blob: df0f049530b5cc08015ae59110d4e9fddcba0a1e [file] [log] [blame]
/*
* Pattern management functions.
*
* Copyright 2000-2013 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <stdio.h>
#include <errno.h>
#include <import/ebsttree.h>
#include <import/lru.h>
#include <haproxy/api.h>
#include <haproxy/global.h>
#include <haproxy/log.h>
#include <haproxy/net_helper.h>
#include <haproxy/pattern.h>
#include <haproxy/regex.h>
#include <haproxy/sample.h>
#include <haproxy/tools.h>
#include <haproxy/xxhash.h>
const char *const pat_match_names[PAT_MATCH_NUM] = {
[PAT_MATCH_FOUND] = "found",
[PAT_MATCH_BOOL] = "bool",
[PAT_MATCH_INT] = "int",
[PAT_MATCH_IP] = "ip",
[PAT_MATCH_BIN] = "bin",
[PAT_MATCH_LEN] = "len",
[PAT_MATCH_STR] = "str",
[PAT_MATCH_BEG] = "beg",
[PAT_MATCH_SUB] = "sub",
[PAT_MATCH_DIR] = "dir",
[PAT_MATCH_DOM] = "dom",
[PAT_MATCH_END] = "end",
[PAT_MATCH_REG] = "reg",
[PAT_MATCH_REGM] = "regm",
};
int (*const pat_parse_fcts[PAT_MATCH_NUM])(const char *, struct pattern *, int, char **) = {
[PAT_MATCH_FOUND] = pat_parse_nothing,
[PAT_MATCH_BOOL] = pat_parse_nothing,
[PAT_MATCH_INT] = pat_parse_int,
[PAT_MATCH_IP] = pat_parse_ip,
[PAT_MATCH_BIN] = pat_parse_bin,
[PAT_MATCH_LEN] = pat_parse_int,
[PAT_MATCH_STR] = pat_parse_str,
[PAT_MATCH_BEG] = pat_parse_str,
[PAT_MATCH_SUB] = pat_parse_str,
[PAT_MATCH_DIR] = pat_parse_str,
[PAT_MATCH_DOM] = pat_parse_str,
[PAT_MATCH_END] = pat_parse_str,
[PAT_MATCH_REG] = pat_parse_reg,
[PAT_MATCH_REGM] = pat_parse_reg,
};
int (*const pat_index_fcts[PAT_MATCH_NUM])(struct pattern_expr *, struct pattern *, char **) = {
[PAT_MATCH_FOUND] = pat_idx_list_val,
[PAT_MATCH_BOOL] = pat_idx_list_val,
[PAT_MATCH_INT] = pat_idx_list_val,
[PAT_MATCH_IP] = pat_idx_tree_ip,
[PAT_MATCH_BIN] = pat_idx_list_ptr,
[PAT_MATCH_LEN] = pat_idx_list_val,
[PAT_MATCH_STR] = pat_idx_tree_str,
[PAT_MATCH_BEG] = pat_idx_tree_pfx,
[PAT_MATCH_SUB] = pat_idx_list_str,
[PAT_MATCH_DIR] = pat_idx_list_str,
[PAT_MATCH_DOM] = pat_idx_list_str,
[PAT_MATCH_END] = pat_idx_list_str,
[PAT_MATCH_REG] = pat_idx_list_reg,
[PAT_MATCH_REGM] = pat_idx_list_regm,
};
void (*const pat_prune_fcts[PAT_MATCH_NUM])(struct pattern_expr *) = {
[PAT_MATCH_FOUND] = pat_prune_gen,
[PAT_MATCH_BOOL] = pat_prune_gen,
[PAT_MATCH_INT] = pat_prune_gen,
[PAT_MATCH_IP] = pat_prune_gen,
[PAT_MATCH_BIN] = pat_prune_gen,
[PAT_MATCH_LEN] = pat_prune_gen,
[PAT_MATCH_STR] = pat_prune_gen,
[PAT_MATCH_BEG] = pat_prune_gen,
[PAT_MATCH_SUB] = pat_prune_gen,
[PAT_MATCH_DIR] = pat_prune_gen,
[PAT_MATCH_DOM] = pat_prune_gen,
[PAT_MATCH_END] = pat_prune_gen,
[PAT_MATCH_REG] = pat_prune_gen,
[PAT_MATCH_REGM] = pat_prune_gen,
};
struct pattern *(*const pat_match_fcts[PAT_MATCH_NUM])(struct sample *, struct pattern_expr *, int) = {
[PAT_MATCH_FOUND] = NULL,
[PAT_MATCH_BOOL] = pat_match_nothing,
[PAT_MATCH_INT] = pat_match_int,
[PAT_MATCH_IP] = pat_match_ip,
[PAT_MATCH_BIN] = pat_match_bin,
[PAT_MATCH_LEN] = pat_match_len,
[PAT_MATCH_STR] = pat_match_str,
[PAT_MATCH_BEG] = pat_match_beg,
[PAT_MATCH_SUB] = pat_match_sub,
[PAT_MATCH_DIR] = pat_match_dir,
[PAT_MATCH_DOM] = pat_match_dom,
[PAT_MATCH_END] = pat_match_end,
[PAT_MATCH_REG] = pat_match_reg,
[PAT_MATCH_REGM] = pat_match_regm,
};
/* Just used for checking configuration compatibility */
int const pat_match_types[PAT_MATCH_NUM] = {
[PAT_MATCH_FOUND] = SMP_T_SINT,
[PAT_MATCH_BOOL] = SMP_T_SINT,
[PAT_MATCH_INT] = SMP_T_SINT,
[PAT_MATCH_IP] = SMP_T_ADDR,
[PAT_MATCH_BIN] = SMP_T_BIN,
[PAT_MATCH_LEN] = SMP_T_STR,
[PAT_MATCH_STR] = SMP_T_STR,
[PAT_MATCH_BEG] = SMP_T_STR,
[PAT_MATCH_SUB] = SMP_T_STR,
[PAT_MATCH_DIR] = SMP_T_STR,
[PAT_MATCH_DOM] = SMP_T_STR,
[PAT_MATCH_END] = SMP_T_STR,
[PAT_MATCH_REG] = SMP_T_STR,
[PAT_MATCH_REGM] = SMP_T_STR,
};
/* this struct is used to return information */
static THREAD_LOCAL struct pattern static_pattern;
static THREAD_LOCAL struct sample_data static_sample_data;
/* This is the root of the list of all pattern_ref avalaibles. */
struct list pattern_reference = LIST_HEAD_INIT(pattern_reference);
static THREAD_LOCAL struct lru64_head *pat_lru_tree;
static unsigned long long pat_lru_seed __read_mostly;
/*
*
* The following functions are not exported and are used by internals process
* of pattern matching
*
*/
/* Background: Fast way to find a zero byte in a word
* http://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
* hasZeroByte = (v - 0x01010101UL) & ~v & 0x80808080UL;
*
* To look for 4 different byte values, xor the word with those bytes and
* then check for zero bytes:
*
* v = (((unsigned char)c * 0x1010101U) ^ delimiter)
* where <delimiter> is the 4 byte values to look for (as an uint)
* and <c> is the character that is being tested
*/
static inline unsigned int is_delimiter(unsigned char c, unsigned int mask)
{
mask ^= (c * 0x01010101); /* propagate the char to all 4 bytes */
return (mask - 0x01010101) & ~mask & 0x80808080U;
}
static inline unsigned int make_4delim(unsigned char d1, unsigned char d2, unsigned char d3, unsigned char d4)
{
return d1 << 24 | d2 << 16 | d3 << 8 | d4;
}
/*
*
* These functions are exported and may be used by any other component.
*
* The following functions are used for parsing pattern matching input value.
* The <text> contain the string to be parsed. <pattern> must be a preallocated
* pattern. The pat_parse_* functions fill this structure with the parsed value.
* <err> is filled with an error message built with memprintf() function. It is
* allowed to use a trash as a temporary storage for the returned pattern, as
* the next call after these functions will be pat_idx_*.
*
* In success case, the pat_parse_* function returns 1. If the function
* fails, it returns 0 and <err> is filled.
*/
/* ignore the current line */
int pat_parse_nothing(const char *text, struct pattern *pattern, int mflags, char **err)
{
return 1;
}
/* Parse a string. It is allocated and duplicated. */
int pat_parse_str(const char *text, struct pattern *pattern, int mflags, char **err)
{
pattern->type = SMP_T_STR;
pattern->ptr.str = (char *)text;
pattern->len = strlen(text);
return 1;
}
/* Parse a binary written in hexa. It is allocated. */
int pat_parse_bin(const char *text, struct pattern *pattern, int mflags, char **err)
{
struct buffer *trash;
pattern->type = SMP_T_BIN;
trash = get_trash_chunk();
pattern->len = trash->size;
pattern->ptr.str = trash->area;
return !!parse_binary(text, &pattern->ptr.str, &pattern->len, err);
}
/* Parse a regex. It is allocated. */
int pat_parse_reg(const char *text, struct pattern *pattern, int mflags, char **err)
{
pattern->ptr.str = (char *)text;
return 1;
}
/* Parse a range of positive integers delimited by either ':' or '-'. If only
* one integer is read, it is set as both min and max. An operator may be
* specified as the prefix, among this list of 5 :
*
* 0:eq, 1:gt, 2:ge, 3:lt, 4:le
*
* The default operator is "eq". It supports range matching. Ranges are
* rejected for other operators. The operator may be changed at any time.
* The operator is stored in the 'opaque' argument.
*
* If err is non-NULL, an error message will be returned there on errors and
* the caller will have to free it. The function returns zero on error, and
* non-zero on success.
