blob: bfe32160485b4d0bdeee2906985bd447e76c1d71 [file] [log] [blame]
/*
* Listener management functions.
*
* Copyright 2000-2013 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <haproxy/acl.h>
#include <haproxy/api.h>
#include <haproxy/cfgparse.h>
#include <haproxy/connection.h>
#include <haproxy/errors.h>
#include <haproxy/fd.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/global.h>
#include <haproxy/list.h>
#include <haproxy/listener.h>
#include <haproxy/log.h>
#include <haproxy/protocol.h>
#include <haproxy/proxy.h>
#include <haproxy/sample.h>
#include <haproxy/stream.h>
#include <haproxy/task.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
/* List head of all known bind keywords */
static struct bind_kw_list bind_keywords = {
.list = LIST_HEAD_INIT(bind_keywords.list)
};
/* list of the temporarily limited listeners because of lack of resource */
static struct mt_list global_listener_queue = MT_LIST_HEAD_INIT(global_listener_queue);
static struct task *global_listener_queue_task;
/* listener status for stats */
const char* li_status_st[LI_STATE_COUNT] = {
[LI_STATUS_WAITING] = "WAITING",
[LI_STATUS_OPEN] = "OPEN",
[LI_STATUS_FULL] = "FULL",
};
#if defined(USE_THREAD)
struct accept_queue_ring accept_queue_rings[MAX_THREADS] __attribute__((aligned(64))) = { };
/* dequeue and process a pending connection from the local accept queue (single
* consumer). Returns the accepted connection or NULL if none was found.
*/
struct connection *accept_queue_pop_sc(struct accept_queue_ring *ring)
{
unsigned int pos, next;
struct connection *ptr;
struct connection **e;
pos = ring->head;
if (pos == ring->tail)
return NULL;
next = pos + 1;
if (next >= ACCEPT_QUEUE_SIZE)
next = 0;
e = &ring->entry[pos];
/* wait for the producer to update the listener's pointer */
while (1) {
ptr = *e;
__ha_barrier_load();
if (ptr)
break;
pl_cpu_relax();
}
/* release the entry */
*e = NULL;
__ha_barrier_store();
ring->head = next;
return ptr;
}
/* tries to push a new accepted connection <conn> into ring <ring>. Returns
* non-zero if it succeeds, or zero if the ring is full. Supports multiple
* producers.
*/
int accept_queue_push_mp(struct accept_queue_ring *ring, struct connection *conn)
{
unsigned int pos, next;
pos = ring->tail;
do {
next = pos + 1;
if (next >= ACCEPT_QUEUE_SIZE)
next = 0;
if (next == ring->head)
return 0; // ring full
} while (unlikely(!_HA_ATOMIC_CAS(&ring->tail, &pos, next)));
ring->entry[pos] = conn;
__ha_barrier_store();
return 1;
}
/* proceed with accepting new connections. Don't mark it static so that it appears
* in task dumps.
*/
struct task *accept_queue_process(struct task *t, void *context, unsigned int state)
{
struct accept_queue_ring *ring = context;
struct connection *conn;
struct listener *li;
unsigned int max_accept;
int ret;
/* if global.tune.maxaccept is -1, then max_accept is UINT_MAX. It
* is not really illimited, but it is probably enough.
*/
max_accept = global.tune.maxaccept ? global.tune.maxaccept : MAX_ACCEPT;
for (; max_accept; max_accept--) {
conn = accept_queue_pop_sc(ring);
if (!conn)
break;
li = __objt_listener(conn->target);
_HA_ATOMIC_INC(&li->thr_conn[tid]);
ret = li->accept(conn);
if (ret <= 0) {
/* connection was terminated by the application */
continue;
}
/* increase the per-process number of cumulated sessions, this
* may only be done once l->accept() has accepted the connection.
*/
if (!(li->options & LI_O_UNLIMITED)) {
HA_ATOMIC_UPDATE_MAX(&global.sps_max,
update_freq_ctr(&global.sess_per_sec, 1));
if (li->bind_conf && li->bind_conf->is_ssl) {
HA_ATOMIC_UPDATE_MAX(&global.ssl_max,
update_freq_ctr(&global.ssl_per_sec, 1));
}
}
}
/* ran out of budget ? Let's come here ASAP */
if (!max_accept)
tasklet_wakeup(ring->tasklet);
return NULL;
}
/* Initializes the accept-queues. Returns 0 on success, otherwise ERR_* flags */
static int accept_queue_init()
{
struct tasklet *t;
int i;
for (i = 0; i < global.nbthread; i++) {
t = tasklet_new();
if (!t) {
ha_alert("Out of memory while initializing accept queue for thread %d\n", i);
return ERR_FATAL|ERR_ABORT;
}
t->tid = i;
t->process = accept_queue_process;
t->context = &accept_queue_rings[i];
accept_queue_rings[i].tasklet = t;
}
return 0;
}
REGISTER_CONFIG_POSTPARSER("multi-threaded accept queue", accept_queue_init);
#endif // USE_THREAD
/* helper to get listener status for stats */
enum li_status get_li_status(struct listener *l)
{
if (!l->maxconn || l->nbconn < l->maxconn) {
if (l->state == LI_LIMITED)
return LI_STATUS_WAITING;
else
return LI_STATUS_OPEN;
}
return LI_STATUS_FULL;
}
/* adjust the listener's state and its proxy's listener counters if needed.
* It must be called under the listener's lock, but uses atomic ops to change
* the proxy's counters so that the proxy lock is not needed.
