blob: 8a7cb272765637e100823e84f770ca0bcff97f2a [file] [log] [blame]
/*
* SSL/TLS OCSP-related functions
*
* Copyright (C) 2022 HAProxy Technologies, Remi Tricot-Le Breton <rlebreton@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Acknowledgement:
* We'd like to specially thank the Stud project authors for a very clean
* and well documented code which helped us understand how the OpenSSL API
* ought to be used in non-blocking mode. This is one difficult part which
* is not easy to get from the OpenSSL doc, and reading the Stud code made
* it much more obvious than the examples in the OpenSSL package. Keep up
* the good works, guys !
*
* Stud is an extremely efficient and scalable SSL/TLS proxy which combines
* particularly well with haproxy. For more info about this project, visit :
* https://github.com/bumptech/stud
*
*/
/* Note: do NOT include openssl/xxx.h here, do it in openssl-compat.h */
#define _GNU_SOURCE
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <netdb.h>
#include <netinet/tcp.h>
#include <import/ebpttree.h>
#include <import/ebsttree.h>
#include <import/lru.h>
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/arg.h>
#include <haproxy/base64.h>
#include <haproxy/channel.h>
#include <haproxy/chunk.h>
#include <haproxy/cli.h>
#include <haproxy/connection.h>
#include <haproxy/dynbuf.h>
#include <haproxy/errors.h>
#include <haproxy/fd.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/frontend.h>
#include <haproxy/global.h>
#include <haproxy/http_rules.h>
#include <haproxy/log.h>
#include <haproxy/openssl-compat.h>
#include <haproxy/pattern-t.h>
#include <haproxy/proto_tcp.h>
#include <haproxy/proxy.h>
#include <haproxy/sample.h>
#include <haproxy/sc_strm.h>
#include <haproxy/quic_conn.h>
#include <haproxy/quic_tp.h>
#include <haproxy/server.h>
#include <haproxy/shctx.h>
#include <haproxy/ssl_ckch.h>
#include <haproxy/ssl_crtlist.h>
#include <haproxy/ssl_sock.h>
#include <haproxy/ssl_utils.h>
#include <haproxy/stats.h>
#include <haproxy/stconn.h>
#include <haproxy/stream-t.h>
#include <haproxy/task.h>
#include <haproxy/ticks.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
#include <haproxy/vars.h>
#include <haproxy/xxhash.h>
#include <haproxy/istbuf.h>
#include <haproxy/ssl_ocsp-t.h>
#include <haproxy/http_client.h>
/* ***** READ THIS before adding code here! *****
*
* Due to API incompatibilities between multiple OpenSSL versions and their
* derivatives, it's often tempting to add macros to (re-)define certain
* symbols. Please do not do this here, and do it in common/openssl-compat.h
* exclusively so that the whole code consistently uses the same macros.
*
* Whenever possible if a macro is missing in certain versions, it's better
* to conditionally define it in openssl-compat.h than using lots of ifdefs.
*/
#ifndef OPENSSL_NO_OCSP
int ocsp_ex_index = -1;
int ssl_sock_get_ocsp_arg_kt_index(int evp_keytype)
{
switch (evp_keytype) {
case EVP_PKEY_RSA:
return 2;
case EVP_PKEY_DSA:
return 0;
case EVP_PKEY_EC:
return 1;
}
return -1;
}
/*
* Callback used to set OCSP status extension content in server hello.
*/
int ssl_sock_ocsp_stapling_cbk(SSL *ssl, void *arg)
{
struct certificate_ocsp *ocsp;
struct ocsp_cbk_arg *ocsp_arg;
char *ssl_buf;
SSL_CTX *ctx;
EVP_PKEY *ssl_pkey;
int key_type;
int index;
ctx = SSL_get_SSL_CTX(ssl);
if (!ctx)
return SSL_TLSEXT_ERR_NOACK;
ocsp_arg = SSL_CTX_get_ex_data(ctx, ocsp_ex_index);
if (!ocsp_arg)
return SSL_TLSEXT_ERR_NOACK;
ssl_pkey = SSL_get_privatekey(ssl);
if (!ssl_pkey)
return SSL_TLSEXT_ERR_NOACK;
key_type = EVP_PKEY_base_id(ssl_pkey);
if (ocsp_arg->is_single && ocsp_arg->single_kt == key_type)
ocsp = ocsp_arg->s_ocsp;
else {
/* For multiple certs per context, we have to find the correct OCSP response based on
* the certificate type
*/
index = ssl_sock_get_ocsp_arg_kt_index(key_type);
if (index < 0)
return SSL_TLSEXT_ERR_NOACK;
ocsp = ocsp_arg->m_ocsp[index];
}
if (!ocsp ||
!ocsp->response.area ||
!ocsp->response.data ||
(ocsp->expire < date.tv_sec))
return SSL_TLSEXT_ERR_NOACK;
ssl_buf = OPENSSL_malloc(ocsp->response.data);
if (!ssl_buf)
return SSL_TLSEXT_ERR_NOACK;
memcpy(ssl_buf, ocsp->response.area, ocsp->response.data);
SSL_set_tlsext_status_ocsp_resp(ssl, (unsigned char*)ssl_buf, ocsp->response.data);
return SSL_TLSEXT_ERR_OK;
}
#endif /* !defined(OPENSSL_NO_OCSP) */
#if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP)
struct eb_root cert_ocsp_tree = EB_ROOT_UNIQUE;
__decl_thread(HA_SPINLOCK_T ocsp_tree_lock);
struct eb_root ocsp_update_tree = EB_ROOT; /* updatable ocsp responses sorted by next_update in absolute time */
/* This function starts to check if the OCSP response (in DER format) contained
* in chunk 'ocsp_response' is valid (else exits on error).
* If 'cid' is not NULL, it will be compared to the OCSP certificate ID
* contained in the OCSP Response and exits on error if no match.
* If it's a valid OCSP Response:
* If 'ocsp' is not NULL, the chunk is copied in the OCSP response's container
* pointed by 'ocsp'.
* If 'ocsp' is NULL, the function looks up into the OCSP response's
* containers tree (using as index the ASN1 form of the OCSP Certificate ID extracted
* from the response) and exits on error if not found. Finally, If an OCSP response is
* already present in the container, it will be overwritten.
*
* Note: OCSP response containing more than one OCSP Single response is not
* considered valid.
*
* Returns 0 on success, 1 in error case.
