blob: 3fda2fbd8caeb0bfc304973ee729e86b9a836d98 [file] [log] [blame]
/*
* Memory management functions.
*
* Copyright 2000-2007 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <sys/mman.h>
#include <errno.h>
#include <haproxy/activity.h>
#include <haproxy/api.h>
#include <haproxy/applet-t.h>
#include <haproxy/cfgparse.h>
#include <haproxy/channel.h>
#include <haproxy/cli.h>
#include <haproxy/errors.h>
#include <haproxy/global.h>
#include <haproxy/list.h>
#include <haproxy/pool.h>
#include <haproxy/stats-t.h>
#include <haproxy/stream_interface.h>
#include <haproxy/thread.h>
#include <haproxy/tools.h>
#ifdef CONFIG_HAP_POOLS
/* These ones are initialized per-thread on startup by init_pools() */
THREAD_LOCAL size_t pool_cache_bytes = 0; /* total cache size */
THREAD_LOCAL size_t pool_cache_count = 0; /* #cache objects */
#endif
static struct list pools = LIST_HEAD_INIT(pools);
int mem_poison_byte = -1;
#ifdef DEBUG_FAIL_ALLOC
static int mem_fail_rate = 0;
#endif
static int using_default_allocator = 1;
static int(*my_mallctl)(const char *, void *, size_t *, void *, size_t) = NULL;
/* ask the allocator to trim memory pools.
* This must run under thread isolation so that competing threads trying to
* allocate or release memory do not prevent the allocator from completing
* its job. We just have to be careful as callers might already be isolated
* themselves.
*/
static void trim_all_pools(void)
{
int isolated = thread_isolated();
if (!isolated)
thread_isolate();
if (my_mallctl) {
unsigned int i, narenas = 0;
size_t len = sizeof(narenas);
if (my_mallctl("arenas.narenas", &narenas, &len, NULL, 0) == 0) {
for (i = 0; i < narenas; i ++) {
char mib[32] = {0};
snprintf(mib, sizeof(mib), "arena.%u.purge", i);
(void)my_mallctl(mib, NULL, NULL, NULL, 0);
}
}
} else {
#if defined(HA_HAVE_MALLOC_TRIM)
if (using_default_allocator)
malloc_trim(0);
#elif defined(HA_HAVE_MALLOC_ZONE)
if (using_default_allocator) {
vm_address_t *zones;
unsigned int i, nzones;
if (malloc_get_all_zones(0, NULL, &zones, &nzones) == KERN_SUCCESS) {
for (i = 0; i < nzones; i ++) {
malloc_zone_t *zone = (malloc_zone_t *)zones[i];
/* we cannot purge anonymous zones */
if (zone->zone_name)
malloc_zone_pressure_relief(zone, 0);
}
}
}
#endif
}
if (!isolated)
thread_release();
}
/* check if we're using the same allocator as the one that provides
* malloc_trim() and mallinfo(). The principle is that on glibc, both
* malloc_trim() and mallinfo() are provided, and using mallinfo() we
* can check if malloc() is performed through glibc or any other one
* the executable was linked against (e.g. jemalloc). Prior to this we
* have to check whether we're running on jemalloc by verifying if the
* mallctl() function is provided. Its pointer will be used later.