*/
void listener_set_state(struct listener *l, enum li_state st)
{
struct proxy *px = l->bind_conf->frontend;
if (px) {
/* from state */
switch (l->state) {
case LI_NEW: /* first call */
_HA_ATOMIC_INC(&px->li_all);
break;
case LI_INIT:
case LI_ASSIGNED:
break;
case LI_PAUSED:
_HA_ATOMIC_DEC(&px->li_paused);
break;
case LI_LISTEN:
_HA_ATOMIC_DEC(&px->li_bound);
break;
case LI_READY:
case LI_FULL:
case LI_LIMITED:
_HA_ATOMIC_DEC(&px->li_ready);
break;
}
/* to state */
switch (st) {
case LI_NEW:
case LI_INIT:
case LI_ASSIGNED:
break;
case LI_PAUSED:
BUG_ON(l->rx.fd == -1);
_HA_ATOMIC_INC(&px->li_paused);
break;
case LI_LISTEN:
BUG_ON(l->rx.fd == -1);
_HA_ATOMIC_INC(&px->li_bound);
break;
case LI_READY:
case LI_FULL:
case LI_LIMITED:
BUG_ON(l->rx.fd == -1);
_HA_ATOMIC_INC(&px->li_ready);
break;
}
}
l->state = st;
}
/* This function adds the specified listener's file descriptor to the polling
* lists if it is in the LI_LISTEN state. The listener enters LI_READY or
* LI_FULL state depending on its number of connections. In daemon mode, we
* also support binding only the relevant processes to their respective
* listeners. We don't do that in debug mode however.
*/
void enable_listener(struct listener *listener)
{
HA_SPIN_LOCK(LISTENER_LOCK, &listener->lock);
/* If this listener is supposed to be only in the master, close it in
* the workers. Conversely, if it's supposed to be only in the workers
* close it in the master.
*/
if (!!master != !!(listener->rx.flags & RX_F_MWORKER))
do_unbind_listener(listener);
if (listener->state == LI_LISTEN) {
BUG_ON(listener->rx.fd == -1);
if ((global.mode & (MODE_DAEMON | MODE_MWORKER)) &&
(!!master != !!(listener->rx.flags & RX_F_MWORKER))) {
/* we don't want to enable this listener and don't
* want any fd event to reach it.
*/
do_unbind_listener(listener);
}
else if (!listener->maxconn || listener->nbconn < listener->maxconn) {
listener->rx.proto->enable(listener);
listener_set_state(listener, LI_READY);
}
else {
listener_set_state(listener, LI_FULL);
}
}
HA_SPIN_UNLOCK(LISTENER_LOCK, &listener->lock);
}
/*
* This function completely stops a listener. It will need to operate under the
* proxy's lock, the protocol's lock, and the listener's lock. The caller is
* responsible for indicating in lpx, lpr, lli whether the respective locks are
* already held (non-zero) or not (zero) so that the function picks the missing
* ones, in this order. The proxy's listeners count is updated and the proxy is
* disabled and woken up after the last one is gone.
*/
void stop_listener(struct listener *l, int lpx, int lpr, int lli)
{
struct proxy *px = l->bind_conf->frontend;
if (l->options & LI_O_NOSTOP) {
/* master-worker sockpairs are never closed but don't count as a
* job.
*/
return;
}
if (!lpx)
HA_RWLOCK_WRLOCK(PROXY_LOCK, &px->lock);
if (!lpr)
HA_SPIN_LOCK(PROTO_LOCK, &proto_lock);
if (!lli)
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
if (l->state > LI_INIT) {
do_unbind_listener(l);
if (l->state >= LI_ASSIGNED)
__delete_listener(l);
proxy_cond_disable(px);
}
if (!lli)
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
if (!lpr)
HA_SPIN_UNLOCK(PROTO_LOCK, &proto_lock);
if (!lpx)
HA_RWLOCK_WRUNLOCK(PROXY_LOCK, &px->lock);
}
/* This function adds the specified <listener> to the protocol <proto>. It
* does nothing if the protocol was already added. The listener's state is
* automatically updated from LI_INIT to LI_ASSIGNED. The number of listeners
* for the protocol is updated. This must be called with the proto lock held.
*/
void default_add_listener(struct protocol *proto, struct listener *listener)
{
if (listener->state != LI_INIT)
return;
listener_set_state(listener, LI_ASSIGNED);
listener->rx.proto = proto;
LIST_APPEND(&proto->receivers, &listener->rx.proto_list);
proto->nb_receivers++;
}
/* default function called to suspend a listener: it simply passes the call to
* the underlying receiver. This is find for most socket-based protocols. This
* must be called under the listener's lock. It will return non-zero on success,
* 0 on failure. If no receiver-level suspend is provided, the operation is
* assumed to succeed.
*/
int default_suspend_listener(struct listener *l)
{
int ret = 1;
if (!l->rx.proto->rx_suspend)
return 1;
ret = l->rx.proto->rx_suspend(&l->rx);
return ret > 0 ? ret : 0;
}
/* Tries to resume a suspended listener, and returns non-zero on success or
* zero on failure. On certain errors, an alert or a warning might be displayed.
* It must be called with the listener's lock held. Depending on the listener's
* state and protocol, a listen() call might be used to resume operations, or a
* call to the receiver's resume() function might be used as well. This is
* suitable as a default function for TCP and UDP. This must be called with the
* listener's lock held.
*/
int default_resume_listener(struct listener *l)
{
int ret = 1;
if (l->state == LI_ASSIGNED) {
char msg[100];
int err;
err = l->rx.proto->listen(l, msg, sizeof(msg));
if (err & ERR_ALERT)
ha_alert("Resuming listener: %s\n", msg);
else if (err & ERR_WARN)
ha_warning("Resuming listener: %s\n", msg);
if (err & (ERR_FATAL | ERR_ABORT)) {
ret = 0;
goto end;
}
}
if (l->state < LI_PAUSED) {
ret = 0;
goto end;
}
if (l->state == LI_PAUSED && l->rx.proto->rx_resume &&
l->rx.proto->rx_resume(&l->rx) <= 0)
ret = 0;
end:
return ret;
}
/* This function tries to temporarily disable a listener, depending on the OS
* capabilities. Linux unbinds the listen socket after a SHUT_RD, and ignores
* SHUT_WR. Solaris refuses either shutdown(). OpenBSD ignores SHUT_RD but
* closes upon SHUT_WR and refuses to rebind. So a common validation path
* involves SHUT_WR && listen && SHUT_RD. In case of success, the FD's polling
* is disabled. It normally returns non-zero, unless an error is reported.