*
*/
int pat_parse_int(const char *text, struct pattern *pattern, int mflags, char **err)
{
const char *ptr = text;
pattern->type = SMP_T_SINT;
/* Empty string is not valid */
if (!*text)
goto not_valid_range;
/* Search ':' or '-' separator. */
while (*ptr != '\0' && *ptr != ':' && *ptr != '-')
ptr++;
/* If separator not found. */
if (!*ptr) {
if (strl2llrc(text, ptr - text, &pattern->val.range.min) != 0) {
memprintf(err, "'%s' is not a number", text);
return 0;
}
pattern->val.range.max = pattern->val.range.min;
pattern->val.range.min_set = 1;
pattern->val.range.max_set = 1;
return 1;
}
/* If the separator is the first character. */
if (ptr == text && *(ptr + 1) != '\0') {
if (strl2llrc(ptr + 1, strlen(ptr + 1), &pattern->val.range.max) != 0)
goto not_valid_range;
pattern->val.range.min_set = 0;
pattern->val.range.max_set = 1;
return 1;
}
/* If separator is the last character. */
if (*(ptr + 1) == '\0') {
if (strl2llrc(text, ptr - text, &pattern->val.range.min) != 0)
goto not_valid_range;
pattern->val.range.min_set = 1;
pattern->val.range.max_set = 0;
return 1;
}
/* Else, parse two numbers. */
if (strl2llrc(text, ptr - text, &pattern->val.range.min) != 0)
goto not_valid_range;
if (strl2llrc(ptr + 1, strlen(ptr + 1), &pattern->val.range.max) != 0)
goto not_valid_range;
if (pattern->val.range.min > pattern->val.range.max)
goto not_valid_range;
pattern->val.range.min_set = 1;
pattern->val.range.max_set = 1;
return 1;
not_valid_range:
memprintf(err, "'%s' is not a valid number range", text);
return 0;
}
/* Parse a range of positive 2-component versions delimited by either ':' or
* '-'. The version consists in a major and a minor, both of which must be
* smaller than 65536, because internally they will be represented as a 32-bit
* integer.
* If only one version is read, it is set as both min and max. Just like for
* pure integers, an operator may be specified as the prefix, among this list
* of 5 :
*
* 0:eq, 1:gt, 2:ge, 3:lt, 4:le
*
* The default operator is "eq". It supports range matching. Ranges are
* rejected for other operators. The operator may be changed at any time.
* The operator is stored in the 'opaque' argument. This allows constructs
* such as the following one :
*
* acl obsolete_ssl ssl_req_proto lt 3
* acl unsupported_ssl ssl_req_proto gt 3.1
* acl valid_ssl ssl_req_proto 3.0-3.1
*
*/
int pat_parse_dotted_ver(const char *text, struct pattern *pattern, int mflags, char **err)
{
const char *ptr = text;
pattern->type = SMP_T_SINT;
/* Search ':' or '-' separator. */
while (*ptr != '\0' && *ptr != ':' && *ptr != '-')
ptr++;
/* If separator not found. */
if (*ptr == '\0' && ptr > text) {
if (strl2llrc_dotted(text, ptr-text, &pattern->val.range.min) != 0) {
memprintf(err, "'%s' is not a dotted number", text);
return 0;
}
pattern->val.range.max = pattern->val.range.min;
pattern->val.range.min_set = 1;
pattern->val.range.max_set = 1;
return 1;
}
/* If the separator is the first character. */
if (ptr == text && *(ptr+1) != '\0') {
if (strl2llrc_dotted(ptr+1, strlen(ptr+1), &pattern->val.range.max) != 0) {
memprintf(err, "'%s' is not a valid dotted number range", text);
return 0;
}
pattern->val.range.min_set = 0;
pattern->val.range.max_set = 1;
return 1;
}
/* If separator is the last character. */
if (ptr == &text[strlen(text)-1]) {
if (strl2llrc_dotted(text, ptr-text, &pattern->val.range.min) != 0) {
memprintf(err, "'%s' is not a valid dotted number range", text);
return 0;
}
pattern->val.range.min_set = 1;
pattern->val.range.max_set = 0;
return 1;
}
/* Else, parse two numbers. */
if (strl2llrc_dotted(text, ptr-text, &pattern->val.range.min) != 0) {
memprintf(err, "'%s' is not a valid dotted number range", text);
return 0;
}
if (strl2llrc_dotted(ptr+1, strlen(ptr+1), &pattern->val.range.max) != 0) {
memprintf(err, "'%s' is not a valid dotted number range", text);
return 0;
}
if (pattern->val.range.min > pattern->val.range.max) {
memprintf(err, "'%s' is not a valid dotted number range", text);
return 0;
}
pattern->val.range.min_set = 1;
pattern->val.range.max_set = 1;
return 1;
}
/* Parse an IP address and an optional mask in the form addr[/mask].
* The addr may either be an IPv4 address or a hostname. The mask
* may either be a dotted mask or a number of bits. Returns 1 if OK,
* otherwise 0. NOTE: IP address patterns are typed (IPV4/IPV6).
*/
int pat_parse_ip(const char *text, struct pattern *pattern, int mflags, char **err)
{
if (str2net(text, !(mflags & PAT_MF_NO_DNS) && (global.mode & MODE_STARTING),
&pattern->val.ipv4.addr, &pattern->val.ipv4.mask)) {
pattern->type = SMP_T_IPV4;
return 1;
}
else if (str62net(text, &pattern->val.ipv6.addr, &pattern->val.ipv6.mask)) {
pattern->type = SMP_T_IPV6;
return 1;
}
else {
memprintf(err, "'%s' is not a valid IPv4 or IPv6 address", text);
return 0;
}
}
/*
*
* These functions are exported and may be used by any other component.
*
* This function just takes a sample <smp> and checks if this sample matches
* with the pattern <pattern>. This function returns only PAT_MATCH or
* PAT_NOMATCH.
*
*/
/* always return false */
struct pattern *pat_match_nothing(struct sample *smp, struct pattern_expr *expr, int fill)
{
if (smp->data.u.sint) {
if (fill) {
static_pattern.data = NULL;
static_pattern.ref = NULL;
static_pattern.type = 0;
static_pattern.ptr.str = NULL;
}
return &static_pattern;
}
else
return NULL;
}
/* NB: For two strings to be identical, it is required that their length match */
struct pattern *pat_match_str(struct sample *smp, struct pattern_expr *expr, int fill)
{
int icase;
struct ebmb_node *node;
struct pattern_tree *elt;
struct pattern_list *lst;
struct pattern *pattern;
struct pattern *ret = NULL;
struct lru64 *lru = NULL;
/* Lookup a string in the expression's pattern tree. */
if (!eb_is_empty(&expr->pattern_tree)) {
char prev = 0;
if (smp->data.u.str.data < smp->data.u.str.size) {
/* we may have to force a trailing zero on the test pattern and
* the buffer is large enough to accommodate it. If the flag
* CONST is set, duplicate the string
*/
prev = smp->data.u.str.area[smp->data.u.str.data];
if (prev) {
if (smp->flags & SMP_F_CONST) {
if (!smp_dup(smp))
return NULL;
} else {
smp->data.u.str.area[smp->data.u.str.data] = '\0';
}
}
}
else {
/* Otherwise, the sample is duplicated. A trailing zero
* is automatically added to the string.
*/
if (!smp_dup(smp))
return NULL;
}
node = ebst_lookup(&expr->pattern_tree, smp->data.u.str.area);
if (prev)
smp->data.u.str.area[smp->data.u.str.data] = prev;
while (node) {
elt = ebmb_entry(node, struct pattern_tree, node);
if (elt->ref->gen_id != expr->ref->curr_gen) {
node = ebmb_next(node);
continue;
}
if (fill) {
static_pattern.data = elt->data;
static_pattern.ref = elt->ref;
static_pattern.sflags = PAT_SF_TREE;
static_pattern.type = SMP_T_STR;
static_pattern.ptr.str = (char *)elt->node.key;
}
return &static_pattern;
}
}
/* look in the list */
if (pat_lru_tree) {
unsigned long long seed = pat_lru_seed ^ (long)expr;
lru = lru64_get(XXH3(smp->data.u.str.area, smp->data.u.str.data, seed),
pat_lru_tree, expr, expr->ref->revision);
if (lru && lru->domain) {
ret = lru->data;
return ret;
}
}
list_for_each_entry(lst, &expr->patterns, list) {
pattern = &lst->pat;
if (pattern->ref->gen_id != expr->ref->curr_gen)
continue;
if (pattern->len != smp->data.u.str.data)
continue;
icase = expr->mflags & PAT_MF_IGNORE_CASE;
if ((icase && strncasecmp(pattern->ptr.str, smp->data.u.str.area, smp->data.u.str.data) == 0) ||
(!icase && strncmp(pattern->ptr.str, smp->data.u.str.area, smp->data.u.str.data) == 0)) {
ret = pattern;
break;
}
}
if (lru)
lru64_commit(lru, ret, expr, expr->ref->revision, NULL);
return ret;
}
/* NB: For two binaries buf to be identical, it is required that their lengths match */
struct pattern *pat_match_bin(struct sample *smp, struct pattern_expr *expr, int fill)
{
struct pattern_list *lst;
struct pattern *pattern;
struct pattern *ret = NULL;
struct lru64 *lru = NULL;
if (pat_lru_tree) {
unsigned long long seed = pat_lru_seed ^ (long)expr;
lru = lru64_get(XXH3(smp->data.u.str.area, smp->data.u.str.data, seed),
pat_lru_tree, expr, expr->ref->revision);
if (lru && lru->domain) {
ret = lru->data;
return ret;
}
}
list_for_each_entry(lst, &expr->patterns, list) {
pattern = &lst->pat;
if (pattern->ref->gen_id != expr->ref->curr_gen)
continue;
if (pattern->len != smp->data.u.str.data)
continue;
if (memcmp(pattern->ptr.str, smp->data.u.str.area, smp->data.u.str.data) == 0) {
ret = pattern;
break;
}
}
if (lru)
lru64_commit(lru, ret, expr, expr->ref->revision, NULL);
return ret;
}
/* Executes a regex. It temporarily changes the data to add a trailing zero,
* and restores the previous character when leaving. This function fills
* a matching array.
*/
struct pattern *pat_match_regm(struct sample *smp, struct pattern_expr *expr, int fill)
{
struct pattern_list *lst;
struct pattern *pattern;
struct pattern *ret = NULL;
list_for_each_entry(lst, &expr->patterns, list) {
pattern = &lst->pat;
if (pattern->ref->gen_id != expr->ref->curr_gen)
continue;
if (regex_exec_match2(pattern->ptr.reg, smp->data.u.str.area, smp->data.u.str.data,
MAX_MATCH, pmatch, 0)) {
ret = pattern;
smp->ctx.a[0] = pmatch;
break;
}
}
return ret;
}
/* Executes a regex. It temporarily changes the data to add a trailing zero,
* and restores the previous character when leaving.