*/
static void detect_allocator(void)
{
#if defined(__ELF__)
extern int mallctl(const char *, void *, size_t *, void *, size_t) __attribute__((weak));
my_mallctl = mallctl;
#endif
if (!my_mallctl) {
my_mallctl = get_sym_curr_addr("mallctl");
using_default_allocator = (my_mallctl == NULL);
}
if (!my_mallctl) {
#if defined(HA_HAVE_MALLOC_TRIM)
#ifdef HA_HAVE_MALLINFO2
struct mallinfo2 mi1, mi2;
#else
struct mallinfo mi1, mi2;
#endif
void *ptr;
#ifdef HA_HAVE_MALLINFO2
mi1 = mallinfo2();
#else
mi1 = mallinfo();
#endif
ptr = DISGUISE(malloc(1));
#ifdef HA_HAVE_MALLINFO2
mi2 = mallinfo2();
#else
mi2 = mallinfo();
#endif
free(DISGUISE(ptr));
using_default_allocator = !!memcmp(&mi1, &mi2, sizeof(mi1));
#elif defined(HA_HAVE_MALLOC_ZONE)
using_default_allocator = (malloc_default_zone() != NULL);
#endif
}
}
static int is_trim_enabled(void)
{
return using_default_allocator;
}
/* Try to find an existing shared pool with the same characteristics and
* returns it, otherwise creates this one. NULL is returned if no memory
* is available for a new creation. Two flags are supported :
* - MEM_F_SHARED to indicate that the pool may be shared with other users
* - MEM_F_EXACT to indicate that the size must not be rounded up
*/
struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags)
{
struct pool_head *pool;
struct pool_head *entry;
struct list *start;
unsigned int align;
int thr __maybe_unused;
/* We need to store a (void *) at the end of the chunks. Since we know
* that the malloc() function will never return such a small size,
* let's round the size up to something slightly bigger, in order to
* ease merging of entries. Note that the rounding is a power of two.
* This extra (void *) is not accounted for in the size computation
* so that the visible parts outside are not affected.
*
* Note: for the LRU cache, we need to store 2 doubly-linked lists.
*/
if (!(flags & MEM_F_EXACT)) {
align = 4 * sizeof(void *); // 2 lists = 4 pointers min
size = ((size + POOL_EXTRA + align - 1) & -align) - POOL_EXTRA;
}
/* TODO: thread: we do not lock pool list for now because all pools are
* created during HAProxy startup (so before threads creation) */
start = &pools;
pool = NULL;
list_for_each_entry(entry, &pools, list) {
if (entry->size == size) {
/* either we can share this place and we take it, or
* we look for a shareable one or for the next position
* before which we will insert a new one.
*/
if ((flags & entry->flags & MEM_F_SHARED)
#ifdef DEBUG_DONT_SHARE_POOLS
&& strcmp(name, entry->name) == 0
#endif
) {
/* we can share this one */
pool = entry;
DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name);
break;
}
}
else if (entry->size > size) {
/* insert before this one */
start = &entry->list;
break;
}
}
if (!pool) {
if (!pool)
pool = calloc(1, sizeof(*pool));
if (!pool)
return NULL;
if (name)
strlcpy2(pool->name, name, sizeof(pool->name));
pool->size = size;
pool->flags = flags;
LIST_APPEND(start, &pool->list);
#ifdef CONFIG_HAP_POOLS
/* update per-thread pool cache if necessary */
for (thr = 0; thr < MAX_THREADS; thr++) {
LIST_INIT(&pool->cache[thr].list);
}
#endif
}
pool->users++;
return pool;
}
/* Tries to allocate an object for the pool <pool> using the system's allocator
* and directly returns it. The pool's allocated counter is checked and updated,
* but no other checks are performed.
*/
void *pool_get_from_os(struct pool_head *pool)
{
if (!pool->limit || pool->allocated < pool->limit) {
void *ptr = pool_alloc_area(pool->size + POOL_EXTRA);
if (ptr) {
_HA_ATOMIC_INC(&pool->allocated);
return ptr;
}
_HA_ATOMIC_INC(&pool->failed);
}
activity[tid].pool_fail++;
return NULL;
}
/* Releases a pool item back to the operating system and atomically updates
* the allocation counter.
*/
void pool_put_to_os(struct pool_head *pool, void *ptr)
{
#ifdef DEBUG_UAF
/* This object will be released for real in order to detect a use after
* free. We also force a write to the area to ensure we crash on double
* free or free of a const area.