*/
int pause_listener(struct listener *l)
{
struct proxy *px = l->bind_conf->frontend;
int ret = 1;
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
if (l->state <= LI_PAUSED)
goto end;
if (l->rx.proto->suspend)
ret = l->rx.proto->suspend(l);
MT_LIST_DELETE(&l->wait_queue);
listener_set_state(l, LI_PAUSED);
if (px && !px->li_ready) {
ha_warning("Paused %s %s.\n", proxy_cap_str(px->cap), px->id);
send_log(px, LOG_WARNING, "Paused %s %s.\n", proxy_cap_str(px->cap), px->id);
}
end:
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
return ret;
}
/* This function tries to resume a temporarily disabled listener. Paused, full,
* limited and disabled listeners are handled, which means that this function
* may replace enable_listener(). The resulting state will either be LI_READY
* or LI_FULL. 0 is returned in case of failure to resume (eg: dead socket).
* Listeners bound to a different process are not woken up unless we're in
* foreground mode, and are ignored. If the listener was only in the assigned
* state, it's totally rebound. This can happen if a pause() has completely
* stopped it. If the resume fails, 0 is returned and an error might be
* displayed.
*/
int resume_listener(struct listener *l)
{
struct proxy *px = l->bind_conf->frontend;
int was_paused = px && px->li_paused;
int ret = 1;
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
/* check that another thread didn't to the job in parallel (e.g. at the
* end of listen_accept() while we'd come from dequeue_all_listeners().
*/
if (MT_LIST_INLIST(&l->wait_queue))
goto end;
if (l->state == LI_READY)
goto end;
if (l->rx.proto->resume)
ret = l->rx.proto->resume(l);
if (l->maxconn && l->nbconn >= l->maxconn) {
l->rx.proto->disable(l);
listener_set_state(l, LI_FULL);
goto done;
}
l->rx.proto->enable(l);
listener_set_state(l, LI_READY);
done:
if (was_paused && !px->li_paused) {
ha_warning("Resumed %s %s.\n", proxy_cap_str(px->cap), px->id);
send_log(px, LOG_WARNING, "Resumed %s %s.\n", proxy_cap_str(px->cap), px->id);
}
end:
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
return ret;
}
/* Marks a ready listener as full so that the stream code tries to re-enable
* it upon next close() using resume_listener().
*/
static void listener_full(struct listener *l)
{
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
if (l->state >= LI_READY) {
MT_LIST_DELETE(&l->wait_queue);
if (l->state != LI_FULL) {
l->rx.proto->disable(l);
listener_set_state(l, LI_FULL);
}
}
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
}
/* Marks a ready listener as limited so that we only try to re-enable it when
* resources are free again. It will be queued into the specified queue.
*/
static void limit_listener(struct listener *l, struct mt_list *list)
{
HA_SPIN_LOCK(LISTENER_LOCK, &l->lock);
if (l->state == LI_READY) {
MT_LIST_TRY_APPEND(list, &l->wait_queue);
l->rx.proto->disable(l);
listener_set_state(l, LI_LIMITED);
}
HA_SPIN_UNLOCK(LISTENER_LOCK, &l->lock);
}
/* Dequeues all listeners waiting for a resource the global wait queue */
void dequeue_all_listeners()
{
struct listener *listener;
while ((listener = MT_LIST_POP(&global_listener_queue, struct listener *, wait_queue))) {
/* This cannot fail because the listeners are by definition in
* the LI_LIMITED state.
*/
resume_listener(listener);
}
}
/* Dequeues all listeners waiting for a resource in proxy <px>'s queue */
void dequeue_proxy_listeners(struct proxy *px)
{
struct listener *listener;
while ((listener = MT_LIST_POP(&px->listener_queue, struct listener *, wait_queue))) {
/* This cannot fail because the listeners are by definition in
* the LI_LIMITED state.
*/
resume_listener(listener);
}
}
/* default function used to unbind a listener. This is for use by standard
* protocols working on top of accepted sockets. The receiver's rx_unbind()
* will automatically be used after the listener is disabled if the socket is
* still bound. This must be used under the listener's lock.
*/
void default_unbind_listener(struct listener *listener)
{
if (listener->state <= LI_ASSIGNED)
goto out_close;
if (listener->rx.fd == -1) {
listener_set_state(listener, LI_ASSIGNED);
goto out_close;
}
if (listener->state >= LI_READY) {
listener->rx.proto->disable(listener);
if (listener->rx.flags & RX_F_BOUND)
listener_set_state(listener, LI_LISTEN);
}
out_close:
if (listener->rx.flags & RX_F_BOUND)
listener->rx.proto->rx_unbind(&listener->rx);
}
/* This function closes the listening socket for the specified listener,
* provided that it's already in a listening state. The protocol's unbind()
* is called to put the listener into LI_ASSIGNED or LI_LISTEN and handle
* the unbinding tasks. The listener enters then the LI_ASSIGNED state if
* the receiver is unbound. Must be called with the lock held.
*/
void do_unbind_listener(struct listener *listener)
{
MT_LIST_DELETE(&listener->wait_queue);
if (listener->rx.proto->unbind)
listener->rx.proto->unbind(listener);
/* we may have to downgrade the listener if the rx was closed */
if (!(listener->rx.flags & RX_F_BOUND) && listener->state > LI_ASSIGNED)
listener_set_state(listener, LI_ASSIGNED);
}
/* This function closes the listening socket for the specified listener,
* provided that it's already in a listening state. The listener enters the
* LI_ASSIGNED state, except if the FD is not closed, in which case it may
* remain in LI_LISTEN. This function is intended to be used as a generic
* function for standard protocols.
*/
void unbind_listener(struct listener *listener)
{
HA_SPIN_LOCK(LISTENER_LOCK, &listener->lock);
do_unbind_listener(listener);
HA_SPIN_UNLOCK(LISTENER_LOCK, &listener->lock);
}
/* creates one or multiple listeners for bind_conf <bc> on sockaddr <ss> on port
* range <portl> to <porth>, and possibly attached to fd <fd> (or -1 for auto
* allocation). The address family is taken from ss->ss_family, and the protocol
* passed in <proto> must be usable on this family. The protocol's default iocb
* is automatically preset as the receivers' iocb. The number of jobs and
* listeners is automatically increased by the number of listeners created. It
* returns non-zero on success, zero on error with the error message set in <err>.
