| /* |
| * General purpose functions. |
| * |
| * Copyright 2000-2010 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #ifdef __ELF__ |
| #define _GNU_SOURCE |
| #include <dlfcn.h> |
| #include <link.h> |
| #endif |
| |
| #if (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 16)) |
| #include <sys/auxv.h> |
| #endif |
| |
| #include <ctype.h> |
| #include <errno.h> |
| #include <netdb.h> |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <time.h> |
| #include <unistd.h> |
| #include <sys/socket.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <sys/un.h> |
| #include <netinet/in.h> |
| #include <arpa/inet.h> |
| |
| #include <common/chunk.h> |
| #include <common/config.h> |
| #include <common/standard.h> |
| #include <common/tools.h> |
| #include <types/global.h> |
| #include <proto/applet.h> |
| #include <proto/dns.h> |
| #include <proto/hlua.h> |
| #include <proto/listener.h> |
| #include <proto/proto_udp.h> |
| #include <proto/ssl_sock.h> |
| #include <proto/stream_interface.h> |
| #include <proto/task.h> |
| |
| #include <import/eb32tree.h> |
| #include <import/eb32sctree.h> |
| |
| /* This macro returns false if the test __x is false. Many |
| * of the following parsing function must be abort the processing |
| * if it returns 0, so this macro is useful for writing light code. |
| */ |
| #define RET0_UNLESS(__x) do { if (!(__x)) return 0; } while (0) |
| |
| /* enough to store NB_ITOA_STR integers of : |
| * 2^64-1 = 18446744073709551615 or |
| * -2^63 = -9223372036854775808 |
| * |
| * The HTML version needs room for adding the 25 characters |
| * '<span class="rls"></span>' around digits at positions 3N+1 in order |
| * to add spacing at up to 6 positions : 18 446 744 073 709 551 615 |
| */ |
| THREAD_LOCAL char itoa_str[NB_ITOA_STR][171]; |
| THREAD_LOCAL int itoa_idx = 0; /* index of next itoa_str to use */ |
| |
| /* sometimes we'll need to quote strings (eg: in stats), and we don't expect |
| * to quote strings larger than a max configuration line. |
| */ |
| THREAD_LOCAL char quoted_str[NB_QSTR][QSTR_SIZE + 1]; |
| THREAD_LOCAL int quoted_idx = 0; |
| |
| /* |
| * unsigned long long ASCII representation |
| * |
| * return the last char '\0' or NULL if no enough |
| * space in dst |
| */ |
| char *ulltoa(unsigned long long n, char *dst, size_t size) |
| { |
| int i = 0; |
| char *res; |
| |
| switch(n) { |
| case 1ULL ... 9ULL: |
| i = 0; |
| break; |
| |
| case 10ULL ... 99ULL: |
| i = 1; |
| break; |
| |
| case 100ULL ... 999ULL: |
| i = 2; |
| break; |
| |
| case 1000ULL ... 9999ULL: |
| i = 3; |
| break; |
| |
| case 10000ULL ... 99999ULL: |
| i = 4; |
| break; |
| |
| case 100000ULL ... 999999ULL: |
| i = 5; |
| break; |
| |
| case 1000000ULL ... 9999999ULL: |
| i = 6; |
| break; |
| |
| case 10000000ULL ... 99999999ULL: |
| i = 7; |
| break; |
| |
| case 100000000ULL ... 999999999ULL: |
| i = 8; |
| break; |
| |
| case 1000000000ULL ... 9999999999ULL: |
| i = 9; |
| break; |
| |
| case 10000000000ULL ... 99999999999ULL: |
| i = 10; |
| break; |
| |
| case 100000000000ULL ... 999999999999ULL: |
| i = 11; |
| break; |
| |
| case 1000000000000ULL ... 9999999999999ULL: |
| i = 12; |
| break; |
| |
| case 10000000000000ULL ... 99999999999999ULL: |
| i = 13; |
| break; |
| |
| case 100000000000000ULL ... 999999999999999ULL: |
| i = 14; |
| break; |
| |
| case 1000000000000000ULL ... 9999999999999999ULL: |
| i = 15; |
| break; |
| |
| case 10000000000000000ULL ... 99999999999999999ULL: |
| i = 16; |
| break; |
| |
| case 100000000000000000ULL ... 999999999999999999ULL: |
| i = 17; |
| break; |
| |
| case 1000000000000000000ULL ... 9999999999999999999ULL: |
| i = 18; |
| break; |
| |
| case 10000000000000000000ULL ... ULLONG_MAX: |
| i = 19; |
| break; |
| } |
| if (i + 2 > size) // (i + 1) + '\0' |
| return NULL; // too long |
| res = dst + i + 1; |
| *res = '\0'; |
| for (; i >= 0; i--) { |
| dst[i] = n % 10ULL + '0'; |
| n /= 10ULL; |
| } |
| return res; |
| } |
| |
| /* |
| * unsigned long ASCII representation |
| * |
| * return the last char '\0' or NULL if no enough |
| * space in dst |
| */ |
| char *ultoa_o(unsigned long n, char *dst, size_t size) |
| { |
| int i = 0; |
| char *res; |
| |
| switch (n) { |
| case 0U ... 9UL: |
| i = 0; |
| break; |
| |
| case 10U ... 99UL: |
| i = 1; |
| break; |
| |
| case 100U ... 999UL: |
| i = 2; |
| break; |
| |
| case 1000U ... 9999UL: |
| i = 3; |
| break; |
| |
| case 10000U ... 99999UL: |
| i = 4; |
| break; |
| |
| case 100000U ... 999999UL: |
| i = 5; |
| break; |
| |
| case 1000000U ... 9999999UL: |
| i = 6; |
| break; |
| |
| case 10000000U ... 99999999UL: |
| i = 7; |
| break; |
| |
| case 100000000U ... 999999999UL: |
| i = 8; |
| break; |
| #if __WORDSIZE == 32 |
| |
| case 1000000000ULL ... ULONG_MAX: |
| i = 9; |
| break; |
| |
| #elif __WORDSIZE == 64 |
| |
| case 1000000000ULL ... 9999999999UL: |
| i = 9; |
| break; |
| |
| case 10000000000ULL ... 99999999999UL: |
| i = 10; |
| break; |
| |
| case 100000000000ULL ... 999999999999UL: |
| i = 11; |
| break; |
| |
| case 1000000000000ULL ... 9999999999999UL: |
| i = 12; |
| break; |
| |
| case 10000000000000ULL ... 99999999999999UL: |
| i = 13; |
| break; |
| |
| case 100000000000000ULL ... 999999999999999UL: |
| i = 14; |
| break; |
| |
| case 1000000000000000ULL ... 9999999999999999UL: |
| i = 15; |
| break; |
| |
| case 10000000000000000ULL ... 99999999999999999UL: |
| i = 16; |
| break; |
| |
| case 100000000000000000ULL ... 999999999999999999UL: |
| i = 17; |
| break; |
| |
| case 1000000000000000000ULL ... 9999999999999999999UL: |
| i = 18; |
| break; |
| |
| case 10000000000000000000ULL ... ULONG_MAX: |
| i = 19; |
| break; |
| |
| #endif |
| } |
| if (i + 2 > size) // (i + 1) + '\0' |
| return NULL; // too long |
| res = dst + i + 1; |
| *res = '\0'; |
| for (; i >= 0; i--) { |
| dst[i] = n % 10U + '0'; |
| n /= 10U; |
| } |
| return res; |
| } |
| |
| /* |
| * signed long ASCII representation |
| * |
| * return the last char '\0' or NULL if no enough |
| * space in dst |
| */ |
| char *ltoa_o(long int n, char *dst, size_t size) |
| { |
| char *pos = dst; |
| |
| if (n < 0) { |
| if (size < 3) |
| return NULL; // min size is '-' + digit + '\0' but another test in ultoa |
| *pos = '-'; |
| pos++; |
| dst = ultoa_o(-n, pos, size - 1); |
| } else { |
| dst = ultoa_o(n, dst, size); |
| } |
| return dst; |
| } |
| |
| /* |
| * signed long long ASCII representation |
| * |
| * return the last char '\0' or NULL if no enough |
| * space in dst |
| */ |
| char *lltoa(long long n, char *dst, size_t size) |
| { |
| char *pos = dst; |
| |
| if (n < 0) { |
| if (size < 3) |
| return NULL; // min size is '-' + digit + '\0' but another test in ulltoa |
| *pos = '-'; |
| pos++; |
| dst = ulltoa(-n, pos, size - 1); |
| } else { |
| dst = ulltoa(n, dst, size); |
| } |
| return dst; |
| } |
| |
| /* |
| * write a ascii representation of a unsigned into dst, |
| * return a pointer to the last character |
| * Pad the ascii representation with '0', using size. |
| */ |
| char *utoa_pad(unsigned int n, char *dst, size_t size) |
| { |
| int i = 0; |
| char *ret; |
| |
| switch(n) { |
| case 0U ... 9U: |
| i = 0; |
| break; |
| |
| case 10U ... 99U: |
| i = 1; |
| break; |
| |
| case 100U ... 999U: |
| i = 2; |
| break; |
| |
| case 1000U ... 9999U: |
| i = 3; |
| break; |
| |
| case 10000U ... 99999U: |
| i = 4; |
| break; |
| |
| case 100000U ... 999999U: |
| i = 5; |
| break; |
| |
| case 1000000U ... 9999999U: |
| i = 6; |
| break; |
| |
| case 10000000U ... 99999999U: |
| i = 7; |
| break; |
| |
| case 100000000U ... 999999999U: |
| i = 8; |
| break; |
| |
| case 1000000000U ... 4294967295U: |
| i = 9; |
| break; |
| } |
| if (i + 2 > size) // (i + 1) + '\0' |
| return NULL; // too long |
| if (i < size) |
| i = size - 2; // padding - '\0' |
| |
| ret = dst + i + 1; |
| *ret = '\0'; |
| for (; i >= 0; i--) { |
| dst[i] = n % 10U + '0'; |
| n /= 10U; |
| } |
| return ret; |
| } |
| |
| /* |
| * copies at most <size-1> chars from <src> to <dst>. Last char is always |
| * set to 0, unless <size> is 0. The number of chars copied is returned |
| * (excluding the terminating zero). |
| * This code has been optimized for size and speed : on x86, it's 45 bytes |
| * long, uses only registers, and consumes only 4 cycles per char. |
| */ |
| int strlcpy2(char *dst, const char *src, int size) |
| { |
| char *orig = dst; |
| if (size) { |
| while (--size && (*dst = *src)) { |
| src++; dst++; |
| } |
| *dst = 0; |
| } |
| return dst - orig; |
| } |
| |
| /* |
| * This function simply returns a locally allocated string containing |
| * the ascii representation for number 'n' in decimal. |
| */ |
| char *ultoa_r(unsigned long n, char *buffer, int size) |
| { |
| char *pos; |
| |
| pos = buffer + size - 1; |
| *pos-- = '\0'; |
| |
| do { |
| *pos-- = '0' + n % 10; |
| n /= 10; |
| } while (n && pos >= buffer); |
| return pos + 1; |
| } |
| |
| /* |
| * This function simply returns a locally allocated string containing |
| * the ascii representation for number 'n' in decimal. |
| */ |
| char *lltoa_r(long long int in, char *buffer, int size) |
| { |
| char *pos; |
| int neg = 0; |
| unsigned long long int n; |
| |
| pos = buffer + size - 1; |
| *pos-- = '\0'; |
| |
| if (in < 0) { |
| neg = 1; |
| n = -in; |
| } |
| else |
| n = in; |
| |
| do { |
| *pos-- = '0' + n % 10; |
| n /= 10; |
| } while (n && pos >= buffer); |
| if (neg && pos > buffer) |
| *pos-- = '-'; |
| return pos + 1; |
| } |
| |
| /* |
| * This function simply returns a locally allocated string containing |
| * the ascii representation for signed number 'n' in decimal. |
| */ |
| char *sltoa_r(long n, char *buffer, int size) |
| { |
| char *pos; |
| |
| if (n >= 0) |
| return ultoa_r(n, buffer, size); |
| |
| pos = ultoa_r(-n, buffer + 1, size - 1) - 1; |
| *pos = '-'; |
| return pos; |
| } |
| |
| /* |
| * This function simply returns a locally allocated string containing |
| * the ascii representation for number 'n' in decimal, formatted for |
| * HTML output with tags to create visual grouping by 3 digits. The |
| * output needs to support at least 171 characters. |
| */ |
| const char *ulltoh_r(unsigned long long n, char *buffer, int size) |
| { |
| char *start; |
| int digit = 0; |
| |
| start = buffer + size; |
| *--start = '\0'; |
| |
| do { |
| if (digit == 3 && start >= buffer + 7) |
| memcpy(start -= 7, "</span>", 7); |
| |
| if (start >= buffer + 1) { |
| *--start = '0' + n % 10; |
| n /= 10; |
| } |
| |
| if (digit == 3 && start >= buffer + 18) |
| memcpy(start -= 18, "<span class=\"rls\">", 18); |
| |
| if (digit++ == 3) |
| digit = 1; |
| } while (n && start > buffer); |
| return start; |
| } |
| |
| /* |
| * This function simply returns a locally allocated string containing the ascii |
| * representation for number 'n' in decimal, unless n is 0 in which case it |
| * returns the alternate string (or an empty string if the alternate string is |
| * NULL). It use is intended for limits reported in reports, where it's |
| * desirable not to display anything if there is no limit. Warning! it shares |
| * the same vector as ultoa_r(). |
| */ |
| const char *limit_r(unsigned long n, char *buffer, int size, const char *alt) |
| { |
| return (n) ? ultoa_r(n, buffer, size) : (alt ? alt : ""); |
| } |
| |
| /* returns a locally allocated string containing the quoted encoding of the |
| * input string. The output may be truncated to QSTR_SIZE chars, but it is |
| * guaranteed that the string will always be properly terminated. Quotes are |
| * encoded by doubling them as is commonly done in CSV files. QSTR_SIZE must |
| * always be at least 4 chars. |
| */ |
| const char *qstr(const char *str) |
| { |
| char *ret = quoted_str[quoted_idx]; |
| char *p, *end; |
| |
| if (++quoted_idx >= NB_QSTR) |
| quoted_idx = 0; |
| |
| p = ret; |
| end = ret + QSTR_SIZE; |
| |
| *p++ = '"'; |
| |
| /* always keep 3 chars to support passing "" and the ending " */ |
| while (*str && p < end - 3) { |
| if (*str == '"') { |
| *p++ = '"'; |
| *p++ = '"'; |
| } |
| else |
| *p++ = *str; |
| str++; |
| } |
| *p++ = '"'; |
| return ret; |
| } |
| |
| /* |
| * Returns non-zero if character <s> is a hex digit (0-9, a-f, A-F), else zero. |
| * |
| * It looks like this one would be a good candidate for inlining, but this is |
| * not interesting because it around 35 bytes long and often called multiple |
| * times within the same function. |
| */ |
| int ishex(char s) |
| { |
| s -= '0'; |
| if ((unsigned char)s <= 9) |
| return 1; |
| s -= 'A' - '0'; |
| if ((unsigned char)s <= 5) |
| return 1; |
| s -= 'a' - 'A'; |
| if ((unsigned char)s <= 5) |
| return 1; |
| return 0; |
| } |
| |
| /* rounds <i> down to the closest value having max 2 digits */ |
| unsigned int round_2dig(unsigned int i) |
| { |
| unsigned int mul = 1; |
| |
| while (i >= 100) { |
| i /= 10; |
| mul *= 10; |
| } |
| return i * mul; |
| } |
| |
| /* |
| * Checks <name> for invalid characters. Valid chars are [A-Za-z0-9_:.-]. If an |
| * invalid character is found, a pointer to it is returned. If everything is |
| * fine, NULL is returned. |
| */ |
| const char *invalid_char(const char *name) |
| { |
| if (!*name) |
| return name; |
| |
| while (*name) { |
| if (!isalnum((unsigned char)*name) && *name != '.' && *name != ':' && |
| *name != '_' && *name != '-') |
| return name; |
| name++; |
| } |
| return NULL; |
| } |
| |
| /* |
| * Checks <name> for invalid characters. Valid chars are [_.-] and those |
| * accepted by <f> function. |
| * If an invalid character is found, a pointer to it is returned. |
| * If everything is fine, NULL is returned. |
| */ |
| static inline const char *__invalid_char(const char *name, int (*f)(int)) { |
| |
| if (!*name) |
| return name; |
| |
| while (*name) { |
| if (!f((unsigned char)*name) && *name != '.' && |
| *name != '_' && *name != '-') |
| return name; |
| |
| name++; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Checks <name> for invalid characters. Valid chars are [A-Za-z0-9_.-]. |
| * If an invalid character is found, a pointer to it is returned. |
| * If everything is fine, NULL is returned. |
| */ |
| const char *invalid_domainchar(const char *name) { |
| return __invalid_char(name, isalnum); |
| } |
| |
| /* |
| * Checks <name> for invalid characters. Valid chars are [A-Za-z_.-]. |
| * If an invalid character is found, a pointer to it is returned. |
| * If everything is fine, NULL is returned. |
| */ |
| const char *invalid_prefix_char(const char *name) { |
| return __invalid_char(name, isalnum); |
| } |
| |
| /* |
| * converts <str> to a struct sockaddr_storage* provided by the caller. The |
| * caller must have zeroed <sa> first, and may have set sa->ss_family to force |
| * parse a specific address format. If the ss_family is 0 or AF_UNSPEC, then |
| * the function tries to guess the address family from the syntax. If the |
| * family is forced and the format doesn't match, an error is returned. The |
| * string is assumed to contain only an address, no port. The address can be a |
| * dotted IPv4 address, an IPv6 address, a host name, or empty or "*" to |
| * indicate INADDR_ANY. NULL is returned if the host part cannot be resolved. |
| * The return address will only have the address family and the address set, |
| * all other fields remain zero. The string is not supposed to be modified. |
| * The IPv6 '::' address is IN6ADDR_ANY. If <resolve> is non-zero, the hostname |
| * is resolved, otherwise only IP addresses are resolved, and anything else |
| * returns NULL. If the address contains a port, this one is preserved. |
| */ |
| struct sockaddr_storage *str2ip2(const char *str, struct sockaddr_storage *sa, int resolve) |
| { |
| struct hostent *he; |
| /* max IPv6 length, including brackets and terminating NULL */ |
| char tmpip[48]; |
| int port = get_host_port(sa); |
| |
| /* check IPv6 with square brackets */ |
| if (str[0] == '[') { |
| size_t iplength = strlen(str); |
| |
| if (iplength < 4) { |
| /* minimal size is 4 when using brackets "[::]" */ |
| goto fail; |
| } |
| else if (iplength >= sizeof(tmpip)) { |
| /* IPv6 literal can not be larger than tmpip */ |
| goto fail; |
| } |
| else { |
| if (str[iplength - 1] != ']') { |
| /* if address started with bracket, it should end with bracket */ |
| goto fail; |
| } |
| else { |
| memcpy(tmpip, str + 1, iplength - 2); |
| tmpip[iplength - 2] = '\0'; |
| str = tmpip; |
| } |
| } |
| } |
| |
| /* Any IPv6 address */ |
| if (str[0] == ':' && str[1] == ':' && !str[2]) { |
| if (!sa->ss_family || sa->ss_family == AF_UNSPEC) |
| sa->ss_family = AF_INET6; |
| else if (sa->ss_family != AF_INET6) |
| goto fail; |
| set_host_port(sa, port); |
| return sa; |
| } |
| |
| /* Any address for the family, defaults to IPv4 */ |