*/
*(uint32_t *)ptr = 0xDEADADD4;
#endif /* DEBUG_UAF */
pool_free_area(ptr, pool->size + POOL_EXTRA);
_HA_ATOMIC_DEC(&pool->allocated);
}
/* Tries to allocate an object for the pool <pool> using the system's allocator
* and directly returns it. The pool's counters are updated but the object is
* never cached, so this is usable with and without local or shared caches.
*/
void *pool_alloc_nocache(struct pool_head *pool)
{
void *ptr = NULL;
ptr = pool_get_from_os(pool);
if (!ptr)
return NULL;
swrate_add_scaled(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used, POOL_AVG_SAMPLES/4);
_HA_ATOMIC_INC(&pool->used);
/* keep track of where the element was allocated from */
POOL_DEBUG_SET_MARK(pool, ptr);
POOL_DEBUG_TRACE_CALLER(pool, (struct pool_cache_item *)ptr, NULL);
return ptr;
}
/* Release a pool item back to the OS and keeps the pool's counters up to date.
* This is always defined even when pools are not enabled (their usage stats
* are maintained).
*/
void pool_free_nocache(struct pool_head *pool, void *ptr)
{
_HA_ATOMIC_DEC(&pool->used);
swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used);
pool_put_to_os(pool, ptr);
}
#ifdef CONFIG_HAP_POOLS
/* removes up to <count> items from the end of the local pool cache <ph> for
* pool <pool>. The shared pool is refilled with these objects in the limit
* of the number of acceptable objects, and the rest will be released to the
* OS. It is not a problem is <count> is larger than the number of objects in
* the local cache. The counters are automatically updated.
*/
static void pool_evict_last_items(struct pool_head *pool, struct pool_cache_head *ph, uint count)
{
struct pool_cache_item *item;
struct pool_item *pi, *head = NULL;
uint released = 0;
uint cluster = 0;
uint to_free_max;
to_free_max = pool_releasable(pool);
while (released < count && !LIST_ISEMPTY(&ph->list)) {
item = LIST_PREV(&ph->list, typeof(item), by_pool);
pool_check_pattern(ph, item, pool->size);
LIST_DELETE(&item->by_pool);
LIST_DELETE(&item->by_lru);
if (to_free_max > released || cluster) {
pi = (struct pool_item *)item;
pi->next = NULL;
pi->down = head;
head = pi;
cluster++;
if (cluster >= CONFIG_HAP_POOL_CLUSTER_SIZE) {
/* enough to make a cluster */
pool_put_to_shared_cache(pool, head, cluster);
cluster = 0;
head = NULL;
}
} else
pool_free_nocache(pool, item);
released++;
}
/* incomplete cluster left */
if (cluster)
pool_put_to_shared_cache(pool, head, cluster);
ph->count -= released;
pool_cache_count -= released;
pool_cache_bytes -= released * pool->size;
}
/* Evicts some of the oldest objects from one local cache, until its number of
* objects is no more than 16+1/8 of the total number of locally cached objects
* or the total size of the local cache is no more than 75% of its maximum (i.e.
* we don't want a single cache to use all the cache for itself). For this, the
* list is scanned in reverse.
*/
void pool_evict_from_local_cache(struct pool_head *pool)
{
struct pool_cache_head *ph = &pool->cache[tid];
while (ph->count >= CONFIG_HAP_POOL_CLUSTER_SIZE &&
ph->count >= 16 + pool_cache_count / 8 &&
pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4) {
pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE);
}
}
/* Evicts some of the oldest objects from the local cache, pushing them to the
* global pool.
*/
void pool_evict_from_local_caches()
{
struct pool_cache_item *item;
struct pool_cache_head *ph;
struct pool_head *pool;
do {
item = LIST_PREV(&th_ctx->pool_lru_head, struct pool_cache_item *, by_lru);
/* note: by definition we remove oldest objects so they also are the
* oldest in their own pools, thus their next is the pool's head.
*/
ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list);
pool = container_of(ph - tid, struct pool_head, cache);
pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE);
} while (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 7 / 8);
}
/* Frees an object to the local cache, possibly pushing oldest objects to the
* shared cache, which itself may decide to release some of them to the OS.