*/
int create_listeners(struct bind_conf *bc, const struct sockaddr_storage *ss,
int portl, int porth, int fd, struct protocol *proto, char **err)
{
struct listener *l;
int port;
for (port = portl; port <= porth; port++) {
l = calloc(1, sizeof(*l));
if (!l) {
memprintf(err, "out of memory");
return 0;
}
l->obj_type = OBJ_TYPE_LISTENER;
LIST_APPEND(&bc->frontend->conf.listeners, &l->by_fe);
LIST_APPEND(&bc->listeners, &l->by_bind);
l->bind_conf = bc;
l->rx.settings = &bc->settings;
l->rx.owner = l;
l->rx.iocb = proto->default_iocb;
l->rx.fd = fd;
memcpy(&l->rx.addr, ss, sizeof(*ss));
if (proto->fam->set_port)
proto->fam->set_port(&l->rx.addr, port);
MT_LIST_INIT(&l->wait_queue);
listener_set_state(l, LI_INIT);
proto->add(proto, l);
if (fd != -1)
l->rx.flags |= RX_F_INHERITED;
l->extra_counters = NULL;
HA_SPIN_INIT(&l->lock);
_HA_ATOMIC_INC(&jobs);
_HA_ATOMIC_INC(&listeners);
}
return 1;
}
/* Delete a listener from its protocol's list of listeners. The listener's
* state is automatically updated from LI_ASSIGNED to LI_INIT. The protocol's
* number of listeners is updated, as well as the global number of listeners
* and jobs. Note that the listener must have previously been unbound. This
* is a low-level function expected to be called with the proto_lock and the
* listener's lock held.
*/
void __delete_listener(struct listener *listener)
{
if (listener->state == LI_ASSIGNED) {
listener_set_state(listener, LI_INIT);
LIST_DELETE(&listener->rx.proto_list);
listener->rx.proto->nb_receivers--;
_HA_ATOMIC_DEC(&jobs);
_HA_ATOMIC_DEC(&listeners);
}
}
/* Delete a listener from its protocol's list of listeners (please check
* __delete_listener() above). The proto_lock and the listener's lock will
* be grabbed in this order.
*/
void delete_listener(struct listener *listener)
{
HA_SPIN_LOCK(PROTO_LOCK, &proto_lock);
HA_SPIN_LOCK(LISTENER_LOCK, &listener->lock);
__delete_listener(listener);
HA_SPIN_UNLOCK(LISTENER_LOCK, &listener->lock);
HA_SPIN_UNLOCK(PROTO_LOCK, &proto_lock);
}
/* Returns a suitable value for a listener's backlog. It uses the listener's,
* otherwise the frontend's backlog, otherwise the listener's maxconn,
* otherwise the frontend's maxconn, otherwise 1024.
*/
int listener_backlog(const struct listener *l)
{
if (l->backlog)
return l->backlog;
if (l->bind_conf->frontend->backlog)
return l->bind_conf->frontend->backlog;
if (l->maxconn)
return l->maxconn;
if (l->bind_conf->frontend->maxconn)
return l->bind_conf->frontend->maxconn;
return 1024;
}
/* This function is called on a read event from a listening socket, corresponding
* to an accept. It tries to accept as many connections as possible, and for each
* calls the listener's accept handler (generally the frontend's accept handler).
*/
void listener_accept(struct listener *l)
{
struct connection *cli_conn;
struct proxy *p;
unsigned int max_accept;
int next_conn = 0;
int next_feconn = 0;
int next_actconn = 0;
int expire;
int ret;
p = l->bind_conf->frontend;
/* if l->maxaccept is -1, then max_accept is UINT_MAX. It is not really
* illimited, but it is probably enough.
*/
max_accept = l->maxaccept ? l->maxaccept : 1;
if (!(l->options & LI_O_UNLIMITED) && global.sps_lim) {
int max = freq_ctr_remain(&global.sess_per_sec, global.sps_lim, 0);
if (unlikely(!max)) {
/* frontend accept rate limit was reached */
expire = tick_add(now_ms, next_event_delay(&global.sess_per_sec, global.sps_lim, 0));
goto limit_global;
}
if (max_accept > max)
max_accept = max;
}
if (!(l->options & LI_O_UNLIMITED) && global.cps_lim) {
int max = freq_ctr_remain(&global.conn_per_sec, global.cps_lim, 0);
if (unlikely(!max)) {
/* frontend accept rate limit was reached */
expire = tick_add(now_ms, next_event_delay(&global.conn_per_sec, global.cps_lim, 0));
goto limit_global;
}
if (max_accept > max)
max_accept = max;
}
#ifdef USE_OPENSSL
if (!(l->options & LI_O_UNLIMITED) && global.ssl_lim && l->bind_conf && l->bind_conf->is_ssl) {
int max = freq_ctr_remain(&global.ssl_per_sec, global.ssl_lim, 0);
if (unlikely(!max)) {
/* frontend accept rate limit was reached */
expire = tick_add(now_ms, next_event_delay(&global.ssl_per_sec, global.ssl_lim, 0));
goto limit_global;
}
if (max_accept > max)
max_accept = max;
}
#endif
if (p && p->fe_sps_lim) {
int max = freq_ctr_remain(&p->fe_sess_per_sec, p->fe_sps_lim, 0);
if (unlikely(!max)) {
/* frontend accept rate limit was reached */
expire = tick_add(now_ms, next_event_delay(&p->fe_sess_per_sec, p->fe_sps_lim, 0));
goto limit_proxy;
}
if (max_accept > max)
max_accept = max;
}
/* Note: if we fail to allocate a connection because of configured
* limits, we'll schedule a new attempt worst 1 second later in the
* worst case. If we fail due to system limits or temporary resource
* shortage, we try again 100ms later in the worst case.
*/
for (; max_accept; next_conn = next_feconn = next_actconn = 0, max_accept--) {
unsigned int count;
int status;
__decl_thread(unsigned long mask);
/* pre-increase the number of connections without going too far.