*/
int ssl_sock_load_ocsp_response(struct buffer *ocsp_response,
struct certificate_ocsp *ocsp,
OCSP_CERTID *cid, char **err)
{
OCSP_RESPONSE *resp;
OCSP_BASICRESP *bs = NULL;
OCSP_SINGLERESP *sr;
OCSP_CERTID *id;
unsigned char *p = (unsigned char *) ocsp_response->area;
int rc , count_sr;
ASN1_GENERALIZEDTIME *revtime, *thisupd, *nextupd = NULL;
int reason;
int ret = 1;
#ifdef HAVE_ASN1_TIME_TO_TM
struct tm nextupd_tm = {0};
#endif
resp = d2i_OCSP_RESPONSE(NULL, (const unsigned char **)&p,
ocsp_response->data);
if (!resp) {
memprintf(err, "Unable to parse OCSP response");
goto out;
}
rc = OCSP_response_status(resp);
if (rc != OCSP_RESPONSE_STATUS_SUCCESSFUL) {
memprintf(err, "OCSP response status not successful");
goto out;
}
bs = OCSP_response_get1_basic(resp);
if (!bs) {
memprintf(err, "Failed to get basic response from OCSP Response");
goto out;
}
count_sr = OCSP_resp_count(bs);
if (count_sr > 1) {
memprintf(err, "OCSP response ignored because contains multiple single responses (%d)", count_sr);
goto out;
}
sr = OCSP_resp_get0(bs, 0);
if (!sr) {
memprintf(err, "Failed to get OCSP single response");
goto out;
}
id = (OCSP_CERTID*)OCSP_SINGLERESP_get0_id(sr);
rc = OCSP_single_get0_status(sr, &reason, &revtime, &thisupd, &nextupd);
if (rc != V_OCSP_CERTSTATUS_GOOD && rc != V_OCSP_CERTSTATUS_REVOKED) {
memprintf(err, "OCSP single response: certificate status is unknown");
goto out;
}
if (!nextupd) {
memprintf(err, "OCSP single response: missing nextupdate");
goto out;
}
rc = OCSP_check_validity(thisupd, nextupd, OCSP_MAX_RESPONSE_TIME_SKEW, -1);
if (!rc) {
memprintf(err, "OCSP single response: no longer valid.");
goto out;
}
if (cid) {
if (OCSP_id_cmp(id, cid)) {
memprintf(err, "OCSP single response: Certificate ID does not match certificate and issuer");
goto out;
}
}
if (!ocsp) {
unsigned char key[OCSP_MAX_CERTID_ASN1_LENGTH];
unsigned char *p;
rc = i2d_OCSP_CERTID(id, NULL);
if (!rc) {
memprintf(err, "OCSP single response: Unable to encode Certificate ID");
goto out;
}
if (rc > OCSP_MAX_CERTID_ASN1_LENGTH) {
memprintf(err, "OCSP single response: Certificate ID too long");
goto out;
}
p = key;
memset(key, 0, OCSP_MAX_CERTID_ASN1_LENGTH);
i2d_OCSP_CERTID(id, &p);
HA_SPIN_LOCK(OCSP_LOCK, &ocsp_tree_lock);
ocsp = (struct certificate_ocsp *)ebmb_lookup(&cert_ocsp_tree, key, OCSP_MAX_CERTID_ASN1_LENGTH);
if (!ocsp) {
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
memprintf(err, "OCSP single response: Certificate ID does not match any certificate or issuer");
goto out;
}
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
}
/* According to comments on "chunk_dup", the
previous chunk buffer will be freed */
if (!chunk_dup(&ocsp->response, ocsp_response)) {
memprintf(err, "OCSP response: Memory allocation error");
goto out;
}
#ifdef HAVE_ASN1_TIME_TO_TM
if (ASN1_TIME_to_tm(nextupd, &nextupd_tm) == 0) {
memprintf(err, "OCSP single response: Invalid \"Next Update\" time");
goto out;
}
ocsp->expire = my_timegm(&nextupd_tm) - OCSP_MAX_RESPONSE_TIME_SKEW;
#else
ocsp->expire = asn1_generalizedtime_to_epoch(nextupd) - OCSP_MAX_RESPONSE_TIME_SKEW;
if (ocsp->expire < 0) {
memprintf(err, "OCSP single response: Invalid \"Next Update\" time");
goto out;
}
#endif
ret = 0;
out:
ERR_clear_error();
if (bs)
OCSP_BASICRESP_free(bs);
if (resp)
OCSP_RESPONSE_free(resp);
return ret;
}
/*
* External function use to update the OCSP response in the OCSP response's
* containers tree. The chunk 'ocsp_response' must contain the OCSP response
* to update in DER format.
*
* Returns 0 on success, 1 in error case.
*/
int ssl_sock_update_ocsp_response(struct buffer *ocsp_response, char **err)
{
return ssl_sock_load_ocsp_response(ocsp_response, NULL, NULL, err);
}
#if !defined OPENSSL_IS_BORINGSSL
/*
* Decrease the refcount of the struct ocsp_response and frees it if it's not
* used anymore. Also removes it from the tree if free'd.
*/
void ssl_sock_free_ocsp(struct certificate_ocsp *ocsp)
{
if (!ocsp)
return;
HA_SPIN_LOCK(OCSP_LOCK, &ocsp_tree_lock);
ocsp->refcount--;
if (ocsp->refcount <= 0) {
ebmb_delete(&ocsp->key);
eb64_delete(&ocsp->next_update);
X509_free(ocsp->issuer);
ocsp->issuer = NULL;
sk_X509_pop_free(ocsp->chain, X509_free);
ocsp->chain = NULL;
chunk_destroy(&ocsp->response);
if (ocsp->uri) {
ha_free(&ocsp->uri->area);
ha_free(&ocsp->uri);
}
free(ocsp);
}
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
}
/*
* This function dumps the details of an OCSP_CERTID. It is based on
* ocsp_certid_print in OpenSSL.
*/
static inline int ocsp_certid_print(BIO *bp, OCSP_CERTID *certid, int indent)
{
ASN1_OCTET_STRING *piNameHash = NULL;
ASN1_OCTET_STRING *piKeyHash = NULL;
ASN1_INTEGER *pSerial = NULL;
if (OCSP_id_get0_info(&piNameHash, NULL, &piKeyHash, &pSerial, certid)) {
BIO_printf(bp, "%*sCertificate ID:\n", indent, "");
indent += 2;
BIO_printf(bp, "%*sIssuer Name Hash: ", indent, "");
#ifndef USE_OPENSSL_WOLFSSL
i2a_ASN1_STRING(bp, piNameHash, 0);
#else
wolfSSL_ASN1_STRING_print(bp, piNameHash);
#endif
BIO_printf(bp, "\n%*sIssuer Key Hash: ", indent, "");
#ifndef USE_OPENSSL_WOLFSSL
i2a_ASN1_STRING(bp, piKeyHash, 0);
#else
wolfSSL_ASN1_STRING_print(bp, piNameHash);
#endif
BIO_printf(bp, "\n%*sSerial Number: ", indent, "");
i2a_ASN1_INTEGER(bp, pSerial);
}
return 1;
}
enum {
SHOW_OCSPRESP_FMT_DFLT,
SHOW_OCSPRESP_FMT_TEXT,
SHOW_OCSPRESP_FMT_B64
};
struct show_ocspresp_cli_ctx {
struct certificate_ocsp *ocsp;
int format;
};
/*
* Dump the details about an OCSP response in DER format stored in
* <ocsp_response> into buffer <out>.
* Returns 0 in case of success.
*/
int ssl_ocsp_response_print(struct buffer *ocsp_response, struct buffer *out)
{
BIO *bio = NULL;
int write = -1;
OCSP_RESPONSE *resp;
const unsigned char *p;
int retval = -1;
if (!ocsp_response)
return -1;
if ((bio = BIO_new(BIO_s_mem())) == NULL)
return -1;
p = (const unsigned char*)ocsp_response->area;
resp = d2i_OCSP_RESPONSE(NULL, &p, ocsp_response->data);
if (!resp) {
chunk_appendf(out, "Unable to parse OCSP response");
goto end;
}
#ifndef USE_OPENSSL_WOLFSSL
if (OCSP_RESPONSE_print(bio, resp, 0) != 0) {
#else
if (wolfSSL_d2i_OCSP_RESPONSE_bio(bio, &resp) != 0) {
#endif
struct buffer *trash = get_trash_chunk();
struct ist ist_block = IST_NULL;
struct ist ist_double_lf = IST_NULL;
static struct ist double_lf = IST("\n\n");
write = BIO_read(bio, trash->area, trash->size - 1);
if (write <= 0)
goto end;
trash->data = write;
/* Look for empty lines in the 'trash' buffer and add a space to
* the beginning to avoid having empty lines in the output
* (without changing the appearance of the information
* displayed).
*/
ist_block = ist2(b_orig(trash), b_data(trash));
ist_double_lf = istist(ist_block, double_lf);
while (istlen(ist_double_lf)) {
/* istptr(ist_double_lf) points to the first \n of a
* \n\n pattern.