* While it is unspecified what the object becomes past this point, it is
* guaranteed to be released from the users' perpective. A caller address may
* be passed and stored into the area when DEBUG_POOL_TRACING is set.
*/
void pool_put_to_cache(struct pool_head *pool, void *ptr, const void *caller)
{
struct pool_cache_item *item = (struct pool_cache_item *)ptr;
struct pool_cache_head *ph = &pool->cache[tid];
LIST_INSERT(&ph->list, &item->by_pool);
LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
POOL_DEBUG_TRACE_CALLER(pool, item, caller);
ph->count++;
pool_fill_pattern(ph, item, pool->size);
pool_cache_count++;
pool_cache_bytes += pool->size;
if (unlikely(pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4)) {
if (ph->count >= 16 + pool_cache_count / 8 + CONFIG_HAP_POOL_CLUSTER_SIZE)
pool_evict_from_local_cache(pool);
if (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE)
pool_evict_from_local_caches();
}
}
#if defined(CONFIG_HAP_NO_GLOBAL_POOLS)
/* legacy stuff */
void pool_flush(struct pool_head *pool)
{
}
/* This function might ask the malloc library to trim its buffers. */
void pool_gc(struct pool_head *pool_ctx)
{
trim_all_pools();
}
#else /* CONFIG_HAP_NO_GLOBAL_POOLS */
/* Tries to refill the local cache <pch> from the shared one for pool <pool>.
* This is only used when pools are in use and shared pools are enabled. No
* malloc() is attempted, and poisonning is never performed. The purpose is to
* get the fastest possible refilling so that the caller can easily check if
* the cache has enough objects for its use.
*/
void pool_refill_local_from_shared(struct pool_head *pool, struct pool_cache_head *pch)
{
struct pool_cache_item *item;
struct pool_item *ret, *down;
uint count;
/* we'll need to reference the first element to figure the next one. We
* must temporarily lock it so that nobody allocates then releases it,
* or the dereference could fail.
*/
ret = _HA_ATOMIC_LOAD(&pool->free_list);
do {
while (unlikely(ret == POOL_BUSY)) {
__ha_cpu_relax();
ret = _HA_ATOMIC_LOAD(&pool->free_list);
}
if (ret == NULL)
return;
} while (unlikely((ret = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY));
if (unlikely(ret == NULL)) {
HA_ATOMIC_STORE(&pool->free_list, NULL);
return;
}
/* this releases the lock */
HA_ATOMIC_STORE(&pool->free_list, ret->next);
/* now store the retrieved object(s) into the local cache */
count = 0;
for (; ret; ret = down) {
down = ret->down;
/* keep track of where the element was allocated from */
POOL_DEBUG_SET_MARK(pool, ret);
item = (struct pool_cache_item *)ret;
POOL_DEBUG_TRACE_CALLER(pool, item, NULL);
LIST_INSERT(&pch->list, &item->by_pool);
LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
count++;
pool_fill_pattern(pch, item, pool->size);
}
HA_ATOMIC_ADD(&pool->used, count);
pch->count += count;
pool_cache_count += count;
pool_cache_bytes += count * pool->size;
}
/* Adds pool item cluster <item> to the shared cache, which contains <count>
* elements. The caller is advised to first check using pool_releasable() if
* it's wise to add this series of objects there. Both the pool and the item's
* head must be valid.
*/
void pool_put_to_shared_cache(struct pool_head *pool, struct pool_item *item, uint count)
{
struct pool_item *free_list;
_HA_ATOMIC_SUB(&pool->used, count);
free_list = _HA_ATOMIC_LOAD(&pool->free_list);
do {
while (unlikely(free_list == POOL_BUSY)) {
__ha_cpu_relax();
free_list = _HA_ATOMIC_LOAD(&pool->free_list);
}
_HA_ATOMIC_STORE(&item->next, free_list);
__ha_barrier_atomic_store();
} while (!_HA_ATOMIC_CAS(&pool->free_list, &free_list, item));
__ha_barrier_atomic_store();
swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used);
}
/*
* This function frees whatever can be freed in pool <pool>.