| if (!str[0] || (str[0] == '*' && !str[1])) { |
| if (!sa->ss_family || sa->ss_family == AF_UNSPEC) |
| sa->ss_family = AF_INET; |
| set_host_port(sa, port); |
| return sa; |
| } |
| |
| /* check for IPv6 first */ |
| if ((!sa->ss_family || sa->ss_family == AF_UNSPEC || sa->ss_family == AF_INET6) && |
| inet_pton(AF_INET6, str, &((struct sockaddr_in6 *)sa)->sin6_addr)) { |
| sa->ss_family = AF_INET6; |
| set_host_port(sa, port); |
| return sa; |
| } |
| |
| /* then check for IPv4 */ |
| if ((!sa->ss_family || sa->ss_family == AF_UNSPEC || sa->ss_family == AF_INET) && |
| inet_pton(AF_INET, str, &((struct sockaddr_in *)sa)->sin_addr)) { |
| sa->ss_family = AF_INET; |
| set_host_port(sa, port); |
| return sa; |
| } |
| |
| if (!resolve) |
| return NULL; |
| |
| if (!dns_hostname_validation(str, NULL)) |
| return NULL; |
| |
| #ifdef USE_GETADDRINFO |
| if (global.tune.options & GTUNE_USE_GAI) { |
| struct addrinfo hints, *result; |
| int success = 0; |
| |
| memset(&result, 0, sizeof(result)); |
| memset(&hints, 0, sizeof(hints)); |
| hints.ai_family = sa->ss_family ? sa->ss_family : AF_UNSPEC; |
| hints.ai_socktype = SOCK_DGRAM; |
| hints.ai_flags = 0; |
| hints.ai_protocol = 0; |
| |
| if (getaddrinfo(str, NULL, &hints, &result) == 0) { |
| if (!sa->ss_family || sa->ss_family == AF_UNSPEC) |
| sa->ss_family = result->ai_family; |
| else if (sa->ss_family != result->ai_family) { |
| freeaddrinfo(result); |
| goto fail; |
| } |
| |
| switch (result->ai_family) { |
| case AF_INET: |
| memcpy((struct sockaddr_in *)sa, result->ai_addr, result->ai_addrlen); |
| set_host_port(sa, port); |
| success = 1; |
| break; |
| case AF_INET6: |
| memcpy((struct sockaddr_in6 *)sa, result->ai_addr, result->ai_addrlen); |
| set_host_port(sa, port); |
| success = 1; |
| break; |
| } |
| } |
| |
| if (result) |
| freeaddrinfo(result); |
| |
| if (success) |
| return sa; |
| } |
| #endif |
| /* try to resolve an IPv4/IPv6 hostname */ |
| he = gethostbyname(str); |
| if (he) { |
| if (!sa->ss_family || sa->ss_family == AF_UNSPEC) |
| sa->ss_family = he->h_addrtype; |
| else if (sa->ss_family != he->h_addrtype) |
| goto fail; |
| |
| switch (sa->ss_family) { |
| case AF_INET: |
| ((struct sockaddr_in *)sa)->sin_addr = *(struct in_addr *) *(he->h_addr_list); |
| set_host_port(sa, port); |
| return sa; |
| case AF_INET6: |
| ((struct sockaddr_in6 *)sa)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list); |
| set_host_port(sa, port); |
| return sa; |
| } |
| } |
| |
| /* unsupported address family */ |
| fail: |
| return NULL; |
| } |
| |
| /* |
| * Converts <str> to a locally allocated struct sockaddr_storage *, and a port |
| * range or offset consisting in two integers that the caller will have to |
| * check to find the relevant input format. The following format are supported : |
| * |
| * String format | address | port | low | high |
| * addr | <addr> | 0 | 0 | 0 |
| * addr: | <addr> | 0 | 0 | 0 |
| * addr:port | <addr> | <port> | <port> | <port> |
| * addr:pl-ph | <addr> | <pl> | <pl> | <ph> |
| * addr:+port | <addr> | <port> | 0 | <port> |
| * addr:-port | <addr> |-<port> | <port> | 0 |
| * |
| * The detection of a port range or increment by the caller is made by |
| * comparing <low> and <high>. If both are equal, then port 0 means no port |
| * was specified. The caller may pass NULL for <low> and <high> if it is not |
| * interested in retrieving port ranges. |
| * |
| * Note that <addr> above may also be : |
| * - empty ("") => family will be AF_INET and address will be INADDR_ANY |
| * - "*" => family will be AF_INET and address will be INADDR_ANY |
| * - "::" => family will be AF_INET6 and address will be IN6ADDR_ANY |
| * - a host name => family and address will depend on host name resolving. |
| * |
| * A prefix may be passed in before the address above to force the family : |
| * - "ipv4@" => force address to resolve as IPv4 and fail if not possible. |
| * - "ipv6@" => force address to resolve as IPv6 and fail if not possible. |
| * - "unix@" => force address to be a path to a UNIX socket even if the |
| * path does not start with a '/' |
| * - 'abns@' -> force address to belong to the abstract namespace (Linux |
| * only). These sockets are just like Unix sockets but without |
| * the need for an underlying file system. The address is a |
| * string. Technically it's like a Unix socket with a zero in |
| * the first byte of the address. |
| * - "fd@" => an integer must follow, and is a file descriptor number. |
| * |
| * IPv6 addresses can be declared with or without square brackets. When using |
| * square brackets for IPv6 addresses, the port separator (colon) is optional. |
| * If not using square brackets, and in order to avoid any ambiguity with |
| * IPv6 addresses, the last colon ':' is mandatory even when no port is specified. |
| * NULL is returned if the address cannot be parsed. The <low> and <high> ports |
| * are always initialized if non-null, even for non-IP families. |
| * |
| * If <pfx> is non-null, it is used as a string prefix before any path-based |
| * address (typically the path to a unix socket). |
| * |
| * if <fqdn> is non-null, it will be filled with : |
| * - a pointer to the FQDN of the server name to resolve if there's one, and |
| * that the caller will have to free(), |
| * - NULL if there was an explicit address that doesn't require resolution. |
| * |
| * Hostnames are only resolved if <resolve> is non-null. Note that if <resolve> |
| * is null, <fqdn> is still honnored so it is possible for the caller to know |
| * whether a resolution failed by setting <resolve> to null and checking if |
| * <fqdn> was filled, indicating the need for a resolution. |
| * |
| * When a file descriptor is passed, its value is put into the s_addr part of |
| * the address when cast to sockaddr_in and the address family is AF_UNSPEC. |
| */ |
| struct sockaddr_storage *str2sa_range(const char *str, int *port, int *low, int *high, char **err, const char *pfx, char **fqdn, int resolve) |
| { |
| static THREAD_LOCAL struct sockaddr_storage ss; |
| struct sockaddr_storage *ret = NULL; |
| char *back, *str2; |
| char *port1, *port2; |
| int portl, porth, porta; |
| int abstract = 0; |
| |
| portl = porth = porta = 0; |
| if (fqdn) |
| *fqdn = NULL; |
| |
| str2 = back = env_expand(strdup(str)); |
| if (str2 == NULL) { |
| memprintf(err, "out of memory in '%s'\n", __FUNCTION__); |
| goto out; |
| } |
| |
| if (!*str2) { |
| memprintf(err, "'%s' resolves to an empty address (environment variable missing?)\n", str); |
| goto out; |
| } |
| |
| memset(&ss, 0, sizeof(ss)); |
| |
| if (strncmp(str2, "unix@", 5) == 0) { |
| str2 += 5; |
| abstract = 0; |
| ss.ss_family = AF_UNIX; |
| } |
| else if (strncmp(str2, "abns@", 5) == 0) { |
| str2 += 5; |
| abstract = 1; |
| ss.ss_family = AF_UNIX; |
| } |
| else if (strncmp(str2, "ipv4@", 5) == 0) { |
| str2 += 5; |
| ss.ss_family = AF_INET; |
| } |
| else if (strncmp(str2, "ipv6@", 5) == 0) { |
| str2 += 5; |
| ss.ss_family = AF_INET6; |
| } |
| else if (*str2 == '/') { |
| ss.ss_family = AF_UNIX; |
| } |
| else |
| ss.ss_family = AF_UNSPEC; |
| |
| if (ss.ss_family == AF_UNSPEC && strncmp(str2, "sockpair@", 9) == 0) { |
| char *endptr; |
| |
| str2 += 9; |
| |
| ((struct sockaddr_in *)&ss)->sin_addr.s_addr = strtol(str2, &endptr, 10); |
| ((struct sockaddr_in *)&ss)->sin_port = 0; |
| |
| if (!*str2 || *endptr) { |
| memprintf(err, "file descriptor '%s' is not a valid integer in '%s'\n", str2, str); |
| goto out; |
| } |
| |
| ss.ss_family = AF_CUST_SOCKPAIR; |
| |
| } |
| else if (ss.ss_family == AF_UNSPEC && strncmp(str2, "fd@", 3) == 0) { |
| char *endptr; |
| |
| str2 += 3; |
| ((struct sockaddr_in *)&ss)->sin_addr.s_addr = strtol(str2, &endptr, 10); |
| ((struct sockaddr_in *)&ss)->sin_port = 0; |
| |
| if (!*str2 || *endptr) { |
| memprintf(err, "file descriptor '%s' is not a valid integer in '%s'\n", str2, str); |
| goto out; |
| } |
| |
| /* we return AF_UNSPEC if we use a file descriptor number */ |
| ss.ss_family = AF_UNSPEC; |
| } |
| else if (ss.ss_family == AF_UNIX) { |
| struct sockaddr_un *un = (struct sockaddr_un *)&ss; |
| int prefix_path_len; |
| int max_path_len; |
| int adr_len; |
| |
| /* complete unix socket path name during startup or soft-restart is |
| * <unix_bind_prefix><path>.<pid>.<bak|tmp> |
| */ |
| prefix_path_len = (pfx && !abstract) ? strlen(pfx) : 0; |
| max_path_len = (sizeof(un->sun_path) - 1) - |
| (abstract ? 0 : prefix_path_len + 1 + 5 + 1 + 3); |
| |
| adr_len = strlen(str2); |
| if (adr_len > max_path_len) { |
| memprintf(err, "socket path '%s' too long (max %d)\n", str, max_path_len); |
| goto out; |
| } |
| |
| /* when abstract==1, we skip the first zero and copy all bytes except the trailing zero */ |
| memset(un->sun_path, 0, sizeof(un->sun_path)); |
| if (prefix_path_len) |
| memcpy(un->sun_path, pfx, prefix_path_len); |
| memcpy(un->sun_path + prefix_path_len + abstract, str2, adr_len + 1 - abstract); |
| } |
| else { /* IPv4 and IPv6 */ |
| char *end = str2 + strlen(str2); |
| char *chr; |
| |
| /* search for : or ] whatever comes first */ |
| for (chr = end-1; chr > str2; chr--) { |
| if (*chr == ']' || *chr == ':') |
| break; |
| } |
| |
| if (*chr == ':') { |
| /* Found a colon before a closing-bracket, must be a port separator. |
| * This guarantee backward compatibility. |
| */ |
| *chr++ = '\0'; |
| port1 = chr; |
| } |
| else { |
| /* Either no colon and no closing-bracket |
| * or directly ending with a closing-bracket. |
| * However, no port. |
| */ |
| port1 = ""; |
| } |
| |
| if (isdigit((unsigned char)*port1)) { /* single port or range */ |
| port2 = strchr(port1, '-'); |
| if (port2) |
| *port2++ = '\0'; |
| else |
| port2 = port1; |
| portl = atoi(port1); |
| porth = atoi(port2); |
| porta = portl; |
| } |
| else if (*port1 == '-') { /* negative offset */ |
| portl = atoi(port1 + 1); |
| porta = -portl; |
| } |
| else if (*port1 == '+') { /* positive offset */ |
| porth = atoi(port1 + 1); |
| porta = porth; |
| } |
| else if (*port1) { /* other any unexpected char */ |
| memprintf(err, "invalid character '%c' in port number '%s' in '%s'\n", *port1, port1, str); |
| goto out; |
| } |
| |
| /* first try to parse the IP without resolving. If it fails, it |
| * tells us we need to keep a copy of the FQDN to resolve later |
| * and to enable DNS. In this case we can proceed if <fqdn> is |
| * set or if resolve is set, otherwise it's an error. |
| */ |
| if (str2ip2(str2, &ss, 0) == NULL) { |
| if ((!resolve && !fqdn) || |
| (resolve && str2ip2(str2, &ss, 1) == NULL)) { |
| memprintf(err, "invalid address: '%s' in '%s'\n", str2, str); |
| goto out; |
| } |
| |
| if (fqdn) { |
| if (str2 != back) |
| memmove(back, str2, strlen(str2) + 1); |
| *fqdn = back; |
| back = NULL; |
| } |
| } |
| set_host_port(&ss, porta); |
| } |
| |
| ret = &ss; |
| out: |
| if (port) |
| *port = porta; |
| if (low) |
| *low = portl; |
| if (high) |
| *high = porth; |
| free(back); |
| return ret; |
| } |
| |
| /* converts <str> to a struct in_addr containing a network mask. It can be |
| * passed in dotted form (255.255.255.0) or in CIDR form (24). It returns 1 |
| * if the conversion succeeds otherwise zero. |
| */ |
| int str2mask(const char *str, struct in_addr *mask) |
| { |
| if (strchr(str, '.') != NULL) { /* dotted notation */ |
| if (!inet_pton(AF_INET, str, mask)) |
| return 0; |
| } |
| else { /* mask length */ |
| char *err; |
| unsigned long len = strtol(str, &err, 10); |
| |
| if (!*str || (err && *err) || (unsigned)len > 32) |
| return 0; |
| |
| len2mask4(len, mask); |
| } |
| return 1; |
| } |
| |
| /* converts <str> to a struct in6_addr containing a network mask. It can be |
| * passed in quadruplet form (ffff:ffff::) or in CIDR form (64). It returns 1 |
| * if the conversion succeeds otherwise zero. |
| */ |
| int str2mask6(const char *str, struct in6_addr *mask) |
| { |
| if (strchr(str, ':') != NULL) { /* quadruplet notation */ |
| if (!inet_pton(AF_INET6, str, mask)) |
| return 0; |
| } |
| else { /* mask length */ |
| char *err; |
| unsigned long len = strtol(str, &err, 10); |
| |
| if (!*str || (err && *err) || (unsigned)len > 128) |
| return 0; |
| |
| len2mask6(len, mask); |
| } |
| return 1; |
| } |
| |
| /* convert <cidr> to struct in_addr <mask>. It returns 1 if the conversion |
| * succeeds otherwise zero. |
| */ |
| int cidr2dotted(int cidr, struct in_addr *mask) { |
| |
| if (cidr < 0 || cidr > 32) |
| return 0; |
| |
| mask->s_addr = cidr ? htonl(~0UL << (32 - cidr)) : 0; |
| return 1; |
| } |
| |
| /* Convert mask from bit length form to in_addr form. |
| * This function never fails. |
| */ |
| void len2mask4(int len, struct in_addr *addr) |
| { |
| if (len >= 32) { |
| addr->s_addr = 0xffffffff; |
| return; |
| } |
| if (len <= 0) { |
| addr->s_addr = 0x00000000; |
| return; |
| } |
| addr->s_addr = 0xffffffff << (32 - len); |
| addr->s_addr = htonl(addr->s_addr); |
| } |
| |
| /* Convert mask from bit length form to in6_addr form. |
| * This function never fails. |
| */ |
| void len2mask6(int len, struct in6_addr *addr) |
| { |
| len2mask4(len, (struct in_addr *)&addr->s6_addr[0]); /* msb */ |
| len -= 32; |
| len2mask4(len, (struct in_addr *)&addr->s6_addr[4]); |
| len -= 32; |
| len2mask4(len, (struct in_addr *)&addr->s6_addr[8]); |
| len -= 32; |
| len2mask4(len, (struct in_addr *)&addr->s6_addr[12]); /* lsb */ |
| } |
| |
| /* |
| * converts <str> to two struct in_addr* which must be pre-allocated. |
| * The format is "addr[/mask]", where "addr" cannot be empty, and mask |
| * is optional and either in the dotted or CIDR notation. |
| * Note: "addr" can also be a hostname. Returns 1 if OK, 0 if error. |
| */ |
| int str2net(const char *str, int resolve, struct in_addr *addr, struct in_addr *mask) |
| { |
| __label__ out_free, out_err; |
| char *c, *s; |
| int ret_val; |
| |
| s = strdup(str); |
| if (!s) |
| return 0; |
| |
| memset(mask, 0, sizeof(*mask)); |
| memset(addr, 0, sizeof(*addr)); |
| |
| if ((c = strrchr(s, '/')) != NULL) { |
| *c++ = '\0'; |
| /* c points to the mask */ |
| if (!str2mask(c, mask)) |
| goto out_err; |
| } |
| else { |
| mask->s_addr = ~0U; |
| } |
| if (!inet_pton(AF_INET, s, addr)) { |
| struct hostent *he; |
| |
| if (!resolve) |
| goto out_err; |
| |
| if ((he = gethostbyname(s)) == NULL) { |
| goto out_err; |
| } |
| else |
| *addr = *(struct in_addr *) *(he->h_addr_list); |
| } |
| |
| ret_val = 1; |
| out_free: |
| free(s); |
| return ret_val; |
| out_err: |
| ret_val = 0; |
| goto out_free; |
| } |
| |
| |
| /* |
| * converts <str> to two struct in6_addr* which must be pre-allocated. |
| * The format is "addr[/mask]", where "addr" cannot be empty, and mask |
| * is an optional number of bits (128 being the default). |
| * Returns 1 if OK, 0 if error. |
| */ |
| int str62net(const char *str, struct in6_addr *addr, unsigned char *mask) |
| { |
| char *c, *s; |
| int ret_val = 0; |
| char *err; |
| unsigned long len = 128; |
| |
| s = strdup(str); |
| if (!s) |
| return 0; |
| |
| memset(mask, 0, sizeof(*mask)); |
| memset(addr, 0, sizeof(*addr)); |
| |
| if ((c = strrchr(s, '/')) != NULL) { |
| *c++ = '\0'; /* c points to the mask */ |
| if (!*c) |
| goto out_free; |
| |
| len = strtoul(c, &err, 10); |
| if ((err && *err) || (unsigned)len > 128) |
| goto out_free; |
| } |
| *mask = len; /* OK we have a valid mask in <len> */ |
| |
| if (!inet_pton(AF_INET6, s, addr)) |
| goto out_free; |
| |
| ret_val = 1; |
| out_free: |
| free(s); |
| return ret_val; |
| } |
| |
| |
| /* |
| * Parse IPv4 address found in url. |
| */ |
| int url2ipv4(const char *addr, struct in_addr *dst) |
| { |
| int saw_digit, octets, ch; |
| u_char tmp[4], *tp; |
| const char *cp = addr; |
| |
| saw_digit = 0; |
| octets = 0; |
| *(tp = tmp) = 0; |
| |
| while (*addr) { |
| unsigned char digit = (ch = *addr++) - '0'; |
| if (digit > 9 && ch != '.') |
| break; |
| if (digit <= 9) { |
| u_int new = *tp * 10 + digit; |
| if (new > 255) |
| return 0; |
| *tp = new; |
| if (!saw_digit) { |
| if (++octets > 4) |
| return 0; |
| saw_digit = 1; |
| } |
| } else if (ch == '.' && saw_digit) { |
| if (octets == 4) |
| return 0; |
| *++tp = 0; |
| saw_digit = 0; |
| } else |
| return 0; |
| } |
| |
| if (octets < 4) |
| return 0; |
| |
| memcpy(&dst->s_addr, tmp, 4); |
| return addr-cp-1; |
| } |
| |
| /* |
| * Resolve destination server from URL. Convert <str> to a sockaddr_storage. |
| * <out> contain the code of the detected scheme, the start and length of |
| * the hostname. Actually only http and https are supported. <out> can be NULL. |
| * This function returns the consumed length. It is useful if you parse complete |
| * url like http://host:port/path, because the consumed length corresponds to |
| * the first character of the path. If the conversion fails, it returns -1. |
