s->req->prod = &s->si[0];
s->req->cons = &s->si[1];
s->si[0].ib = s->si[1].ob = s->req;
s->req->flags |= BF_READ_ATTACHED; /* the producer is already connected */
if (p->mode == PR_MODE_HTTP) /* reserve some space for header rewriting */
s->req->rlim -= MAXREWRITE;
if (s->fe->tcp_req.inspect_delay)
s->req->analysers |= AN_REQ_INSPECT;
if (p->mode == PR_MODE_HTTP)
s->req->analysers |= AN_REQ_HTTP_HDR;
if (!s->req->analysers)
buffer_write_ena(s->req); /* don't wait to establish connection */
s->req->rto = s->fe->timeout.client;
s->req->wto = s->be->timeout.server;
s->req->cto = s->be->timeout.connect;
if ((s->rep = pool_alloc2(pool2_buffer)) == NULL)
goto out_fail_rep; /* no memory */
buffer_init(s->rep);
s->rep->prod = &s->si[1];
s->rep->cons = &s->si[0];
s->si[0].ob = s->si[1].ib = s->rep;
s->rep->rto = s->be->timeout.server;
s->rep->wto = s->fe->timeout.client;
s->rep->cto = TICK_ETERNITY;
s->req->rex = TICK_ETERNITY;
s->req->wex = TICK_ETERNITY;
s->req->analyse_exp = TICK_ETERNITY;
s->rep->rex = TICK_ETERNITY;
s->rep->wex = TICK_ETERNITY;
s->rep->analyse_exp = TICK_ETERNITY;
t->expire = TICK_ETERNITY;
fd_insert(cfd);
fdtab[cfd].owner = &s->si[0];
fdtab[cfd].listener = l;
fdtab[cfd].state = FD_STREADY;
fdtab[cfd].cb[DIR_RD].f = l->proto->read;
fdtab[cfd].cb[DIR_RD].b = s->req;
fdtab[cfd].cb[DIR_WR].f = l->proto->write;
fdtab[cfd].cb[DIR_WR].b = s->rep;
fdtab[cfd].peeraddr = (struct sockaddr *)&s->cli_addr;
fdtab[cfd].peerlen = sizeof(s->cli_addr);
if ((p->mode == PR_MODE_HTTP && (s->flags & SN_MONITOR)) ||
(p->mode == PR_MODE_HEALTH && (p->options & PR_O_HTTP_CHK))) {
/* Either we got a request from a monitoring system on an HTTP instance,
* or we're in health check mode with the 'httpchk' option enabled. In
* both cases, we return a fake "HTTP/1.0 200 OK" response and we exit.
*/
struct chunk msg = { .str = "HTTP/1.0 200 OK\r\n\r\n", .len = 19 };
stream_int_retnclose(&s->si[0], &msg); /* forge a 200 response */
trace_term(s, TT_CLIENT_1);
t->expire = s->rep->wex;
}
else if (p->mode == PR_MODE_HEALTH) { /* health check mode, no client reading */
struct chunk msg = { .str = "OK\n", .len = 3 };
stream_int_retnclose(&s->si[0], &msg); /* forge an "OK" response */
trace_term(s, TT_CLIENT_2);
t->expire = s->rep->wex;
}
else {
EV_FD_SET(cfd, DIR_RD);
}
/* it is important not to call the wakeup function directly but to
* pass through task_wakeup(), because this one knows how to apply
* priorities to tasks.