*/
void pool_flush(struct pool_head *pool)
{
struct pool_item *next, *temp, *down;
if (!pool)
return;
/* The loop below atomically detaches the head of the free list and
* replaces it with a NULL. Then the list can be released.
*/
next = pool->free_list;
do {
while (unlikely(next == POOL_BUSY)) {
__ha_cpu_relax();
next = _HA_ATOMIC_LOAD(&pool->free_list);
}
if (next == NULL)
return;
} while (unlikely((next = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY));
_HA_ATOMIC_STORE(&pool->free_list, NULL);
__ha_barrier_atomic_store();
while (next) {
temp = next;
next = temp->next;
for (; temp; temp = down) {
down = temp->down;
pool_put_to_os(pool, temp);
}
}
/* here, we should have pool->allocated == pool->used */
}
/*
* This function frees whatever can be freed in all pools, but respecting
* the minimum thresholds imposed by owners. It makes sure to be alone to
* run by using thread_isolate(). <pool_ctx> is unused.
*/
void pool_gc(struct pool_head *pool_ctx)
{
struct pool_head *entry;
int isolated = thread_isolated();
if (!isolated)
thread_isolate();
list_for_each_entry(entry, &pools, list) {
struct pool_item *temp, *down;
while (entry->free_list &&
(int)(entry->allocated - entry->used) > (int)entry->minavail) {
temp = entry->free_list;
entry->free_list = temp->next;
for (; temp; temp = down) {
down = temp->down;
pool_put_to_os(entry, temp);
}
}
}
trim_all_pools();
if (!isolated)
thread_release();
}
#endif /* CONFIG_HAP_NO_GLOBAL_POOLS */
#else /* CONFIG_HAP_POOLS */
/* legacy stuff */
void pool_flush(struct pool_head *pool)
{
}
/* This function might ask the malloc library to trim its buffers. */
void pool_gc(struct pool_head *pool_ctx)
{
trim_all_pools();
}
#endif /* CONFIG_HAP_POOLS */
/*
* Returns a pointer to type <type> taken from the pool <pool_type> or
* dynamically allocated. In the first case, <pool_type> is updated to point to
* the next element in the list. <flags> is a binary-OR of POOL_F_* flags.
* Prefer using pool_alloc() which does the right thing without flags.
*/
void *__pool_alloc(struct pool_head *pool, unsigned int flags)
{
void *p = NULL;
void *caller = NULL;
#ifdef DEBUG_FAIL_ALLOC
if (unlikely(!(flags & POOL_F_NO_FAIL) && mem_should_fail(pool)))
return NULL;
#endif
#if defined(DEBUG_POOL_TRACING)
caller = __builtin_return_address(0);
#endif
if (!p)
p = pool_get_from_cache(pool, caller);
if (unlikely(!p))
p = pool_alloc_nocache(pool);
if (likely(p)) {
if (unlikely(flags & POOL_F_MUST_ZERO))
memset(p, 0, pool->size);
else if (unlikely(!(flags & POOL_F_NO_POISON) && mem_poison_byte >= 0))
memset(p, mem_poison_byte, pool->size);
}
return p;
}
/*
* Puts a memory area back to the corresponding pool. <ptr> be valid. Using
* pool_free() is preferred.
*/
void __pool_free(struct pool_head *pool, void *ptr)
{
const void *caller = NULL;
#if defined(DEBUG_POOL_TRACING)
caller = __builtin_return_address(0);
#endif
/* we'll get late corruption if we refill to the wrong pool or double-free */
POOL_DEBUG_CHECK_MARK(pool, ptr);
if (unlikely(mem_poison_byte >= 0))
memset(ptr, mem_poison_byte, pool->size);
pool_put_to_cache(pool, ptr, caller);
}
#ifdef DEBUG_UAF
/************* use-after-free allocator *************/
/* allocates an area of size <size> and returns it. The semantics are similar
* to those of malloc(). However the allocation is rounded up to 4kB so that a
* full page is allocated. This ensures the object can be freed alone so that
* future dereferences are easily detected. The returned object is always
* 16-bytes aligned to avoid issues with unaligned structure objects. In case
* some padding is added, the area's start address is copied at the end of the
* padding to help detect underflows.
*/
void *pool_alloc_area_uaf(size_t size)
{
size_t pad = (4096 - size) & 0xFF0;
void *ret;
ret = mmap(NULL, (size + 4095) & -4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (ret != MAP_FAILED) {
/* let's dereference the page before returning so that the real
* allocation in the system is performed without holding the lock.
*/
*(int *)ret = 0;
if (pad >= sizeof(void *))
*(void **)(ret + pad - sizeof(void *)) = ret + pad;
ret += pad;
} else {
ret = NULL;
}
return ret;
}
/* frees an area <area> of size <size> allocated by pool_alloc_area(). The
* semantics are identical to free() except that the size must absolutely match
* the one passed to pool_alloc_area(). In case some padding is added, the
* area's start address is compared to the one at the end of the padding, and
* a segfault is triggered if they don't match, indicating an underflow.
*/
void pool_free_area_uaf(void *area, size_t size)
{
size_t pad = (4096 - size) & 0xFF0;
if (pad >= sizeof(void *) && *(void **)(area - sizeof(void *)) != area)
ABORT_NOW();
munmap(area - pad, (size + 4095) & -4096);
}
#endif /* DEBUG_UAF */
/*
* This function destroys a pool by freeing it completely, unless it's still
* in use. This should be called only under extreme circumstances. It always
* returns NULL if the resulting pool is empty, easing the clearing of the old
* pointer, otherwise it returns the pool.
* .
*/
void *pool_destroy(struct pool_head *pool)
{
if (pool) {
pool_flush(pool);
if (pool->used)
return pool;
pool->users--;
if (!pool->users) {
LIST_DELETE(&pool->list);
/* note that if used == 0, the cache is empty */
free(pool);
}
}
return NULL;
}
/* This destroys all pools on exit. It is *not* thread safe. */
void pool_destroy_all()
{
struct pool_head *entry, *back;
list_for_each_entry_safe(entry, back, &pools, list)
pool_destroy(entry);
}
/* This function dumps memory usage information into the trash buffer. */
void dump_pools_to_trash()
{
struct pool_head *entry;
unsigned long allocated, used;
int nbpools;
#ifdef CONFIG_HAP_POOLS
unsigned long cached_bytes = 0;
uint cached = 0;
#endif
allocated = used = nbpools = 0;
chunk_printf(&trash, "Dumping pools usage. Use SIGQUIT to flush them.\n");
list_for_each_entry(entry, &pools, list) {
#ifdef CONFIG_HAP_POOLS
int i;
for (cached = i = 0; i < global.nbthread; i++)
cached += entry->cache[i].count;
cached_bytes += cached * entry->size;
#endif
chunk_appendf(&trash, " - Pool %s (%u bytes) : %u allocated (%u bytes), %u used"
#ifdef CONFIG_HAP_POOLS
" (~%u by thread caches)"
#endif
", needed_avg %u, %u failures, %u users, @%p%s\n",
entry->name, entry->size, entry->allocated,
entry->size * entry->allocated, entry->used,
#ifdef CONFIG_HAP_POOLS
cached,
#endif
swrate_avg(entry->needed_avg, POOL_AVG_SAMPLES), entry->failed,
entry->users, entry,
(entry->flags & MEM_F_SHARED) ? " [SHARED]" : "");
allocated += entry->allocated * entry->size;
used += entry->used * entry->size;
nbpools++;
}
chunk_appendf(&trash, "Total: %d pools, %lu bytes allocated, %lu used"
#ifdef CONFIG_HAP_POOLS
" (~%lu by thread caches)"
#endif
".\n",
nbpools, allocated, used
#ifdef CONFIG_HAP_POOLS
, cached_bytes
#endif
);
}
/* Dump statistics on pools usage. */
void dump_pools(void)
{
dump_pools_to_trash();
qfprintf(stderr, "%s", trash.area);
}
/* This function returns the total number of failed pool allocations */
int pool_total_failures()
{
struct pool_head *entry;
int failed = 0;
list_for_each_entry(entry, &pools, list)
failed += entry->failed;
return failed;
}
/* This function returns the total amount of memory allocated in pools (in bytes) */
unsigned long pool_total_allocated()
{
struct pool_head *entry;
unsigned long allocated = 0;
list_for_each_entry(entry, &pools, list)
allocated += entry->allocated * entry->size;
return allocated;
}
/* This function returns the total amount of memory used in pools (in bytes) */
unsigned long pool_total_used()
{
struct pool_head *entry;
unsigned long used = 0;
list_for_each_entry(entry, &pools, list)
used += entry->used * entry->size;
return used;
}
/* This function dumps memory usage information onto the stream interface's
* read buffer. It returns 0 as long as it does not complete, non-zero upon
* completion. No state is used.
*/
static int cli_io_handler_dump_pools(struct appctx *appctx)
{
struct stream_interface *si = appctx->owner;
dump_pools_to_trash();
if (ci_putchk(si_ic(si), &trash) == -1) {
si_rx_room_blk(si);
return 0;
}
return 1;
}
/* callback used to create early pool <name> of size <size> and store the
* resulting pointer into <ptr>. If the allocation fails, it quits with after
* emitting an error message.
*/
void create_pool_callback(struct pool_head **ptr, char *name, unsigned int size)
{
*ptr = create_pool(name, size, MEM_F_SHARED);
if (!*ptr) {
ha_alert("Failed to allocate pool '%s' of size %u : %s. Aborting.\n",
name, size, strerror(errno));
exit(1);
}
}
/* Initializes all per-thread arrays on startup */
static void init_pools()
{
#ifdef CONFIG_HAP_POOLS
int thr;
for (thr = 0; thr < MAX_THREADS; thr++) {
LIST_INIT(&ha_thread_ctx[thr].pool_lru_head);
}
#endif
detect_allocator();
}
INITCALL0(STG_PREPARE, init_pools);
/* Report in build options if trim is supported */
static void pools_register_build_options(void)
{
if (is_trim_enabled()) {
char *ptr = NULL;
memprintf(&ptr, "Support for malloc_trim() is enabled.");
hap_register_build_opts(ptr, 1);
}
}
INITCALL0(STG_REGISTER, pools_register_build_options);
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{ { "show", "pools", NULL }, "show pools : report information about the memory pools usage", NULL, cli_io_handler_dump_pools },
{{},}
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
#ifdef DEBUG_FAIL_ALLOC
int mem_should_fail(const struct pool_head *pool)
{
int ret = 0;
if (mem_fail_rate > 0 && !(global.mode & MODE_STARTING)) {
if (mem_fail_rate > statistical_prng_range(100))
ret = 1;
else
ret = 0;
}
return ret;
}
/* config parser for global "tune.fail-alloc" */
static int mem_parse_global_fail_alloc(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
mem_fail_rate = atoi(args[1]);
if (mem_fail_rate < 0 || mem_fail_rate > 100) {
memprintf(err, "'%s' expects a numeric value between 0 and 100.", args[0]);
return -1;
}
return 0;
}
#endif
/* register global config keywords */
static struct cfg_kw_list mem_cfg_kws = {ILH, {
#ifdef DEBUG_FAIL_ALLOC
{ CFG_GLOBAL, "tune.fail-alloc", mem_parse_global_fail_alloc },
#endif
{ 0, NULL, NULL }
}};
INITCALL1(STG_REGISTER, cfg_register_keywords, &mem_cfg_kws);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/