| * |
| * This function tries to resolve the DNS name if haproxy is in starting mode. |
| * So, this function may be used during the configuration parsing. |
| */ |
| int url2sa(const char *url, int ulen, struct sockaddr_storage *addr, struct split_url *out) |
| { |
| const char *curr = url, *cp = url; |
| const char *end; |
| int ret, url_code = 0; |
| unsigned long long int http_code = 0; |
| int default_port; |
| struct hostent *he; |
| char *p; |
| |
| /* Firstly, try to find :// pattern */ |
| while (curr < url+ulen && url_code != 0x3a2f2f) { |
| url_code = ((url_code & 0xffff) << 8); |
| url_code += (unsigned char)*curr++; |
| } |
| |
| /* Secondly, if :// pattern is found, verify parsed stuff |
| * before pattern is matching our http pattern. |
| * If so parse ip address and port in uri. |
| * |
| * WARNING: Current code doesn't support dynamic async dns resolver. |
| */ |
| if (url_code != 0x3a2f2f) |
| return -1; |
| |
| /* Copy scheme, and utrn to lower case. */ |
| while (cp < curr - 3) |
| http_code = (http_code << 8) + *cp++; |
| http_code |= 0x2020202020202020ULL; /* Turn everything to lower case */ |
| |
| /* HTTP or HTTPS url matching */ |
| if (http_code == 0x2020202068747470ULL) { |
| default_port = 80; |
| if (out) |
| out->scheme = SCH_HTTP; |
| } |
| else if (http_code == 0x2020206874747073ULL) { |
| default_port = 443; |
| if (out) |
| out->scheme = SCH_HTTPS; |
| } |
| else |
| return -1; |
| |
| /* If the next char is '[', the host address is IPv6. */ |
| if (*curr == '[') { |
| curr++; |
| |
| /* Check trash size */ |
| if (trash.size < ulen) |
| return -1; |
| |
| /* Look for ']' and copy the address in a trash buffer. */ |
| p = trash.area; |
| for (end = curr; |
| end < url + ulen && *end != ']'; |
| end++, p++) |
| *p = *end; |
| if (*end != ']') |
| return -1; |
| *p = '\0'; |
| |
| /* Update out. */ |
| if (out) { |
| out->host = curr; |
| out->host_len = end - curr; |
| } |
| |
| /* Try IPv6 decoding. */ |
| if (!inet_pton(AF_INET6, trash.area, &((struct sockaddr_in6 *)addr)->sin6_addr)) |
| return -1; |
| end++; |
| |
| /* Decode port. */ |
| if (*end == ':') { |
| end++; |
| default_port = read_uint(&end, url + ulen); |
| } |
| ((struct sockaddr_in6 *)addr)->sin6_port = htons(default_port); |
| ((struct sockaddr_in6 *)addr)->sin6_family = AF_INET6; |
| return end - url; |
| } |
| else { |
| /* We are looking for IP address. If you want to parse and |
| * resolve hostname found in url, you can use str2sa_range(), but |
| * be warned this can slow down global daemon performances |
| * while handling lagging dns responses. |
| */ |
| ret = url2ipv4(curr, &((struct sockaddr_in *)addr)->sin_addr); |
| if (ret) { |
| /* Update out. */ |
| if (out) { |
| out->host = curr; |
| out->host_len = ret; |
| } |
| |
| curr += ret; |
| |
| /* Decode port. */ |
| if (*curr == ':') { |
| curr++; |
| default_port = read_uint(&curr, url + ulen); |
| } |
| ((struct sockaddr_in *)addr)->sin_port = htons(default_port); |
| |
| /* Set family. */ |
| ((struct sockaddr_in *)addr)->sin_family = AF_INET; |
| return curr - url; |
| } |
| else if (global.mode & MODE_STARTING) { |
| /* The IPv4 and IPv6 decoding fails, maybe the url contain name. Try to execute |
| * synchronous DNS request only if HAProxy is in the start state. |
| */ |
| |
| /* look for : or / or end */ |
| for (end = curr; |
| end < url + ulen && *end != '/' && *end != ':'; |
| end++); |
| memcpy(trash.area, curr, end - curr); |
| trash.area[end - curr] = '\0'; |
| |
| /* try to resolve an IPv4/IPv6 hostname */ |
| he = gethostbyname(trash.area); |
| if (!he) |
| return -1; |
| |
| /* Update out. */ |
| if (out) { |
| out->host = curr; |
| out->host_len = end - curr; |
| } |
| |
| /* Decode port. */ |
| if (*end == ':') { |
| end++; |
| default_port = read_uint(&end, url + ulen); |
| } |
| |
| /* Copy IP address, set port and family. */ |
| switch (he->h_addrtype) { |
| case AF_INET: |
| ((struct sockaddr_in *)addr)->sin_addr = *(struct in_addr *) *(he->h_addr_list); |
| ((struct sockaddr_in *)addr)->sin_port = htons(default_port); |
| ((struct sockaddr_in *)addr)->sin_family = AF_INET; |
| return end - url; |
| |
| case AF_INET6: |
| ((struct sockaddr_in6 *)addr)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list); |
| ((struct sockaddr_in6 *)addr)->sin6_port = htons(default_port); |
| ((struct sockaddr_in6 *)addr)->sin6_family = AF_INET6; |
| return end - url; |
| } |
| } |
| } |
| return -1; |
| } |
| |
| /* Tries to convert a sockaddr_storage address to text form. Upon success, the |
| * address family is returned so that it's easy for the caller to adapt to the |
| * output format. Zero is returned if the address family is not supported. -1 |
| * is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are |
| * supported. |
| */ |
| int addr_to_str(const struct sockaddr_storage *addr, char *str, int size) |
| { |
| |
| const void *ptr; |
| |
| if (size < 5) |
| return 0; |
| *str = '\0'; |
| |
| switch (addr->ss_family) { |
| case AF_INET: |
| ptr = &((struct sockaddr_in *)addr)->sin_addr; |
| break; |
| case AF_INET6: |
| ptr = &((struct sockaddr_in6 *)addr)->sin6_addr; |
| break; |
| case AF_UNIX: |
| memcpy(str, "unix", 5); |
| return addr->ss_family; |
| default: |
| return 0; |
| } |
| |
| if (inet_ntop(addr->ss_family, ptr, str, size)) |
| return addr->ss_family; |
| |
| /* failed */ |
| return -1; |
| } |
| |
| /* Tries to convert a sockaddr_storage port to text form. Upon success, the |
| * address family is returned so that it's easy for the caller to adapt to the |
| * output format. Zero is returned if the address family is not supported. -1 |
| * is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are |
| * supported. |
| */ |
| int port_to_str(const struct sockaddr_storage *addr, char *str, int size) |
| { |
| |
| uint16_t port; |
| |
| |
| if (size < 6) |
| return 0; |
| *str = '\0'; |
| |
| switch (addr->ss_family) { |
| case AF_INET: |
| port = ((struct sockaddr_in *)addr)->sin_port; |
| break; |
| case AF_INET6: |
| port = ((struct sockaddr_in6 *)addr)->sin6_port; |
| break; |
| case AF_UNIX: |
| memcpy(str, "unix", 5); |
| return addr->ss_family; |
| default: |
| return 0; |
| } |
| |
| snprintf(str, size, "%u", ntohs(port)); |
| return addr->ss_family; |
| } |
| |
| /* check if the given address is local to the system or not. It will return |
| * -1 when it's not possible to know, 0 when the address is not local, 1 when |
| * it is. We don't want to iterate over all interfaces for this (and it is not |
| * portable). So instead we try to bind in UDP to this address on a free non |
| * privileged port and to connect to the same address, port 0 (connect doesn't |
| * care). If it succeeds, we own the address. Note that non-inet addresses are |
| * considered local since they're most likely AF_UNIX. |
| */ |
| int addr_is_local(const struct netns_entry *ns, |
| const struct sockaddr_storage *orig) |
| { |
| struct sockaddr_storage addr; |
| int result; |
| int fd; |
| |
| if (!is_inet_addr(orig)) |
| return 1; |
| |
| memcpy(&addr, orig, sizeof(addr)); |
| set_host_port(&addr, 0); |
| |
| fd = my_socketat(ns, addr.ss_family, SOCK_DGRAM, IPPROTO_UDP); |
| if (fd < 0) |
| return -1; |
| |
| result = -1; |
| if (bind(fd, (struct sockaddr *)&addr, get_addr_len(&addr)) == 0) { |
| if (connect(fd, (struct sockaddr *)&addr, get_addr_len(&addr)) == -1) |
| result = 0; // fail, non-local address |
| else |
| result = 1; // success, local address |
| } |
| else { |
| if (errno == EADDRNOTAVAIL) |
| result = 0; // definitely not local :-) |
| } |
| close(fd); |
| |
| return result; |
| } |
| |
| /* will try to encode the string <string> replacing all characters tagged in |
| * <map> with the hexadecimal representation of their ASCII-code (2 digits) |
| * prefixed by <escape>, and will store the result between <start> (included) |
| * and <stop> (excluded), and will always terminate the string with a '\0' |
| * before <stop>. The position of the '\0' is returned if the conversion |
| * completes. If bytes are missing between <start> and <stop>, then the |
| * conversion will be incomplete and truncated. If <stop> <= <start>, the '\0' |
| * cannot even be stored so we return <start> without writing the 0. |
| * The input string must also be zero-terminated. |
| */ |
| const char hextab[16] = "0123456789ABCDEF"; |
| char *encode_string(char *start, char *stop, |
| const char escape, const long *map, |
| const char *string) |
| { |
| if (start < stop) { |
| stop--; /* reserve one byte for the final '\0' */ |
| while (start < stop && *string != '\0') { |
| if (!ha_bit_test((unsigned char)(*string), map)) |
| *start++ = *string; |
| else { |
| if (start + 3 >= stop) |
| break; |
| *start++ = escape; |
| *start++ = hextab[(*string >> 4) & 15]; |
| *start++ = hextab[*string & 15]; |
| } |
| string++; |
| } |
| *start = '\0'; |
| } |
| return start; |
| } |
| |
| /* |
| * Same behavior as encode_string() above, except that it encodes chunk |
| * <chunk> instead of a string. |
| */ |
| char *encode_chunk(char *start, char *stop, |
| const char escape, const long *map, |
| const struct buffer *chunk) |
| { |
| char *str = chunk->area; |
| char *end = chunk->area + chunk->data; |
| |
| if (start < stop) { |
| stop--; /* reserve one byte for the final '\0' */ |
| while (start < stop && str < end) { |
| if (!ha_bit_test((unsigned char)(*str), map)) |
| *start++ = *str; |
| else { |
| if (start + 3 >= stop) |
| break; |
| *start++ = escape; |
| *start++ = hextab[(*str >> 4) & 15]; |
| *start++ = hextab[*str & 15]; |
| } |
| str++; |
| } |
| *start = '\0'; |
| } |
| return start; |
| } |
| |
| /* |
| * Tries to prefix characters tagged in the <map> with the <escape> |
| * character. The input <string> must be zero-terminated. The result will |
| * be stored between <start> (included) and <stop> (excluded). This |
| * function will always try to terminate the resulting string with a '\0' |
| * before <stop>, and will return its position if the conversion |
| * completes. |
| */ |
| char *escape_string(char *start, char *stop, |
| const char escape, const long *map, |
| const char *string) |
| { |
| if (start < stop) { |
| stop--; /* reserve one byte for the final '\0' */ |
| while (start < stop && *string != '\0') { |
| if (!ha_bit_test((unsigned char)(*string), map)) |
| *start++ = *string; |
| else { |
| if (start + 2 >= stop) |
| break; |
| *start++ = escape; |
| *start++ = *string; |
| } |
| string++; |
| } |
| *start = '\0'; |
| } |
| return start; |
| } |
| |
| /* |
| * Tries to prefix characters tagged in the <map> with the <escape> |
| * character. <chunk> contains the input to be escaped. The result will be |
| * stored between <start> (included) and <stop> (excluded). The function |
| * will always try to terminate the resulting string with a '\0' before |
| * <stop>, and will return its position if the conversion completes. |
| */ |
| char *escape_chunk(char *start, char *stop, |
| const char escape, const long *map, |
| const struct buffer *chunk) |
| { |
| char *str = chunk->area; |
| char *end = chunk->area + chunk->data; |
| |
| if (start < stop) { |
| stop--; /* reserve one byte for the final '\0' */ |
| while (start < stop && str < end) { |
| if (!ha_bit_test((unsigned char)(*str), map)) |
| *start++ = *str; |
| else { |
| if (start + 2 >= stop) |
| break; |
| *start++ = escape; |
| *start++ = *str; |
| } |
| str++; |
| } |
| *start = '\0'; |
| } |
| return start; |
| } |
| |
| /* Check a string for using it in a CSV output format. If the string contains |
| * one of the following four char <">, <,>, CR or LF, the string is |
| * encapsulated between <"> and the <"> are escaped by a <""> sequence. |
| * <str> is the input string to be escaped. The function assumes that |
| * the input string is null-terminated. |
| * |
| * If <quote> is 0, the result is returned escaped but without double quote. |
| * It is useful if the escaped string is used between double quotes in the |
| * format. |
| * |
| * printf("..., \"%s\", ...\r\n", csv_enc(str, 0, &trash)); |
| * |
| * If <quote> is 1, the converter puts the quotes only if any reserved character |
| * is present. If <quote> is 2, the converter always puts the quotes. |
| * |
| * <output> is a struct buffer used for storing the output string. |
| * |
| * The function returns the converted string on its output. If an error |
| * occurs, the function returns an empty string. This type of output is useful |
| * for using the function directly as printf() argument. |
| * |
| * If the output buffer is too short to contain the input string, the result |
| * is truncated. |
| * |
| * This function appends the encoding to the existing output chunk, and it |
| * guarantees that it starts immediately at the first available character of |
| * the chunk. Please use csv_enc() instead if you want to replace the output |
| * chunk. |
| */ |
| const char *csv_enc_append(const char *str, int quote, struct buffer *output) |
| { |
| char *end = output->area + output->size; |
| char *out = output->area + output->data; |
| char *ptr = out; |
| |
| if (quote == 1) { |
| /* automatic quoting: first verify if we'll have to quote the string */ |
| if (!strpbrk(str, "\n\r,\"")) |
| quote = 0; |
| } |
| |
| if (quote) |
| *ptr++ = '"'; |
| |
| while (*str && ptr < end - 2) { /* -2 for reserving space for <"> and \0. */ |
| *ptr = *str; |
| if (*str == '"') { |
| ptr++; |
| if (ptr >= end - 2) { |
| ptr--; |
| break; |
| } |
| *ptr = '"'; |
| } |
| ptr++; |
| str++; |
| } |
| |
| if (quote) |
| *ptr++ = '"'; |
| |
| *ptr = '\0'; |
| output->data = ptr - output->area; |
| return out; |
| } |
| |
| /* Decode an URL-encoded string in-place. The resulting string might |
| * be shorter. If some forbidden characters are found, the conversion is |
| * aborted, the string is truncated before the issue and a negative value is |
| * returned, otherwise the operation returns the length of the decoded string. |
| * If the 'in_form' argument is non-nul the string is assumed to be part of |
| * an "application/x-www-form-urlencoded" encoded string, and the '+' will be |
| * turned to a space. If it's zero, this will only be done after a question |
| * mark ('?'). |
| */ |
| int url_decode(char *string, int in_form) |
| { |
| char *in, *out; |
| int ret = -1; |
| |
| in = string; |
| out = string; |
| while (*in) { |
| switch (*in) { |
| case '+' : |
| *out++ = in_form ? ' ' : *in; |
| break; |
| case '%' : |
| if (!ishex(in[1]) || !ishex(in[2])) |
| goto end; |
| *out++ = (hex2i(in[1]) << 4) + hex2i(in[2]); |
| in += 2; |
| break; |
| case '?': |
| in_form = 1; |
| /* fall through */ |
| default: |
| *out++ = *in; |
| break; |
| } |
| in++; |
| } |
| ret = out - string; /* success */ |
| end: |
| *out = 0; |
| return ret; |
| } |
| |
| unsigned int str2ui(const char *s) |
| { |
| return __str2ui(s); |
| } |
| |
| unsigned int str2uic(const char *s) |
| { |
| return __str2uic(s); |
| } |
| |
| unsigned int strl2ui(const char *s, int len) |
| { |
| return __strl2ui(s, len); |
| } |
| |
| unsigned int strl2uic(const char *s, int len) |
| { |
| return __strl2uic(s, len); |
| } |
| |
| unsigned int read_uint(const char **s, const char *end) |
| { |
| return __read_uint(s, end); |
| } |
| |
| /* This function reads an unsigned integer from the string pointed to by <s> and |
| * returns it. The <s> pointer is adjusted to point to the first unread char. The |
| * function automatically stops at <end>. If the number overflows, the 2^64-1 |
| * value is returned. |
| */ |
| unsigned long long int read_uint64(const char **s, const char *end) |
| { |
| const char *ptr = *s; |
| unsigned long long int i = 0, tmp; |
| unsigned int j; |
| |
| while (ptr < end) { |
| |
| /* read next char */ |
| j = *ptr - '0'; |
| if (j > 9) |
| goto read_uint64_end; |
| |
| /* add char to the number and check overflow. */ |
| tmp = i * 10; |
| if (tmp / 10 != i) { |
| i = ULLONG_MAX; |
| goto read_uint64_eat; |
| } |
| if (ULLONG_MAX - tmp < j) { |
| i = ULLONG_MAX; |
| goto read_uint64_eat; |
| } |
| i = tmp + j; |
| ptr++; |
| } |
| read_uint64_eat: |
| /* eat each numeric char */ |
| while (ptr < end) { |
| if ((unsigned int)(*ptr - '0') > 9) |
| break; |
| ptr++; |
| } |
| read_uint64_end: |
| *s = ptr; |
| return i; |
| } |
| |
| /* This function reads an integer from the string pointed to by <s> and returns |
| * it. The <s> pointer is adjusted to point to the first unread char. The function |
| * automatically stops at <end>. Il the number is bigger than 2^63-2, the 2^63-1 |
| * value is returned. If the number is lowest than -2^63-1, the -2^63 value is |
| * returned. |
| */ |
| long long int read_int64(const char **s, const char *end) |
| { |