*/
struct pattern *pat_match_reg(struct sample *smp, struct pattern_expr *expr, int fill)
{
struct pattern_list *lst;
struct pattern *pattern;
struct pattern *ret = NULL;
struct lru64 *lru = NULL;
if (pat_lru_tree) {
unsigned long long seed = pat_lru_seed ^ (long)expr;
lru = lru64_get(XXH3(smp->data.u.str.area, smp->data.u.str.data, seed),
pat_lru_tree, expr, expr->ref->revision);
if (lru && lru->domain) {
ret = lru->data;
return ret;
}
}
list_for_each_entry(lst, &expr->patterns, list) {
pattern = &lst->pat;
if (pattern->ref->gen_id != expr->ref->curr_gen)
continue;
if (regex_exec2(pattern->ptr.reg, smp->data.u.str.area, smp->data.u.str.data)) {
ret = pattern;
break;
}
}
if (lru)
lru64_commit(lru, ret, expr, expr->ref->revision, NULL);
return ret;
}
/* Checks that the pattern matches the beginning of the tested string. */
struct pattern *pat_match_beg(struct sample *smp, struct pattern_expr *expr, int fill)
{
int icase;
struct ebmb_node *node;
struct pattern_tree *elt;
struct pattern_list *lst;
struct pattern *pattern;
struct pattern *ret = NULL;
struct lru64 *lru = NULL;
/* Lookup a string in the expression's pattern tree. */
if (!eb_is_empty(&expr->pattern_tree)) {
char prev = 0;
if (smp->data.u.str.data < smp->data.u.str.size) {
/* we may have to force a trailing zero on the test pattern and
* the buffer is large enough to accommodate it.
*/
prev = smp->data.u.str.area[smp->data.u.str.data];
if (prev)
smp->data.u.str.area[smp->data.u.str.data] = '\0';
}
else {
/* Otherwise, the sample is duplicated. A trailing zero
* is automatically added to the string.
*/
if (!smp_dup(smp))
return NULL;
}
node = ebmb_lookup_longest(&expr->pattern_tree,
smp->data.u.str.area);
if (prev)
smp->data.u.str.area[smp->data.u.str.data] = prev;
while (node) {
elt = ebmb_entry(node, struct pattern_tree, node);
if (elt->ref->gen_id != expr->ref->curr_gen) {
node = ebmb_next(node);
continue;
}
if (fill) {
static_pattern.data = elt->data;
static_pattern.ref = elt->ref;
static_pattern.sflags = PAT_SF_TREE;
static_pattern.type = SMP_T_STR;
static_pattern.ptr.str = (char *)elt->node.key;
}
return &static_pattern;
}
}
/* look in the list */
if (pat_lru_tree) {
unsigned long long seed = pat_lru_seed ^ (long)expr;
lru = lru64_get(XXH3(smp->data.u.str.area, smp->data.u.str.data, seed),
pat_lru_tree, expr, expr->ref->revision);
if (lru && lru->domain) {
ret = lru->data;
return ret;
}
}
list_for_each_entry(lst, &expr->patterns, list) {
pattern = &lst->pat;
if (pattern->ref->gen_id != expr->ref->curr_gen)
continue;
if (pattern->len > smp->data.u.str.data)
continue;
icase = expr->mflags & PAT_MF_IGNORE_CASE;
if ((icase && strncasecmp(pattern->ptr.str, smp->data.u.str.area, pattern->len) != 0) ||
(!icase && strncmp(pattern->ptr.str, smp->data.u.str.area, pattern->len) != 0))
continue;
ret = pattern;
break;
}
if (lru)
lru64_commit(lru, ret, expr, expr->ref->revision, NULL);
return ret;
}
/* Checks that the pattern matches the end of the tested string. */
struct pattern *pat_match_end(struct sample *smp, struct pattern_expr *expr, int fill)
{
int icase;
struct pattern_list *lst;
struct pattern *pattern;
struct pattern *ret = NULL;
struct lru64 *lru = NULL;
if (pat_lru_tree) {
unsigned long long seed = pat_lru_seed ^ (long)expr;
lru = lru64_get(XXH3(smp->data.u.str.area, smp->data.u.str.data, seed),
pat_lru_tree, expr, expr->ref->revision);
if (lru && lru->domain) {
ret = lru->data;
return ret;
}
}
list_for_each_entry(lst, &expr->patterns, list) {
pattern = &lst->pat;
if (pattern->ref->gen_id != expr->ref->curr_gen)
continue;
if (pattern->len > smp->data.u.str.data)
continue;
icase = expr->mflags & PAT_MF_IGNORE_CASE;
if ((icase && strncasecmp(pattern->ptr.str, smp->data.u.str.area + smp->data.u.str.data - pattern->len, pattern->len) != 0) ||
(!icase && strncmp(pattern->ptr.str, smp->data.u.str.area + smp->data.u.str.data - pattern->len, pattern->len) != 0))
continue;
ret = pattern;
break;
}
if (lru)
lru64_commit(lru, ret, expr, expr->ref->revision, NULL);
return ret;
}
/* Checks that the pattern is included inside the tested string.
* NB: Suboptimal, should be rewritten using a Boyer-Moore method.
*/
struct pattern *pat_match_sub(struct sample *smp, struct pattern_expr *expr, int fill)
{
int icase;
char *end;
char *c;
struct pattern_list *lst;
struct pattern *pattern;
struct pattern *ret = NULL;
struct lru64 *lru = NULL;
if (pat_lru_tree) {
unsigned long long seed = pat_lru_seed ^ (long)expr;
lru = lru64_get(XXH3(smp->data.u.str.area, smp->data.u.str.data, seed),
pat_lru_tree, expr, expr->ref->revision);
if (lru && lru->domain) {
ret = lru->data;
return ret;
}
}
list_for_each_entry(lst, &expr->patterns, list) {
pattern = &lst->pat;
if (pattern->ref->gen_id != expr->ref->curr_gen)
continue;
if (pattern->len > smp->data.u.str.data)
continue;
end = smp->data.u.str.area + smp->data.u.str.data - pattern->len;
icase = expr->mflags & PAT_MF_IGNORE_CASE;
if (icase) {
for (c = smp->data.u.str.area; c <= end; c++) {
if (tolower((unsigned char)*c) != tolower((unsigned char)*pattern->ptr.str))
continue;
if (strncasecmp(pattern->ptr.str, c, pattern->len) == 0) {
ret = pattern;
goto leave;
}
}
} else {
for (c = smp->data.u.str.area; c <= end; c++) {
if (*c != *pattern->ptr.str)
continue;
if (strncmp(pattern->ptr.str, c, pattern->len) == 0) {
ret = pattern;
goto leave;
}
}
}
}
leave:
if (lru)
lru64_commit(lru, ret, expr, expr->ref->revision, NULL);
return ret;
}
/* This one is used by other real functions. It checks that the pattern is
* included inside the tested string, but enclosed between the specified
* delimiters or at the beginning or end of the string. The delimiters are
* provided as an unsigned int made by make_4delim() and match up to 4 different
* delimiters. Delimiters are stripped at the beginning and end of the pattern.
*/
static int match_word(struct sample *smp, struct pattern *pattern, int mflags, unsigned int delimiters)
{
int may_match, icase;
char *c, *end;
char *ps;
int pl;
pl = pattern->len;
ps = pattern->ptr.str;
while (pl > 0 && is_delimiter(*ps, delimiters)) {
pl--;
ps++;
}
while (pl > 0 && is_delimiter(ps[pl - 1], delimiters))
pl--;
if (pl > smp->data.u.str.data)
return PAT_NOMATCH;
may_match = 1;
icase = mflags & PAT_MF_IGNORE_CASE;
end = smp->data.u.str.area + smp->data.u.str.data - pl;
for (c = smp->data.u.str.area; c <= end; c++) {
if (is_delimiter(*c, delimiters)) {
may_match = 1;
continue;
}
if (!may_match)
continue;
if (icase) {
if ((tolower((unsigned char)*c) == tolower((unsigned char)*ps)) &&
(strncasecmp(ps, c, pl) == 0) &&
(c == end || is_delimiter(c[pl], delimiters)))
return PAT_MATCH;
} else {
if ((*c == *ps) &&
(strncmp(ps, c, pl) == 0) &&
(c == end || is_delimiter(c[pl], delimiters)))
return PAT_MATCH;
}
may_match = 0;
}
return PAT_NOMATCH;
}
/* Checks that the pattern is included inside the tested string, but enclosed
* between the delimiters '?' or '/' or at the beginning or end of the string.
* Delimiters at the beginning or end of the pattern are ignored.
*/
struct pattern *pat_match_dir(struct sample *smp, struct pattern_expr *expr, int fill)
{
struct pattern_list *lst;
struct pattern *pattern;
list_for_each_entry(lst, &expr->patterns, list) {
pattern = &lst->pat;
if (pattern->ref->gen_id != expr->ref->curr_gen)
continue;
if (match_word(smp, pattern, expr->mflags, make_4delim('/', '?', '?', '?')))
return pattern;
}
return NULL;
}
/* Checks that the pattern is included inside the tested string, but enclosed
* between the delmiters '/', '?', '.' or ":" or at the beginning or end of
* the string. Delimiters at the beginning or end of the pattern are ignored.
*/
struct pattern *pat_match_dom(struct sample *smp, struct pattern_expr *expr, int fill)
{
struct pattern_list *lst;
struct pattern *pattern;
list_for_each_entry(lst, &expr->patterns, list) {
pattern = &lst->pat;
if (pattern->ref->gen_id != expr->ref->curr_gen)
continue;
if (match_word(smp, pattern, expr->mflags, make_4delim('/', '?', '.', ':')))
return pattern;
}
return NULL;
}
/* Checks that the integer in <test> is included between min and max */
struct pattern *pat_match_int(struct sample *smp, struct pattern_expr *expr, int fill)
{
struct pattern_list *lst;
struct pattern *pattern;
list_for_each_entry(lst, &expr->patterns, list) {
pattern = &lst->pat;
if (pattern->ref->gen_id != expr->ref->curr_gen)
continue;
if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.u.sint) &&
(!pattern->val.range.max_set || smp->data.u.sint <= pattern->val.range.max))
return pattern;
}
return NULL;
}
/* Checks that the length of the pattern in <test> is included between min and max */
struct pattern *pat_match_len(struct sample *smp, struct pattern_expr *expr, int fill)
{
struct pattern_list *lst;
struct pattern *pattern;
list_for_each_entry(lst, &expr->patterns, list) {
pattern = &lst->pat;
if (pattern->ref->gen_id != expr->ref->curr_gen)
continue;
if ((!pattern->val.range.min_set || pattern->val.range.min <= smp->data.u.str.data) &&
(!pattern->val.range.max_set || smp->data.u.str.data <= pattern->val.range.max))
return pattern;
}
return NULL;
}
struct pattern *pat_match_ip(struct sample *smp, struct pattern_expr *expr, int fill)
{
unsigned int v4; /* in network byte order */
struct in6_addr tmp6;
struct in_addr *s;
struct ebmb_node *node;
struct pattern_tree *elt;
struct pattern_list *lst;
struct pattern *pattern;
/* The input sample is IPv4. Try to match in the trees. */
if (smp->data.type == SMP_T_IPV4) {
/* Lookup an IPv4 address in the expression's pattern tree using
* the longest match method.