* We process the listener, then the proxy, then the process.
* We know which ones to unroll based on the next_xxx value.
*/
do {
count = l->nbconn;
if (unlikely(l->maxconn && count >= l->maxconn)) {
/* the listener was marked full or another
* thread is going to do it.
*/
next_conn = 0;
listener_full(l);
goto end;
}
next_conn = count + 1;
} while (!_HA_ATOMIC_CAS(&l->nbconn, (int *)(&count), next_conn));
if (p) {
do {
count = p->feconn;
if (unlikely(count >= p->maxconn)) {
/* the frontend was marked full or another
* thread is going to do it.
*/
next_feconn = 0;
expire = TICK_ETERNITY;
goto limit_proxy;
}
next_feconn = count + 1;
} while (!_HA_ATOMIC_CAS(&p->feconn, &count, next_feconn));
}
if (!(l->options & LI_O_UNLIMITED)) {
do {
count = actconn;
if (unlikely(count >= global.maxconn)) {
/* the process was marked full or another
* thread is going to do it.
*/
next_actconn = 0;
expire = tick_add(now_ms, 1000); /* try again in 1 second */
goto limit_global;
}
next_actconn = count + 1;
} while (!_HA_ATOMIC_CAS(&actconn, (int *)(&count), next_actconn));
}
cli_conn = l->rx.proto->accept_conn(l, &status);
if (!cli_conn) {
switch (status) {
case CO_AC_DONE:
goto end;
case CO_AC_RETRY: /* likely a signal */
_HA_ATOMIC_DEC(&l->nbconn);
if (p)
_HA_ATOMIC_DEC(&p->feconn);
if (!(l->options & LI_O_UNLIMITED))
_HA_ATOMIC_DEC(&actconn);
continue;
case CO_AC_YIELD:
max_accept = 0;
goto end;
default:
goto transient_error;
}
}
/* The connection was accepted, it must be counted as such */
if (l->counters)
HA_ATOMIC_UPDATE_MAX(&l->counters->conn_max, next_conn);
if (p)
HA_ATOMIC_UPDATE_MAX(&p->fe_counters.conn_max, next_feconn);
proxy_inc_fe_conn_ctr(l, p);
if (!(l->options & LI_O_UNLIMITED)) {
count = update_freq_ctr(&global.conn_per_sec, 1);
HA_ATOMIC_UPDATE_MAX(&global.cps_max, count);
}
_HA_ATOMIC_INC(&activity[tid].accepted);
if (unlikely(cli_conn->handle.fd >= global.maxsock)) {
send_log(p, LOG_EMERG,
"Proxy %s reached the configured maximum connection limit. Please check the global 'maxconn' value.\n",
p->id);
close(cli_conn->handle.fd);
conn_free(cli_conn);
expire = tick_add(now_ms, 1000); /* try again in 1 second */
goto limit_global;
}
/* past this point, l->accept() will automatically decrement
* l->nbconn, feconn and actconn once done. Setting next_*conn=0
* allows the error path not to rollback on nbconn. It's more
* convenient than duplicating all exit labels.
*/
next_conn = 0;
next_feconn = 0;
next_actconn = 0;
#if defined(USE_THREAD)
mask = thread_mask(l->rx.settings->bind_thread) & all_threads_mask;
if (atleast2(mask) && (global.tune.options & GTUNE_LISTENER_MQ) && !stopping) {
struct accept_queue_ring *ring;
unsigned int t, t0, t1, t2;
/* The principle is that we have two running indexes,
* each visiting in turn all threads bound to this
* listener. The connection will be assigned to the one
* with the least connections, and the other one will
* be updated. This provides a good fairness on short
* connections (round robin) and on long ones (conn
* count), without ever missing any idle thread.
*/
/* keep a copy for the final update. thr_idx is composite
* and made of (t2<<16) + t1.
*/
t0 = l->thr_idx;
do {
unsigned long m1, m2;
int q1, q2;
t2 = t1 = t0;
t2 >>= 16;
t1 &= 0xFFFF;
/* t1 walks low to high bits ;
* t2 walks high to low.
*/
m1 = mask >> t1;
m2 = mask & (t2 ? nbits(t2 + 1) : ~0UL);
if (unlikely(!(m1 & 1))) {
m1 &= ~1UL;
if (!m1) {
m1 = mask;
t1 = 0;
}
t1 += my_ffsl(m1) - 1;
}
if (unlikely(!(m2 & (1UL << t2)) || t1 == t2)) {
/* highest bit not set */
if (!m2)
m2 = mask;
t2 = my_flsl(m2) - 1;
}
/* now we have two distinct thread IDs belonging to the mask */
q1 = accept_queue_rings[t1].tail - accept_queue_rings[t1].head + ACCEPT_QUEUE_SIZE;
if (q1 >= ACCEPT_QUEUE_SIZE)
q1 -= ACCEPT_QUEUE_SIZE;
q2 = accept_queue_rings[t2].tail - accept_queue_rings[t2].head + ACCEPT_QUEUE_SIZE;
if (q2 >= ACCEPT_QUEUE_SIZE)
q2 -= ACCEPT_QUEUE_SIZE;
/* we have 3 possibilities now :
* q1 < q2 : t1 is less loaded than t2, so we pick it
* and update t2 (since t1 might still be
* lower than another thread)
* q1 > q2 : t2 is less loaded than t1, so we pick it
* and update t1 (since t2 might still be
* lower than another thread)
* q1 = q2 : both are equally loaded, thus we pick t1
* and update t1 as it will become more loaded
* than t2.
*/
q1 += l->thr_conn[t1];
q2 += l->thr_conn[t2];
if (q1 - q2 < 0) {
t = t1;
t2 = t2 ? t2 - 1 : LONGBITS - 1;
}
else if (q1 - q2 > 0) {
t = t2;
t1++;
if (t1 >= LONGBITS)
t1 = 0;
}
else {
t = t1;
t1++;
if (t1 >= LONGBITS)
t1 = 0;
}
/* new value for thr_idx */
t1 += (t2 << 16);
} while (unlikely(!_HA_ATOMIC_CAS(&l->thr_idx, &t0, t1)));
/* We successfully selected the best thread "t" for this
* connection. We use deferred accepts even if it's the
* local thread because tests show that it's the best
* performing model, likely due to better cache locality
* when processing this loop.