| unsigned long long int i = 0; |
| int neg = 0; |
| |
| /* Look for minus char. */ |
| if (**s == '-') { |
| neg = 1; |
| (*s)++; |
| } |
| else if (**s == '+') |
| (*s)++; |
| |
| /* convert as positive number. */ |
| i = read_uint64(s, end); |
| |
| if (neg) { |
| if (i > 0x8000000000000000ULL) |
| return LLONG_MIN; |
| return -i; |
| } |
| if (i > 0x7fffffffffffffffULL) |
| return LLONG_MAX; |
| return i; |
| } |
| |
| /* This one is 7 times faster than strtol() on athlon with checks. |
| * It returns the value of the number composed of all valid digits read, |
| * and can process negative numbers too. |
| */ |
| int strl2ic(const char *s, int len) |
| { |
| int i = 0; |
| int j, k; |
| |
| if (len > 0) { |
| if (*s != '-') { |
| /* positive number */ |
| while (len-- > 0) { |
| j = (*s++) - '0'; |
| k = i * 10; |
| if (j > 9) |
| break; |
| i = k + j; |
| } |
| } else { |
| /* negative number */ |
| s++; |
| while (--len > 0) { |
| j = (*s++) - '0'; |
| k = i * 10; |
| if (j > 9) |
| break; |
| i = k - j; |
| } |
| } |
| } |
| return i; |
| } |
| |
| |
| /* This function reads exactly <len> chars from <s> and converts them to a |
| * signed integer which it stores into <ret>. It accurately detects any error |
| * (truncated string, invalid chars, overflows). It is meant to be used in |
| * applications designed for hostile environments. It returns zero when the |
| * number has successfully been converted, non-zero otherwise. When an error |
| * is returned, the <ret> value is left untouched. It is yet 5 to 40 times |
| * faster than strtol(). |
| */ |
| int strl2irc(const char *s, int len, int *ret) |
| { |
| int i = 0; |
| int j; |
| |
| if (!len) |
| return 1; |
| |
| if (*s != '-') { |
| /* positive number */ |
| while (len-- > 0) { |
| j = (*s++) - '0'; |
| if (j > 9) return 1; /* invalid char */ |
| if (i > INT_MAX / 10) return 1; /* check for multiply overflow */ |
| i = i * 10; |
| if (i + j < i) return 1; /* check for addition overflow */ |
| i = i + j; |
| } |
| } else { |
| /* negative number */ |
| s++; |
| while (--len > 0) { |
| j = (*s++) - '0'; |
| if (j > 9) return 1; /* invalid char */ |
| if (i < INT_MIN / 10) return 1; /* check for multiply overflow */ |
| i = i * 10; |
| if (i - j > i) return 1; /* check for subtract overflow */ |
| i = i - j; |
| } |
| } |
| *ret = i; |
| return 0; |
| } |
| |
| |
| /* This function reads exactly <len> chars from <s> and converts them to a |
| * signed integer which it stores into <ret>. It accurately detects any error |
| * (truncated string, invalid chars, overflows). It is meant to be used in |
| * applications designed for hostile environments. It returns zero when the |
| * number has successfully been converted, non-zero otherwise. When an error |
| * is returned, the <ret> value is left untouched. It is about 3 times slower |
| * than str2irc(). |
| */ |
| |
| int strl2llrc(const char *s, int len, long long *ret) |
| { |
| long long i = 0; |
| int j; |
| |
| if (!len) |
| return 1; |
| |
| if (*s != '-') { |
| /* positive number */ |
| while (len-- > 0) { |
| j = (*s++) - '0'; |
| if (j > 9) return 1; /* invalid char */ |
| if (i > LLONG_MAX / 10LL) return 1; /* check for multiply overflow */ |
| i = i * 10LL; |
| if (i + j < i) return 1; /* check for addition overflow */ |
| i = i + j; |
| } |
| } else { |
| /* negative number */ |
| s++; |
| while (--len > 0) { |
| j = (*s++) - '0'; |
| if (j > 9) return 1; /* invalid char */ |
| if (i < LLONG_MIN / 10LL) return 1; /* check for multiply overflow */ |
| i = i * 10LL; |
| if (i - j > i) return 1; /* check for subtract overflow */ |
| i = i - j; |
| } |
| } |
| *ret = i; |
| return 0; |
| } |
| |
| /* This function is used with pat_parse_dotted_ver(). It converts a string |
| * composed by two number separated by a dot. Each part must contain in 16 bits |
| * because internally they will be represented as a 32-bit quantity stored in |
| * a 64-bit integer. It returns zero when the number has successfully been |
| * converted, non-zero otherwise. When an error is returned, the <ret> value |
| * is left untouched. |
| * |
| * "1.3" -> 0x0000000000010003 |
| * "65535.65535" -> 0x00000000ffffffff |
| */ |
| int strl2llrc_dotted(const char *text, int len, long long *ret) |
| { |
| const char *end = &text[len]; |
| const char *p; |
| long long major, minor; |
| |
| /* Look for dot. */ |
| for (p = text; p < end; p++) |
| if (*p == '.') |
| break; |
| |
| /* Convert major. */ |
| if (strl2llrc(text, p - text, &major) != 0) |
| return 1; |
| |
| /* Check major. */ |
| if (major >= 65536) |
| return 1; |
| |
| /* Convert minor. */ |
| minor = 0; |
| if (p < end) |
| if (strl2llrc(p + 1, end - (p + 1), &minor) != 0) |
| return 1; |
| |
| /* Check minor. */ |
| if (minor >= 65536) |
| return 1; |
| |
| /* Compose value. */ |
| *ret = (major << 16) | (minor & 0xffff); |
| return 0; |
| } |
| |
| /* This function parses a time value optionally followed by a unit suffix among |
| * "d", "h", "m", "s", "ms" or "us". It converts the value into the unit |
| * expected by the caller. The computation does its best to avoid overflows. |
| * The value is returned in <ret> if everything is fine, and a NULL is returned |
| * by the function. In case of error, a pointer to the error is returned and |
| * <ret> is left untouched. Values are automatically rounded up when needed. |
| * Values resulting in values larger than or equal to 2^31 after conversion are |
| * reported as an overflow as value PARSE_TIME_OVER. Non-null values resulting |
| * in an underflow are reported as an underflow as value PARSE_TIME_UNDER. |
| */ |
| const char *parse_time_err(const char *text, unsigned *ret, unsigned unit_flags) |
| { |
| unsigned long long imult, idiv; |
| unsigned long long omult, odiv; |
| unsigned long long value, result; |
| |
| omult = odiv = 1; |
| |
| switch (unit_flags & TIME_UNIT_MASK) { |
| case TIME_UNIT_US: omult = 1000000; break; |
| case TIME_UNIT_MS: omult = 1000; break; |
| case TIME_UNIT_S: break; |
| case TIME_UNIT_MIN: odiv = 60; break; |
| case TIME_UNIT_HOUR: odiv = 3600; break; |
| case TIME_UNIT_DAY: odiv = 86400; break; |
| default: break; |
| } |
| |
| value = 0; |
| |
| while (1) { |
| unsigned int j; |
| |
| j = *text - '0'; |
| if (j > 9) |
| break; |
| text++; |
| value *= 10; |
| value += j; |
| } |
| |
| imult = idiv = 1; |
| switch (*text) { |
| case '\0': /* no unit = default unit */ |
| imult = omult = idiv = odiv = 1; |
| break; |
| case 's': /* second = unscaled unit */ |
| break; |
| case 'u': /* microsecond : "us" */ |
| if (text[1] == 's') { |
| idiv = 1000000; |
| text++; |
| } |
| break; |
| case 'm': /* millisecond : "ms" or minute: "m" */ |
| if (text[1] == 's') { |
| idiv = 1000; |
| text++; |
| } else |
| imult = 60; |
| break; |
| case 'h': /* hour : "h" */ |
| imult = 3600; |
| break; |
| case 'd': /* day : "d" */ |
| imult = 86400; |
| break; |
| default: |
| return text; |
| break; |
| } |
| |
| if (omult % idiv == 0) { omult /= idiv; idiv = 1; } |
| if (idiv % omult == 0) { idiv /= omult; omult = 1; } |
| if (imult % odiv == 0) { imult /= odiv; odiv = 1; } |
| if (odiv % imult == 0) { odiv /= imult; imult = 1; } |
| |
| result = (value * (imult * omult) + (idiv * odiv - 1)) / (idiv * odiv); |
| if (result >= 0x80000000) |
| return PARSE_TIME_OVER; |
| if (!result && value) |
| return PARSE_TIME_UNDER; |
| *ret = result; |
| return NULL; |
| } |
| |
| /* this function converts the string starting at <text> to an unsigned int |
| * stored in <ret>. If an error is detected, the pointer to the unexpected |
| * character is returned. If the conversion is successful, NULL is returned. |
| */ |
| const char *parse_size_err(const char *text, unsigned *ret) { |
| unsigned value = 0; |
| |
| while (1) { |
| unsigned int j; |
| |
| j = *text - '0'; |
| if (j > 9) |
| break; |
| if (value > ~0U / 10) |
| return text; |
| value *= 10; |
| if (value > (value + j)) |
| return text; |
| value += j; |
| text++; |
| } |
| |
| switch (*text) { |
| case '\0': |
| break; |
| case 'K': |
| case 'k': |
| if (value > ~0U >> 10) |
| return text; |
| value = value << 10; |
| break; |
| case 'M': |
| case 'm': |
| if (value > ~0U >> 20) |
| return text; |
| value = value << 20; |
| break; |
| case 'G': |
| case 'g': |
| if (value > ~0U >> 30) |
| return text; |
| value = value << 30; |
| break; |
| default: |
| return text; |
| } |
| |
| if (*text != '\0' && *++text != '\0') |
| return text; |
| |
| *ret = value; |
| return NULL; |
| } |
| |
| /* |
| * Parse binary string written in hexadecimal (source) and store the decoded |
| * result into binstr and set binstrlen to the length of binstr. Memory for |
| * binstr is allocated by the function. In case of error, returns 0 with an |
| * error message in err. In success case, it returns the consumed length. |
| */ |
| int parse_binary(const char *source, char **binstr, int *binstrlen, char **err) |
| { |
| int len; |
| const char *p = source; |
| int i,j; |
| int alloc; |
| |
| len = strlen(source); |
| if (len % 2) { |
| memprintf(err, "an even number of hex digit is expected"); |
| return 0; |
| } |
| |
| len = len >> 1; |
| |
| if (!*binstr) { |
| *binstr = calloc(len, sizeof(char)); |
| if (!*binstr) { |
| memprintf(err, "out of memory while loading string pattern"); |
| return 0; |
| } |
| alloc = 1; |
| } |
| else { |
| if (*binstrlen < len) { |
| memprintf(err, "no space available in the buffer. expect %d, provides %d", |
| len, *binstrlen); |
| return 0; |
| } |
| alloc = 0; |
| } |
| *binstrlen = len; |
| |
| i = j = 0; |
| while (j < len) { |
| if (!ishex(p[i++])) |
| goto bad_input; |
| if (!ishex(p[i++])) |
| goto bad_input; |
| (*binstr)[j++] = (hex2i(p[i-2]) << 4) + hex2i(p[i-1]); |
| } |
| return len << 1; |
| |
| bad_input: |
| memprintf(err, "an hex digit is expected (found '%c')", p[i-1]); |
| if (alloc) { |
| free(*binstr); |
| *binstr = NULL; |
| } |
| return 0; |
| } |
| |
| /* copies at most <n> characters from <src> and always terminates with '\0' */ |
| char *my_strndup(const char *src, int n) |
| { |
| int len = 0; |
| char *ret; |
| |
| while (len < n && src[len]) |
| len++; |
| |
| ret = malloc(len + 1); |
| if (!ret) |
| return ret; |
| memcpy(ret, src, len); |
| ret[len] = '\0'; |
| return ret; |
| } |
| |
| /* |
| * search needle in haystack |
| * returns the pointer if found, returns NULL otherwise |
| */ |
| const void *my_memmem(const void *haystack, size_t haystacklen, const void *needle, size_t needlelen) |
| { |
| const void *c = NULL; |
| unsigned char f; |
| |
| if ((haystack == NULL) || (needle == NULL) || (haystacklen < needlelen)) |
| return NULL; |
| |
| f = *(char *)needle; |
| c = haystack; |
| while ((c = memchr(c, f, haystacklen - (c - haystack))) != NULL) { |
| if ((haystacklen - (c - haystack)) < needlelen) |
| return NULL; |
| |
| if (memcmp(c, needle, needlelen) == 0) |
| return c; |
| ++c; |
| } |
| return NULL; |
| } |
| |
| /* get length of the initial segment consisting entirely of bytes in <accept> */ |
| size_t my_memspn(const void *str, size_t len, const void *accept, size_t acceptlen) |
| { |
| size_t ret = 0; |
| |
| while (ret < len && memchr(accept, *((int *)str), acceptlen)) { |
| str++; |
| ret++; |
| } |
| return ret; |
| } |
| |
| /* get length of the initial segment consisting entirely of bytes not in <rejcet> */ |
| size_t my_memcspn(const void *str, size_t len, const void *reject, size_t rejectlen) |
| { |
| size_t ret = 0; |
| |
| while (ret < len) { |
| if(memchr(reject, *((int *)str), rejectlen)) |
| return ret; |
| str++; |
| ret++; |
| } |
| return ret; |
| } |
| |
| /* This function returns the first unused key greater than or equal to <key> in |
| * ID tree <root>. Zero is returned if no place is found. |
| */ |
| unsigned int get_next_id(struct eb_root *root, unsigned int key) |
| { |
| struct eb32_node *used; |
| |
| do { |
| used = eb32_lookup_ge(root, key); |
| if (!used || used->key > key) |
| return key; /* key is available */ |
| key++; |
| } while (key); |
| return key; |
| } |
| |
| /* dump the full tree to <file> in DOT format for debugging purposes. Will |
| * optionally highlight node <subj> if found, depending on operation <op> : |
| * 0 : nothing |
| * >0 : insertion, node/leaf are surrounded in red |
| * <0 : removal, node/leaf are dashed with no background |
| * Will optionally add "desc" as a label on the graph if set and non-null. |
| */ |
| void eb32sc_to_file(FILE *file, struct eb_root *root, const struct eb32sc_node *subj, int op, const char *desc) |
| { |
| struct eb32sc_node *node; |
| unsigned long scope = -1; |
| |
| fprintf(file, "digraph ebtree {\n"); |
| |
| if (desc && *desc) { |
| fprintf(file, |
| " fontname=\"fixed\";\n" |
| " fontsize=8;\n" |
| " label=\"%s\";\n", desc); |
| } |
| |
| fprintf(file, |
| " node [fontname=\"fixed\" fontsize=8 shape=\"box\" style=\"filled\" color=\"black\" fillcolor=\"white\"];\n" |
| " edge [fontname=\"fixed\" fontsize=8 style=\"solid\" color=\"magenta\" dir=\"forward\"];\n" |
| " \"%lx_n\" [label=\"root\\n%lx\"]\n", (long)eb_root_to_node(root), (long)root |
| ); |
| |
| fprintf(file, " \"%lx_n\" -> \"%lx_%c\" [taillabel=\"L\"];\n", |
| (long)eb_root_to_node(root), |
| (long)eb_root_to_node(eb_clrtag(root->b[0])), |
| eb_gettag(root->b[0]) == EB_LEAF ? 'l' : 'n'); |
| |
| node = eb32sc_first(root, scope); |
| while (node) { |
| if (node->node.node_p) { |
| /* node part is used */ |
| fprintf(file, " \"%lx_n\" [label=\"%lx\\nkey=%u\\nscope=%lx\\nbit=%d\" fillcolor=\"lightskyblue1\" %s];\n", |
| (long)node, (long)node, node->key, node->node_s, node->node.bit, |
| (node == subj) ? (op < 0 ? "color=\"red\" style=\"dashed\"" : op > 0 ? "color=\"red\"" : "") : ""); |
| |
| fprintf(file, " \"%lx_n\" -> \"%lx_n\" [taillabel=\"%c\"];\n", |
| (long)node, |
| (long)eb_root_to_node(eb_clrtag(node->node.node_p)), |
| eb_gettag(node->node.node_p) ? 'R' : 'L'); |
| |
| fprintf(file, " \"%lx_n\" -> \"%lx_%c\" [taillabel=\"L\"];\n", |
| (long)node, |
| (long)eb_root_to_node(eb_clrtag(node->node.branches.b[0])), |
| eb_gettag(node->node.branches.b[0]) == EB_LEAF ? 'l' : 'n'); |
| |
| fprintf(file, " \"%lx_n\" -> \"%lx_%c\" [taillabel=\"R\"];\n", |
| (long)node, |
| (long)eb_root_to_node(eb_clrtag(node->node.branches.b[1])), |
| eb_gettag(node->node.branches.b[1]) == EB_LEAF ? 'l' : 'n'); |
| } |
| |
| fprintf(file, " \"%lx_l\" [label=\"%lx\\nkey=%u\\nscope=%lx\\npfx=%u\" fillcolor=\"yellow\" %s];\n", |
| (long)node, (long)node, node->key, node->leaf_s, node->node.pfx, |
| (node == subj) ? (op < 0 ? "color=\"red\" style=\"dashed\"" : op > 0 ? "color=\"red\"" : "") : ""); |
| |
| fprintf(file, " \"%lx_l\" -> \"%lx_n\" [taillabel=\"%c\"];\n", |
| (long)node, |
| (long)eb_root_to_node(eb_clrtag(node->node.leaf_p)), |
| eb_gettag(node->node.leaf_p) ? 'R' : 'L'); |
| node = eb32sc_next(node, scope); |
| } |
| fprintf(file, "}\n"); |
| } |
| |
| /* This function compares a sample word possibly followed by blanks to another |
| * clean word. The compare is case-insensitive. 1 is returned if both are equal, |
| * otherwise zero. This intends to be used when checking HTTP headers for some |
| * values. Note that it validates a word followed only by blanks but does not |
| * validate a word followed by blanks then other chars. |
| */ |
| int word_match(const char *sample, int slen, const char *word, int wlen) |
| { |
| if (slen < wlen) |
| return 0; |
| |
| while (wlen) { |
| char c = *sample ^ *word; |
| if (c && c != ('A' ^ 'a')) |
| return 0; |
| sample++; |
| word++; |
| slen--; |
| wlen--; |
| } |
| |
| while (slen) { |
| if (*sample != ' ' && *sample != '\t') |
| return 0; |
| sample++; |
| slen--; |
| } |
| return 1; |
| } |
| |
| /* Converts any text-formatted IPv4 address to a host-order IPv4 address. It |
| * is particularly fast because it avoids expensive operations such as |
| * multiplies, which are optimized away at the end. It requires a properly |
| * formatted address though (3 points). |
| */ |
| unsigned int inetaddr_host(const char *text) |
| { |
| const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0'; |
| register unsigned int dig100, dig10, dig1; |
| int s; |
| const char *p, *d; |
| |
| dig1 = dig10 = dig100 = ascii_zero; |
| s = 24; |
| |
| p = text; |
| while (1) { |
| if (((unsigned)(*p - '0')) <= 9) { |
| p++; |
| continue; |
| } |
| |
| /* here, we have a complete byte between <text> and <p> (exclusive) */ |
| if (p == text) |
| goto end; |
| |
| d = p - 1; |
| dig1 |= (unsigned int)(*d << s); |
| if (d == text) |
| goto end; |
| |
| d--; |
| dig10 |= (unsigned int)(*d << s); |
| if (d == text) |
| goto end; |
| |
| d--; |
| dig100 |= (unsigned int)(*d << s); |
| end: |
| if (!s || *p != '.') |
| break; |
| |
| s -= 8; |
| text = ++p; |
| } |
| |