*/
s = &smp->data.u.ipv4;
node = ebmb_lookup_longest(&expr->pattern_tree, &s->s_addr);
while (node) {
elt = ebmb_entry(node, struct pattern_tree, node);
if (elt->ref->gen_id != expr->ref->curr_gen) {
node = ebmb_next(node);
continue;
}
if (fill) {
static_pattern.data = elt->data;
static_pattern.ref = elt->ref;
static_pattern.sflags = PAT_SF_TREE;
static_pattern.type = SMP_T_IPV4;
static_pattern.val.ipv4.addr.s_addr = read_u32(elt->node.key);
if (!cidr2dotted(elt->node.node.pfx, &static_pattern.val.ipv4.mask))
return NULL;
}
return &static_pattern;
}
/* The IPv4 sample don't match the IPv4 tree. Convert the IPv4
* sample address to IPv6 with the mapping method using the ::ffff:
* prefix, and try to lookup in the IPv6 tree.
*/
memset(&tmp6, 0, 10);
write_u16(&tmp6.s6_addr[10], htons(0xffff));
write_u32(&tmp6.s6_addr[12], smp->data.u.ipv4.s_addr);
node = ebmb_lookup_longest(&expr->pattern_tree_2, &tmp6);
while (node) {
elt = ebmb_entry(node, struct pattern_tree, node);
if (elt->ref->gen_id != expr->ref->curr_gen) {
node = ebmb_next(node);
continue;
}
if (fill) {
static_pattern.data = elt->data;
static_pattern.ref = elt->ref;
static_pattern.sflags = PAT_SF_TREE;
static_pattern.type = SMP_T_IPV6;
memcpy(&static_pattern.val.ipv6.addr, elt->node.key, 16);
static_pattern.val.ipv6.mask = elt->node.node.pfx;
}
return &static_pattern;
}
}
/* The input sample is IPv6. Try to match in the trees. */
if (smp->data.type == SMP_T_IPV6) {
/* Lookup an IPv6 address in the expression's pattern tree using
* the longest match method.
*/
node = ebmb_lookup_longest(&expr->pattern_tree_2, &smp->data.u.ipv6);
while (node) {
elt = ebmb_entry(node, struct pattern_tree, node);
if (elt->ref->gen_id != expr->ref->curr_gen) {
node = ebmb_next(node);
continue;
}
if (fill) {
static_pattern.data = elt->data;
static_pattern.ref = elt->ref;
static_pattern.sflags = PAT_SF_TREE;
static_pattern.type = SMP_T_IPV6;
memcpy(&static_pattern.val.ipv6.addr, elt->node.key, 16);
static_pattern.val.ipv6.mask = elt->node.node.pfx;
}
return &static_pattern;
}
/* Try to convert 6 to 4 when the start of the ipv6 address match the
* following forms :
* - ::ffff:ip:v4 (ipv4 mapped)
* - ::0000:ip:v4 (old ipv4 mapped)
* - 2002:ip:v4:: (6to4)
*/
if ((read_u64(&smp->data.u.ipv6.s6_addr[0]) == 0 &&
(read_u32(&smp->data.u.ipv6.s6_addr[8]) == 0 ||
read_u32(&smp->data.u.ipv6.s6_addr[8]) == htonl(0xFFFF))) ||
read_u16(&smp->data.u.ipv6.s6_addr[0]) == htons(0x2002)) {
if (read_u32(&smp->data.u.ipv6.s6_addr[0]) == 0)
v4 = read_u32(&smp->data.u.ipv6.s6_addr[12]);
else
v4 = htonl((ntohs(read_u16(&smp->data.u.ipv6.s6_addr[2])) << 16) +
ntohs(read_u16(&smp->data.u.ipv6.s6_addr[4])));
/* Lookup an IPv4 address in the expression's pattern tree using the longest
* match method.
*/
node = ebmb_lookup_longest(&expr->pattern_tree, &v4);
while (node) {
elt = ebmb_entry(node, struct pattern_tree, node);
if (elt->ref->gen_id != expr->ref->curr_gen) {
node = ebmb_next(node);
continue;
}
if (fill) {
static_pattern.data = elt->data;
static_pattern.ref = elt->ref;
static_pattern.sflags = PAT_SF_TREE;
static_pattern.type = SMP_T_IPV4;
static_pattern.val.ipv4.addr.s_addr = read_u32(elt->node.key);
if (!cidr2dotted(elt->node.node.pfx, &static_pattern.val.ipv4.mask))
return NULL;
}
return &static_pattern;
}
}
}
/* Lookup in the list. the list contain only IPv4 patterns */
list_for_each_entry(lst, &expr->patterns, list) {
pattern = &lst->pat;
if (pattern->ref->gen_id != expr->ref->curr_gen)
continue;
/* The input sample is IPv4, use it as is. */
if (smp->data.type == SMP_T_IPV4) {
v4 = smp->data.u.ipv4.s_addr;
}
else if (smp->data.type == SMP_T_IPV6) {
/* v4 match on a V6 sample. We want to check at least for
* the following forms :
* - ::ffff:ip:v4 (ipv4 mapped)
* - ::0000:ip:v4 (old ipv4 mapped)
* - 2002:ip:v4:: (6to4)
*/
if (read_u64(&smp->data.u.ipv6.s6_addr[0]) == 0 &&
(read_u32(&smp->data.u.ipv6.s6_addr[8]) == 0 ||
read_u32(&smp->data.u.ipv6.s6_addr[8]) == htonl(0xFFFF))) {
v4 = read_u32(&smp->data.u.ipv6.s6_addr[12]);
}
else if (read_u16(&smp->data.u.ipv6.s6_addr[0]) == htons(0x2002)) {
v4 = htonl((ntohs(read_u16(&smp->data.u.ipv6.s6_addr[2])) << 16) +
ntohs(read_u16(&smp->data.u.ipv6.s6_addr[4])));
}
else
continue;
} else {
/* impossible */
continue;
}
/* Check if the input sample match the current pattern. */
if (((v4 ^ pattern->val.ipv4.addr.s_addr) & pattern->val.ipv4.mask.s_addr) == 0)
return pattern;
}
return NULL;
}
/* finds the pattern holding <list> from list head <head> and deletes it.
* This is made for use for pattern removal within an expression.
*/
static void pat_unlink_from_head(void **head, void **list)
{
while (*head) {
if (*head == list) {
*head = *list;
return;
}
head = *head;
}
}
void free_pattern_tree(struct eb_root *root)
{
struct eb_node *node, *next;
struct pattern_tree *elt;
node = eb_first(root);
while (node) {
next = eb_next(node);
eb_delete(node);
elt = container_of(node, struct pattern_tree, node);
pat_unlink_from_head(&elt->ref->tree_head, &elt->from_ref);
free(elt->data);
free(elt);
node = next;
}
}
void pat_prune_gen(struct pattern_expr *expr)
{
struct pattern_list *pat, *tmp;
list_for_each_entry_safe(pat, tmp, &expr->patterns, list) {
LIST_DELETE(&pat->list);
pat_unlink_from_head(&pat->pat.ref->list_head, &pat->from_ref);
if (pat->pat.sflags & PAT_SF_REGFREE)
regex_free(pat->pat.ptr.ptr);
else
free(pat->pat.ptr.ptr);
free(pat->pat.data);
free(pat);
}
free_pattern_tree(&expr->pattern_tree);
free_pattern_tree(&expr->pattern_tree_2);
LIST_INIT(&expr->patterns);
expr->ref->revision = rdtsc();
expr->ref->entry_cnt = 0;
}
/*
*
* The following functions are used for the pattern indexation
*
*/
int pat_idx_list_val(struct pattern_expr *expr, struct pattern *pat, char **err)
{
struct pattern_list *patl;
/* allocate pattern */
patl = calloc(1, sizeof(*patl));
if (!patl) {
memprintf(err, "out of memory while indexing pattern");
return 0;
}
/* duplicate pattern */
memcpy(&patl->pat, pat, sizeof(*pat));
/* chain pattern in the expression */
LIST_APPEND(&expr->patterns, &patl->list);
/* and from the reference */
patl->from_ref = pat->ref->list_head;
pat->ref->list_head = &patl->from_ref;
expr->ref->revision = rdtsc();
expr->ref->entry_cnt++;
/* that's ok */
return 1;
}
int pat_idx_list_ptr(struct pattern_expr *expr, struct pattern *pat, char **err)
{
struct pattern_list *patl;
/* allocate pattern */
patl = calloc(1, sizeof(*patl));
if (!patl) {
memprintf(err, "out of memory while indexing pattern");
return 0;
}
/* duplicate pattern */
memcpy(&patl->pat, pat, sizeof(*pat));
patl->pat.ptr.ptr = malloc(patl->pat.len);
if (!patl->pat.ptr.ptr) {
free(patl);
memprintf(err, "out of memory while indexing pattern");
return 0;
}
memcpy(patl->pat.ptr.ptr, pat->ptr.ptr, pat->len);
/* chain pattern in the expression */
LIST_APPEND(&expr->patterns, &patl->list);
/* and from the reference */
patl->from_ref = pat->ref->list_head;
pat->ref->list_head = &patl->from_ref;
expr->ref->revision = rdtsc();
expr->ref->entry_cnt++;
/* that's ok */
return 1;
}
int pat_idx_list_str(struct pattern_expr *expr, struct pattern *pat, char **err)
{
struct pattern_list *patl;
/* allocate pattern */
patl = calloc(1, sizeof(*patl));
if (!patl) {
memprintf(err, "out of memory while indexing pattern");
return 0;
}
/* duplicate pattern */
memcpy(&patl->pat, pat, sizeof(*pat));
patl->pat.ptr.str = malloc(patl->pat.len + 1);
if (!patl->pat.ptr.str) {
free(patl);
memprintf(err, "out of memory while indexing pattern");
return 0;
}
memcpy(patl->pat.ptr.ptr, pat->ptr.ptr, pat->len);
patl->pat.ptr.str[patl->pat.len] = '\0';
/* chain pattern in the expression */
LIST_APPEND(&expr->patterns, &patl->list);
/* and from the reference */
patl->from_ref = pat->ref->list_head;
pat->ref->list_head = &patl->from_ref;
expr->ref->revision = rdtsc();
expr->ref->entry_cnt++;
/* that's ok */
return 1;
}
int pat_idx_list_reg_cap(struct pattern_expr *expr, struct pattern *pat, int cap, char **err)
{
struct pattern_list *patl;
/* allocate pattern */
patl = calloc(1, sizeof(*patl));
if (!patl) {
memprintf(err, "out of memory while indexing pattern");
return 0;
}
/* duplicate pattern */
memcpy(&patl->pat, pat, sizeof(*pat));
/* compile regex */
patl->pat.sflags |= PAT_SF_REGFREE;
if (!(patl->pat.ptr.reg = regex_comp(pat->ptr.str, !(expr->mflags & PAT_MF_IGNORE_CASE),
cap, err))) {
free(patl);
return 0;
}
/* chain pattern in the expression */
LIST_APPEND(&expr->patterns, &patl->list);
/* and from the reference */
patl->from_ref = pat->ref->list_head;
pat->ref->list_head = &patl->from_ref;
expr->ref->revision = rdtsc();
expr->ref->entry_cnt++;
/* that's ok */
return 1;
}
int pat_idx_list_reg(struct pattern_expr *expr, struct pattern *pat, char **err)
{
return pat_idx_list_reg_cap(expr, pat, 0, err);
}
int pat_idx_list_regm(struct pattern_expr *expr, struct pattern *pat, char **err)
{
return pat_idx_list_reg_cap(expr, pat, 1, err);
}
int pat_idx_tree_ip(struct pattern_expr *expr, struct pattern *pat, char **err)
{
unsigned int mask;
struct pattern_tree *node;
/* Only IPv4 can be indexed */
if (pat->type == SMP_T_IPV4) {
/* in IPv4 case, check if the mask is contiguous so that we can
* insert the network into the tree. A continuous mask has only
* ones on the left. This means that this mask + its lower bit
* added once again is null.
*/
mask = ntohl(pat->val.ipv4.mask.s_addr);
if (mask + (mask & -mask) == 0) {
mask = mask ? 33 - flsnz(mask & -mask) : 0; /* equals cidr value */
/* node memory allocation */
node = calloc(1, sizeof(*node) + 4);
if (!node) {
memprintf(err, "out of memory while loading pattern");
return 0;
}
/* copy the pointer to sample associated to this node */
node->data = pat->data;
node->ref = pat->ref;
/* FIXME: insert <addr>/<mask> into the tree here */
memcpy(node->node.key, &pat->val.ipv4.addr, 4); /* network byte order */
node->node.node.pfx = mask;
/* Insert the entry. */
ebmb_insert_prefix(&expr->pattern_tree, &node->node, 4);
node->from_ref = pat->ref->tree_head;
pat->ref->tree_head = &node->from_ref;
expr->ref->revision = rdtsc();
expr->ref->entry_cnt++;
/* that's ok */
return 1;
}
else {
/* If the mask is not contiguous, just add the pattern to the list */
return pat_idx_list_val(expr, pat, err);
}
}
else if (pat->type == SMP_T_IPV6) {
/* IPv6 also can be indexed */
node = calloc(1, sizeof(*node) + 16);
if (!node) {
memprintf(err, "out of memory while loading pattern");
return 0;
}
/* copy the pointer to sample associated to this node */
node->data = pat->data;
node->ref = pat->ref;
/* FIXME: insert <addr>/<mask> into the tree here */
memcpy(node->node.key, &pat->val.ipv6.addr, 16); /* network byte order */
node->node.node.pfx = pat->val.ipv6.mask;
/* Insert the entry. */
ebmb_insert_prefix(&expr->pattern_tree_2, &node->node, 16);
node->from_ref = pat->ref->tree_head;
pat->ref->tree_head = &node->from_ref;
expr->ref->revision = rdtsc();
expr->ref->entry_cnt++;
/* that's ok */
return 1;
}
return 0;
}
int pat_idx_tree_str(struct pattern_expr *expr, struct pattern *pat, char **err)
{
int len;
struct pattern_tree *node;
/* Only string can be indexed */
if (pat->type != SMP_T_STR) {
memprintf(err, "internal error: string expected, but the type is '%s'",
smp_to_type[pat->type]);
return 0;
}
/* If the flag PAT_F_IGNORE_CASE is set, we cannot use trees */
if (expr->mflags & PAT_MF_IGNORE_CASE)
return pat_idx_list_str(expr, pat, err);
/* Process the key len */
len = strlen(pat->ptr.str) + 1;
/* node memory allocation */
node = calloc(1, sizeof(*node) + len);
if (!node) {
memprintf(err, "out of memory while loading pattern");
return 0;
}
/* copy the pointer to sample associated to this node */
node->data = pat->data;
node->ref = pat->ref;
/* copy the string */
memcpy(node->node.key, pat->ptr.str, len);
/* index the new node */
ebst_insert(&expr->pattern_tree, &node->node);
node->from_ref = pat->ref->tree_head;
pat->ref->tree_head = &node->from_ref;
expr->ref->revision = rdtsc();
expr->ref->entry_cnt++;
/* that's ok */
return 1;
}
int pat_idx_tree_pfx(struct pattern_expr *expr, struct pattern *pat, char **err)
{
int len;
struct pattern_tree *node;
/* Only string can be indexed */
if (pat->type != SMP_T_STR) {
memprintf(err, "internal error: string expected, but the type is '%s'",
smp_to_type[pat->type]);
return 0;
}
/* If the flag PAT_F_IGNORE_CASE is set, we cannot use trees */
if (expr->mflags & PAT_MF_IGNORE_CASE)
return pat_idx_list_str(expr, pat, err);
/* Process the key len */
len = strlen(pat->ptr.str);
/* node memory allocation */
node = calloc(1, sizeof(*node) + len + 1);
if (!node) {
memprintf(err, "out of memory while loading pattern");
return 0;
}
/* copy the pointer to sample associated to this node */
node->data = pat->data;
node->ref = pat->ref;
/* copy the string and the trailing zero */
memcpy(node->node.key, pat->ptr.str, len + 1);
node->node.node.pfx = len * 8;
/* index the new node */
ebmb_insert_prefix(&expr->pattern_tree, &node->node, len);
node->from_ref = pat->ref->tree_head;
pat->ref->tree_head = &node->from_ref;
expr->ref->revision = rdtsc();
expr->ref->entry_cnt++;
/* that's ok */
return 1;
}
/* Deletes all patterns from reference <elt>. Note that all of their
* expressions must be locked, and the pattern lock must be held as well.
*/
void pat_delete_gen(struct pat_ref *ref, struct pat_ref_elt *elt)
{
struct pattern_tree *tree;
struct pattern_list *pat;
void **node;
/* delete all known tree nodes. They are all allocated inline */
for (node = elt->tree_head; node;) {
tree = container_of(node, struct pattern_tree, from_ref);
node = *node;
BUG_ON(tree->ref != elt);
ebmb_delete(&tree->node);
free(tree->data);
free(tree);
}
/* delete all list nodes and free their pattern entries (str/reg) */
for (node = elt->list_head; node;) {
pat = container_of(node, struct pattern_list, from_ref);
node = *node;
BUG_ON(pat->pat.ref != elt);
/* Delete and free entry. */
LIST_DELETE(&pat->list);
if (pat->pat.sflags & PAT_SF_REGFREE)
regex_free(pat->pat.ptr.reg);
else
free(pat->pat.ptr.ptr);
free(pat->pat.data);
free(pat);
}
/* update revision number to refresh the cache */
ref->revision = rdtsc();
ref->entry_cnt--;
elt->tree_head = NULL;
elt->list_head = NULL;
}
void pattern_init_expr(struct pattern_expr *expr)
{
LIST_INIT(&expr->patterns);
expr->pattern_tree = EB_ROOT;
expr->pattern_tree_2 = EB_ROOT;
}
void pattern_init_head(struct pattern_head *head)
{
LIST_INIT(&head->head);
}
/* The following functions are relative to the management of the reference
* lists. These lists are used to store the original pattern and associated
* value as string form.
*
* This is used with modifiable ACL and MAPS
*
* The pattern reference are stored with two identifiers: the unique_id and
* the reference.
*
* The reference identify a file. Each file with the same name point to the
* same reference. We can register many times one file. If the file is modified,
* all his dependencies are also modified. The reference can be used with map or
* acl.
*
* The unique_id identify inline acl. The unique id is unique for each acl.
* You cannot force the same id in the configuration file, because this repoort
* an error.
*
* A particular case appears if the filename is a number. In this case, the
* unique_id is set with the number represented by the filename and the
* reference is also set. This method prevent double unique_id.
*
*/
/* This function looks up a reference by name. If the reference is found, a
* pointer to the struct pat_ref is returned, otherwise NULL is returned.
*/
struct pat_ref *pat_ref_lookup(const char *reference)
{
struct pat_ref *ref;
list_for_each_entry(ref, &pattern_reference, list)
if (ref->reference && strcmp(reference, ref->reference) == 0)
return ref;
return NULL;
}
/* This function looks up a reference's unique id. If the reference is found, a
* pointer to the struct pat_ref is returned, otherwise NULL is returned.
*/
struct pat_ref *pat_ref_lookupid(int unique_id)
{
struct pat_ref *ref;
list_for_each_entry(ref, &pattern_reference, list)
if (ref->unique_id == unique_id)
return ref;
return NULL;
}
/* This function removes from the pattern reference <ref> all the patterns
* attached to the reference element <elt>, and the element itself. The
* reference must be locked.
*/
void pat_ref_delete_by_ptr(struct pat_ref *ref, struct pat_ref_elt *elt)
{
struct pattern_expr *expr;
struct bref *bref, *back;
/*
* we have to unlink all watchers from this reference pattern. We must
* not relink them if this elt was the last one in the list.
*/
list_for_each_entry_safe(bref, back, &elt->back_refs, users) {
LIST_DELETE(&bref->users);
LIST_INIT(&bref->users);
if (elt->list.n != &ref->head)
LIST_APPEND(&LIST_ELEM(elt->list.n, typeof(elt), list)->back_refs, &bref->users);
bref->ref = elt->list.n;
}
/* delete all entries from all expressions for this pattern */
list_for_each_entry(expr, &ref->pat, list)
HA_RWLOCK_WRLOCK(PATEXP_LOCK, &expr->lock);
pat_delete_gen(ref, elt);
list_for_each_entry(expr, &ref->pat, list)
HA_RWLOCK_WRUNLOCK(PATEXP_LOCK, &expr->lock);
LIST_DELETE(&elt->list);
free(elt->sample);
free(elt->pattern);
free(elt);
}
/* This function removes all the patterns matching the pointer <refelt> from
* the reference and from each expr member of this reference. This function
* returns 1 if the entry was found and deleted, otherwise zero.
*/
int pat_ref_delete_by_id(struct pat_ref *ref, struct pat_ref_elt *refelt)
{
struct pat_ref_elt *elt, *safe;
/* delete pattern from reference */
list_for_each_entry_safe(elt, safe, &ref->head, list) {
if (elt == refelt) {
pat_ref_delete_by_ptr(ref, elt);
return 1;
}
}
return 0;
}
/* This function removes all patterns matching <key> from the reference
* and from each expr member of the reference. This function returns 1
* if the deletion is done and returns 0 is the entry is not found.
*/
int pat_ref_delete(struct pat_ref *ref, const char *key)
{
struct pat_ref_elt *elt, *safe;
int found = 0;
/* delete pattern from reference */
list_for_each_entry_safe(elt, safe, &ref->head, list) {
if (strcmp(key, elt->pattern) == 0) {
pat_ref_delete_by_ptr(ref, elt);
found = 1;
}
}
return found;
}
/*
* find and return an element <elt> matching <key> in a reference <ref>
* return NULL if not found
*/
struct pat_ref_elt *pat_ref_find_elt(struct pat_ref *ref, const char *key)
{
struct pat_ref_elt *elt;
list_for_each_entry(elt, &ref->head, list) {
if (strcmp(key, elt->pattern) == 0)
return elt;
}
return NULL;
}
/* This function modifies the sample of pat_ref_elt <elt> in all expressions
* found under <ref> to become <value>. It is assumed that the caller has
* already verified that <elt> belongs to <ref>.
*/
static inline int pat_ref_set_elt(struct pat_ref *ref, struct pat_ref_elt *elt,
const char *value, char **err)
{
struct pattern_expr *expr;
struct sample_data **data;
char *sample;
struct sample_data test;
/* Try all needed converters. */
list_for_each_entry(expr, &ref->pat, list) {
if (!expr->pat_head->parse_smp)
continue;
if (!expr->pat_head->parse_smp(value, &test)) {
memprintf(err, "unable to parse '%s'", value);
return 0;
}
}
/* Modify pattern from reference. */
sample = strdup(value);
if (!sample) {
memprintf(err, "out of memory error");
return 0;
}
/* Load sample in each reference. All the conversions are tested
* below, normally these calls don't fail.
*/
list_for_each_entry(expr, &ref->pat, list) {
if (!expr->pat_head->parse_smp)
continue;
HA_RWLOCK_WRLOCK(PATEXP_LOCK, &expr->lock);
data = pattern_find_smp(expr, elt);
if (data && *data && !expr->pat_head->parse_smp(sample, *data))
*data = NULL;
HA_RWLOCK_WRUNLOCK(PATEXP_LOCK, &expr->lock);
}
/* free old sample only when all exprs are updated */
free(elt->sample);
elt->sample = sample;
return 1;
}
/* This function modifies the sample of pat_ref_elt <refelt> in all expressions
* found under <ref> to become <value>, after checking that <refelt> really
* belongs to <ref>.
*/
int pat_ref_set_by_id(struct pat_ref *ref, struct pat_ref_elt *refelt, const char *value, char **err)
{
struct pat_ref_elt *elt;
/* Look for pattern in the reference. */
list_for_each_entry(elt, &ref->head, list) {
if (elt == refelt) {
if (!pat_ref_set_elt(ref, elt, value, err))
return 0;
return 1;
}
}
memprintf(err, "key or pattern not found");
return 0;
}
/* This function modifies to <value> the sample of all patterns matching <key>
* under <ref>.
*/
int pat_ref_set(struct pat_ref *ref, const char *key, const char *value, char **err)
{
struct pat_ref_elt *elt;
int found = 0;
char *_merr;
char **merr;
if (err) {
merr = &_merr;
*merr = NULL;
}
else
merr = NULL;
/* Look for pattern in the reference. */
list_for_each_entry(elt, &ref->head, list) {
if (strcmp(key, elt->pattern) == 0) {
if (!pat_ref_set_elt(ref, elt, value, merr)) {
if (err && merr) {
if (!found) {
*err = *merr;
} else {
memprintf(err, "%s, %s", *err, *merr);
ha_free(merr);
}
}
}
found = 1;
}
}
if (!found) {
memprintf(err, "entry not found");
return 0;
}
return 1;
}
/* This function creates a new reference. <ref> is the reference name.
* <flags> are PAT_REF_*. /!\ The reference is not checked, and must
* be unique. The user must check the reference with "pat_ref_lookup()"
* before calling this function. If the function fails, it returns NULL,
* otherwise it returns the new struct pat_ref.
*/
struct pat_ref *pat_ref_new(const char *reference, const char *display, unsigned int flags)
{
struct pat_ref *ref;
ref = calloc(1, sizeof(*ref));
if (!ref)
return NULL;
if (display) {
ref->display = strdup(display);
if (!ref->display) {
free(ref);
return NULL;
}
}
ref->reference = strdup(reference);
if (!ref->reference) {
free(ref->display);
free(ref);
return NULL;
}
ref->flags = flags;
ref->unique_id = -1;
ref->revision = 0;
ref->entry_cnt = 0;
LIST_INIT(&ref->head);
LIST_INIT(&ref->pat);
HA_SPIN_INIT(&ref->lock);
LIST_APPEND(&pattern_reference, &ref->list);
return ref;
}
/* This function creates a new reference. <unique_id> is the unique id. If
* the value of <unique_id> is -1, the unique id is calculated later.
* <flags> are PAT_REF_*. /!\ The reference is not checked, and must
* be unique. The user must check the reference with "pat_ref_lookup()"
* or pat_ref_lookupid before calling this function. If the function
* fails, it returns NULL, otherwise it returns the new struct pat_ref.
*/
struct pat_ref *pat_ref_newid(int unique_id, const char *display, unsigned int flags)
{
struct pat_ref *ref;
ref = calloc(1, sizeof(*ref));
if (!ref)
return NULL;
if (display) {
ref->display = strdup(display);
if (!ref->display) {
free(ref);
return NULL;
}
}
ref->reference = NULL;
ref->flags = flags;
ref->curr_gen = 0;
ref->next_gen = 0;
ref->unique_id = unique_id;
LIST_INIT(&ref->head);
LIST_INIT(&ref->pat);
HA_SPIN_INIT(&ref->lock);
LIST_APPEND(&pattern_reference, &ref->list);
return ref;
}
/* This function adds entry to <ref>. It can fail on memory error. It returns
* the newly added element on success, or NULL on failure. The PATREF_LOCK on
* <ref> must be held. It sets the newly created pattern's generation number
* to the same value as the reference's.
*/
struct pat_ref_elt *pat_ref_append(struct pat_ref *ref, const char *pattern, const char *sample, int line)
{
struct pat_ref_elt *elt;
elt = calloc(1, sizeof(*elt));
if (!elt)
goto fail;
elt->gen_id = ref->curr_gen;
elt->line = line;
elt->pattern = strdup(pattern);
if (!elt->pattern)
goto fail;
if (sample) {
elt->sample = strdup(sample);
if (!elt->sample)
goto fail;
}
LIST_INIT(&elt->back_refs);
elt->list_head = NULL;
elt->tree_head = NULL;
LIST_APPEND(&ref->head, &elt->list);
return elt;
fail:
if (elt)
free(elt->pattern);
free(elt);
return NULL;
}
/* This function creates sample found in <elt>, parses the pattern also
* found in <elt> and inserts it in <expr>. The function copies <patflags>
* into <expr>. If the function fails, it returns 0 and <err> is filled.
* In success case, the function returns 1.
*/
int pat_ref_push(struct pat_ref_elt *elt, struct pattern_expr *expr,
int patflags, char **err)
{
struct sample_data *data;
struct pattern pattern;
/* Create sample */
if (elt->sample && expr->pat_head->parse_smp) {
/* New sample. */
data = malloc(sizeof(*data));
if (!data)
return 0;
/* Parse value. */
if (!expr->pat_head->parse_smp(elt->sample, data)) {
memprintf(err, "unable to parse '%s'", elt->sample);
free(data);
return 0;
}
}
else
data = NULL;
/* initialise pattern */
memset(&pattern, 0, sizeof(pattern));
pattern.data = data;
pattern.ref = elt;
/* parse pattern */
if (!expr->pat_head->parse(elt->pattern, &pattern, expr->mflags, err)) {
free(data);
return 0;
}
HA_RWLOCK_WRLOCK(PATEXP_LOCK, &expr->lock);
/* index pattern */
if (!expr->pat_head->index(expr, &pattern, err)) {
HA_RWLOCK_WRUNLOCK(PATEXP_LOCK, &expr->lock);
free(data);
return 0;
}
HA_RWLOCK_WRUNLOCK(PATEXP_LOCK, &expr->lock);
return 1;
}
/* This function tries to commit entry <elt> into <ref>. The new entry must
* have already been inserted using pat_ref_append(), and its generation number
* may have been adjusted as it will not be changed. <err> must point to a NULL
* pointer. The PATREF lock on <ref> must be held. All the pattern_expr for
* this reference will be updated (parsing, indexing). On success, non-zero is
* returned. On failure, all the operation is rolled back (the element is
* deleted from all expressions and is freed), zero is returned and the error
* pointer <err> may have been updated (and the caller must free it). Failure
* causes include memory allocation, parsing error or indexing error.
*/
int pat_ref_commit_elt(struct pat_ref *ref, struct pat_ref_elt *elt, char **err)
{
struct pattern_expr *expr;
list_for_each_entry(expr, &ref->pat, list) {
if (!pat_ref_push(elt, expr, 0, err)) {
pat_ref_delete_by_ptr(ref, elt);
return 0;
}
}
return 1;
}
/* Loads <pattern>:<sample> into <ref> for generation <gen>. <sample> may be
* NULL if none exists (e.g. ACL). If not needed, the generation number should
* be set to ref->curr_gen. The error pointer must initially point to NULL. The
* new entry will be propagated to all use places, involving allocation, parsing
* and indexing. On error (parsing, allocation), the operation will be rolled
* back, an error may be reported, and NULL will be reported. On success, the
* freshly allocated element will be returned. The PATREF lock on <ref> must be
* held during the operation.
*/
struct pat_ref_elt *pat_ref_load(struct pat_ref *ref, unsigned int gen,
const char *pattern, const char *sample,
int line, char **err)
{
struct pat_ref_elt *elt;
elt = pat_ref_append(ref, pattern, sample, line);
if (elt) {
elt->gen_id = gen;
if (!pat_ref_commit_elt(ref, elt, err))
elt = NULL;
} else
memprintf(err, "out of memory error");
return elt;
}
/* This function adds entry to <ref>. It can fail on memory error. The new
* entry is added at all the pattern_expr registered in this reference. The
* function stops on the first error encountered. It returns 0 and <err> is
* filled. If an error is encountered, the complete add operation is cancelled.
* If the insertion is a success the function returns 1.
*/
int pat_ref_add(struct pat_ref *ref,
const char *pattern, const char *sample,
char **err)
{
return !!pat_ref_load(ref, ref->curr_gen, pattern, sample, -1, err);
}
/* This function purges all elements from <ref> whose generation is included in
* the range of <from> to <to> (inclusive), taking wrapping into consideration.
* It will not purge more than <budget> entries at once, in order to remain
* responsive. If budget is negative, no limit is applied.
* The caller must already hold the PATREF_LOCK on <ref>. The function will
* take the PATEXP_LOCK on all expressions of the pattern as needed. It returns
* non-zero on completion, or zero if it had to stop before the end after
* <budget> was depleted.
*/
int pat_ref_purge_range(struct pat_ref *ref, uint from, uint to, int budget)
{
struct pat_ref_elt *elt, *elt_bck;
struct bref *bref, *bref_bck;
struct pattern_expr *expr;
int done;
list_for_each_entry(expr, &ref->pat, list)
HA_RWLOCK_WRLOCK(PATEXP_LOCK, &expr->lock);
/* all expr are locked, we can safely remove all pat_ref */
/* assume completion for e.g. empty lists */
done = 1;
list_for_each_entry_safe(elt, elt_bck, &ref->head, list) {
if (elt->gen_id - from > to - from)
continue;
if (budget >= 0 && !budget--) {
done = 0;
break;
}
/*
* we have to unlink all watchers from this reference pattern. We must
* not relink them if this elt was the last one in the list.
*/
list_for_each_entry_safe(bref, bref_bck, &elt->back_refs, users) {
LIST_DELETE(&bref->users);
LIST_INIT(&bref->users);
if (elt->list.n != &ref->head)
LIST_APPEND(&LIST_ELEM(elt->list.n, typeof(elt), list)->back_refs, &bref->users);
bref->ref = elt->list.n;
}
/* delete the storage for all representations of this pattern. */
pat_delete_gen(ref, elt);
LIST_DELETE(&elt->list);
free(elt->pattern);
free(elt->sample);
free(elt);
}
list_for_each_entry(expr, &ref->pat, list)
HA_RWLOCK_WRUNLOCK(PATEXP_LOCK, &expr->lock);
#if defined(HA_HAVE_MALLOC_TRIM)
if (done) {
malloc_trim(0);
}
#endif
return done;
}
/* This function prunes all entries of <ref> and all their associated
* pattern_expr. It may return before the end of the list is reached,
* returning 0, to yield, indicating to the caller that it must call it again.
* until it returns non-zero. All patterns are purged, both current ones and
* future or incomplete ones. This is used by "clear map" or "clear acl".
*/
int pat_ref_prune(struct pat_ref *ref)
{
return pat_ref_purge_range(ref, 0, ~0, 100);
}
/* This function looks up any existing reference <ref> in pattern_head <head>, and
* returns the associated pattern_expr pointer if found, otherwise NULL.
*/
struct pattern_expr *pattern_lookup_expr(struct pattern_head *head, struct pat_ref *ref)
{
struct pattern_expr_list *expr;
list_for_each_entry(expr, &head->head, list)
if (expr->expr->ref == ref)
return expr->expr;
return NULL;
}
/* This function creates new pattern_expr associated to the reference <ref>.
* <ref> can be NULL. If an error occurs, the function returns NULL and
* <err> is filled. Otherwise, the function returns new pattern_expr linked
* with <head> and <ref>.
*
* The returned value can be an already filled pattern list, in this case the
* flag <reuse> is set.
*/
struct pattern_expr *pattern_new_expr(struct pattern_head *head, struct pat_ref *ref,
int patflags, char **err, int *reuse)
{
struct pattern_expr *expr;
struct pattern_expr_list *list;
if (reuse)
*reuse = 0;
/* Memory and initialization of the chain element. */
list = calloc(1, sizeof(*list));
if (!list) {
memprintf(err, "out of memory");
return NULL;
}
/* Look for existing similar expr. No that only the index, parse and
* parse_smp function must be identical for having similar pattern.
* The other function depends of these first.
*/
if (ref) {
list_for_each_entry(expr, &ref->pat, list)
if (expr->pat_head->index == head->index &&
expr->pat_head->parse == head->parse &&
expr->pat_head->parse_smp == head->parse_smp &&
expr->mflags == patflags)
break;
if (&expr->list == &ref->pat)
expr = NULL;
}
else
expr = NULL;
/* If no similar expr was found, we create new expr. */
if (!expr) {
/* Get a lot of memory for the expr struct. */
expr = calloc(1, sizeof(*expr));
if (!expr) {
free(list);
memprintf(err, "out of memory");
return NULL;
}
/* Initialize this new expr. */
pattern_init_expr(expr);
/* Copy the pattern matching and indexing flags. */
expr->mflags = patflags;
/* This new pattern expression reference one of his heads. */
expr->pat_head = head;
/* Link with ref, or to self to facilitate LIST_DELETE() */
if (ref)
LIST_APPEND(&ref->pat, &expr->list);
else
LIST_INIT(&expr->list);
expr->ref = ref;
HA_RWLOCK_INIT(&expr->lock);
/* We must free this pattern if it is no more used. */
list->do_free = 1;
}
else {
/* If the pattern used already exists, it is already linked
* with ref and we must not free it.
*/
list->do_free = 0;
if (reuse)
*reuse = 1;
}
/* The new list element reference the pattern_expr. */
list->expr = expr;
/* Link the list element with the pattern_head. */
LIST_APPEND(&head->head, &list->list);
return expr;
}
/* Reads patterns from a file. If <err_msg> is non-NULL, an error message will
* be returned there on errors and the caller will have to free it.
*
* The file contains one key + value per line. Lines which start with '#' are
* ignored, just like empty lines. Leading tabs/spaces are stripped. The key is
* then the first "word" (series of non-space/tabs characters), and the value is
* what follows this series of space/tab till the end of the line excluding
* trailing spaces/tabs.
*
* Example :
*
* # this is a comment and is ignored
* 62.212.114.60 1wt.eu \n
* <-><-----------><---><----><---->
* | | | | `--- trailing spaces ignored
* | | | `-------- value
* | | `--------------- middle spaces ignored
* | `------------------------ key
* `-------------------------------- leading spaces ignored
*
* Return non-zero in case of success, otherwise 0.
*/
int pat_ref_read_from_file_smp(struct pat_ref *ref, const char *filename, char **err)
{
FILE *file;
char *c;
int ret = 0;
int line = 0;
char *key_beg;
char *key_end;
char *value_beg;
char *value_end;
file = fopen(filename, "r");
if (!file) {
memprintf(err, "failed to open pattern file <%s>", filename);
return 0;
}
/* now parse all patterns. The file may contain only one pattern
* followed by one value per line. The start spaces, separator spaces
* and and spaces are stripped. Each can contain comment started by '#'
*/
while (fgets(trash.area, trash.size, file) != NULL) {
line++;
c = trash.area;
/* ignore lines beginning with a dash */
if (*c == '#')
continue;
/* strip leading spaces and tabs */
while (*c == ' ' || *c == '\t')
c++;
/* empty lines are ignored too */
if (*c == '\0' || *c == '\r' || *c == '\n')
continue;
/* look for the end of the key */
key_beg = c;
while (*c && *c != ' ' && *c != '\t' && *c != '\n' && *c != '\r')
c++;
key_end = c;
/* strip middle spaces and tabs */
while (*c == ' ' || *c == '\t')
c++;
/* look for the end of the value, it is the end of the line */
value_beg = c;
while (*c && *c != '\n' && *c != '\r')
c++;
value_end = c;
/* trim possibly trailing spaces and tabs */
while (value_end > value_beg && (value_end[-1] == ' ' || value_end[-1] == '\t'))
value_end--;
/* set final \0 and check entries */
*key_end = '\0';
*value_end = '\0';
/* insert values */
if (!pat_ref_append(ref, key_beg, value_beg, line)) {
memprintf(err, "out of memory");
goto out_close;
}
}
if (ferror(file)) {
memprintf(err, "error encountered while reading <%s> : %s",
filename, strerror(errno));
goto out_close;
}
/* success */
ret = 1;
out_close:
fclose(file);
return ret;
}
/* Reads patterns from a file. If <err_msg> is non-NULL, an error message will
* be returned there on errors and the caller will have to free it.
*/
int pat_ref_read_from_file(struct pat_ref *ref, const char *filename, char **err)
{
FILE *file;
char *c;
char *arg;
int ret = 0;
int line = 0;
file = fopen(filename, "r");
if (!file) {
memprintf(err, "failed to open pattern file <%s>", filename);
return 0;
}
/* now parse all patterns. The file may contain only one pattern per
* line. If the line contains spaces, they will be part of the pattern.
* The pattern stops at the first CR, LF or EOF encountered.
*/
while (fgets(trash.area, trash.size, file) != NULL) {
line++;
c = trash.area;
/* ignore lines beginning with a dash */
if (*c == '#')
continue;
/* strip leading spaces and tabs */
while (*c == ' ' || *c == '\t')
c++;
arg = c;
while (*c && *c != '\n' && *c != '\r')
c++;
*c = 0;
/* empty lines are ignored too */
if (c == arg)
continue;
if (!pat_ref_append(ref, arg, NULL, line)) {
memprintf(err, "out of memory when loading patterns from file <%s>", filename);
goto out_close;
}
}
if (ferror(file)) {
memprintf(err, "error encountered while reading <%s> : %s",
filename, strerror(errno));
goto out_close;
}
ret = 1; /* success */
out_close:
fclose(file);
return ret;
}
int pattern_read_from_file(struct pattern_head *head, unsigned int refflags,
const char *filename, int patflags, int load_smp,
char **err, const char *file, int line)
{
struct pat_ref *ref;
struct pattern_expr *expr;
struct pat_ref_elt *elt;
int reuse = 0;
/* Lookup for the existing reference. */
ref = pat_ref_lookup(filename);
/* If the reference doesn't exists, create it and load associated file. */
if (!ref) {
chunk_printf(&trash,
"pattern loaded from file '%s' used by %s at file '%s' line %d",
filename, refflags & PAT_REF_MAP ? "map" : "acl", file, line);
ref = pat_ref_new(filename, trash.area, refflags);
if (!ref) {
memprintf(err, "out of memory");
return 0;
}
if (load_smp) {
ref->flags |= PAT_REF_SMP;
if (!pat_ref_read_from_file_smp(ref, filename, err))
return 0;
}
else {
if (!pat_ref_read_from_file(ref, filename, err))
return 0;
}
}
else {
/* The reference already exists, check the map compatibility. */
/* If the load require samples and the flag PAT_REF_SMP is not set,
* the reference doesn't contain sample, and cannot be used.
*/
if (load_smp) {
if (!(ref->flags & PAT_REF_SMP)) {
memprintf(err, "The file \"%s\" is already used as one column file "
"and cannot be used by as two column file.",
filename);
return 0;
}
}
else {
/* The load doesn't require samples. If the flag PAT_REF_SMP is
* set, the reference contains a sample, and cannot be used.
*/
if (ref->flags & PAT_REF_SMP) {
memprintf(err, "The file \"%s\" is already used as two column file "
"and cannot be used by as one column file.",
filename);
return 0;
}
}
/* Extends display */
chunk_printf(&trash, "%s", ref->display);
chunk_appendf(&trash, ", by %s at file '%s' line %d",
refflags & PAT_REF_MAP ? "map" : "acl", file, line);
free(ref->display);
ref->display = strdup(trash.area);
if (!ref->display) {
memprintf(err, "out of memory");
return 0;
}
/* Merge flags. */
ref->flags |= refflags;
}
/* Now, we can loading patterns from the reference. */
/* Lookup for existing reference in the head. If the reference
* doesn't exists, create it.
*/
expr = pattern_lookup_expr(head, ref);
if (!expr || (expr->mflags != patflags)) {
expr = pattern_new_expr(head, ref, patflags, err, &reuse);
if (!expr)
return 0;
}
/* The returned expression may be not empty, because the function
* "pattern_new_expr" lookup for similar pattern list and can
* reuse a already filled pattern list. In this case, we can not
* reload the patterns.
*/
if (reuse)
return 1;
/* Load reference content in the pattern expression. */
list_for_each_entry(elt, &ref->head, list) {
if (!pat_ref_push(elt, expr, patflags, err)) {
if (elt->line > 0)
memprintf(err, "%s at line %d of file '%s'",
*err, elt->line, filename);
return 0;
}
}
return 1;
}
/* This function executes a pattern match on a sample. It applies pattern <expr>
* to sample <smp>. The function returns NULL if the sample don't match. It returns
* non-null if the sample match. If <fill> is true and the sample match, the
* function returns the matched pattern. In many cases, this pattern can be a
* static buffer.
*/
struct pattern *pattern_exec_match(struct pattern_head *head, struct sample *smp, int fill)
{
struct pattern_expr_list *list;
struct pattern *pat;
if (!head->match) {
if (fill) {
static_pattern.data = NULL;
static_pattern.ref = NULL;
static_pattern.sflags = 0;
static_pattern.type = SMP_T_SINT;
static_pattern.val.i = 1;
}
return &static_pattern;
}
/* convert input to string */
if (!sample_convert(smp, head->expect_type))
return NULL;
list_for_each_entry(list, &head->head, list) {
HA_RWLOCK_RDLOCK(PATEXP_LOCK, &list->expr->lock);
pat = head->match(smp, list->expr, fill);
if (pat) {
/* We duplicate the pattern cause it could be modified
by another thread */
if (pat != &static_pattern) {
memcpy(&static_pattern, pat, sizeof(struct pattern));
pat = &static_pattern;
}
/* We also duplicate the sample data for
same reason */
if (pat->data && (pat->data != &static_sample_data)) {
switch(pat->data->type) {
case SMP_T_STR:
static_sample_data.type = SMP_T_STR;
static_sample_data.u.str = *get_trash_chunk();
static_sample_data.u.str.data = pat->data->u.str.data;
if (static_sample_data.u.str.data >= static_sample_data.u.str.size)
static_sample_data.u.str.data = static_sample_data.u.str.size - 1;
memcpy(static_sample_data.u.str.area,
pat->data->u.str.area, static_sample_data.u.str.data);
static_sample_data.u.str.area[static_sample_data.u.str.data] = 0;
pat->data = &static_sample_data;
break;
case SMP_T_IPV4:
case SMP_T_IPV6:
case SMP_T_SINT:
memcpy(&static_sample_data, pat->data, sizeof(struct sample_data));
pat->data = &static_sample_data;
break;
default:
/* unimplemented pattern type */
pat->data = NULL;
break;
}
}
HA_RWLOCK_RDUNLOCK(PATEXP_LOCK, &list->expr->lock);
return pat;
}
HA_RWLOCK_RDUNLOCK(PATEXP_LOCK, &list->expr->lock);
}
return NULL;
}
/* This function prunes the pattern expressions starting at pattern_head <head>. */
void pattern_prune(struct pattern_head *head)
{
struct pattern_expr_list *list, *safe;
list_for_each_entry_safe(list, safe, &head->head, list) {
LIST_DELETE(&list->list);
if (list->do_free) {
LIST_DELETE(&list->expr->list);
HA_RWLOCK_WRLOCK(PATEXP_LOCK, &list->expr->lock);
head->prune(list->expr);
HA_RWLOCK_WRUNLOCK(PATEXP_LOCK, &list->expr->lock);
free(list->expr);
}
free(list);
}
}
/* This function searches occurrences of pattern reference element <ref> in
* expression <expr> and returns a pointer to a pointer of the sample storage.
* If <ref> is not found, NULL is returned.
*/
struct sample_data **pattern_find_smp(struct pattern_expr *expr, struct pat_ref_elt *ref)
{
struct ebmb_node *node;
struct pattern_tree *elt;
struct pattern_list *pat;
for (node = ebmb_first(&expr->pattern_tree);
node;
node = ebmb_next(node)) {
elt = container_of(node, struct pattern_tree, node);
if (elt->ref == ref)
return &elt->data;
}
for (node = ebmb_first(&expr->pattern_tree_2);
node;
node = ebmb_next(node)) {
elt = container_of(node, struct pattern_tree, node);
if (elt->ref == ref)
return &elt->data;
}
list_for_each_entry(pat, &expr->patterns, list)
if (pat->pat.ref == ref)
return &pat->pat.data;
return NULL;
}
/* This function compares two pat_ref** on their unique_id, and returns -1/0/1
* depending on their order (suitable for sorting).
*/
static int cmp_pat_ref(const void *_a, const void *_b)
{
struct pat_ref * const *a = _a;
struct pat_ref * const *b = _b;
if ((*a)->unique_id < (*b)->unique_id)
return -1;
else if ((*a)->unique_id > (*b)->unique_id)
return 1;
return 0;
}
/* This function finalizes the configuration parsing. It sets all the
* automatic ids.
*/
int pattern_finalize_config(void)
{
size_t len = 0;
size_t unassigned_pos = 0;
int next_unique_id = 0;
size_t i, j;
struct pat_ref *ref, **arr;
struct list pr = LIST_HEAD_INIT(pr);
pat_lru_seed = ha_random();
/* Count pat_refs with user defined unique_id and totalt count */
list_for_each_entry(ref, &pattern_reference, list) {
len++;
if (ref->unique_id != -1)
unassigned_pos++;
}
if (len == 0) {
return 0;
}
arr = calloc(len, sizeof(*arr));
if (arr == NULL) {
ha_alert("Out of memory error.\n");
return ERR_ALERT | ERR_FATAL;
}
i = 0;
j = unassigned_pos;
list_for_each_entry(ref, &pattern_reference, list) {
if (ref->unique_id != -1)
arr[i++] = ref;
else
arr[j++] = ref;
}
/* Sort first segment of array with user-defined unique ids for
* fast lookup when generating unique ids
*/
qsort(arr, unassigned_pos, sizeof(*arr), cmp_pat_ref);
/* Assign unique ids to the rest of the elements */
for (i = unassigned_pos; i < len; i++) {
do {
arr[i]->unique_id = next_unique_id++;
} while (bsearch(&arr[i], arr, unassigned_pos, sizeof(*arr), cmp_pat_ref));
}
/* Sort complete array */
qsort(arr, len, sizeof(*arr), cmp_pat_ref);
/* Convert back to linked list */
for (i = 0; i < len; i++)
LIST_APPEND(&pr, &arr[i]->list);
/* swap root */
LIST_INSERT(&pr, &pattern_reference);
LIST_DELETE(&pr);
free(arr);
return 0;
}
static int pattern_per_thread_lru_alloc()
{
if (!global.tune.pattern_cache)
return 1;
pat_lru_tree = lru64_new(global.tune.pattern_cache);
return !!pat_lru_tree;
}
static void pattern_per_thread_lru_free()
{
lru64_destroy(pat_lru_tree);
}
REGISTER_PER_THREAD_ALLOC(pattern_per_thread_lru_alloc);
REGISTER_PER_THREAD_FREE(pattern_per_thread_lru_free);