*/
ring = &accept_queue_rings[t];
if (accept_queue_push_mp(ring, cli_conn)) {
_HA_ATOMIC_INC(&activity[t].accq_pushed);
tasklet_wakeup(ring->tasklet);
continue;
}
/* If the ring is full we do a synchronous accept on
* the local thread here.
*/
_HA_ATOMIC_INC(&activity[t].accq_full);
}
#endif // USE_THREAD
_HA_ATOMIC_INC(&l->thr_conn[tid]);
ret = l->accept(cli_conn);
if (unlikely(ret <= 0)) {
/* The connection was closed by stream_accept(). Either
* we just have to ignore it (ret == 0) or it's a critical
* error due to a resource shortage, and we must stop the
* listener (ret < 0).
*/
if (ret == 0) /* successful termination */
continue;
goto transient_error;
}
/* increase the per-process number of cumulated sessions, this
* may only be done once l->accept() has accepted the connection.
*/
if (!(l->options & LI_O_UNLIMITED)) {
count = update_freq_ctr(&global.sess_per_sec, 1);
HA_ATOMIC_UPDATE_MAX(&global.sps_max, count);
}
#ifdef USE_OPENSSL
if (!(l->options & LI_O_UNLIMITED) && l->bind_conf && l->bind_conf->is_ssl) {
count = update_freq_ctr(&global.ssl_per_sec, 1);
HA_ATOMIC_UPDATE_MAX(&global.ssl_max, count);
}
#endif
ti->flags &= ~TI_FL_STUCK; // this thread is still running
} /* end of for (max_accept--) */
end:
if (next_conn)
_HA_ATOMIC_DEC(&l->nbconn);
if (p && next_feconn)
_HA_ATOMIC_DEC(&p->feconn);
if (next_actconn)
_HA_ATOMIC_DEC(&actconn);
if ((l->state == LI_FULL && (!l->maxconn || l->nbconn < l->maxconn)) ||
(l->state == LI_LIMITED &&
((!p || p->feconn < p->maxconn) && (actconn < global.maxconn) &&
(!tick_isset(global_listener_queue_task->expire) ||
tick_is_expired(global_listener_queue_task->expire, now_ms))))) {
/* at least one thread has to this when quitting */
resume_listener(l);
/* Dequeues all of the listeners waiting for a resource */
dequeue_all_listeners();
if (p && !MT_LIST_ISEMPTY(&p->listener_queue) &&
(!p->fe_sps_lim || freq_ctr_remain(&p->fe_sess_per_sec, p->fe_sps_lim, 0) > 0))
dequeue_proxy_listeners(p);
}
return;
transient_error:
/* pause the listener for up to 100 ms */
expire = tick_add(now_ms, 100);
/* This may be a shared socket that was paused by another process.
* Let's put it to pause in this case.
*/
if (l->rx.proto && l->rx.proto->rx_listening(&l->rx) == 0) {
pause_listener(l);
goto end;
}
limit_global:
/* (re-)queue the listener to the global queue and set it to expire no
* later than <expire> ahead. The listener turns to LI_LIMITED.
*/
limit_listener(l, &global_listener_queue);
task_schedule(global_listener_queue_task, expire);
goto end;
limit_proxy:
/* (re-)queue the listener to the proxy's queue and set it to expire no
* later than <expire> ahead. The listener turns to LI_LIMITED.
*/
limit_listener(l, &p->listener_queue);
if (p->task && tick_isset(expire))
task_schedule(p->task, expire);
goto end;
}
/* Notify the listener that a connection initiated from it was released. This
* is used to keep the connection count consistent and to possibly re-open
* listening when it was limited.
*/
void listener_release(struct listener *l)
{
struct proxy *fe = l->bind_conf->frontend;
if (!(l->options & LI_O_UNLIMITED))
_HA_ATOMIC_DEC(&actconn);
if (fe)
_HA_ATOMIC_DEC(&fe->feconn);
_HA_ATOMIC_DEC(&l->nbconn);
_HA_ATOMIC_DEC(&l->thr_conn[tid]);
if (l->state == LI_FULL || l->state == LI_LIMITED)
resume_listener(l);
/* Dequeues all of the listeners waiting for a resource */
dequeue_all_listeners();
if (!MT_LIST_ISEMPTY(&fe->listener_queue) &&
(!fe->fe_sps_lim || freq_ctr_remain(&fe->fe_sess_per_sec, fe->fe_sps_lim, 0) > 0))
dequeue_proxy_listeners(fe);
}
/* Initializes the listener queues. Returns 0 on success, otherwise ERR_* flags */
static int listener_queue_init()
{
global_listener_queue_task = task_new_anywhere();
if (!global_listener_queue_task) {
ha_alert("Out of memory when initializing global listener queue\n");
return ERR_FATAL|ERR_ABORT;
}
/* very simple initialization, users will queue the task if needed */
global_listener_queue_task->context = NULL; /* not even a context! */
global_listener_queue_task->process = manage_global_listener_queue;
return 0;
}
static void listener_queue_deinit()
{
task_destroy(global_listener_queue_task);
global_listener_queue_task = NULL;
}
REGISTER_CONFIG_POSTPARSER("multi-threaded listener queue", listener_queue_init);
REGISTER_POST_DEINIT(listener_queue_deinit);
/* This is the global management task for listeners. It enables listeners waiting
* for global resources when there are enough free resource, or at least once in
* a while. It is designed to be called as a task. It's exported so that it's easy
* to spot in "show tasks" or "show profiling".
*/
struct task *manage_global_listener_queue(struct task *t, void *context, unsigned int state)
{
/* If there are still too many concurrent connections, let's wait for
* some of them to go away. We don't need to re-arm the timer because
* each of them will scan the queue anyway.
*/
if (unlikely(actconn >= global.maxconn))
goto out;
/* We should periodically try to enable listeners waiting for a global
* resource here, because it is possible, though very unlikely, that
* they have been blocked by a temporary lack of global resource such
* as a file descriptor or memory and that the temporary condition has
* disappeared.
*/
dequeue_all_listeners();
out:
t->expire = TICK_ETERNITY;
task_queue(t);
return t;
}
/*
* Registers the bind keyword list <kwl> as a list of valid keywords for next
* parsing sessions.
*/
void bind_register_keywords(struct bind_kw_list *kwl)
{
LIST_APPEND(&bind_keywords.list, &kwl->list);
}
/* Return a pointer to the bind keyword <kw>, or NULL if not found. If the
* keyword is found with a NULL ->parse() function, then an attempt is made to
* find one with a valid ->parse() function. This way it is possible to declare
* platform-dependant, known keywords as NULL, then only declare them as valid
* if some options are met. Note that if the requested keyword contains an
* opening parenthesis, everything from this point is ignored.
*/
struct bind_kw *bind_find_kw(const char *kw)
{
int index;
const char *kwend;
struct bind_kw_list *kwl;
struct bind_kw *ret = NULL;
kwend = strchr(kw, '(');
if (!kwend)
kwend = kw + strlen(kw);
list_for_each_entry(kwl, &bind_keywords.list, list) {
for (index = 0; kwl->kw[index].kw != NULL; index++) {
if ((strncmp(kwl->kw[index].kw, kw, kwend - kw) == 0) &&
kwl->kw[index].kw[kwend-kw] == 0) {
if (kwl->kw[index].parse)
return &kwl->kw[index]; /* found it !*/
else
ret = &kwl->kw[index]; /* may be OK */
}
}
}
return ret;
}
/* Dumps all registered "bind" keywords to the <out> string pointer. The
* unsupported keywords are only dumped if their supported form was not
* found.
*/
void bind_dump_kws(char **out)
{
struct bind_kw_list *kwl;
int index;
if (!out)
return;
*out = NULL;
list_for_each_entry(kwl, &bind_keywords.list, list) {
for (index = 0; kwl->kw[index].kw != NULL; index++) {
if (kwl->kw[index].parse ||
bind_find_kw(kwl->kw[index].kw) == &kwl->kw[index]) {
memprintf(out, "%s[%4s] %s%s%s\n", *out ? *out : "",
kwl->scope,
kwl->kw[index].kw,
kwl->kw[index].skip ? " <arg>" : "",
kwl->kw[index].parse ? "" : " (not supported)");
}
}
}
}
/* Try to find in srv_keyword the word that looks closest to <word> by counting
* transitions between letters, digits and other characters. Will return the
* best matching word if found, otherwise NULL.
*/
const char *bind_find_best_kw(const char *word)
{
uint8_t word_sig[1024];
uint8_t list_sig[1024];
const struct bind_kw_list *kwl;
const char *best_ptr = NULL;
int dist, best_dist = INT_MAX;
int index;
make_word_fingerprint(word_sig, word);
list_for_each_entry(kwl, &bind_keywords.list, list) {
for (index = 0; kwl->kw[index].kw != NULL; index++) {
make_word_fingerprint(list_sig, kwl->kw[index].kw);
dist = word_fingerprint_distance(word_sig, list_sig);
if (dist < best_dist) {
best_dist = dist;
best_ptr = kwl->kw[index].kw;
}
}
}
if (best_dist > 2 * strlen(word) || (best_ptr && best_dist > 2 * strlen(best_ptr)))
best_ptr = NULL;
return best_ptr;
}
/************************************************************************/
/* All supported sample and ACL keywords must be declared here. */
/************************************************************************/
/* set temp integer to the number of connexions to the same listening socket */
static int
smp_fetch_dconn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->sess->listener->nbconn;
return 1;
}
/* set temp integer to the id of the socket (listener) */
static int
smp_fetch_so_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->sess->listener->luid;
return 1;
}
static int
smp_fetch_so_name(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.u.str.area = smp->sess->listener->name;
if (!smp->data.u.str.area)
return 0;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
smp->data.u.str.data = strlen(smp->data.u.str.area);
return 1;
}
/* parse the "accept-proxy" bind keyword */
static int bind_parse_accept_proxy(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
list_for_each_entry(l, &conf->listeners, by_bind)
l->options |= LI_O_ACC_PROXY;
return 0;
}
/* parse the "accept-netscaler-cip" bind keyword */
static int bind_parse_accept_netscaler_cip(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
uint32_t val;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing value", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
val = atol(args[cur_arg + 1]);
if (val <= 0) {
memprintf(err, "'%s' : invalid value %d, must be >= 0", args[cur_arg], val);
return ERR_ALERT | ERR_FATAL;
}
list_for_each_entry(l, &conf->listeners, by_bind) {
l->options |= LI_O_ACC_CIP;
conf->ns_cip_magic = val;
}
return 0;
}
/* parse the "backlog" bind keyword */
static int bind_parse_backlog(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
int val;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing value", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
val = atol(args[cur_arg + 1]);
if (val < 0) {
memprintf(err, "'%s' : invalid value %d, must be > 0", args[cur_arg], val);
return ERR_ALERT | ERR_FATAL;
}
list_for_each_entry(l, &conf->listeners, by_bind)
l->backlog = val;
return 0;
}
/* parse the "id" bind keyword */
static int bind_parse_id(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct eb32_node *node;
struct listener *l, *new;
char *error;
if (conf->listeners.n != conf->listeners.p) {
memprintf(err, "'%s' can only be used with a single socket", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : expects an integer argument", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
new = LIST_NEXT(&conf->listeners, struct listener *, by_bind);
new->luid = strtol(args[cur_arg + 1], &error, 10);
if (*error != '\0') {
memprintf(err, "'%s' : expects an integer argument, found '%s'", args[cur_arg], args[cur_arg + 1]);
return ERR_ALERT | ERR_FATAL;
}
new->conf.id.key = new->luid;
if (new->luid <= 0) {
memprintf(err, "'%s' : custom id has to be > 0", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
node = eb32_lookup(&px->conf.used_listener_id, new->luid);
if (node) {
l = container_of(node, struct listener, conf.id);
memprintf(err, "'%s' : custom id %d already used at %s:%d ('bind %s')",
args[cur_arg], l->luid, l->bind_conf->file, l->bind_conf->line,
l->bind_conf->arg);
return ERR_ALERT | ERR_FATAL;
}
eb32_insert(&px->conf.used_listener_id, &new->conf.id);
return 0;
}
/* parse the "maxconn" bind keyword */
static int bind_parse_maxconn(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
int val;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing value", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
val = atol(args[cur_arg + 1]);
if (val < 0) {
memprintf(err, "'%s' : invalid value %d, must be >= 0", args[cur_arg], val);
return ERR_ALERT | ERR_FATAL;
}
list_for_each_entry(l, &conf->listeners, by_bind)
l->maxconn = val;
return 0;
}
/* parse the "name" bind keyword */
static int bind_parse_name(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing name", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
list_for_each_entry(l, &conf->listeners, by_bind)
l->name = strdup(args[cur_arg + 1]);
return 0;
}
/* parse the "nice" bind keyword */
static int bind_parse_nice(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
int val;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing value", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
val = atol(args[cur_arg + 1]);
if (val < -1024 || val > 1024) {
memprintf(err, "'%s' : invalid value %d, allowed range is -1024..1024", args[cur_arg], val);
return ERR_ALERT | ERR_FATAL;
}
list_for_each_entry(l, &conf->listeners, by_bind)
l->nice = val;
return 0;
}
/* parse the "process" bind keyword */
static int bind_parse_process(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
char *slash;
unsigned long proc = 0, thread = 0;
if ((slash = strchr(args[cur_arg + 1], '/')) != NULL)
*slash = 0;
if (parse_process_number(args[cur_arg + 1], &proc, 1, NULL, err)) {
memprintf(err, "'%s' : %s", args[cur_arg], *err);
return ERR_ALERT | ERR_FATAL;
}
if (slash) {
if (parse_process_number(slash+1, &thread, MAX_THREADS, NULL, err)) {
memprintf(err, "'%s' : %s", args[cur_arg], *err);
return ERR_ALERT | ERR_FATAL;
}
*slash = '/';
}
conf->settings.bind_thread |= thread;
memprintf(err, "'process %s' on 'bind' lines is deprecated and will be removed in 2.7.", args[cur_arg+1]);
if (slash)
memprintf(err, "%s Please use 'thread %s' instead.", *err, slash + 1);
return ERR_WARN;
}
/* parse the "proto" bind keyword */
static int bind_parse_proto(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct ist proto;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing value", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
proto = ist(args[cur_arg + 1]);
conf->mux_proto = get_mux_proto(proto);
if (!conf->mux_proto) {
memprintf(err, "'%s' : unknown MUX protocol '%s'", args[cur_arg], args[cur_arg+1]);
return ERR_ALERT | ERR_FATAL;
}
return 0;
}
/* parse the "thread" bind keyword */
static int bind_parse_thread(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
char *slash;
unsigned long thread = 0;
if ((slash = strchr(args[cur_arg + 1], '/')) != NULL)
*slash = 0;
if (slash) {
*slash = '/';
memprintf(err, "'%s': thread groups not supported", args[cur_arg+1]);
return ERR_ALERT | ERR_FATAL;
}
if (parse_process_number(args[cur_arg+1], &thread, MAX_THREADS, NULL, err)) {
memprintf(err, "'%s' : %s", args[cur_arg+1], *err);
return ERR_ALERT | ERR_FATAL;
}
conf->settings.bind_thread |= thread;
return 0;
}
/* config parser for global "tune.listener.multi-queue", accepts "on" or "off" */
static int cfg_parse_tune_listener_mq(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
if (strcmp(args[1], "on") == 0)
global.tune.options |= GTUNE_LISTENER_MQ;
else if (strcmp(args[1], "off") == 0)
global.tune.options &= ~GTUNE_LISTENER_MQ;
else {
memprintf(err, "'%s' expects either 'on' or 'off' but got '%s'.", args[0], args[1]);
return -1;
}
return 0;
}
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct sample_fetch_kw_list smp_kws = {ILH, {
{ "dst_conn", smp_fetch_dconn, 0, NULL, SMP_T_SINT, SMP_USE_FTEND, },
{ "so_id", smp_fetch_so_id, 0, NULL, SMP_T_SINT, SMP_USE_FTEND, },
{ "so_name", smp_fetch_so_name, 0, NULL, SMP_T_STR, SMP_USE_FTEND, },
{ /* END */ },
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct acl_kw_list acl_kws = {ILH, {
{ /* END */ },
}};
INITCALL1(STG_REGISTER, acl_register_keywords, &acl_kws);
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted, doing so helps
* all code contributors.
* Optional keywords are also declared with a NULL ->parse() function so that
* the config parser can report an appropriate error when a known keyword was
* not enabled.
*/
static struct bind_kw_list bind_kws = { "ALL", { }, {
{ "accept-netscaler-cip", bind_parse_accept_netscaler_cip, 1 }, /* enable NetScaler Client IP insertion protocol */
{ "accept-proxy", bind_parse_accept_proxy, 0 }, /* enable PROXY protocol */
{ "backlog", bind_parse_backlog, 1 }, /* set backlog of listening socket */
{ "id", bind_parse_id, 1 }, /* set id of listening socket */
{ "maxconn", bind_parse_maxconn, 1 }, /* set maxconn of listening socket */
{ "name", bind_parse_name, 1 }, /* set name of listening socket */
{ "nice", bind_parse_nice, 1 }, /* set nice of listening socket */
{ "process", bind_parse_process, 1 }, /* set list of allowed process for this socket */
{ "proto", bind_parse_proto, 1 }, /* set the proto to use for all incoming connections */
{ "thread", bind_parse_thread, 1 }, /* set list of allowed threads for this socket */
{ /* END */ },
}};
INITCALL1(STG_REGISTER, bind_register_keywords, &bind_kws);
/* config keyword parsers */
static struct cfg_kw_list cfg_kws = {ILH, {
{ CFG_GLOBAL, "tune.listener.multi-queue", cfg_parse_tune_listener_mq },
{ 0, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/