| dig100 -= ascii_zero; |
| dig10 -= ascii_zero; |
| dig1 -= ascii_zero; |
| return ((dig100 * 10) + dig10) * 10 + dig1; |
| } |
| |
| /* |
| * Idem except the first unparsed character has to be passed in <stop>. |
| */ |
| unsigned int inetaddr_host_lim(const char *text, const char *stop) |
| { |
| const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0'; |
| register unsigned int dig100, dig10, dig1; |
| int s; |
| const char *p, *d; |
| |
| dig1 = dig10 = dig100 = ascii_zero; |
| s = 24; |
| |
| p = text; |
| while (1) { |
| if (((unsigned)(*p - '0')) <= 9 && p < stop) { |
| p++; |
| continue; |
| } |
| |
| /* here, we have a complete byte between <text> and <p> (exclusive) */ |
| if (p == text) |
| goto end; |
| |
| d = p - 1; |
| dig1 |= (unsigned int)(*d << s); |
| if (d == text) |
| goto end; |
| |
| d--; |
| dig10 |= (unsigned int)(*d << s); |
| if (d == text) |
| goto end; |
| |
| d--; |
| dig100 |= (unsigned int)(*d << s); |
| end: |
| if (!s || p == stop || *p != '.') |
| break; |
| |
| s -= 8; |
| text = ++p; |
| } |
| |
| dig100 -= ascii_zero; |
| dig10 -= ascii_zero; |
| dig1 -= ascii_zero; |
| return ((dig100 * 10) + dig10) * 10 + dig1; |
| } |
| |
| /* |
| * Idem except the pointer to first unparsed byte is returned into <ret> which |
| * must not be NULL. |
| */ |
| unsigned int inetaddr_host_lim_ret(char *text, char *stop, char **ret) |
| { |
| const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0'; |
| register unsigned int dig100, dig10, dig1; |
| int s; |
| char *p, *d; |
| |
| dig1 = dig10 = dig100 = ascii_zero; |
| s = 24; |
| |
| p = text; |
| while (1) { |
| if (((unsigned)(*p - '0')) <= 9 && p < stop) { |
| p++; |
| continue; |
| } |
| |
| /* here, we have a complete byte between <text> and <p> (exclusive) */ |
| if (p == text) |
| goto end; |
| |
| d = p - 1; |
| dig1 |= (unsigned int)(*d << s); |
| if (d == text) |
| goto end; |
| |
| d--; |
| dig10 |= (unsigned int)(*d << s); |
| if (d == text) |
| goto end; |
| |
| d--; |
| dig100 |= (unsigned int)(*d << s); |
| end: |
| if (!s || p == stop || *p != '.') |
| break; |
| |
| s -= 8; |
| text = ++p; |
| } |
| |
| *ret = p; |
| dig100 -= ascii_zero; |
| dig10 -= ascii_zero; |
| dig1 -= ascii_zero; |
| return ((dig100 * 10) + dig10) * 10 + dig1; |
| } |
| |
| /* Convert a fixed-length string to an IP address. Returns 0 in case of error, |
| * or the number of chars read in case of success. Maybe this could be replaced |
| * by one of the functions above. Also, apparently this function does not support |
| * hosts above 255 and requires exactly 4 octets. |
| * The destination is only modified on success. |
| */ |
| int buf2ip(const char *buf, size_t len, struct in_addr *dst) |
| { |
| const char *addr; |
| int saw_digit, octets, ch; |
| u_char tmp[4], *tp; |
| const char *cp = buf; |
| |
| saw_digit = 0; |
| octets = 0; |
| *(tp = tmp) = 0; |
| |
| for (addr = buf; addr - buf < len; addr++) { |
| unsigned char digit = (ch = *addr) - '0'; |
| |
| if (digit > 9 && ch != '.') |
| break; |
| |
| if (digit <= 9) { |
| u_int new = *tp * 10 + digit; |
| |
| if (new > 255) |
| return 0; |
| |
| *tp = new; |
| |
| if (!saw_digit) { |
| if (++octets > 4) |
| return 0; |
| saw_digit = 1; |
| } |
| } else if (ch == '.' && saw_digit) { |
| if (octets == 4) |
| return 0; |
| |
| *++tp = 0; |
| saw_digit = 0; |
| } else |
| return 0; |
| } |
| |
| if (octets < 4) |
| return 0; |
| |
| memcpy(&dst->s_addr, tmp, 4); |
| return addr - cp; |
| } |
| |
| /* This function converts the string in <buf> of the len <len> to |
| * struct in6_addr <dst> which must be allocated by the caller. |
| * This function returns 1 in success case, otherwise zero. |
| * The destination is only modified on success. |
| */ |
| int buf2ip6(const char *buf, size_t len, struct in6_addr *dst) |
| { |
| char null_term_ip6[INET6_ADDRSTRLEN + 1]; |
| struct in6_addr out; |
| |
| if (len > INET6_ADDRSTRLEN) |
| return 0; |
| |
| memcpy(null_term_ip6, buf, len); |
| null_term_ip6[len] = '\0'; |
| |
| if (!inet_pton(AF_INET6, null_term_ip6, &out)) |
| return 0; |
| |
| *dst = out; |
| return 1; |
| } |
| |
| /* To be used to quote config arg positions. Returns the short string at <ptr> |
| * surrounded by simple quotes if <ptr> is valid and non-empty, or "end of line" |
| * if ptr is NULL or empty. The string is locally allocated. |
| */ |
| const char *quote_arg(const char *ptr) |
| { |
| static THREAD_LOCAL char val[32]; |
| int i; |
| |
| if (!ptr || !*ptr) |
| return "end of line"; |
| val[0] = '\''; |
| for (i = 1; i < sizeof(val) - 2 && *ptr; i++) |
| val[i] = *ptr++; |
| val[i++] = '\''; |
| val[i] = '\0'; |
| return val; |
| } |
| |
| /* returns an operator among STD_OP_* for string <str> or < 0 if unknown */ |
| int get_std_op(const char *str) |
| { |
| int ret = -1; |
| |
| if (*str == 'e' && str[1] == 'q') |
| ret = STD_OP_EQ; |
| else if (*str == 'n' && str[1] == 'e') |
| ret = STD_OP_NE; |
| else if (*str == 'l') { |
| if (str[1] == 'e') ret = STD_OP_LE; |
| else if (str[1] == 't') ret = STD_OP_LT; |
| } |
| else if (*str == 'g') { |
| if (str[1] == 'e') ret = STD_OP_GE; |
| else if (str[1] == 't') ret = STD_OP_GT; |
| } |
| |
| if (ret == -1 || str[2] != '\0') |
| return -1; |
| return ret; |
| } |
| |
| /* hash a 32-bit integer to another 32-bit integer */ |
| unsigned int full_hash(unsigned int a) |
| { |
| return __full_hash(a); |
| } |
| |
| /* Return the bit position in mask <m> of the nth bit set of rank <r>, between |
| * 0 and LONGBITS-1 included, starting from the left. For example ranks 0,1,2,3 |
| * for mask 0x55 will be 6, 4, 2 and 0 respectively. This algorithm is based on |
| * a popcount variant and is described here : |
| * https://graphics.stanford.edu/~seander/bithacks.html |
| */ |
| unsigned int mask_find_rank_bit(unsigned int r, unsigned long m) |
| { |
| unsigned long a, b, c, d; |
| unsigned int s; |
| unsigned int t; |
| |
| a = m - ((m >> 1) & ~0UL/3); |
| b = (a & ~0UL/5) + ((a >> 2) & ~0UL/5); |
| c = (b + (b >> 4)) & ~0UL/0x11; |
| d = (c + (c >> 8)) & ~0UL/0x101; |
| |
| r++; // make r be 1..64 |
| |
| t = 0; |
| s = LONGBITS; |
| if (s > 32) { |
| unsigned long d2 = (d >> 16) >> 16; |
| t = d2 + (d2 >> 16); |
| s -= ((t - r) & 256) >> 3; r -= (t & ((t - r) >> 8)); |
| } |
| |
| t = (d >> (s - 16)) & 0xff; |
| s -= ((t - r) & 256) >> 4; r -= (t & ((t - r) >> 8)); |
| t = (c >> (s - 8)) & 0xf; |
| s -= ((t - r) & 256) >> 5; r -= (t & ((t - r) >> 8)); |
| t = (b >> (s - 4)) & 0x7; |
| s -= ((t - r) & 256) >> 6; r -= (t & ((t - r) >> 8)); |
| t = (a >> (s - 2)) & 0x3; |
| s -= ((t - r) & 256) >> 7; r -= (t & ((t - r) >> 8)); |
| t = (m >> (s - 1)) & 0x1; |
| s -= ((t - r) & 256) >> 8; |
| |
| return s - 1; |
| } |
| |
| /* Same as mask_find_rank_bit() above but makes use of pre-computed bitmaps |
| * based on <m>, in <a..d>. These ones must be updated whenever <m> changes |
| * using mask_prep_rank_map() below. |
| */ |
| unsigned int mask_find_rank_bit_fast(unsigned int r, unsigned long m, |
| unsigned long a, unsigned long b, |
| unsigned long c, unsigned long d) |
| { |
| unsigned int s; |
| unsigned int t; |
| |
| r++; // make r be 1..64 |
| |
| t = 0; |
| s = LONGBITS; |
| if (s > 32) { |
| unsigned long d2 = (d >> 16) >> 16; |
| t = d2 + (d2 >> 16); |
| s -= ((t - r) & 256) >> 3; r -= (t & ((t - r) >> 8)); |
| } |
| |
| t = (d >> (s - 16)) & 0xff; |
| s -= ((t - r) & 256) >> 4; r -= (t & ((t - r) >> 8)); |
| t = (c >> (s - 8)) & 0xf; |
| s -= ((t - r) & 256) >> 5; r -= (t & ((t - r) >> 8)); |
| t = (b >> (s - 4)) & 0x7; |
| s -= ((t - r) & 256) >> 6; r -= (t & ((t - r) >> 8)); |
| t = (a >> (s - 2)) & 0x3; |
| s -= ((t - r) & 256) >> 7; r -= (t & ((t - r) >> 8)); |
| t = (m >> (s - 1)) & 0x1; |
| s -= ((t - r) & 256) >> 8; |
| |
| return s - 1; |
| } |
| |
| /* Prepare the bitmaps used by the fast implementation of the find_rank_bit() |
| * above. |
| */ |
| void mask_prep_rank_map(unsigned long m, |
| unsigned long *a, unsigned long *b, |
| unsigned long *c, unsigned long *d) |
| { |
| *a = m - ((m >> 1) & ~0UL/3); |
| *b = (*a & ~0UL/5) + ((*a >> 2) & ~0UL/5); |
| *c = (*b + (*b >> 4)) & ~0UL/0x11; |
| *d = (*c + (*c >> 8)) & ~0UL/0x101; |
| } |
| |
| /* Return non-zero if IPv4 address is part of the network, |
| * otherwise zero. Note that <addr> may not necessarily be aligned |
| * while the two other ones must. |
| */ |
| int in_net_ipv4(const void *addr, const struct in_addr *mask, const struct in_addr *net) |
| { |
| struct in_addr addr_copy; |
| |
| memcpy(&addr_copy, addr, sizeof(addr_copy)); |
| return((addr_copy.s_addr & mask->s_addr) == (net->s_addr & mask->s_addr)); |
| } |
| |
| /* Return non-zero if IPv6 address is part of the network, |
| * otherwise zero. Note that <addr> may not necessarily be aligned |
| * while the two other ones must. |
| */ |
| int in_net_ipv6(const void *addr, const struct in6_addr *mask, const struct in6_addr *net) |
| { |
| int i; |
| struct in6_addr addr_copy; |
| |
| memcpy(&addr_copy, addr, sizeof(addr_copy)); |
| for (i = 0; i < sizeof(struct in6_addr) / sizeof(int); i++) |
| if (((((int *)&addr_copy)[i] & ((int *)mask)[i])) != |
| (((int *)net)[i] & ((int *)mask)[i])) |
| return 0; |
| return 1; |
| } |
| |
| /* RFC 4291 prefix */ |
| const char rfc4291_pfx[] = { 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0x00, 0x00, |
| 0x00, 0x00, 0xFF, 0xFF }; |
| |
| /* Map IPv4 address on IPv6 address, as specified in RFC 3513. |
| * Input and output may overlap. |
| */ |
| void v4tov6(struct in6_addr *sin6_addr, struct in_addr *sin_addr) |
| { |
| struct in_addr tmp_addr; |
| |
| tmp_addr.s_addr = sin_addr->s_addr; |
| memcpy(sin6_addr->s6_addr, rfc4291_pfx, sizeof(rfc4291_pfx)); |
| memcpy(sin6_addr->s6_addr+12, &tmp_addr.s_addr, 4); |
| } |
| |
| /* Map IPv6 address on IPv4 address, as specified in RFC 3513. |
| * Return true if conversion is possible and false otherwise. |
| */ |
| int v6tov4(struct in_addr *sin_addr, struct in6_addr *sin6_addr) |
| { |
| if (memcmp(sin6_addr->s6_addr, rfc4291_pfx, sizeof(rfc4291_pfx)) == 0) { |
| memcpy(&(sin_addr->s_addr), &(sin6_addr->s6_addr[12]), |
| sizeof(struct in_addr)); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* compare two struct sockaddr_storage and return: |
| * 0 (true) if the addr is the same in both |
| * 1 (false) if the addr is not the same in both |
| * -1 (unable) if one of the addr is not AF_INET* |
| */ |
| int ipcmp(struct sockaddr_storage *ss1, struct sockaddr_storage *ss2) |
| { |
| if ((ss1->ss_family != AF_INET) && (ss1->ss_family != AF_INET6)) |
| return -1; |
| |
| if ((ss2->ss_family != AF_INET) && (ss2->ss_family != AF_INET6)) |
| return -1; |
| |
| if (ss1->ss_family != ss2->ss_family) |
| return 1; |
| |
| switch (ss1->ss_family) { |
| case AF_INET: |
| return memcmp(&((struct sockaddr_in *)ss1)->sin_addr, |
| &((struct sockaddr_in *)ss2)->sin_addr, |
| sizeof(struct in_addr)) != 0; |
| case AF_INET6: |
| return memcmp(&((struct sockaddr_in6 *)ss1)->sin6_addr, |
| &((struct sockaddr_in6 *)ss2)->sin6_addr, |
| sizeof(struct in6_addr)) != 0; |
| } |
| |
| return 1; |
| } |
| |
| /* copy IP address from <source> into <dest> |
| * The caller must allocate and clear <dest> before calling. |
| * The source must be in either AF_INET or AF_INET6 family, or the destination |
| * address will be undefined. If the destination address used to hold a port, |
| * it is preserved, so that this function can be used to switch to another |
| * address family with no risk. Returns a pointer to the destination. |
| */ |
| struct sockaddr_storage *ipcpy(struct sockaddr_storage *source, struct sockaddr_storage *dest) |
| { |
| int prev_port; |
| |
| prev_port = get_net_port(dest); |
| memset(dest, 0, sizeof(*dest)); |
| dest->ss_family = source->ss_family; |
| |
| /* copy new addr and apply it */ |
| switch (source->ss_family) { |
| case AF_INET: |
| ((struct sockaddr_in *)dest)->sin_addr.s_addr = ((struct sockaddr_in *)source)->sin_addr.s_addr; |
| ((struct sockaddr_in *)dest)->sin_port = prev_port; |
| break; |
| case AF_INET6: |
| memcpy(((struct sockaddr_in6 *)dest)->sin6_addr.s6_addr, ((struct sockaddr_in6 *)source)->sin6_addr.s6_addr, sizeof(struct in6_addr)); |
| ((struct sockaddr_in6 *)dest)->sin6_port = prev_port; |
| break; |
| } |
| |
| return dest; |
| } |
| |
| char *human_time(int t, short hz_div) { |
| static char rv[sizeof("24855d23h")+1]; // longest of "23h59m" and "59m59s" |
| char *p = rv; |
| char *end = rv + sizeof(rv); |
| int cnt=2; // print two numbers |
| |
| if (unlikely(t < 0 || hz_div <= 0)) { |
| snprintf(p, end - p, "?"); |
| return rv; |
| } |
| |
| if (unlikely(hz_div > 1)) |
| t /= hz_div; |
| |
| if (t >= DAY) { |
| p += snprintf(p, end - p, "%dd", t / DAY); |
| cnt--; |
| } |
| |
| if (cnt && t % DAY / HOUR) { |
| p += snprintf(p, end - p, "%dh", t % DAY / HOUR); |
| cnt--; |
| } |
| |
| if (cnt && t % HOUR / MINUTE) { |
| p += snprintf(p, end - p, "%dm", t % HOUR / MINUTE); |
| cnt--; |
| } |
| |
| if ((cnt && t % MINUTE) || !t) // also display '0s' |
| p += snprintf(p, end - p, "%ds", t % MINUTE / SEC); |
| |
| return rv; |
| } |
| |
| const char *monthname[12] = { |
| "Jan", "Feb", "Mar", "Apr", "May", "Jun", |
| "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" |
| }; |
| |
| /* date2str_log: write a date in the format : |
| * sprintf(str, "%02d/%s/%04d:%02d:%02d:%02d.%03d", |
| * tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900, |
| * tm.tm_hour, tm.tm_min, tm.tm_sec, (int)date.tv_usec/1000); |
| * |
| * without using sprintf. return a pointer to the last char written (\0) or |
| * NULL if there isn't enough space. |
| */ |
| char *date2str_log(char *dst, const struct tm *tm, const struct timeval *date, size_t size) |
| { |
| |
| if (size < 25) /* the size is fixed: 24 chars + \0 */ |
| return NULL; |
| |
| dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day |
| if (!dst) |
| return NULL; |
| *dst++ = '/'; |
| |
| memcpy(dst, monthname[tm->tm_mon], 3); // month |
| dst += 3; |
| *dst++ = '/'; |
| |
| dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year |
| if (!dst) |
| return NULL; |
| *dst++ = ':'; |
| |
| dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour |
| if (!dst) |
| return NULL; |
| *dst++ = ':'; |
| |
| dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes |
| if (!dst) |
| return NULL; |
| *dst++ = ':'; |
| |
| dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes |
| if (!dst) |
| return NULL; |
| *dst++ = '.'; |
| |
| dst = utoa_pad((unsigned int)(date->tv_usec/1000)%1000, dst, 4); // milliseconds |
| if (!dst) |
| return NULL; |
| *dst = '\0'; |
| |
| return dst; |
| } |
| |
| /* Base year used to compute leap years */ |
| #define TM_YEAR_BASE 1900 |
| |
| /* Return the difference in seconds between two times (leap seconds are ignored). |
| * Retrieved from glibc 2.18 source code. |
| */ |
| static int my_tm_diff(const struct tm *a, const struct tm *b) |
| { |
| /* Compute intervening leap days correctly even if year is negative. |
| * Take care to avoid int overflow in leap day calculations, |
| * but it's OK to assume that A and B are close to each other. |
| */ |
| int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3); |
| int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3); |
| int a100 = a4 / 25 - (a4 % 25 < 0); |
| int b100 = b4 / 25 - (b4 % 25 < 0); |
| int a400 = a100 >> 2; |
| int b400 = b100 >> 2; |
| int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400); |
| int years = a->tm_year - b->tm_year; |
| int days = (365 * years + intervening_leap_days |
| + (a->tm_yday - b->tm_yday)); |
| return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour)) |
| + (a->tm_min - b->tm_min)) |
| + (a->tm_sec - b->tm_sec)); |
| } |
| |
| /* Return the GMT offset for a specific local time. |
| * Both t and tm must represent the same time. |
| * The string returned has the same format as returned by strftime(... "%z", tm). |
| * Offsets are kept in an internal cache for better performances. |
| */ |
| const char *get_gmt_offset(time_t t, struct tm *tm) |
| { |
| /* Cache offsets from GMT (depending on whether DST is active or not) */ |
| static THREAD_LOCAL char gmt_offsets[2][5+1] = { "", "" }; |
| |
| char *gmt_offset; |
| struct tm tm_gmt; |
| int diff; |
| int isdst = tm->tm_isdst; |
| |
| /* Pretend DST not active if its status is unknown */ |
| if (isdst < 0) |
| isdst = 0; |
| |
| /* Fetch the offset and initialize it if needed */ |
| gmt_offset = gmt_offsets[isdst & 0x01]; |
| if (unlikely(!*gmt_offset)) { |
| get_gmtime(t, &tm_gmt); |
| diff = my_tm_diff(tm, &tm_gmt); |
| if (diff < 0) { |
| diff = -diff; |
| *gmt_offset = '-'; |
| } else { |
| *gmt_offset = '+'; |
| } |
| diff %= 86400U; |
| diff /= 60; /* Convert to minutes */ |