*/
uint empty_line_offset = istptr(ist_double_lf) + 1 - istptr(ist_block);
/* Write up to the first '\n' of the "\n\n" pattern into
* the output buffer.
*/
b_putblk(out, istptr(ist_block), empty_line_offset);
/* Add an extra space. */
b_putchr(out, ' ');
/* Keep looking for empty lines in the rest of the data. */
ist_block = istadv(ist_block, empty_line_offset);
ist_double_lf = istist(ist_block, double_lf);
}
retval = (b_istput(out, ist_block) <= 0);
}
end:
if (bio)
BIO_free(bio);
OCSP_RESPONSE_free(resp);
return retval;
}
/*
* Dump the contents of an OCSP response in DER format stored in
* <ocsp_response> into buffer <out> after converting it to base64.
* Returns 0 in case of success.
*/
static int ssl_ocsp_response_print_base64(struct buffer *ocsp_response, struct buffer *out)
{
int b64len = 0;
b64len = a2base64(b_orig(ocsp_response), b_data(ocsp_response),
b_orig(out), b_size(out));
if (b64len < 0)
return 1;
out->data = b64len;
/* Add empty line */
chunk_appendf(ocsp_response, "\n");
return 0;
}
/*
* Dump the details of the OCSP response of ID <ocsp_certid> into buffer <out>.
* Returns 0 in case of success.
*/
int ssl_get_ocspresponse_detail(unsigned char *ocsp_certid, struct buffer *out)
{
struct certificate_ocsp *ocsp;
int ret = 0;
HA_SPIN_LOCK(OCSP_LOCK, &ocsp_tree_lock);
ocsp = (struct certificate_ocsp *)ebmb_lookup(&cert_ocsp_tree, ocsp_certid, OCSP_MAX_CERTID_ASN1_LENGTH);
if (!ocsp) {
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
return -1;
}
ret = ssl_ocsp_response_print(&ocsp->response, out);
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
return ret;
}
/* IO handler of details "show ssl ocsp-response <id>".
* The current entry is taken from appctx->svcctx.
*/
static int cli_io_handler_show_ocspresponse_detail(struct appctx *appctx)
{
struct buffer *trash = get_trash_chunk();
struct show_ocspresp_cli_ctx *ctx = appctx->svcctx;
struct certificate_ocsp *ocsp = ctx->ocsp;
int retval = 0;
switch (ctx->format) {
case SHOW_OCSPRESP_FMT_DFLT:
case SHOW_OCSPRESP_FMT_TEXT:
retval = ssl_ocsp_response_print(&ocsp->response, trash);
break;
case SHOW_OCSPRESP_FMT_B64:
retval = ssl_ocsp_response_print_base64(&ocsp->response, trash);
break;
}
if (retval)
return 1;
if (applet_putchk(appctx, trash) == -1)
goto yield;
appctx->svcctx = NULL;
return 1;
yield:
return 0;
}
void ssl_sock_ocsp_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp)
{
struct ocsp_cbk_arg *ocsp_arg;
if (ptr) {
ocsp_arg = ptr;
if (ocsp_arg->is_single) {
ssl_sock_free_ocsp(ocsp_arg->s_ocsp);
ocsp_arg->s_ocsp = NULL;
} else {
int i;
for (i = 0; i < SSL_SOCK_NUM_KEYTYPES; i++) {
ssl_sock_free_ocsp(ocsp_arg->m_ocsp[i]);
ocsp_arg->m_ocsp[i] = NULL;
}
}
free(ocsp_arg);
}
}
/*
* Extract the first OCSP URI (if any) contained in <cert> and write it into
* <out>.
* Returns 0 in case of success, 1 otherwise.
*/
int ssl_ocsp_get_uri_from_cert(X509 *cert, struct buffer *out, char **err)
{
STACK_OF(OPENSSL_STRING) *ocsp_uri_stk = NULL;
int ret = 1;
if (!cert || !out)
goto end;
ocsp_uri_stk = X509_get1_ocsp(cert);
if (ocsp_uri_stk == NULL) {
memprintf(err, "%sNo OCSP URL stack!\n", *err ? *err : "");
goto end;
}
if (!chunk_strcpy(out, sk_OPENSSL_STRING_value(ocsp_uri_stk, 0))) {
memprintf(err, "%sOCSP URI too long!\n", *err ? *err : "");
goto end;
}
if (b_data(out) == 0) {
memprintf(err, "%sNo OCSP URL!\n", *err ? *err : "");
goto end;
}
ret = 0;
end:
X509_email_free(ocsp_uri_stk);
return ret;
}
/*
* Create the url and request body that make a proper OCSP request for the
* <certid>. The <req_url> parameter should already hold the OCSP URI that was
* extracted from the corresponding certificate. Depending on the size of the
* certid we will either append data to the <req_url> to create a proper URL
* that will be sent with a GET command, or the <req_body> will be constructed
* in case of a POST.
* Returns 0 in case of success.
*/
int ssl_ocsp_create_request_details(const OCSP_CERTID *certid, struct buffer *req_url,
struct buffer *req_body, char **err)
{
int errcode = -1;
OCSP_REQUEST *ocsp;
struct buffer *bin_request = get_trash_chunk();
unsigned char *outbuf = (unsigned char*)b_orig(bin_request);
ocsp = OCSP_REQUEST_new();
if (ocsp == NULL) {
memprintf(err, "%sCan't create OCSP_REQUEST\n", *err ? *err : "");
goto end;
}
if (OCSP_request_add0_id(ocsp, (OCSP_CERTID*)certid) == NULL) {
memprintf(err, "%sOCSP_request_add0_id() error\n", *err ? *err : "");
goto end;
}
bin_request->data = i2d_OCSP_REQUEST(ocsp, &outbuf);
if (b_data(bin_request) <= 0) {
memprintf(err, "%si2d_OCSP_REQUEST() error\n", *err ? *err : "");
goto end;
}
/* HTTP based OCSP requests can use either the GET or the POST method to
* submit their requests. To enable HTTP caching, small requests (that
* after encoding are less than 255 bytes), MAY be submitted using GET.
* If HTTP caching is not important, or the request is greater than 255
* bytes, the request SHOULD be submitted using POST.
*/
if (b_data(bin_request) + b_data(req_url) < 0xff) {
struct buffer *b64buf = get_trash_chunk();
char *ret = NULL;
int base64_ret = 0;
chunk_strcat(req_url, "/");
base64_ret = a2base64(b_orig(bin_request), b_data(bin_request),
b_orig(b64buf), b_size(b64buf));
if (base64_ret < 0) {
memprintf(err, "%sa2base64() error\n", *err ? *err : "");
goto end;
}
b64buf->data = base64_ret;
ret = encode_chunk((char*)b_stop(req_url), b_orig(req_url) + b_size(req_url), '%',
query_encode_map, b64buf);
if (ret && *ret == '\0') {
req_url->data = ret - b_orig(req_url);
errcode = 0;
}
}
else {
chunk_cpy(req_body, bin_request);
errcode = 0;
}
end:
OCSP_REQUEST_free(ocsp);
return errcode;
}
/*
* Parse an OCSP_RESPONSE contained in <respbuf> and check its validity in
* regard to the contents of <ckch> or the <issuer> certificate.
* Certificate_ocsp structure does not keep a reference to the corresponding
* ckch_store so outside of a CLI context (see "send ssl ocsp-response"
* command), we only have an easy access to the issuer's certificate whose
* reference is held in the structure.
* Return 0 in case of success, 1 otherwise.
*/
int ssl_ocsp_check_response(STACK_OF(X509) *chain, X509 *issuer,
struct buffer *respbuf, char **err)
{
int ret = 1;
int n;
OCSP_RESPONSE *response = NULL;
OCSP_BASICRESP *basic = NULL;
X509_STORE *store = NULL;
const unsigned char *start = (const unsigned char*)b_orig(respbuf);
if (!chain && !issuer) {
memprintf(err, "check_ocsp_response needs a certificate validation chain or an issuer certificate");
goto end;
}
response = d2i_OCSP_RESPONSE(NULL, &start, b_data(respbuf));
if (!response) {
memprintf(err, "d2i_OCSP_RESPONSE() failed");
goto end;
}
n = OCSP_response_status(response);
if (n != OCSP_RESPONSE_STATUS_SUCCESSFUL) {
memprintf(err, "OCSP response not successful (%d: %s)",
n, OCSP_response_status_str(n));
goto end;
}
basic = OCSP_response_get1_basic(response);
if (basic == NULL) {
memprintf(err, "OCSP_response_get1_basic() failed");
goto end;
}
/* Create a temporary store in which we add the certificate's chain
* certificates. We assume that all those certificates can be trusted
* because they were provided by the user.
* The only ssl item that needs to be verified here is the OCSP
* response.
*/
store = X509_STORE_new();
if (!store) {
memprintf(err, "X509_STORE_new() failed");
goto end;
}
if (chain) {
int i = 0;
for (i = 0; i < sk_X509_num(chain); i++) {
X509 *cert = sk_X509_value(chain, i);
X509_STORE_add_cert(store, cert);
}
}
if (issuer)
X509_STORE_add_cert(store, issuer);
if (OCSP_basic_verify(basic, chain, store, OCSP_TRUSTOTHER) != 1) {
memprintf(err, "OCSP_basic_verify() failed");
goto end;
}
ret = 0;
end:
X509_STORE_free(store);
OCSP_RESPONSE_free(response);
OCSP_BASICRESP_free(basic);
return ret;
}
/*
* OCSP-UPDATE RELATED FUNCTIONS AND STRUCTURES
*/
struct task *ocsp_update_task __read_mostly = NULL;
static struct proxy *httpclient_ocsp_update_px;
static struct ssl_ocsp_task_ctx {
struct certificate_ocsp *cur_ocsp;
struct httpclient *hc;
struct appctx *appctx;
int flags;
int update_status;
} ssl_ocsp_task_ctx;
const struct http_hdr ocsp_request_hdrs[] = {
{ IST("Content-Type"), IST("application/ocsp-request") },
{ IST_NULL, IST_NULL }
};
enum {
OCSP_UPDT_UNKNOWN = 0,
OCSP_UPDT_OK = 1,
OCSP_UPDT_ERR_HTTP_STATUS = 2,
OCSP_UPDT_ERR_HTTP_HDR = 3,
OCSP_UPDT_ERR_CHECK = 4,
OCSP_UPDT_ERR_INSERT = 5,
OCSP_UPDT_ERR_LAST /* Must be last */
};
const struct ist ocsp_update_errors[] = {
[OCSP_UPDT_UNKNOWN] = IST("Unknown"),
[OCSP_UPDT_OK] = IST("Update successful"),
[OCSP_UPDT_ERR_HTTP_STATUS] = IST("HTTP error"),
[OCSP_UPDT_ERR_HTTP_HDR] = IST("Missing \"ocsp-response\" header"),
[OCSP_UPDT_ERR_CHECK] = IST("OCSP response check failure"),
[OCSP_UPDT_ERR_INSERT] = IST("Error during insertion")
};
static struct task *ssl_ocsp_update_responses(struct task *task, void *context, unsigned int state);
/*
* Create the main OCSP update task that will iterate over the OCSP responses
* stored in ocsp_update_tree and send an OCSP request via the http_client
* applet to the corresponding OCSP responder. The task will then be in charge
* of processing the response, verifying it and resinserting it in the actual
* ocsp response tree if the response is valid.
* Returns 0 in case of success.
*/
int ssl_create_ocsp_update_task(char **err)
{
if (ocsp_update_task)
return 0; /* Already created */
ocsp_update_task = task_new_anywhere();
if (!ocsp_update_task) {
memprintf(err, "parsing : failed to allocate global ocsp update task.");
return -1;
}
ocsp_update_task->process = ssl_ocsp_update_responses;
ocsp_update_task->context = NULL;
return 0;
}
static int ssl_ocsp_task_schedule()
{
if (ocsp_update_task)
task_schedule(ocsp_update_task, now_ms);
return 0;
}
REGISTER_POST_CHECK(ssl_ocsp_task_schedule);
void ssl_sock_free_ocsp(struct certificate_ocsp *ocsp);
void ssl_destroy_ocsp_update_task(void)
{
struct eb64_node *node, *next;
if (!ocsp_update_task)
return;
HA_SPIN_LOCK(OCSP_LOCK, &ocsp_tree_lock);
node = eb64_first(&ocsp_update_tree);
while (node) {
next = eb64_next(node);
eb64_delete(node);
node = next;
}
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
task_destroy(ocsp_update_task);
ocsp_update_task = NULL;
ssl_sock_free_ocsp(ssl_ocsp_task_ctx.cur_ocsp);
ssl_ocsp_task_ctx.cur_ocsp = NULL;
if (ssl_ocsp_task_ctx.hc) {
httpclient_stop_and_destroy(ssl_ocsp_task_ctx.hc);
ssl_ocsp_task_ctx.hc = NULL;
}
}
static inline void ssl_ocsp_set_next_update(struct certificate_ocsp *ocsp)
{
int update_margin = (ocsp->expire >= SSL_OCSP_UPDATE_MARGIN) ? SSL_OCSP_UPDATE_MARGIN : 0;
ocsp->next_update.key = MIN(date.tv_sec + global_ssl.ocsp_update.delay_max,
ocsp->expire - update_margin);
/* An already existing valid OCSP response that expires within less than
* SSL_OCSP_UPDATE_DELAY_MIN or has no 'Next Update' field should not be
* updated more than once every 5 minutes in order to avoid continuous
* update of the same response. */
if (b_data(&ocsp->response))
ocsp->next_update.key = MAX(ocsp->next_update.key,
date.tv_sec + global_ssl.ocsp_update.delay_min);
}
/*
* Insert a certificate_ocsp structure into the ocsp_update_tree tree, in which
* entries are sorted by absolute date of the next update. The next_update key
* will be the smallest out of the actual expire value of the response and
* now+1H. This arbitrary 1H value ensures that ocsp responses are updated
* periodically even when they have a long expire time, while not overloading
* the system too much (in theory). Likewise, a minimum 5 minutes interval is
* defined in order to avoid updating too often responses that have a really
* short expire time or even no 'Next Update' at all.
*/
int ssl_ocsp_update_insert(struct certificate_ocsp *ocsp)
{
/* This entry was only supposed to be updated once, it does not need to
* be reinserted into the update tree.
*/
if (ocsp->update_once)
return 0;
/* Set next_update based on current time and the various OCSP
* minimum/maximum update times.
*/
ssl_ocsp_set_next_update(ocsp);
ocsp->fail_count = 0;
HA_SPIN_LOCK(OCSP_LOCK, &ocsp_tree_lock);
eb64_insert(&ocsp_update_tree, &ocsp->next_update);
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
return 0;
}
/*
* Reinsert an entry in the update tree. The entry's next update time can not
* occur before now+SSL_OCSP_HTTP_ERR_REPLAY.
* This is supposed to be used in case of http error (ocsp responder unreachable
* for instance). This ensures that the entry does not get reinserted at the
* beginning of the tree every time.
*/
int ssl_ocsp_update_insert_after_error(struct certificate_ocsp *ocsp)
{
int replay_delay = 0;
/* This entry was only supposed to be updated once, it does not need to
* be reinserted into the update tree.
*/
if (ocsp->update_once)
return 0;
/*
* Set next_update based on current time and the various OCSP
* minimum/maximum update times.
*/
ssl_ocsp_set_next_update(ocsp);
++ocsp->fail_count;
/*
* The replay delay will be increased for every consecutive update
* failure, up to the SSL_OCSP_UPDATE_DELAY_MAX delay. It will ensure
* that the replay delay will be one minute for the first failure and
* will be multiplied by 2 for every subsequent failures, while still
* being at most 1 hour (with the current default values).
*/
replay_delay = MIN(SSL_OCSP_HTTP_ERR_REPLAY * (1 << ocsp->fail_count),
global_ssl.ocsp_update.delay_max);
if (ocsp->next_update.key < date.tv_sec + replay_delay)
ocsp->next_update.key = date.tv_sec + replay_delay;
HA_SPIN_LOCK(OCSP_LOCK, &ocsp_tree_lock);
eb64_insert(&ocsp_update_tree, &ocsp->next_update);
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
return 0;
}
void ocsp_update_response_stline_cb(struct httpclient *hc)
{
struct task *task = hc->caller;
if (!task)
return;
ssl_ocsp_task_ctx.flags |= HC_F_RES_STLINE;
task_wakeup(task, TASK_WOKEN_MSG);
}
void ocsp_update_response_headers_cb(struct httpclient *hc)
{
struct task *task = hc->caller;
if (!task)
return;
ssl_ocsp_task_ctx.flags |= HC_F_RES_HDR;
task_wakeup(task, TASK_WOKEN_MSG);
}
void ocsp_update_response_body_cb(struct httpclient *hc)
{
struct task *task = hc->caller;
if (!task)
return;
ssl_ocsp_task_ctx.flags |= HC_F_RES_BODY;
task_wakeup(task, TASK_WOKEN_MSG);
}
void ocsp_update_response_end_cb(struct httpclient *hc)
{
struct task *task = hc->caller;
if (!task)
return;
ssl_ocsp_task_ctx.flags |= HC_F_RES_END;
task_wakeup(task, TASK_WOKEN_MSG);
}
/*
* Send a log line that will use the dedicated proxy's error_logformat string.
* It uses the sess_log function instead of app_log for instance in order to
* benefit from the "generic" items that can be added to a log format line such
* as the date and frontend name that can be found at the beginning of the
* ocspupdate_log_format line.
*/
static void ssl_ocsp_send_log()
{
if (!ssl_ocsp_task_ctx.appctx)
return;
sess_log(ssl_ocsp_task_ctx.appctx->sess);
}
/*
* This is the main function of the ocsp auto update mechanism. It has two
* distinct parts and the branching to one or the other is completely based on
* the fact that the cur_ocsp pointer of the ssl_ocsp_task_ctx member is set.
*
* If the pointer is not set, we need to look at the first item of the update
* tree and see if it needs to be updated. If it does not we simply wait until
* the time is right and let the task asleep. If it does need to be updated, we
* simply build and send the corresponding ocsp request thanks to the
* http_client. The task is then sent to sleep with an expire time set to
* infinity. The http_client will wake it back up once the response is received
* (or a timeout occurs). Just note that during this whole process the
* cetificate_ocsp object corresponding to the entry being updated is taken out
* of the update tree and only stored in the ssl_ocsp_task_ctx context.
*
* Once the task is waken up by the http_client, it branches on the response
* processing part of the function which basically checks that the response is
* valid and inserts it into the ocsp_response tree. The task then goes back to
* sleep until another entry needs to be updated.
*/
static struct task *ssl_ocsp_update_responses(struct task *task, void *context, unsigned int state)
{
unsigned int next_wakeup = 0;
struct eb64_node *eb;
struct certificate_ocsp *ocsp;
struct httpclient *hc = NULL;
struct buffer *req_url = NULL;
struct buffer *req_body = NULL;
OCSP_CERTID *certid = NULL;
struct ssl_ocsp_task_ctx *ctx = &ssl_ocsp_task_ctx;
if (ctx->cur_ocsp) {
/* An update is in process */
ocsp = ctx->cur_ocsp;
hc = ctx->hc;
if (ctx->flags & HC_F_RES_STLINE) {
if (hc->res.status != 200) {
ctx->update_status = OCSP_UPDT_ERR_HTTP_STATUS;
goto http_error;
}
ctx->flags &= ~HC_F_RES_STLINE;
}
if (ctx->flags & HC_F_RES_HDR) {
struct http_hdr *hdr;
int found = 0;
/* Look for "Content-Type" header which should have
* "application/ocsp-response" value. */
for (hdr = hc->res.hdrs; isttest(hdr->v); hdr++) {
if (isteqi(hdr->n, ist("Content-Type")) &&
isteqi(hdr->v, ist("application/ocsp-response"))) {
found = 1;
break;
}
}
if (!found) {
ctx->update_status = OCSP_UPDT_ERR_HTTP_HDR;
goto http_error;
}
ctx->flags &= ~HC_F_RES_HDR;
}
/* If the HC_F_RES_BODY is set, we still need for the
* HC_F_RES_END flag to be set as well in order to be sure that
* the body is complete. */
/* we must close only if F_RES_END is the last flag */
if (ctx->flags & HC_F_RES_END) {
/* Process the body that must be complete since
* HC_F_RES_END is set. */
if (ctx->flags & HC_F_RES_BODY) {
if (ssl_ocsp_check_response(ocsp->chain, ocsp->issuer, &hc->res.buf, NULL)) {
ctx->update_status = OCSP_UPDT_ERR_CHECK;
goto http_error;
}
if (ssl_sock_update_ocsp_response(&hc->res.buf, NULL) != 0) {
ctx->update_status = OCSP_UPDT_ERR_INSERT;
goto http_error;
}
ctx->flags &= ~HC_F_RES_BODY;
}
ctx->flags &= ~HC_F_RES_END;
++ocsp->num_success;
ocsp->last_update = date.tv_sec;
ctx->update_status = OCSP_UPDT_OK;
ocsp->last_update_status = ctx->update_status;
ssl_ocsp_send_log();
/* Reinsert the entry into the update list so that it can be updated later */
ssl_ocsp_update_insert(ocsp);
/* Release the reference kept on the updated ocsp response. */
ssl_sock_free_ocsp(ctx->cur_ocsp);
ctx->cur_ocsp = NULL;
HA_SPIN_LOCK(OCSP_LOCK, &ocsp_tree_lock);
/* Set next_wakeup to the new first entry of the tree */
eb = eb64_first(&ocsp_update_tree);
if (eb) {
if (eb->key > date.tv_sec)
next_wakeup = (eb->key - date.tv_sec)*1000;
else
next_wakeup = 0;
}
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
goto leave;
}
/* We did not receive the HC_F_RES_END flag yet, wait for it
* before trying to update a new ocsp response. */
goto wait;
} else {
/* Look for next entry that needs to be updated. */
const unsigned char *p = NULL;
HA_SPIN_LOCK(OCSP_LOCK, &ocsp_tree_lock);
eb = eb64_first(&ocsp_update_tree);
if (!eb) {
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
goto wait;
}
if (eb->key > date.tv_sec) {
next_wakeup = (eb->key - date.tv_sec)*1000;
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
goto leave;
}
ocsp = eb64_entry(eb, struct certificate_ocsp, next_update);
/* Take the current entry out of the update tree, it will be
* reinserted after the response is processed. */
eb64_delete(&ocsp->next_update);
++ocsp->refcount;
ctx->cur_ocsp = ocsp;
ocsp->last_update_status = OCSP_UPDT_UNKNOWN;
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
req_url = alloc_trash_chunk();
if (!req_url) {
goto leave;
}
req_body = alloc_trash_chunk();
if (!req_body) {
goto leave;
}
p = ocsp->key_data;
d2i_OCSP_CERTID(&certid, &p, ocsp->key_length);
if (!certid)
goto leave;
/* Copy OCSP URI stored in ocsp structure into req_url */
chunk_cpy(req_url, ocsp->uri);
/* Create ocsp request */
if (ssl_ocsp_create_request_details(certid, req_url, req_body, NULL) != 0) {
goto leave;
}
/* Depending on the processing that occurred in
* ssl_ocsp_create_request_details we could either have to send
* a GET or a POST request. */
hc = httpclient_new_from_proxy(httpclient_ocsp_update_px, task,
b_data(req_body) ? HTTP_METH_POST : HTTP_METH_GET,
ist2(b_orig(req_url), b_data(req_url)));
if (!hc) {
goto leave;
}
if (httpclient_req_gen(hc, hc->req.url, hc->req.meth,
b_data(req_body) ? ocsp_request_hdrs : NULL,
b_data(req_body) ? ist2(b_orig(req_body), b_data(req_body)) : IST_NULL) != ERR_NONE) {
goto leave;
}
hc->ops.res_stline = ocsp_update_response_stline_cb;
hc->ops.res_headers = ocsp_update_response_headers_cb;
hc->ops.res_payload = ocsp_update_response_body_cb;
hc->ops.res_end = ocsp_update_response_end_cb;
if (!(ctx->appctx = httpclient_start(hc))) {
goto leave;
}
ctx->flags = 0;
ctx->hc = hc;
/* We keep the lock, this indicates that an update is in process. */
goto wait;
}
leave:
if (ctx->cur_ocsp) {
/* Something went wrong, reinsert the entry in the tree. */
++ctx->cur_ocsp->num_failure;
ssl_ocsp_update_insert_after_error(ctx->cur_ocsp);
/* Release the reference kept on the updated ocsp response. */
ssl_sock_free_ocsp(ctx->cur_ocsp);
ctx->cur_ocsp = NULL;
}
if (hc)
httpclient_stop_and_destroy(hc);
ctx->hc = NULL;
free_trash_chunk(req_url);
free_trash_chunk(req_body);
task->expire = tick_add(now_ms, next_wakeup);
return task;
wait:
free_trash_chunk(req_url);
free_trash_chunk(req_body);
task->expire = TICK_ETERNITY;
return task;
http_error:
ssl_ocsp_send_log();
/* Reinsert certificate into update list so that it can be updated later */
if (ocsp) {
++ocsp->num_failure;
ocsp->last_update_status = ctx->update_status;
ssl_ocsp_update_insert_after_error(ocsp);
}
if (hc)
httpclient_stop_and_destroy(hc);
/* Release the reference kept on the updated ocsp response. */
ssl_sock_free_ocsp(ctx->cur_ocsp);
HA_SPIN_LOCK(OCSP_LOCK, &ocsp_tree_lock);
/* Set next_wakeup to the new first entry of the tree */
eb = eb64_first(&ocsp_update_tree);
if (eb) {
if (eb->key > date.tv_sec)
next_wakeup = (eb->key - date.tv_sec)*1000;
else
next_wakeup = 0;
}
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
ctx->cur_ocsp = NULL;
ctx->hc = NULL;
ctx->flags = 0;
task->expire = tick_add(now_ms, next_wakeup);
return task;
}
char ocspupdate_log_format[] = "%ci:%cp [%tr] %ft %[ssl_ocsp_certname] %[ssl_ocsp_status] %{+Q}[ssl_ocsp_status_str] %[ssl_ocsp_fail_cnt] %[ssl_ocsp_success_cnt]";
/*
* Initialize the proxy for the OCSP update HTTP client with 2 servers, one for
* raw HTTP, the other for HTTPS.
*/
static int ssl_ocsp_update_precheck()
{
/* initialize the OCSP update dedicated httpclient */
httpclient_ocsp_update_px = httpclient_create_proxy("<OCSP-UPDATE>");
if (!httpclient_ocsp_update_px)
return 1;
httpclient_ocsp_update_px->conf.error_logformat_string = strdup(ocspupdate_log_format);
httpclient_ocsp_update_px->conf.logformat_string = httpclient_log_format;
httpclient_ocsp_update_px->options2 |= PR_O2_NOLOGNORM;
return 0;
}
/* initialize the proxy and servers for the HTTP client */
REGISTER_PRE_CHECK(ssl_ocsp_update_precheck);
static int cli_parse_update_ocsp_response(char **args, char *payload, struct appctx *appctx, void *private)
{
char *err = NULL;
struct ckch_store *ckch_store = NULL;
struct certificate_ocsp *ocsp = NULL;
int update_once = 0;
unsigned char key[OCSP_MAX_CERTID_ASN1_LENGTH] = {};
unsigned char *p;
if (!*args[3]) {
memprintf(&err, "'update ssl ocsp-response' expects a filename\n");
return cli_dynerr(appctx, err);
}
/* The operations on the CKCH architecture are locked so we can
* manipulate ckch_store and ckch_inst */
if (HA_SPIN_TRYLOCK(CKCH_LOCK, &ckch_lock)) {
memprintf(&err, "%sCan't update the certificate!\nOperations on certificates are currently locked!\n", err ? err : "");
goto end;
}
ckch_store = ckchs_lookup(args[3]);
if (!ckch_store) {
memprintf(&err, "%sUnknown certificate! 'update ssl ocsp-response' expects an already known certificate file name.\n", err ? err : "");
HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock);
goto end;
}
p = key;
i2d_OCSP_CERTID(ckch_store->data->ocsp_cid, &p);
HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock);
HA_SPIN_LOCK(OCSP_LOCK, &ocsp_tree_lock);
ocsp = (struct certificate_ocsp *)ebmb_lookup(&cert_ocsp_tree, key, OCSP_MAX_CERTID_ASN1_LENGTH);
if (!ocsp) {
memprintf(&err, "%s'update ssl ocsp-response' only works on certificates that already have a known OCSP response.\n", err ? err : "");
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
goto end;
}
update_once = (ocsp->next_update.node.leaf_p == NULL);
eb64_delete(&ocsp->next_update);
/* Insert the entry at the beginning of the update tree. */
ocsp->next_update.key = 0;
eb64_insert(&ocsp_update_tree, &ocsp->next_update);
ocsp->update_once = update_once;
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
if (!ocsp_update_task)
ssl_create_ocsp_update_task(&err);
task_wakeup(ocsp_update_task, TASK_WOKEN_MSG);
free(err);
return 0;
end:
return cli_dynerr(appctx, memprintf(&err, "%sCan't send ocsp request for %s!\n", err ? err : "", args[3]));
}
#endif /* !defined OPENSSL_IS_BORINGSSL */
#endif /* (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) */
static int cli_parse_set_ocspresponse(char **args, char *payload, struct appctx *appctx, void *private)
{
#if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP)
char *err = NULL;
int i, j, ret;
if (!payload)
payload = args[3];
/* Expect one parameter: the new response in base64 encoding */
if (!*payload)
return cli_err(appctx, "'set ssl ocsp-response' expects response in base64 encoding.\n");
/* remove \r and \n from the payload */
for (i = 0, j = 0; payload[i]; i++) {
if (payload[i] == '\r' || payload[i] == '\n')
continue;
payload[j++] = payload[i];
}
payload[j] = 0;
ret = base64dec(payload, j, trash.area, trash.size);
if (ret < 0)
return cli_err(appctx, "'set ssl ocsp-response' received invalid base64 encoded response.\n");
trash.data = ret;
if (ssl_sock_update_ocsp_response(&trash, &err)) {
if (err)
return cli_dynerr(appctx, memprintf(&err, "%s.\n", err));
else
return cli_err(appctx, "Failed to update OCSP response.\n");
}
return cli_msg(appctx, LOG_INFO, "OCSP Response updated!\n");
#else
return cli_err(appctx, "HAProxy was compiled against a version of OpenSSL that doesn't support OCSP stapling.\n");
#endif
}
/* parsing function for 'show ssl ocsp-response [id]'. If an entry is forced,
* it's set into appctx->svcctx.
*/
static int cli_parse_show_ocspresponse(char **args, char *payload, struct appctx *appctx, void *private)
{
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) && !defined OPENSSL_IS_BORINGSSL)
struct show_ocspresp_cli_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
int arg_idx = 3;
if (*args[3]) {
struct certificate_ocsp *ocsp = NULL;
char key[OCSP_MAX_CERTID_ASN1_LENGTH] = {};
int key_length = OCSP_MAX_CERTID_ASN1_LENGTH;
char *key_ptr = key;
unsigned char *p;
struct ckch_store *ckch_store = NULL;
if (strcmp(args[3], "text") == 0) {
ctx->format = SHOW_OCSPRESP_FMT_TEXT;
++arg_idx;
} else if (strcmp(args[3], "base64") == 0) {
ctx->format = SHOW_OCSPRESP_FMT_B64;
++arg_idx;
}
if (ctx->format != SHOW_OCSPRESP_FMT_DFLT && !*args[arg_idx])
return cli_err(appctx, "'show ssl ocsp-response [text|base64]' expects a valid certid.\n");
/* Try to convert parameter into an OCSP certid first, and consider it
* as a filename if it fails. */
if (strlen(args[arg_idx]) > OCSP_MAX_CERTID_ASN1_LENGTH*2 ||
!parse_binary(args[arg_idx], &key_ptr, &key_length, NULL)) {
key_ptr = key;
key_length = 0;
/* The operations on the CKCH architecture are locked so we can
* manipulate ckch_store and ckch_inst */
if (HA_SPIN_TRYLOCK(CKCH_LOCK, &ckch_lock)) {
return cli_err(appctx, "Operations on certificates are currently locked!\n");
}
ckch_store = ckchs_lookup(args[arg_idx]);
if (ckch_store) {
p = (unsigned char*)key;
key_length = i2d_OCSP_CERTID(ckch_store->data->ocsp_cid, &p);
}
HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock);
}
if (key_length == 0) {
return cli_err(appctx, "'show ssl ocsp-response' expects a valid certid or certificate path.\n");
}
HA_SPIN_LOCK(OCSP_LOCK, &ocsp_tree_lock);
ocsp = (struct certificate_ocsp *)ebmb_lookup(&cert_ocsp_tree, key, OCSP_MAX_CERTID_ASN1_LENGTH);
if (!ocsp) {
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
return cli_err(appctx, "Certificate ID or path does not match any certificate.\n");
}
++ocsp->refcount;
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
ctx->ocsp = ocsp;
appctx->io_handler = cli_io_handler_show_ocspresponse_detail;
}
return 0;
#else
return cli_err(appctx, "HAProxy was compiled against a version of OpenSSL that doesn't support OCSP stapling.\n");
#endif
}
/*
* IO handler of "show ssl ocsp-response". The command taking a specific ID
* is managed in cli_io_handler_show_ocspresponse_detail.
* The current entry is taken from appctx->svcctx.
*/
static int cli_io_handler_show_ocspresponse(struct appctx *appctx)
{
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) && !defined OPENSSL_IS_BORINGSSL)
struct buffer *trash = alloc_trash_chunk();
struct buffer *tmp = NULL;
struct ebmb_node *node;
struct certificate_ocsp *ocsp = NULL;
BIO *bio = NULL;
int write = -1;
struct show_ocspresp_cli_ctx *ctx = appctx->svcctx;
if (trash == NULL)
return 1;
HA_SPIN_LOCK(OCSP_LOCK, &ocsp_tree_lock);
tmp = alloc_trash_chunk();
if (!tmp)
goto end;
if ((bio = BIO_new(BIO_s_mem())) == NULL)
goto end;
if (!ctx->ocsp) {
chunk_appendf(trash, "# Certificate IDs\n");
node = ebmb_first(&cert_ocsp_tree);
} else {
node = &ctx->ocsp->key;
}
while (node) {
OCSP_CERTID *certid = NULL;
const unsigned char *p = NULL;
int i;
ocsp = ebmb_entry(node, struct certificate_ocsp, key);
/* Dump the key in hexadecimal */
chunk_appendf(trash, "Certificate ID key : ");
for (i = 0; i < ocsp->key_length; ++i) {
chunk_appendf(trash, "%02x", ocsp->key_data[i]);
}
chunk_appendf(trash, "\n");
/* Dump the certificate path */
chunk_appendf(trash, "Certificate path : %s\n", ocsp->path);
p = ocsp->key_data;
/* Decode the certificate ID (serialized into the key). */
d2i_OCSP_CERTID(&certid, &p, ocsp->key_length);
if (!certid)
goto end;
/* Dump the CERTID info */
ocsp_certid_print(bio, certid, 1);
OCSP_CERTID_free(certid);
write = BIO_read(bio, tmp->area, tmp->size-1);
/* strip trailing LFs */
while (write > 0 && tmp->area[write-1] == '\n')
write--;
tmp->area[write] = '\0';
chunk_appendf(trash, "%s\n", tmp->area);
node = ebmb_next(node);
if (applet_putchk(appctx, trash) == -1)
goto yield;
}
end:
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
free_trash_chunk(trash);
free_trash_chunk(tmp);
BIO_free(bio);
return 1;
yield:
free_trash_chunk(trash);
free_trash_chunk(tmp);
BIO_free(bio);
++ocsp->refcount;
ctx->ocsp = ocsp;
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
return 0;
#else
return cli_err(appctx, "HAProxy was compiled against a version of OpenSSL that doesn't support OCSP stapling.\n");
#endif
}
/* Check if the ckch_store and the entry does have the same configuration */
int ocsp_update_check_cfg_consistency(struct ckch_store *store, struct crtlist_entry *entry, char *crt_path, char **err)
{
int err_code = ERR_NONE;
if (store->data->ocsp_update_mode != SSL_SOCK_OCSP_UPDATE_DFLT || entry->ssl_conf) {
if ((!entry->ssl_conf && store->data->ocsp_update_mode == SSL_SOCK_OCSP_UPDATE_ON)
|| (entry->ssl_conf && store->data->ocsp_update_mode != entry->ssl_conf->ocsp_update)) {
memprintf(err, "%sIncompatibilities found in OCSP update mode for certificate %s\n", err && *err ? *err : "", crt_path);
err_code |= ERR_ALERT | ERR_FATAL;
}
}
return err_code;
}
struct show_ocsp_updates_ctx {
struct certificate_ocsp *cur_ocsp;
};
/*
* Parsing function for 'show ssl ocsp-updates [nb]'.
*/
static int cli_parse_show_ocsp_updates(char **args, char *payload, struct appctx *appctx, void *private)
{
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) && !defined OPENSSL_IS_BORINGSSL)
struct show_ocsp_updates_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
HA_SPIN_LOCK(OCSP_LOCK, &ocsp_tree_lock);
return 0;
#else
return cli_err(appctx, "HAProxy was compiled against a version of OpenSSL that doesn't support OCSP stapling.\n");
#endif
}
/*
* Dump information about an ocsp response concerning ocsp auto update.
* It follows the following format :
* OCSP Certid | Path | Next Update | Last Update | Successes | Failures | Last Update Status | Last Update Status (str)
* Return 0 in case of success.
*/
static int dump_ocsp_update_info(struct certificate_ocsp *ocsp, struct buffer *out)
{
struct tm tm = {};
char *ret;
int i;
time_t next_update;
/* Dump OCSP certid */
for (i = 0; i < ocsp->key_length; ++i) {
chunk_appendf(out, "%02x", ocsp->key_data[i]);
}
chunk_appendf(out, " | ");
/* Dump path */
chunk_appendf(out, "%s", ocsp->path);
chunk_appendf(out, " | ");
/* Dump next update time */
if (ocsp->next_update.key != 0) {
next_update = ocsp->next_update.key;
get_localtime(ocsp->next_update.key, &tm);
} else {
next_update = date.tv_sec;
get_localtime(date.tv_sec, &tm);
}
ret = localdate2str_log(b_orig(out)+b_data(out), next_update, &tm, b_size(out)-b_data(out));
if (ret == NULL)
return 1;
out->data = (ret - out->area);
chunk_appendf(out, " | ");
/* Dump last update time or "-" if no update occurred yet */
if (ocsp->last_update) {
get_localtime(ocsp->last_update, &tm);
ret = localdate2str_log(b_orig(out)+b_data(out), ocsp->last_update, &tm, b_size(out)-b_data(out));
if (ret == NULL)
return 1;
out->data = (ret - out->area);
} else
chunk_appendf(out, "-");
chunk_appendf(out, " | ");
/* Number of successful updates */
chunk_appendf(out, "%d", ocsp->num_success);
chunk_appendf(out, " | ");
/* Number of failed updates */
chunk_appendf(out, "%d", ocsp->num_failure);
chunk_appendf(out, " | ");
/* Last update status */
chunk_appendf(out, "%d", ocsp->last_update_status);
chunk_appendf(out, " | ");
/* Last update status str */
if (ocsp->last_update_status >= OCSP_UPDT_ERR_LAST)
chunk_appendf(out, "-");
else
chunk_appendf(out, "%s", istptr(ocsp_update_errors[ocsp->last_update_status]));
chunk_appendf(out, "\n");
return 0;
}
static int cli_io_handler_show_ocsp_updates(struct appctx *appctx)
{
struct show_ocsp_updates_ctx *ctx = appctx->svcctx;
struct eb64_node *node;
struct certificate_ocsp *ocsp = NULL;
struct buffer *trash = get_trash_chunk();
if (!ctx->cur_ocsp) {
node = eb64_first(&ocsp_update_tree);
chunk_appendf(trash, "OCSP Certid | Path | Next Update | Last Update | Successes | Failures | Last Update Status | Last Update Status (str)\n");
/* Look for an entry currently being updated */
ocsp = ssl_ocsp_task_ctx.cur_ocsp;
if (ocsp) {
if (dump_ocsp_update_info(ocsp, trash))
goto end;
}
if (applet_putchk(appctx, trash) == -1)
goto yield;
} else {
node = &((struct certificate_ocsp*)ctx->cur_ocsp)->next_update;
}
while (node) {
ocsp = eb64_entry(node, struct certificate_ocsp, next_update);
chunk_reset(trash);
if (dump_ocsp_update_info(ocsp, trash))
goto end;
if (applet_putchk(appctx, trash) == -1) {
ctx->cur_ocsp = ocsp;
goto yield;
}
node = eb64_next(node);
}
end:
return 1;
yield:
return 0; /* should come back */
}
static void cli_release_show_ocsp_updates(struct appctx *appctx)
{
HA_SPIN_UNLOCK(OCSP_LOCK, &ocsp_tree_lock);
}
static int
smp_fetch_ssl_ocsp_certid(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct buffer *data = get_trash_chunk();
struct certificate_ocsp *ocsp = ssl_ocsp_task_ctx.cur_ocsp;
if (!ocsp)
return 0;
dump_binary(data, (char *)ocsp->key_data, ocsp->key_length);
smp->data.type = SMP_T_STR;
smp->data.u.str = *data;
return 1;
}
static int
smp_fetch_ssl_ocsp_certname(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct certificate_ocsp *ocsp = ssl_ocsp_task_ctx.cur_ocsp;
if (!ocsp)
return 0;
smp->data.type = SMP_T_STR;
smp->data.u.str.area = ocsp->path;
smp->data.u.str.data = strlen(ocsp->path);
return 1;
}
static int
smp_fetch_ssl_ocsp_status(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct certificate_ocsp *ocsp = ssl_ocsp_task_ctx.cur_ocsp;
if (!ocsp)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = ssl_ocsp_task_ctx.update_status;
return 1;
}
static int
smp_fetch_ssl_ocsp_status_str(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct certificate_ocsp *ocsp = ssl_ocsp_task_ctx.cur_ocsp;
if (!ocsp)
return 0;
if (ssl_ocsp_task_ctx.update_status >= OCSP_UPDT_ERR_LAST)
return 0;
smp->data.type = SMP_T_STR;
smp->data.u.str = ist2buf(ocsp_update_errors[ssl_ocsp_task_ctx.update_status]);
return 1;
}
static int
smp_fetch_ssl_ocsp_fail_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct certificate_ocsp *ocsp = ssl_ocsp_task_ctx.cur_ocsp;
if (!ocsp)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = ocsp->num_failure;
return 1;
}
static int
smp_fetch_ssl_ocsp_success_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct certificate_ocsp *ocsp = ssl_ocsp_task_ctx.cur_ocsp;
if (!ocsp)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = ocsp->num_success;
return 1;
}
static struct cli_kw_list cli_kws = {{ },{
{ { "set", "ssl", "ocsp-response", NULL }, "set ssl ocsp-response <resp|payload> : update a certificate's OCSP Response from a base64-encode DER", cli_parse_set_ocspresponse, NULL },
{ { "show", "ssl", "ocsp-response", NULL },"show ssl ocsp-response [[text|base64] id] : display the IDs of the OCSP responses used in memory, or the details of a single OCSP response (in text or base64 format)", cli_parse_show_ocspresponse, cli_io_handler_show_ocspresponse, NULL },
{ { "show", "ssl", "ocsp-updates", NULL }, "show ssl ocsp-updates : display information about the next 'nb' ocsp responses that will be updated automatically", cli_parse_show_ocsp_updates, cli_io_handler_show_ocsp_updates, cli_release_show_ocsp_updates },
#if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) && !defined OPENSSL_IS_BORINGSSL)
{ { "update", "ssl", "ocsp-response", NULL }, "update ssl ocsp-response <certfile> : send ocsp request and update stored ocsp response", cli_parse_update_ocsp_response, NULL, NULL },
#endif
{ { NULL }, NULL, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*
* Those fetches only have a valid value during an OCSP update process so they
* can only be used in a log format of a log line built by the update process
* task itself.
*/
static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
{ "ssl_ocsp_certid", smp_fetch_ssl_ocsp_certid, 0, NULL, SMP_T_STR, SMP_USE_L5SRV },
{ "ssl_ocsp_certname", smp_fetch_ssl_ocsp_certname, 0, NULL, SMP_T_STR, SMP_USE_L5SRV },
{ "ssl_ocsp_status", smp_fetch_ssl_ocsp_status, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV },
{ "ssl_ocsp_status_str", smp_fetch_ssl_ocsp_status_str, 0, NULL, SMP_T_STR, SMP_USE_L5SRV },
{ "ssl_ocsp_fail_cnt", smp_fetch_ssl_ocsp_fail_cnt, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV },
{ "ssl_ocsp_success_cnt", smp_fetch_ssl_ocsp_success_cnt, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV },
{ NULL, NULL, 0, 0, 0 },
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &sample_fetch_keywords);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/