*/
if (p->mode != PR_MODE_HEALTH)
task_wakeup(t, TASK_WOKEN_INIT);
p->feconn++; /* beconn will be increased later */
if (p->feconn > p->feconn_max)
p->feconn_max = p->feconn;
if (s->flags & SN_BE_ASSIGNED) {
s->be->cum_beconn++;
s->be->beconn++;
if (s->be->beconn > s->be->beconn_max)
s->be->beconn_max = s->be->beconn;
}
actconn++;
totalconn++;
// fprintf(stderr, "accepting from %p => %d conn, %d total, task=%p\n", p, actconn, totalconn, t);
} /* end of while (p->feconn < p->maxconn) */
return 0;
/* Error unrolling */
out_fail_rep:
pool_free2(pool2_buffer, s->req);
out_fail_req:
pool_free2(p->hdr_idx_pool, txn->hdr_idx.v);
out_fail_idx:
pool_free2(p->rsp_cap_pool, txn->rsp.cap);
out_fail_rspcap:
pool_free2(p->req_cap_pool, txn->req.cap);
out_fail_reqcap:
out_free_task:
pool_free2(pool2_task, t);
out_free_session:
LIST_DEL(&s->list);
pool_free2(pool2_session, s);
out_close:
close(cfd);
return 0;
}
/************************************************************************/
/* All supported keywords must be declared here. */
/************************************************************************/
/* set test->ptr to point to the source IPv4/IPv6 address and test->i to the family */
static int
acl_fetch_src(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
test->i = l4->cli_addr.ss_family;
if (test->i == AF_INET)
test->ptr = (void *)&((struct sockaddr_in *)&l4->cli_addr)->sin_addr;
else
test->ptr = (void *)&((struct sockaddr_in6 *)(&l4->cli_addr))->sin6_addr;
test->flags = ACL_TEST_F_READ_ONLY;
return 1;
}
/* set test->i to the connexion's source port */
static int
acl_fetch_sport(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
if (l4->cli_addr.ss_family == AF_INET)
test->i = ntohs(((struct sockaddr_in *)&l4->cli_addr)->sin_port);
else
test->i = ntohs(((struct sockaddr_in6 *)(&l4->cli_addr))->sin6_port);
test->flags = 0;
return 1;
}
/* set test->ptr to point to the frontend's IPv4/IPv6 address and test->i to the family */
static int
acl_fetch_dst(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
if (!(l4->flags & SN_FRT_ADDR_SET))
get_frt_addr(l4);
test->i = l4->frt_addr.ss_family;
if (test->i == AF_INET)
test->ptr = (void *)&((struct sockaddr_in *)&l4->frt_addr)->sin_addr;
else
test->ptr = (void *)&((struct sockaddr_in6 *)(&l4->frt_addr))->sin6_addr;
test->flags = ACL_TEST_F_READ_ONLY;
return 1;
}
/* set test->i to the frontend connexion's destination port */
static int
acl_fetch_dport(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
if (!(l4->flags & SN_FRT_ADDR_SET))
get_frt_addr(l4);
if (l4->frt_addr.ss_family == AF_INET)
test->i = ntohs(((struct sockaddr_in *)&l4->frt_addr)->sin_port);
else
test->i = ntohs(((struct sockaddr_in6 *)(&l4->frt_addr))->sin6_port);
test->flags = 0;
return 1;
}
/* set test->i to the number of connexions to the proxy */
static int
acl_fetch_dconn(struct proxy *px, struct session *l4, void *l7, int dir,
struct acl_expr *expr, struct acl_test *test)
{
test->i = px->feconn;
return 1;
}
/* Note: must not be declared <const> as its list will be overwritten */
static struct acl_kw_list acl_kws = {{ },{
{ "src_port", acl_parse_int, acl_fetch_sport, acl_match_int, ACL_USE_TCP_PERMANENT },
{ "src", acl_parse_ip, acl_fetch_src, acl_match_ip, ACL_USE_TCP4_PERMANENT },
{ "dst", acl_parse_ip, acl_fetch_dst, acl_match_ip, ACL_USE_TCP4_PERMANENT },
{ "dst_port", acl_parse_int, acl_fetch_dport, acl_match_int, ACL_USE_TCP_PERMANENT },
#if 0
{ "src_limit", acl_parse_int, acl_fetch_sconn, acl_match_int },
#endif
{ "dst_conn", acl_parse_int, acl_fetch_dconn, acl_match_int, ACL_USE_NOTHING },
{ NULL, NULL, NULL, NULL },
}};
__attribute__((constructor))
static void __client_init(void)
{
acl_register_keywords(&acl_kws);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/