| snprintf(gmt_offset+1, 4+1, "%02d%02d", diff/60, diff%60); |
| } |
| |
| return gmt_offset; |
| } |
| |
| /* gmt2str_log: write a date in the format : |
| * "%02d/%s/%04d:%02d:%02d:%02d +0000" without using snprintf |
| * return a pointer to the last char written (\0) or |
| * NULL if there isn't enough space. |
| */ |
| char *gmt2str_log(char *dst, struct tm *tm, size_t size) |
| { |
| if (size < 27) /* the size is fixed: 26 chars + \0 */ |
| return NULL; |
| |
| dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day |
| if (!dst) |
| return NULL; |
| *dst++ = '/'; |
| |
| memcpy(dst, monthname[tm->tm_mon], 3); // month |
| dst += 3; |
| *dst++ = '/'; |
| |
| dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year |
| if (!dst) |
| return NULL; |
| *dst++ = ':'; |
| |
| dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour |
| if (!dst) |
| return NULL; |
| *dst++ = ':'; |
| |
| dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes |
| if (!dst) |
| return NULL; |
| *dst++ = ':'; |
| |
| dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes |
| if (!dst) |
| return NULL; |
| *dst++ = ' '; |
| *dst++ = '+'; |
| *dst++ = '0'; |
| *dst++ = '0'; |
| *dst++ = '0'; |
| *dst++ = '0'; |
| *dst = '\0'; |
| |
| return dst; |
| } |
| |
| /* localdate2str_log: write a date in the format : |
| * "%02d/%s/%04d:%02d:%02d:%02d +0000(local timezone)" without using snprintf |
| * Both t and tm must represent the same time. |
| * return a pointer to the last char written (\0) or |
| * NULL if there isn't enough space. |
| */ |
| char *localdate2str_log(char *dst, time_t t, struct tm *tm, size_t size) |
| { |
| const char *gmt_offset; |
| if (size < 27) /* the size is fixed: 26 chars + \0 */ |
| return NULL; |
| |
| gmt_offset = get_gmt_offset(t, tm); |
| |
| dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day |
| if (!dst) |
| return NULL; |
| *dst++ = '/'; |
| |
| memcpy(dst, monthname[tm->tm_mon], 3); // month |
| dst += 3; |
| *dst++ = '/'; |
| |
| dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year |
| if (!dst) |
| return NULL; |
| *dst++ = ':'; |
| |
| dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour |
| if (!dst) |
| return NULL; |
| *dst++ = ':'; |
| |
| dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes |
| if (!dst) |
| return NULL; |
| *dst++ = ':'; |
| |
| dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes |
| if (!dst) |
| return NULL; |
| *dst++ = ' '; |
| |
| memcpy(dst, gmt_offset, 5); // Offset from local time to GMT |
| dst += 5; |
| *dst = '\0'; |
| |
| return dst; |
| } |
| |
| /* Returns the number of seconds since 01/01/1970 0:0:0 GMT for GMT date <tm>. |
| * It is meant as a portable replacement for timegm() for use with valid inputs. |
| * Returns undefined results for invalid dates (eg: months out of range 0..11). |
| */ |
| time_t my_timegm(const struct tm *tm) |
| { |
| /* Each month has 28, 29, 30 or 31 days, or 28+N. The date in the year |
| * is thus (current month - 1)*28 + cumulated_N[month] to count the |
| * sum of the extra N days for elapsed months. The sum of all these N |
| * days doesn't exceed 30 for a complete year (366-12*28) so it fits |
| * in a 5-bit word. This means that with 60 bits we can represent a |
| * matrix of all these values at once, which is fast and efficient to |
| * access. The extra February day for leap years is not counted here. |
| * |
| * Jan : none = 0 (0) |
| * Feb : Jan = 3 (3) |
| * Mar : Jan..Feb = 3 (3 + 0) |
| * Apr : Jan..Mar = 6 (3 + 0 + 3) |
| * May : Jan..Apr = 8 (3 + 0 + 3 + 2) |
| * Jun : Jan..May = 11 (3 + 0 + 3 + 2 + 3) |
| * Jul : Jan..Jun = 13 (3 + 0 + 3 + 2 + 3 + 2) |
| * Aug : Jan..Jul = 16 (3 + 0 + 3 + 2 + 3 + 2 + 3) |
| * Sep : Jan..Aug = 19 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3) |
| * Oct : Jan..Sep = 21 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2) |
| * Nov : Jan..Oct = 24 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2 + 3) |
| * Dec : Jan..Nov = 26 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2 + 3 + 2) |
| */ |
| uint64_t extra = |
| ( 0ULL << 0*5) + ( 3ULL << 1*5) + ( 3ULL << 2*5) + /* Jan, Feb, Mar, */ |
| ( 6ULL << 3*5) + ( 8ULL << 4*5) + (11ULL << 5*5) + /* Apr, May, Jun, */ |
| (13ULL << 6*5) + (16ULL << 7*5) + (19ULL << 8*5) + /* Jul, Aug, Sep, */ |
| (21ULL << 9*5) + (24ULL << 10*5) + (26ULL << 11*5); /* Oct, Nov, Dec, */ |
| |
| unsigned int y = tm->tm_year + 1900; |
| unsigned int m = tm->tm_mon; |
| unsigned long days = 0; |
| |
| /* days since 1/1/1970 for full years */ |
| days += days_since_zero(y) - days_since_zero(1970); |
| |
| /* days for full months in the current year */ |
| days += 28 * m + ((extra >> (m * 5)) & 0x1f); |
| |
| /* count + 1 after March for leap years. A leap year is a year multiple |
| * of 4, unless it's multiple of 100 without being multiple of 400. 2000 |
| * is leap, 1900 isn't, 1904 is. |
| */ |
| if ((m > 1) && !(y & 3) && ((y % 100) || !(y % 400))) |
| days++; |
| |
| days += tm->tm_mday - 1; |
| return days * 86400ULL + tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec; |
| } |
| |
| /* This function check a char. It returns true and updates |
| * <date> and <len> pointer to the new position if the |
| * character is found. |
| */ |
| static inline int parse_expect_char(const char **date, int *len, char c) |
| { |
| if (*len < 1 || **date != c) |
| return 0; |
| (*len)--; |
| (*date)++; |
| return 1; |
| } |
| |
| /* This function expects a string <str> of len <l>. It return true and updates. |
| * <date> and <len> if the string matches, otherwise, it returns false. |
| */ |
| static inline int parse_strcmp(const char **date, int *len, char *str, int l) |
| { |
| if (*len < l || strncmp(*date, str, l) != 0) |
| return 0; |
| (*len) -= l; |
| (*date) += l; |
| return 1; |
| } |
| |
| /* This macro converts 3 chars name in integer. */ |
| #define STR2I3(__a, __b, __c) ((__a) * 65536 + (__b) * 256 + (__c)) |
| |
| /* day-name = %x4D.6F.6E ; "Mon", case-sensitive |
| * / %x54.75.65 ; "Tue", case-sensitive |
| * / %x57.65.64 ; "Wed", case-sensitive |
| * / %x54.68.75 ; "Thu", case-sensitive |
| * / %x46.72.69 ; "Fri", case-sensitive |
| * / %x53.61.74 ; "Sat", case-sensitive |
| * / %x53.75.6E ; "Sun", case-sensitive |
| * |
| * This array must be alphabetically sorted |
| */ |
| static inline int parse_http_dayname(const char **date, int *len, struct tm *tm) |
| { |
| if (*len < 3) |
| return 0; |
| switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) { |
| case STR2I3('M','o','n'): tm->tm_wday = 1; break; |
| case STR2I3('T','u','e'): tm->tm_wday = 2; break; |
| case STR2I3('W','e','d'): tm->tm_wday = 3; break; |
| case STR2I3('T','h','u'): tm->tm_wday = 4; break; |
| case STR2I3('F','r','i'): tm->tm_wday = 5; break; |
| case STR2I3('S','a','t'): tm->tm_wday = 6; break; |
| case STR2I3('S','u','n'): tm->tm_wday = 7; break; |
| default: return 0; |
| } |
| *len -= 3; |
| *date += 3; |
| return 1; |
| } |
| |
| /* month = %x4A.61.6E ; "Jan", case-sensitive |
| * / %x46.65.62 ; "Feb", case-sensitive |
| * / %x4D.61.72 ; "Mar", case-sensitive |
| * / %x41.70.72 ; "Apr", case-sensitive |
| * / %x4D.61.79 ; "May", case-sensitive |
| * / %x4A.75.6E ; "Jun", case-sensitive |
| * / %x4A.75.6C ; "Jul", case-sensitive |
| * / %x41.75.67 ; "Aug", case-sensitive |
| * / %x53.65.70 ; "Sep", case-sensitive |
| * / %x4F.63.74 ; "Oct", case-sensitive |
| * / %x4E.6F.76 ; "Nov", case-sensitive |
| * / %x44.65.63 ; "Dec", case-sensitive |
| * |
| * This array must be alphabetically sorted |
| */ |
| static inline int parse_http_monthname(const char **date, int *len, struct tm *tm) |
| { |
| if (*len < 3) |
| return 0; |
| switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) { |
| case STR2I3('J','a','n'): tm->tm_mon = 0; break; |
| case STR2I3('F','e','b'): tm->tm_mon = 1; break; |
| case STR2I3('M','a','r'): tm->tm_mon = 2; break; |
| case STR2I3('A','p','r'): tm->tm_mon = 3; break; |
| case STR2I3('M','a','y'): tm->tm_mon = 4; break; |
| case STR2I3('J','u','n'): tm->tm_mon = 5; break; |
| case STR2I3('J','u','l'): tm->tm_mon = 6; break; |
| case STR2I3('A','u','g'): tm->tm_mon = 7; break; |
| case STR2I3('S','e','p'): tm->tm_mon = 8; break; |
| case STR2I3('O','c','t'): tm->tm_mon = 9; break; |
| case STR2I3('N','o','v'): tm->tm_mon = 10; break; |
| case STR2I3('D','e','c'): tm->tm_mon = 11; break; |
| default: return 0; |
| } |
| *len -= 3; |
| *date += 3; |
| return 1; |
| } |
| |
| /* day-name-l = %x4D.6F.6E.64.61.79 ; "Monday", case-sensitive |
| * / %x54.75.65.73.64.61.79 ; "Tuesday", case-sensitive |
| * / %x57.65.64.6E.65.73.64.61.79 ; "Wednesday", case-sensitive |
| * / %x54.68.75.72.73.64.61.79 ; "Thursday", case-sensitive |
| * / %x46.72.69.64.61.79 ; "Friday", case-sensitive |
| * / %x53.61.74.75.72.64.61.79 ; "Saturday", case-sensitive |
| * / %x53.75.6E.64.61.79 ; "Sunday", case-sensitive |
| * |
| * This array must be alphabetically sorted |
| */ |
| static inline int parse_http_ldayname(const char **date, int *len, struct tm *tm) |
| { |
| if (*len < 6) /* Minimum length. */ |
| return 0; |
| switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) { |
| case STR2I3('M','o','n'): |
| RET0_UNLESS(parse_strcmp(date, len, "Monday", 6)); |
| tm->tm_wday = 1; |
| return 1; |
| case STR2I3('T','u','e'): |
| RET0_UNLESS(parse_strcmp(date, len, "Tuesday", 7)); |
| tm->tm_wday = 2; |
| return 1; |
| case STR2I3('W','e','d'): |
| RET0_UNLESS(parse_strcmp(date, len, "Wednesday", 9)); |
| tm->tm_wday = 3; |
| return 1; |
| case STR2I3('T','h','u'): |
| RET0_UNLESS(parse_strcmp(date, len, "Thursday", 8)); |
| tm->tm_wday = 4; |
| return 1; |
| case STR2I3('F','r','i'): |
| RET0_UNLESS(parse_strcmp(date, len, "Friday", 6)); |
| tm->tm_wday = 5; |
| return 1; |
| case STR2I3('S','a','t'): |
| RET0_UNLESS(parse_strcmp(date, len, "Saturday", 8)); |
| tm->tm_wday = 6; |
| return 1; |
| case STR2I3('S','u','n'): |
| RET0_UNLESS(parse_strcmp(date, len, "Sunday", 6)); |
| tm->tm_wday = 7; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* This function parses exactly 1 digit and returns the numeric value in "digit". */ |
| static inline int parse_digit(const char **date, int *len, int *digit) |
| { |
| if (*len < 1 || **date < '0' || **date > '9') |
| return 0; |
| *digit = (**date - '0'); |
| (*date)++; |
| (*len)--; |
| return 1; |
| } |
| |
| /* This function parses exactly 2 digits and returns the numeric value in "digit". */ |
| static inline int parse_2digit(const char **date, int *len, int *digit) |
| { |
| int value; |
| |
| RET0_UNLESS(parse_digit(date, len, &value)); |
| (*digit) = value * 10; |
| RET0_UNLESS(parse_digit(date, len, &value)); |
| (*digit) += value; |
| |
| return 1; |
| } |
| |
| /* This function parses exactly 4 digits and returns the numeric value in "digit". */ |
| static inline int parse_4digit(const char **date, int *len, int *digit) |
| { |
| int value; |
| |
| RET0_UNLESS(parse_digit(date, len, &value)); |
| (*digit) = value * 1000; |
| |
| RET0_UNLESS(parse_digit(date, len, &value)); |
| (*digit) += value * 100; |
| |
| RET0_UNLESS(parse_digit(date, len, &value)); |
| (*digit) += value * 10; |
| |
| RET0_UNLESS(parse_digit(date, len, &value)); |
| (*digit) += value; |
| |
| return 1; |
| } |
| |
| /* time-of-day = hour ":" minute ":" second |
| * ; 00:00:00 - 23:59:60 (leap second) |
| * |
| * hour = 2DIGIT |
| * minute = 2DIGIT |
| * second = 2DIGIT |
| */ |
| static inline int parse_http_time(const char **date, int *len, struct tm *tm) |
| { |
| RET0_UNLESS(parse_2digit(date, len, &tm->tm_hour)); /* hour 2DIGIT */ |
| RET0_UNLESS(parse_expect_char(date, len, ':')); /* expect ":" */ |
| RET0_UNLESS(parse_2digit(date, len, &tm->tm_min)); /* min 2DIGIT */ |
| RET0_UNLESS(parse_expect_char(date, len, ':')); /* expect ":" */ |
| RET0_UNLESS(parse_2digit(date, len, &tm->tm_sec)); /* sec 2DIGIT */ |
| return 1; |
| } |
| |
| /* From RFC7231 |
| * https://tools.ietf.org/html/rfc7231#section-7.1.1.1 |
| * |
| * IMF-fixdate = day-name "," SP date1 SP time-of-day SP GMT |
| * ; fixed length/zone/capitalization subset of the format |
| * ; see Section 3.3 of [RFC5322] |
| * |
| * |
| * date1 = day SP month SP year |
| * ; e.g., 02 Jun 1982 |
| * |
| * day = 2DIGIT |
| * year = 4DIGIT |
| * |
| * GMT = %x47.4D.54 ; "GMT", case-sensitive |
| * |
| * time-of-day = hour ":" minute ":" second |
| * ; 00:00:00 - 23:59:60 (leap second) |
| * |
| * hour = 2DIGIT |
| * minute = 2DIGIT |
| * second = 2DIGIT |
| * |
| * DIGIT = decimal 0-9 |
| */ |
| int parse_imf_date(const char *date, int len, struct tm *tm) |
| { |
| /* tm_gmtoff, if present, ought to be zero'ed */ |
| memset(tm, 0, sizeof(*tm)); |
| |
| RET0_UNLESS(parse_http_dayname(&date, &len, tm)); /* day-name */ |
| RET0_UNLESS(parse_expect_char(&date, &len, ',')); /* expect "," */ |
| RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ |
| RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); /* day 2DIGIT */ |
| RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ |
| RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* Month */ |
| RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ |
| RET0_UNLESS(parse_4digit(&date, &len, &tm->tm_year)); /* year = 4DIGIT */ |
| tm->tm_year -= 1900; |
| RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ |
| RET0_UNLESS(parse_http_time(&date, &len, tm)); /* Parse time. */ |
| RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ |
| RET0_UNLESS(parse_strcmp(&date, &len, "GMT", 3)); /* GMT = %x47.4D.54 ; "GMT", case-sensitive */ |
| tm->tm_isdst = -1; |
| return 1; |
| } |
| |
| /* From RFC7231 |
| * https://tools.ietf.org/html/rfc7231#section-7.1.1.1 |
| * |
| * rfc850-date = day-name-l "," SP date2 SP time-of-day SP GMT |
| * date2 = day "-" month "-" 2DIGIT |
| * ; e.g., 02-Jun-82 |
| * |
| * day = 2DIGIT |
| */ |
| int parse_rfc850_date(const char *date, int len, struct tm *tm) |
| { |
| int year; |
| |
| /* tm_gmtoff, if present, ought to be zero'ed */ |
| memset(tm, 0, sizeof(*tm)); |
| |
| RET0_UNLESS(parse_http_ldayname(&date, &len, tm)); /* Read the day name */ |
| RET0_UNLESS(parse_expect_char(&date, &len, ',')); /* expect "," */ |
| RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ |
| RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); /* day 2DIGIT */ |
| RET0_UNLESS(parse_expect_char(&date, &len, '-')); /* expect "-" */ |
| RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* Month */ |
| RET0_UNLESS(parse_expect_char(&date, &len, '-')); /* expect "-" */ |
| |
| /* year = 2DIGIT |
| * |
| * Recipients of a timestamp value in rfc850-(*date) format, which uses a |
| * two-digit year, MUST interpret a timestamp that appears to be more |
| * than 50 years in the future as representing the most recent year in |
| * the past that had the same last two digits. |
| */ |
| RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_year)); |
| |
| /* expect SP */ |
| if (!parse_expect_char(&date, &len, ' ')) { |
| /* Maybe we have the date with 4 digits. */ |
| RET0_UNLESS(parse_2digit(&date, &len, &year)); |
| tm->tm_year = (tm->tm_year * 100 + year) - 1900; |
| /* expect SP */ |
| RET0_UNLESS(parse_expect_char(&date, &len, ' ')); |
| } else { |
| /* I fix 60 as pivot: >60: +1900, <60: +2000. Note that the |
| * tm_year is the number of year since 1900, so for +1900, we |
| * do nothing, and for +2000, we add 100. |
| */ |
| if (tm->tm_year <= 60) |
| tm->tm_year += 100; |
| } |
| |
| RET0_UNLESS(parse_http_time(&date, &len, tm)); /* Parse time. */ |
| RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ |
| RET0_UNLESS(parse_strcmp(&date, &len, "GMT", 3)); /* GMT = %x47.4D.54 ; "GMT", case-sensitive */ |
| tm->tm_isdst = -1; |
| |
| return 1; |
| } |
| |
| /* From RFC7231 |
| * https://tools.ietf.org/html/rfc7231#section-7.1.1.1 |
| * |
| * asctime-date = day-name SP date3 SP time-of-day SP year |
| * date3 = month SP ( 2DIGIT / ( SP 1DIGIT )) |
| * ; e.g., Jun 2 |
| * |
| * HTTP-date is case sensitive. A sender MUST NOT generate additional |
| * whitespace in an HTTP-date beyond that specifically included as SP in |
| * the grammar. |
| */ |
| int parse_asctime_date(const char *date, int len, struct tm *tm) |
| { |
| /* tm_gmtoff, if present, ought to be zero'ed */ |
| memset(tm, 0, sizeof(*tm)); |
| |
| RET0_UNLESS(parse_http_dayname(&date, &len, tm)); /* day-name */ |
| RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ |
| RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* expect month */ |
| RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ |
| |
| /* expect SP and 1DIGIT or 2DIGIT */ |
| if (parse_expect_char(&date, &len, ' ')) |
| RET0_UNLESS(parse_digit(&date, &len, &tm->tm_mday)); |
| else |
| RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); |
| |
| RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ |
| RET0_UNLESS(parse_http_time(&date, &len, tm)); /* Parse time. */ |
| RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */ |
| RET0_UNLESS(parse_4digit(&date, &len, &tm->tm_year)); /* year = 4DIGIT */ |
| tm->tm_year -= 1900; |
| tm->tm_isdst = -1; |
| return 1; |
| } |
| |
| /* From RFC7231 |
| * https://tools.ietf.org/html/rfc7231#section-7.1.1.1 |
| * |
| * HTTP-date = IMF-fixdate / obs-date |
| * obs-date = rfc850-date / asctime-date |
| * |
| * parses an HTTP date in the RFC format and is accepted |
| * alternatives. <date> is the strinf containing the date, |
| * len is the len of the string. <tm> is filled with the |
| * parsed time. We must considers this time as GMT. |
| */ |
| int parse_http_date(const char *date, int len, struct tm *tm) |
| { |
| if (parse_imf_date(date, len, tm)) |
| return 1; |
| |
| if (parse_rfc850_date(date, len, tm)) |
| return 1; |
| |
| if (parse_asctime_date(date, len, tm)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Dynamically allocates a string of the proper length to hold the formatted |
| * output. NULL is returned on error. The caller is responsible for freeing the |
| * memory area using free(). The resulting string is returned in <out> if the |
| * pointer is not NULL. A previous version of <out> might be used to build the |
| * new string, and it will be freed before returning if it is not NULL, which |
| * makes it possible to build complex strings from iterative calls without |
| * having to care about freeing intermediate values, as in the example below : |
| * |
| * memprintf(&err, "invalid argument: '%s'", arg); |
| * ... |
| * memprintf(&err, "parser said : <%s>\n", *err); |
| * ... |
| * free(*err); |
| * |
| * This means that <err> must be initialized to NULL before first invocation. |
| * The return value also holds the allocated string, which eases error checking |
| * and immediate consumption. If the output pointer is not used, NULL must be |
| * passed instead and it will be ignored. The returned message will then also |
| * be NULL so that the caller does not have to bother with freeing anything. |
| * |
| * It is also convenient to use it without any free except the last one : |
| * err = NULL; |
| * if (!fct1(err)) report(*err); |
| * if (!fct2(err)) report(*err); |
| * if (!fct3(err)) report(*err); |
| * free(*err); |
| * |
| * memprintf relies on memvprintf. This last version can be called from any |
| * function with variadic arguments. |
| */ |
| char *memvprintf(char **out, const char *format, va_list orig_args) |
| { |
| va_list args; |
| char *ret = NULL; |
| int allocated = 0; |
| int needed = 0; |
| |
| if (!out) |
| return NULL; |
| |
| do { |
| char buf1; |
| |
| /* vsnprintf() will return the required length even when the |
| * target buffer is NULL. We do this in a loop just in case |
| * intermediate evaluations get wrong. |
| */ |
| va_copy(args, orig_args); |
| needed = vsnprintf(ret ? ret : &buf1, allocated, format, args); |
| va_end(args); |
| if (needed < allocated) { |
| /* Note: on Solaris 8, the first iteration always |
| * returns -1 if allocated is zero, so we force a |
| * retry. |
| */ |
| if (!allocated) |
| needed = 0; |
| else |
| break; |
| } |
| |
| allocated = needed + 1; |
| ret = my_realloc2(ret, allocated); |
| } while (ret); |
| |
| if (needed < 0) { |
| /* an error was encountered */ |
| free(ret); |
| ret = NULL; |
| } |
| |
| if (out) { |
| free(*out); |
| *out = ret; |
| } |
| |
| return ret; |
| } |
| |
| char *memprintf(char **out, const char *format, ...) |
| { |
| va_list args; |
| char *ret = NULL; |
| |
| va_start(args, format); |
| ret = memvprintf(out, format, args); |
| va_end(args); |
| |
| return ret; |
| } |
| |
| /* Used to add <level> spaces before each line of <out>, unless there is only one line. |
| * The input argument is automatically freed and reassigned. The result will have to be |
| * freed by the caller. It also supports being passed a NULL which results in the same |
| * output. |
| * Example of use : |
| * parse(cmd, &err); (callee: memprintf(&err, ...)) |
| * fprintf(stderr, "Parser said: %s\n", indent_error(&err)); |
| * free(err); |
| */ |
| char *indent_msg(char **out, int level) |
| { |
| char *ret, *in, *p; |
| int needed = 0; |
| int lf = 0; |
| int lastlf = 0; |
| int len; |
| |
| if (!out || !*out) |
| return NULL; |
| |
| in = *out - 1; |
| while ((in = strchr(in + 1, '\n')) != NULL) { |
| lastlf = in - *out; |
| lf++; |
| } |
| |
| if (!lf) /* single line, no LF, return it as-is */ |
| return *out; |
| |
| len = strlen(*out); |
| |
| if (lf == 1 && lastlf == len - 1) { |
| /* single line, LF at end, strip it and return as-is */ |
| (*out)[lastlf] = 0; |
| return *out; |
| } |
| |
| /* OK now we have at least one LF, we need to process the whole string |
| * as a multi-line string. What we'll do : |
| * - prefix with an LF if there is none |
| * - add <level> spaces before each line |
| * This means at most ( 1 + level + (len-lf) + lf*<1+level) ) = |
| * 1 + level + len + lf * level = 1 + level * (lf + 1) + len. |
| */ |
| |
| needed = 1 + level * (lf + 1) + len + 1; |
| p = ret = malloc(needed); |
| in = *out; |
| |
| /* skip initial LFs */ |
| while (*in == '\n') |
| in++; |
| |
| /* copy each line, prefixed with LF and <level> spaces, and without the trailing LF */ |
| while (*in) { |
| *p++ = '\n'; |
| memset(p, ' ', level); |
| p += level; |
| do { |
| *p++ = *in++; |
| } while (*in && *in != '\n'); |
| if (*in) |
| in++; |
| } |
| *p = 0; |
| |
| free(*out); |
| *out = ret; |
| |
| return ret; |
| } |
| |
| /* makes a copy of message <in> into <out>, with each line prefixed with <pfx> |
| * and end of lines replaced with <eol> if not 0. The first line to indent has |
| * to be indicated in <first> (starts at zero), so that it is possible to skip |
| * indenting the first line if it has to be appended after an existing message. |
| * Empty strings are never indented, and NULL strings are considered empty both |
| * for <in> and <pfx>. It returns non-zero if an EOL was appended as the last |
| * character, non-zero otherwise. |
| */ |
| int append_prefixed_str(struct buffer *out, const char *in, const char *pfx, char eol, int first) |
| { |
| int bol, lf; |
| int pfxlen = pfx ? strlen(pfx) : 0; |
| |
| if (!in) |
| return 0; |
| |
| bol = 1; |
| lf = 0; |
| while (*in) { |
| if (bol && pfxlen) { |
| if (first > 0) |
| first--; |
| else |
| b_putblk(out, pfx, pfxlen); |
| bol = 0; |
| } |
| |
| lf = (*in == '\n'); |
| bol |= lf; |
| b_putchr(out, (lf && eol) ? eol : *in); |
| in++; |
| } |
| return lf; |
| } |
| |
| /* removes environment variable <name> from the environment as found in |
| * environ. This is only provided as an alternative for systems without |
| * unsetenv() (old Solaris and AIX versions). THIS IS NOT THREAD SAFE. |
| * The principle is to scan environ for each occurrence of variable name |
| * <name> and to replace the matching pointers with the last pointer of |
| * the array (since variables are not ordered). |
| * It always returns 0 (success). |
| */ |
| int my_unsetenv(const char *name) |
| { |
| extern char **environ; |
| char **p = environ; |
| int vars; |
| int next; |
| int len; |
| |
| len = strlen(name); |
| for (vars = 0; p[vars]; vars++) |
| ; |
| next = 0; |
| while (next < vars) { |
| if (strncmp(p[next], name, len) != 0 || p[next][len] != '=') { |
| next++; |
| continue; |
| } |
| if (next < vars - 1) |
| p[next] = p[vars - 1]; |
| p[--vars] = NULL; |
| } |
| return 0; |
| } |
| |
| /* Convert occurrences of environment variables in the input string to their |
| * corresponding value. A variable is identified as a series of alphanumeric |
| * characters or underscores following a '$' sign. The <in> string must be |
| * free()able. NULL returns NULL. The resulting string might be reallocated if |
| * some expansion is made. Variable names may also be enclosed into braces if |
| * needed (eg: to concatenate alphanum characters). |
| */ |
| char *env_expand(char *in) |
| { |
| char *txt_beg; |
| char *out; |
| char *txt_end; |
| char *var_beg; |
| char *var_end; |
| char *value; |
| char *next; |
| int out_len; |
| int val_len; |
| |
| if (!in) |
| return in; |
| |
| value = out = NULL; |
| out_len = 0; |
| |
| txt_beg = in; |
| do { |
| /* look for next '$' sign in <in> */ |
| for (txt_end = txt_beg; *txt_end && *txt_end != '$'; txt_end++); |
| |
| if (!*txt_end && !out) /* end and no expansion performed */ |
| return in; |
| |
| val_len = 0; |
| next = txt_end; |
| if (*txt_end == '$') { |
| char save; |
| |
| var_beg = txt_end + 1; |
| if (*var_beg == '{') |
| var_beg++; |
| |
| var_end = var_beg; |
| while (isalnum((unsigned char)*var_end) || *var_end == '_') { |
| var_end++; |
| } |
| |
| next = var_end; |
| if (*var_end == '}' && (var_beg > txt_end + 1)) |
| next++; |
| |
| /* get value of the variable name at this location */ |
| save = *var_end; |
| *var_end = '\0'; |
| value = getenv(var_beg); |
| *var_end = save; |
| val_len = value ? strlen(value) : 0; |
| } |
| |
| out = my_realloc2(out, out_len + (txt_end - txt_beg) + val_len + 1); |
| if (txt_end > txt_beg) { |
| memcpy(out + out_len, txt_beg, txt_end - txt_beg); |
| out_len += txt_end - txt_beg; |
| } |
| if (val_len) { |
| memcpy(out + out_len, value, val_len); |
| out_len += val_len; |
| } |
| out[out_len] = 0; |
| txt_beg = next; |
| } while (*txt_beg); |
| |
| /* here we know that <out> was allocated and that we don't need <in> anymore */ |
| free(in); |
| return out; |
| } |
| |
| |
| /* same as strstr() but case-insensitive and with limit length */ |
| const char *strnistr(const char *str1, int len_str1, const char *str2, int len_str2) |
| { |
| char *pptr, *sptr, *start; |
| unsigned int slen, plen; |
| unsigned int tmp1, tmp2; |
| |
| if (str1 == NULL || len_str1 == 0) // search pattern into an empty string => search is not found |
| return NULL; |
| |
| if (str2 == NULL || len_str2 == 0) // pattern is empty => every str1 match |
| return str1; |
| |
| if (len_str1 < len_str2) // pattern is longer than string => search is not found |
| return NULL; |
| |
| for (tmp1 = 0, start = (char *)str1, pptr = (char *)str2, slen = len_str1, plen = len_str2; slen >= plen; start++, slen--) { |
| while (toupper(*start) != toupper(*str2)) { |
| start++; |
| slen--; |
| tmp1++; |
| |
| if (tmp1 >= len_str1) |
| return NULL; |
| |
| /* if pattern longer than string */ |
| if (slen < plen) |
| return NULL; |
| } |
| |
| sptr = start; |
| pptr = (char *)str2; |
| |
| tmp2 = 0; |
| while (toupper(*sptr) == toupper(*pptr)) { |
| sptr++; |
| pptr++; |
| tmp2++; |
| |
| if (*pptr == '\0' || tmp2 == len_str2) /* end of pattern found */ |
| return start; |
| if (*sptr == '\0' || tmp2 == len_str1) /* end of string found and the pattern is not fully found */ |
| return NULL; |
| } |
| } |
| return NULL; |
| } |
| |
| /* This function read the next valid utf8 char. |
| * <s> is the byte srray to be decode, <len> is its length. |
| * The function returns decoded char encoded like this: |
| * The 4 msb are the return code (UTF8_CODE_*), the 4 lsb |
| * are the length read. The decoded character is stored in <c>. |
| */ |
| unsigned char utf8_next(const char *s, int len, unsigned int *c) |
| { |
| const unsigned char *p = (unsigned char *)s; |
| int dec; |
| unsigned char code = UTF8_CODE_OK; |
| |
| if (len < 1) |
| return UTF8_CODE_OK; |
| |
| /* Check the type of UTF8 sequence |
| * |
| * 0... .... 0x00 <= x <= 0x7f : 1 byte: ascii char |
| * 10.. .... 0x80 <= x <= 0xbf : invalid sequence |
| * 110. .... 0xc0 <= x <= 0xdf : 2 bytes |
| * 1110 .... 0xe0 <= x <= 0xef : 3 bytes |
| * 1111 0... 0xf0 <= x <= 0xf7 : 4 bytes |
| * 1111 10.. 0xf8 <= x <= 0xfb : 5 bytes |
| * 1111 110. 0xfc <= x <= 0xfd : 6 bytes |
| * 1111 111. 0xfe <= x <= 0xff : invalid sequence |
| */ |
| switch (*p) { |
| case 0x00 ... 0x7f: |
| *c = *p; |
| return UTF8_CODE_OK | 1; |
| |
| case 0x80 ... 0xbf: |
| *c = *p; |
| return UTF8_CODE_BADSEQ | 1; |
| |
| case 0xc0 ... 0xdf: |
| if (len < 2) { |
| *c = *p; |
| return UTF8_CODE_BADSEQ | 1; |
| } |
| *c = *p & 0x1f; |
| dec = 1; |
| break; |
| |
| case 0xe0 ... 0xef: |
| if (len < 3) { |
| *c = *p; |
| return UTF8_CODE_BADSEQ | 1; |
| } |
| *c = *p & 0x0f; |
| dec = 2; |
| break; |
| |
| case 0xf0 ... 0xf7: |
| if (len < 4) { |
| *c = *p; |
| return UTF8_CODE_BADSEQ | 1; |
| } |
| *c = *p & 0x07; |
| dec = 3; |
| break; |
| |
| case 0xf8 ... 0xfb: |
| if (len < 5) { |
| *c = *p; |
| return UTF8_CODE_BADSEQ | 1; |
| } |
| *c = *p & 0x03; |
| dec = 4; |
| break; |
| |
| case 0xfc ... 0xfd: |
| if (len < 6) { |
| *c = *p; |
| return UTF8_CODE_BADSEQ | 1; |
| } |
| *c = *p & 0x01; |
| dec = 5; |
| break; |
| |
| case 0xfe ... 0xff: |
| default: |
| *c = *p; |
| return UTF8_CODE_BADSEQ | 1; |
| } |
| |
| p++; |
| |
| while (dec > 0) { |
| |
| /* need 0x10 for the 2 first bits */ |
| if ( ( *p & 0xc0 ) != 0x80 ) |
| return UTF8_CODE_BADSEQ | ((p-(unsigned char *)s)&0xffff); |
| |
| /* add data at char */ |
| *c = ( *c << 6 ) | ( *p & 0x3f ); |
| |
| dec--; |
| p++; |
| } |
| |
| /* Check ovelong encoding. |
| * 1 byte : 5 + 6 : 11 : 0x80 ... 0x7ff |
| * 2 bytes : 4 + 6 + 6 : 16 : 0x800 ... 0xffff |
| * 3 bytes : 3 + 6 + 6 + 6 : 21 : 0x10000 ... 0x1fffff |
| */ |
| if (( *c <= 0x7f && (p-(unsigned char *)s) > 1) || |
| (*c >= 0x80 && *c <= 0x7ff && (p-(unsigned char *)s) > 2) || |
| (*c >= 0x800 && *c <= 0xffff && (p-(unsigned char *)s) > 3) || |
| (*c >= 0x10000 && *c <= 0x1fffff && (p-(unsigned char *)s) > 4)) |
| code |= UTF8_CODE_OVERLONG; |
| |
| /* Check invalid UTF8 range. */ |
| if ((*c >= 0xd800 && *c <= 0xdfff) || |
| (*c >= 0xfffe && *c <= 0xffff)) |
| code |= UTF8_CODE_INVRANGE; |
| |
| return code | ((p-(unsigned char *)s)&0x0f); |
| } |
| |
| /* append a copy of string <str> (in a wordlist) at the end of the list <li> |
| * On failure : return 0 and <err> filled with an error message. |
| * The caller is responsible for freeing the <err> and <str> copy |
| * memory area using free() |
| */ |
| int list_append_word(struct list *li, const char *str, char **err) |
| { |
| struct wordlist *wl; |
| |
| wl = calloc(1, sizeof(*wl)); |
| if (!wl) { |
| memprintf(err, "out of memory"); |
| goto fail_wl; |
| } |
| |
| wl->s = strdup(str); |
| if (!wl->s) { |
| memprintf(err, "out of memory"); |
| goto fail_wl_s; |
| } |
| |
| LIST_ADDQ(li, &wl->list); |
| |
| return 1; |
| |
| fail_wl_s: |
| free(wl->s); |
| fail_wl: |
| free(wl); |
| return 0; |
| } |
| |
| /* indicates if a memory location may safely be read or not. The trick consists |
| * in performing a harmless syscall using this location as an input and letting |
| * the operating system report whether it's OK or not. For this we have the |
| * stat() syscall, which will return EFAULT when the memory location supposed |
| * to contain the file name is not readable. If it is readable it will then |
| * either return 0 if the area contains an existing file name, or -1 with |
| * another code. This must not be abused, and some audit systems might detect |
| * this as abnormal activity. It's used only for unsafe dumps. |
| */ |
| int may_access(const void *ptr) |
| { |
| struct stat buf; |
| |
| if (stat(ptr, &buf) == 0) |
| return 1; |
| if (errno == EFAULT) |
| return 0; |
| return 1; |
| } |
| |
| /* print a string of text buffer to <out>. The format is : |
| * Non-printable chars \t, \n, \r and \e are * encoded in C format. |
| * Other non-printable chars are encoded "\xHH". Space, '\', and '=' are also escaped. |
| * Print stopped if null char or <bsize> is reached, or if no more place in the chunk. |
| */ |
| int dump_text(struct buffer *out, const char *buf, int bsize) |
| { |
| unsigned char c; |
| int ptr = 0; |
| |
| while (buf[ptr] && ptr < bsize) { |
| c = buf[ptr]; |
| if (isprint((unsigned char)c) && isascii((unsigned char)c) && c != '\\' && c != ' ' && c != '=') { |
| if (out->data > out->size - 1) |
| break; |
| out->area[out->data++] = c; |
| } |
| else if (c == '\t' || c == '\n' || c == '\r' || c == '\e' || c == '\\' || c == ' ' || c == '=') { |
| if (out->data > out->size - 2) |
| break; |
| out->area[out->data++] = '\\'; |
| switch (c) { |
| case ' ': c = ' '; break; |
| case '\t': c = 't'; break; |
| case '\n': c = 'n'; break; |
| case '\r': c = 'r'; break; |
| case '\e': c = 'e'; break; |
| case '\\': c = '\\'; break; |
| case '=': c = '='; break; |
| } |
| out->area[out->data++] = c; |
| } |
| else { |
| if (out->data > out->size - 4) |
| break; |
| out->area[out->data++] = '\\'; |
| out->area[out->data++] = 'x'; |
| out->area[out->data++] = hextab[(c >> 4) & 0xF]; |
| out->area[out->data++] = hextab[c & 0xF]; |
| } |
| ptr++; |
| } |
| |
| return ptr; |
| } |
| |
| /* print a buffer in hexa. |
| * Print stopped if <bsize> is reached, or if no more place in the chunk. |
| */ |
| int dump_binary(struct buffer *out, const char *buf, int bsize) |
| { |
| unsigned char c; |
| int ptr = 0; |
| |
| while (ptr < bsize) { |
| c = buf[ptr]; |
| |
| if (out->data > out->size - 2) |
| break; |
| out->area[out->data++] = hextab[(c >> 4) & 0xF]; |
| out->area[out->data++] = hextab[c & 0xF]; |
| |
| ptr++; |
| } |
| return ptr; |
| } |
| |
| /* Appends into buffer <out> a hex dump of memory area <buf> for <len> bytes, |
| * prepending each line with prefix <pfx>. The output is *not* initialized. |
| * The output will not wrap pas the buffer's end so it is more optimal if the |
| * caller makes sure the buffer is aligned first. A trailing zero will always |
| * be appended (and not counted) if there is room for it. The caller must make |
| * sure that the area is dumpable first. If <unsafe> is non-null, the memory |
| * locations are checked first for being readable. |
| */ |
| void dump_hex(struct buffer *out, const char *pfx, const void *buf, int len, int unsafe) |
| { |
| const unsigned char *d = buf; |
| int i, j, start; |
| |
| d = (const unsigned char *)(((unsigned long)buf) & -16); |
| start = ((unsigned long)buf) & 15; |
| |
| for (i = 0; i < start + len; i += 16) { |
| chunk_appendf(out, (sizeof(void *) == 4) ? "%s%8p: " : "%s%16p: ", pfx, d + i); |
| |
| // 0: unchecked, 1: checked safe, 2: danger |
| unsafe = !!unsafe; |
| if (unsafe && !may_access(d + i)) |
| unsafe = 2; |
| |
| for (j = 0; j < 16; j++) { |
| if ((i + j < start) || (i + j >= start + len)) |
| chunk_strcat(out, "'' "); |
| else if (unsafe > 1) |
| chunk_strcat(out, "** "); |
| else |
| chunk_appendf(out, "%02x ", d[i + j]); |
| |
| if (j == 7) |
| chunk_strcat(out, "- "); |
| } |
| chunk_strcat(out, " "); |
| for (j = 0; j < 16; j++) { |
| if ((i + j < start) || (i + j >= start + len)) |
| chunk_strcat(out, "'"); |
| else if (unsafe > 1) |
| chunk_strcat(out, "*"); |
| else if (isprint((unsigned char)d[i + j])) |
| chunk_appendf(out, "%c", d[i + j]); |
| else |
| chunk_strcat(out, "."); |
| } |
| chunk_strcat(out, "\n"); |
| } |
| } |
| |
| /* dumps <pfx> followed by <n> bytes from <addr> in hex form into buffer <buf> |
| * enclosed in brackets after the address itself, formatted on 14 chars |
| * including the "0x" prefix. This is meant to be used as a prefix for code |
| * areas. For example: |
| * "0x7f10b6557690 [48 c7 c0 0f 00 00 00 0f]" |
| * It relies on may_access() to know if the bytes are dumpable, otherwise "--" |
| * is emitted. A NULL <pfx> will be considered empty. |
| */ |
| void dump_addr_and_bytes(struct buffer *buf, const char *pfx, const void *addr, int n) |
| { |
| int ok = 0; |
| int i; |
| |
| chunk_appendf(buf, "%s%#14lx [", pfx ? pfx : "", (long)addr); |
| |
| for (i = 0; i < n; i++) { |
| if (i == 0 || (((long)(addr + i) ^ (long)(addr)) & 4096)) |
| ok = may_access(addr + i); |
| if (ok) |
| chunk_appendf(buf, "%02x%s", ((uint8_t*)addr)[i], (i<n-1) ? " " : "]"); |
| else |
| chunk_appendf(buf, "--%s", (i<n-1) ? " " : "]"); |
| } |
| } |
| |
| /* print a line of text buffer (limited to 70 bytes) to <out>. The format is : |
| * <2 spaces> <offset=5 digits> <space or plus> <space> <70 chars max> <\n> |
| * which is 60 chars per line. Non-printable chars \t, \n, \r and \e are |
| * encoded in C format. Other non-printable chars are encoded "\xHH". Original |
| * lines are respected within the limit of 70 output chars. Lines that are |
| * continuation of a previous truncated line begin with "+" instead of " " |
| * after the offset. The new pointer is returned. |
| */ |
| int dump_text_line(struct buffer *out, const char *buf, int bsize, int len, |
| int *line, int ptr) |
| { |
| int end; |
| unsigned char c; |
| |
| end = out->data + 80; |
| if (end > out->size) |
| return ptr; |
| |
| chunk_appendf(out, " %05d%c ", ptr, (ptr == *line) ? ' ' : '+'); |
| |
| while (ptr < len && ptr < bsize) { |
| c = buf[ptr]; |
| if (isprint((unsigned char)c) && isascii((unsigned char)c) && c != '\\') { |
| if (out->data > end - 2) |
| break; |
| out->area[out->data++] = c; |
| } else if (c == '\t' || c == '\n' || c == '\r' || c == '\e' || c == '\\') { |
| if (out->data > end - 3) |
| break; |
| out->area[out->data++] = '\\'; |
| switch (c) { |
| case '\t': c = 't'; break; |
| case '\n': c = 'n'; break; |
| case '\r': c = 'r'; break; |
| case '\e': c = 'e'; break; |
| case '\\': c = '\\'; break; |
| } |
| out->area[out->data++] = c; |
| } else { |
| if (out->data > end - 5) |
| break; |
| out->area[out->data++] = '\\'; |
| out->area[out->data++] = 'x'; |
| out->area[out->data++] = hextab[(c >> 4) & 0xF]; |
| out->area[out->data++] = hextab[c & 0xF]; |
| } |
| if (buf[ptr++] == '\n') { |
| /* we had a line break, let's return now */ |
| out->area[out->data++] = '\n'; |
| *line = ptr; |
| return ptr; |
| } |
| } |
| /* we have an incomplete line, we return it as-is */ |
| out->area[out->data++] = '\n'; |
| return ptr; |
| } |
| |
| /* displays a <len> long memory block at <buf>, assuming first byte of <buf> |
| * has address <baseaddr>. String <pfx> may be placed as a prefix in front of |
| * each line. It may be NULL if unused. The output is emitted to file <out>. |
| */ |
| void debug_hexdump(FILE *out, const char *pfx, const char *buf, |
| unsigned int baseaddr, int len) |
| { |
| unsigned int i; |
| int b, j; |
| |
| for (i = 0; i < (len + (baseaddr & 15)); i += 16) { |
| b = i - (baseaddr & 15); |
| fprintf(out, "%s%08x: ", pfx ? pfx : "", i + (baseaddr & ~15)); |
| for (j = 0; j < 8; j++) { |
| if (b + j >= 0 && b + j < len) |
| fprintf(out, "%02x ", (unsigned char)buf[b + j]); |
| else |
| fprintf(out, " "); |
| } |
| |
| if (b + j >= 0 && b + j < len) |
| fputc('-', out); |
| else |
| fputc(' ', out); |
| |
| for (j = 8; j < 16; j++) { |
| if (b + j >= 0 && b + j < len) |
| fprintf(out, " %02x", (unsigned char)buf[b + j]); |
| else |
| fprintf(out, " "); |
| } |
| |
| fprintf(out, " "); |
| for (j = 0; j < 16; j++) { |
| if (b + j >= 0 && b + j < len) { |
| if (isprint((unsigned char)buf[b + j])) |
| fputc((unsigned char)buf[b + j], out); |
| else |
| fputc('.', out); |
| } |
| else |
| fputc(' ', out); |
| } |
| fputc('\n', out); |
| } |
| } |
| |
| /* Tries to report the executable path name on platforms supporting this. If |
| * not found or not possible, returns NULL. |
| */ |
| const char *get_exec_path() |
| { |
| const char *ret = NULL; |
| |
| #if (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 16)) |
| long execfn = getauxval(AT_EXECFN); |
| |
| if (execfn && execfn != ENOENT) |
| ret = (const char *)execfn; |
| #endif |
| return ret; |
| } |
| |
| #ifdef __ELF__ |
| /* calls dladdr() or dladdr1() on <addr> and <dli>. If dladdr1 is available, |
| * also returns the symbol size in <size>, otherwise returns 0 there. |
| */ |
| static int dladdr_and_size(const void *addr, Dl_info *dli, size_t *size) |
| { |
| int ret; |
| #if (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3)) // most detailed one |
| const ElfW(Sym) *sym; |
| |
| ret = dladdr1(addr, dli, (void **)&sym, RTLD_DL_SYMENT); |
| if (ret) |
| *size = sym ? sym->st_size : 0; |
| #else |
| ret = dladdr(addr, dli); |
| *size = 0; |
| #endif |
| return ret; |
| } |
| #endif |
| |
| /* Tries to append to buffer <buf> some indications about the symbol at address |
| * <addr> using the following form: |
| * lib:+0xoffset (unresolvable address from lib's base) |
| * main+0xoffset (unresolvable address from main (+/-)) |
| * lib:main+0xoffset (unresolvable lib address from main (+/-)) |
| * name (resolved exact exec address) |
| * lib:name (resolved exact lib address) |
| * name+0xoffset/0xsize (resolved address within exec symbol) |
| * lib:name+0xoffset/0xsize (resolved address within lib symbol) |
| * |
| * The file name (lib or executable) is limited to what lies between the last |
| * '/' and the first following '.'. An optional prefix <pfx> is prepended before |
| * the output if not null. The file is not dumped when it's the same as the one |
| * that contains the "main" symbol, or when __ELF__ is not set. |
| * |
| * The symbol's base address is returned, or NULL when unresolved, in order to |
| * allow the caller to match it against known ones. |
| */ |
| void *resolve_sym_name(struct buffer *buf, const char *pfx, void *addr) |
| { |
| const struct { |
| const void *func; |
| const char *name; |
| } fcts[] = { |
| { .func = process_stream, .name = "process_stream" }, |
| { .func = task_run_applet, .name = "task_run_applet" }, |
| { .func = si_cs_io_cb, .name = "si_cs_io_cb" }, |
| { .func = conn_fd_handler, .name = "conn_fd_handler" }, |
| { .func = dgram_fd_handler, .name = "dgram_fd_handler" }, |
| { .func = listener_accept, .name = "listener_accept" }, |
| { .func = poller_pipe_io_handler, .name = "poller_pipe_io_handler" }, |
| { .func = mworker_accept_wrapper, .name = "mworker_accept_wrapper" }, |
| #ifdef USE_LUA |
| { .func = hlua_process_task, .name = "hlua_process_task" }, |
| #endif |
| #if defined(USE_OPENSSL) && (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) |
| { .func = ssl_async_fd_free, .name = "ssl_async_fd_free" }, |
| { .func = ssl_async_fd_handler, .name = "ssl_async_fd_handler" }, |
| #endif |
| }; |
| |
| #ifdef __ELF__ |
| Dl_info dli, dli_main; |
| size_t size; |
| const char *fname, *p; |
| #endif |
| int i; |
| |
| if (pfx) |
| chunk_appendf(buf, "%s", pfx); |
| |
| for (i = 0; i < sizeof(fcts) / sizeof(fcts[0]); i++) { |
| if (addr == fcts[i].func) { |
| chunk_appendf(buf, "%s", fcts[i].name); |
| return addr; |
| } |
| } |
| |
| #ifdef __ELF__ |
| /* Now let's try to be smarter */ |
| if (!dladdr_and_size(addr, &dli, &size)) |
| goto unknown; |
| |
| /* 1. prefix the library name if it's not the same object as the one |
| * that contains the main function. The name is picked between last '/' |
| * and first following '.'. |
| */ |
| if (!dladdr(main, &dli_main)) |
| dli_main.dli_fbase = NULL; |
| |
| if (dli_main.dli_fbase != dli.dli_fbase) { |
| fname = dli.dli_fname; |
| p = strrchr(fname, '/'); |
| if (p++) |
| fname = p; |
| p = strchr(fname, '.'); |
| if (!p) |
| p = fname + strlen(fname); |
| |
| chunk_appendf(buf, "%.*s:", (int)(long)(p - fname), fname); |
| } |
| |
| /* 2. symbol name */ |
| if (dli.dli_sname) { |
| /* known, dump it and return symbol's address (exact or relative) */ |
| chunk_appendf(buf, "%s", dli.dli_sname); |
| if (addr != dli.dli_saddr) { |
| chunk_appendf(buf, "+%#lx", (long)(addr - dli.dli_saddr)); |
| if (size) |
| chunk_appendf(buf, "/%#lx", (long)size); |
| } |
| return dli.dli_saddr; |
| } |
| else if (dli_main.dli_fbase != dli.dli_fbase) { |
| /* unresolved symbol from a known library, report relative offset */ |
| chunk_appendf(buf, "+%#lx", (long)(addr - dli.dli_fbase)); |
| return NULL; |
| } |
| #endif /* __ELF__ */ |
| unknown: |
| /* unresolved symbol from the main file, report relative offset to main */ |
| if ((void*)addr < (void*)main) |
| chunk_appendf(buf, "main-%#lx", (long)((void*)main - addr)); |
| else |
| chunk_appendf(buf, "main+%#lx", (long)(addr - (void*)main)); |
| return NULL; |
| } |
| |
| /* |
| * Allocate an array of unsigned int with <nums> as address from <str> string |
| * made of integer sepereated by dot characters. |
| * |
| * First, initializes the value with <sz> as address to 0 and initializes the |
| * array with <nums> as address to NULL. Then allocates the array with <nums> as |
| * address updating <sz> pointed value to the size of this array. |
| * |
| * Returns 1 if succeeded, 0 if not. |
| */ |
| int parse_dotted_uints(const char *str, unsigned int **nums, size_t *sz) |
| { |
| unsigned int *n; |
| const char *s, *end; |
| |
| s = str; |
| *sz = 0; |
| end = str + strlen(str); |
| *nums = n = NULL; |
| |
| while (1) { |
| unsigned int r; |
| |
| if (s >= end) |
| break; |
| |
| r = read_uint(&s, end); |
| /* Expected characters after having read an uint: '\0' or '.', |
| * if '.', must not be terminal. |
| */ |
| if (*s != '\0'&& (*s++ != '.' || s == end)) |
| return 0; |
| |
| n = my_realloc2(n, (*sz + 1) * sizeof *n); |
| if (!n) |
| return 0; |
| |
| n[(*sz)++] = r; |
| } |
| *nums = n; |
| |
| return 1; |
| } |
| |
| |
| /* returns the number of bytes needed to encode <v> as a varint. An inline |
| * version exists for use with constants (__varint_bytes()). |
| */ |
| int varint_bytes(uint64_t v) |
| { |
| int len = 1; |
| |
| if (v >= 240) { |
| v = (v - 240) >> 4; |
| while (1) { |
| len++; |
| if (v < 128) |
| break; |
| v = (v - 128) >> 7; |
| } |
| } |
| return len; |
| } |
| |
| |
| /* Random number generator state, see below */ |
| static uint64_t ha_random_state[2] ALIGNED(2*sizeof(uint64_t)); |
| |
| /* This is a thread-safe implementation of xoroshiro128** described below: |
| * http://prng.di.unimi.it/ |
| * It features a 2^128 long sequence, returns 64 high-quality bits on each call, |
| * supports fast jumps and passes all common quality tests. It is thread-safe, |
| * uses a double-cas on 64-bit architectures supporting it, and falls back to a |
| * local lock on other ones. |
| */ |
| uint64_t ha_random64() |
| { |
| uint64_t result; |
| uint64_t old[2] ALIGNED(2*sizeof(uint64_t)); |
| uint64_t new[2] ALIGNED(2*sizeof(uint64_t)); |
| |
| #if defined(USE_THREAD) && (!defined(HA_CAS_IS_8B) || !defined(HA_HAVE_CAS_DW)) |
| static HA_SPINLOCK_T rand_lock; |
| |
| HA_SPIN_LOCK(OTHER_LOCK, &rand_lock); |
| #endif |
| |
| old[0] = ha_random_state[0]; |
| old[1] = ha_random_state[1]; |
| |
| #if defined(USE_THREAD) && defined(HA_CAS_IS_8B) && defined(HA_HAVE_CAS_DW) |
| do { |
| #endif |
| result = rotl64(old[0] * 5, 7) * 9; |
| new[1] = old[0] ^ old[1]; |
| new[0] = rotl64(old[0], 24) ^ new[1] ^ (new[1] << 16); // a, b |
| new[1] = rotl64(new[1], 37); // c |
| |
| #if defined(USE_THREAD) && defined(HA_CAS_IS_8B) && defined(HA_HAVE_CAS_DW) |
| } while (unlikely(!_HA_ATOMIC_DWCAS(ha_random_state, old, new))); |
| #else |
| ha_random_state[0] = new[0]; |
| ha_random_state[1] = new[1]; |
| #if defined(USE_THREAD) |
| HA_SPIN_UNLOCK(OTHER_LOCK, &rand_lock); |
| #endif |
| #endif |
| return result; |
| } |
| |
| /* seeds the random state using up to <len> bytes from <seed>, starting with |
| * the first non-zero byte. |
| */ |
| void ha_random_seed(const unsigned char *seed, size_t len) |
| { |
| size_t pos; |
| |
| /* the seed must not be all zeroes, so we pre-fill it with alternating |
| * bits and overwrite part of them with the block starting at the first |
| * non-zero byte from the seed. |
| */ |
| memset(ha_random_state, 0x55, sizeof(ha_random_state)); |
| |
| for (pos = 0; pos < len; pos++) |
| if (seed[pos] != 0) |
| break; |
| |
| if (pos == len) |
| return; |
| |
| seed += pos; |
| len -= pos; |
| |
| if (len > sizeof(ha_random_state)) |
| len = sizeof(ha_random_state); |
| |
| memcpy(ha_random_state, seed, len); |
| } |
| |
| /* This causes a jump to (dist * 2^96) places in the pseudo-random sequence, |
| * and is equivalent to calling ha_random64() as many times. It is used to |
| * provide non-overlapping sequences of 2^96 numbers (~7*10^28) to up to 2^32 |
| * different generators (i.e. different processes after a fork). The <dist> |
| * argument is the distance to jump to and is used in a loop so it rather not |
| * be too large if the processing time is a concern. |
| * |
| * BEWARE: this function is NOT thread-safe and must not be called during |
| * concurrent accesses to ha_random64(). |
| */ |
| void ha_random_jump96(uint32_t dist) |
| { |
| while (dist--) { |
| uint64_t s0 = 0; |
| uint64_t s1 = 0; |
| int b; |
| |
| for (b = 0; b < 64; b++) { |
| if ((0xd2a98b26625eee7bULL >> b) & 1) { |
| s0 ^= ha_random_state[0]; |
| s1 ^= ha_random_state[1]; |
| } |
| ha_random64(); |
| } |
| |
| for (b = 0; b < 64; b++) { |
| if ((0xdddf9b1090aa7ac1ULL >> b) & 1) { |
| s0 ^= ha_random_state[0]; |
| s1 ^= ha_random_state[1]; |
| } |
| ha_random64(); |
| } |
| ha_random_state[0] = s0; |
| ha_random_state[1] = s1; |
| } |
| } |
| |
| /* Generates an RFC4122 UUID into chunk <output> which must be at least 37 |
| * bytes large. |
| */ |
| void ha_generate_uuid(struct buffer *output) |
| { |
| uint32_t rnd[4]; |
| uint64_t last; |
| |
| last = ha_random64(); |
| rnd[0] = last; |
| rnd[1] = last >> 32; |
| |
| last = ha_random64(); |
| rnd[2] = last; |
| rnd[3] = last >> 32; |
| |
| chunk_printf(output, "%8.8x-%4.4x-%4.4x-%4.4x-%12.12llx", |
| rnd[0], |
| rnd[1] & 0xFFFF, |
| ((rnd[1] >> 16u) & 0xFFF) | 0x4000, // highest 4 bits indicate the uuid version |
| (rnd[2] & 0x3FFF) | 0x8000, // the highest 2 bits indicate the UUID variant (10), |
| (long long)((rnd[2] >> 14u) | ((uint64_t) rnd[3] << 18u)) & 0xFFFFFFFFFFFFull); |
| } |
| |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |