blob: 1b79584a3f4c8ea800ca6df36e67d1493a70c96c [file] [log] [blame]
/*
* Functions to manipulate H1 messages using the internal representation.
*
* Copyright (C) 2019 HAProxy Technologies, Christopher Faulet <cfaulet@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <haproxy/api.h>
#include <haproxy/cfgparse.h>
#include <haproxy/global.h>
#include <haproxy/h1.h>
#include <haproxy/h1_htx.h>
#include <haproxy/http.h>
#include <haproxy/http_htx.h>
#include <haproxy/htx.h>
#include <haproxy/tools.h>
/* Estimate the size of the HTX headers after the parsing, including the EOH. */
static size_t h1_eval_htx_hdrs_size(const struct http_hdr *hdrs)
{
size_t sz = 0;
int i;
for (i = 0; hdrs[i].n.len; i++)
sz += sizeof(struct htx_blk) + hdrs[i].n.len + hdrs[i].v.len;
sz += sizeof(struct htx_blk) + 1;
return sz;
}
/* Estimate the size of the HTX request after the parsing. */
static size_t h1_eval_htx_size(const struct ist p1, const struct ist p2, const struct ist p3,
const struct http_hdr *hdrs)
{
size_t sz;
/* size of the HTX start-line */
sz = sizeof(struct htx_blk) + sizeof(struct htx_sl) + p1.len + p2.len + p3.len;
sz += h1_eval_htx_hdrs_size(hdrs);
return sz;
}
/* Check the validity of the request version. If the version is valid, it
* returns 1. Otherwise, it returns 0.
*/
static int h1_process_req_vsn(struct h1m *h1m, union h1_sl *sl)
{
/* RFC7230#2.6 has enforced the format of the HTTP version string to be
* exactly one digit "." one digit. This check may be disabled using
* option accept-invalid-http-request.
*/
if (h1m->err_pos == -2) { /* PR_O2_REQBUG_OK not set */
if (sl->rq.v.len != 8)
return 0;
if (!istnmatch(sl->rq.v, ist("HTTP/"), 5) ||
!isdigit((unsigned char)*(sl->rq.v.ptr + 5)) ||
*(sl->rq.v.ptr + 6) != '.' ||
!isdigit((unsigned char)*(sl->rq.v.ptr + 7)))
return 0;
}
else if (!sl->rq.v.len) {
/* try to convert HTTP/0.9 requests to HTTP/1.0 */
/* RFC 1945 allows only GET for HTTP/0.9 requests */
if (sl->rq.meth != HTTP_METH_GET)
return 0;
/* HTTP/0.9 requests *must* have a request URI, per RFC 1945 */
if (!sl->rq.u.len)
return 0;
/* Add HTTP version */
sl->rq.v = ist("HTTP/1.0");
return 1;
}
if ((sl->rq.v.len == 8) &&
((*(sl->rq.v.ptr + 5) > '1') ||
((*(sl->rq.v.ptr + 5) == '1') && (*(sl->rq.v.ptr + 7) >= '1'))))
h1m->flags |= H1_MF_VER_11;
return 1;
}
/* Check the validity of the response version. If the version is valid, it
* returns 1. Otherwise, it returns 0.
*/
static int h1_process_res_vsn(struct h1m *h1m, union h1_sl *sl)
{
/* RFC7230#2.6 has enforced the format of the HTTP version string to be
* exactly one digit "." one digit. This check may be disabled using
* option accept-invalid-http-request.
*/
if (h1m->err_pos == -2) { /* PR_O2_REQBUG_OK not set */
if (sl->st.v.len != 8)
return 0;
if (*(sl->st.v.ptr + 4) != '/' ||
!isdigit((unsigned char)*(sl->st.v.ptr + 5)) ||
*(sl->st.v.ptr + 6) != '.' ||
!isdigit((unsigned char)*(sl->st.v.ptr + 7)))
return 0;
}
if ((sl->st.v.len == 8) &&
((*(sl->st.v.ptr + 5) > '1') ||
((*(sl->st.v.ptr + 5) == '1') && (*(sl->st.v.ptr + 7) >= '1'))))
h1m->flags |= H1_MF_VER_11;
return 1;
}
/* Convert H1M flags to HTX start-line flags. */
static unsigned int h1m_htx_sl_flags(struct h1m *h1m)
{
unsigned int flags = HTX_SL_F_NONE;
if (h1m->flags & H1_MF_RESP)
flags |= HTX_SL_F_IS_RESP;
if (h1m->flags & H1_MF_VER_11)
flags |= HTX_SL_F_VER_11;
if (h1m->flags & H1_MF_XFER_ENC)
flags |= HTX_SL_F_XFER_ENC;
if (h1m->flags & H1_MF_XFER_LEN) {
flags |= HTX_SL_F_XFER_LEN;
if (h1m->flags & H1_MF_CHNK)
flags |= HTX_SL_F_CHNK;
else if (h1m->flags & H1_MF_CLEN) {
flags |= HTX_SL_F_CLEN;
if (h1m->body_len == 0)
flags |= HTX_SL_F_BODYLESS;
}
else
flags |= HTX_SL_F_BODYLESS;
}
if (h1m->flags & H1_MF_CONN_UPG)
flags |= HTX_SL_F_CONN_UPG;
return flags;
}
/* Postprocess the parsed headers for a request and convert them into an htx
* message. It returns the number of bytes parsed if > 0, or 0 if it couldn't
* proceed. Parsing errors are reported by setting the htx flag
* HTX_FL_PARSING_ERROR and filling h1m->err_pos and h1m->err_state fields.
*/
static int h1_postparse_req_hdrs(struct h1m *h1m, union h1_sl *h1sl, struct htx *htx,
struct http_hdr *hdrs, size_t max)
{
struct htx_sl *sl;
struct ist meth, uri, vsn;
unsigned int flags;
/* <h1sl> is always defined for a request */
meth = h1sl->rq.m;
uri = h1sl->rq.u;
vsn = h1sl->rq.v;
/* Be sure the message, once converted into HTX, will not exceed the max
* size allowed.
*/
if (h1_eval_htx_size(meth, uri, vsn, hdrs) > max) {
if (htx_is_empty(htx))
goto error;
goto output_full;
}
/* By default, request have always a known length */
h1m->flags |= H1_MF_XFER_LEN;
if (h1sl->rq.meth == HTTP_METH_CONNECT) {
h1m->flags &= ~(H1_MF_CLEN|H1_MF_CHNK);
h1m->curr_len = h1m->body_len = 0;
}
flags = h1m_htx_sl_flags(h1m);
if ((flags & (HTX_SL_F_CONN_UPG|HTX_SL_F_BODYLESS)) == HTX_SL_F_CONN_UPG) {
int i;
for (i = 0; hdrs[i].n.len; i++) {
if (isteqi(hdrs[i].n, ist("upgrade")))
hdrs[i].v = IST_NULL;
}
h1m->flags &=~ H1_MF_CONN_UPG;
flags &= ~HTX_SL_F_CONN_UPG;
}
sl = htx_add_stline(htx, HTX_BLK_REQ_SL, flags, meth, uri, vsn);
if (!sl || !htx_add_all_headers(htx, hdrs))
goto error;
sl->info.req.meth = h1sl->rq.meth;
/* Check if the uri contains an authority. Also check if it contains an
* explicit scheme and if it is "http" or "https". */
if (h1sl->rq.meth == HTTP_METH_CONNECT)
sl->flags |= HTX_SL_F_HAS_AUTHORITY;
else if (uri.len && uri.ptr[0] != '/' && uri.ptr[0] != '*') {
sl->flags |= (HTX_SL_F_HAS_AUTHORITY|HTX_SL_F_HAS_SCHM);
if (uri.len > 4 && (uri.ptr[0] | 0x20) == 'h')
sl->flags |= ((uri.ptr[4] == ':') ? HTX_SL_F_SCHM_HTTP : HTX_SL_F_SCHM_HTTPS);
/* absolute-form target URI present, proceed to scheme-based
* normalization */
http_scheme_based_normalize(htx);
}
/* If body length cannot be determined, set htx->extra to
* ULLONG_MAX. This value is impossible in other cases.
*/
htx->extra = ((h1m->flags & H1_MF_XFER_LEN) ? h1m->curr_len : ULLONG_MAX);
end:
return 1;
output_full:
h1m_init_req(h1m);
h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR);
return -2;
error:
h1m->err_pos = h1m->next;
h1m->err_state = h1m->state;
htx->flags |= HTX_FL_PARSING_ERROR;
return -1;
}
/* Postprocess the parsed headers for a response and convert them into an htx
* message. It returns the number of bytes parsed if > 0, or 0 if it couldn't
* proceed. Parsing errors are reported by setting the htx flag
* HTX_FL_PARSING_ERROR and filling h1m->err_pos and h1m->err_state fields.
*/
static int h1_postparse_res_hdrs(struct h1m *h1m, union h1_sl *h1sl, struct htx *htx,
struct http_hdr *hdrs, size_t max)
{
struct htx_sl *sl;
struct ist vsn, status, reason;
unsigned int flags;
uint16_t code = 0;
if (h1sl) {
/* For HTTP responses, the start-line was parsed */
code = h1sl->st.status;
vsn = h1sl->st.v;
status = h1sl->st.c;
reason = h1sl->st.r;
}
else {
/* For FCGI responses, there is no start(-line but the "Status"
* header must be parsed, if found.
*/
int hdr;
vsn = ((h1m->flags & H1_MF_VER_11) ? ist("HTTP/1.1") : ist("HTTP/1.0"));
for (hdr = 0; hdrs[hdr].n.len; hdr++) {
if (isteqi(hdrs[hdr].n, ist("status"))) {
code = http_parse_status_val(hdrs[hdr].v, &status, &reason);
}
else if (isteqi(hdrs[hdr].n, ist("location"))) {
code = 302;
status = ist("302");
reason = ist("Moved Temporarily");
}
}
if (!code) {
code = 200;
status = ist("200");
reason = ist("OK");
}
/* FIXME: Check the codes 1xx ? */
}
/* Be sure the message, once converted into HTX, will not exceed the max
* size allowed.
*/
if (h1_eval_htx_size(vsn, status, reason, hdrs) > max) {
if (htx_is_empty(htx))
goto error;
goto output_full;
}
if ((h1m->flags & (H1_MF_CONN_UPG|H1_MF_UPG_WEBSOCKET)) && code != 101)
h1m->flags &= ~(H1_MF_CONN_UPG|H1_MF_UPG_WEBSOCKET);
if (((h1m->flags & H1_MF_METH_CONNECT) && code >= 200 && code < 300) || code == 101) {
h1m->flags &= ~(H1_MF_CLEN|H1_MF_CHNK);
h1m->flags |= H1_MF_XFER_LEN;
h1m->curr_len = h1m->body_len = 0;
}
else if ((h1m->flags & H1_MF_METH_HEAD) || (code >= 100 && code < 200) ||
(code == 204) || (code == 304)) {
/* Responses known to have no body. */
h1m->flags &= ~(H1_MF_CLEN|H1_MF_CHNK);
h1m->flags |= H1_MF_XFER_LEN;
h1m->curr_len = h1m->body_len = 0;
}
else if (h1m->flags & (H1_MF_CLEN|H1_MF_CHNK)) {
/* Responses with a known body length. */
h1m->flags |= H1_MF_XFER_LEN;
}
flags = h1m_htx_sl_flags(h1m);
sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags, vsn, status, reason);
if (!sl || !htx_add_all_headers(htx, hdrs))
goto error;
sl->info.res.status = code;
/* If body length cannot be determined, set htx->extra to
* ULLONG_MAX. This value is impossible in other cases.
*/
htx->extra = ((h1m->flags & H1_MF_XFER_LEN) ? h1m->curr_len : ULLONG_MAX);
end:
return 1;
output_full:
h1m_init_res(h1m);
h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR);
return -2;
error:
h1m->err_pos = h1m->next;
h1m->err_state = h1m->state;
htx->flags |= HTX_FL_PARSING_ERROR;
return -1;
}
/* Parse HTTP/1 headers. It returns the number of bytes parsed on success, 0 if
* headers are incomplete, -1 if an error occurred or -2 if it needs more space
* to proceed while the output buffer is not empty. Parsing errors are reported
* by setting the htx flag HTX_FL_PARSING_ERROR and filling h1m->err_pos and
* h1m->err_state fields. This functions is responsible to update the parser
* state <h1m> and the start-line <h1sl> if not NULL. For the requests, <h1sl>
* must always be provided. For responses, <h1sl> may be NULL and <h1m> flags
* HTTP_METH_CONNECT of HTTP_METH_HEAD may be set.
*/
int h1_parse_msg_hdrs(struct h1m *h1m, union h1_sl *h1sl, struct htx *dsthtx,
struct buffer *srcbuf, size_t ofs, size_t max)
{
struct http_hdr hdrs[global.tune.max_http_hdr];
int total = 0, ret = 0;
if (!max || !b_data(srcbuf))
goto end;
/* Realing input buffer if necessary */
if (b_head(srcbuf) + b_data(srcbuf) > b_wrap(srcbuf))
b_slow_realign_ofs(srcbuf, trash.area, 0);
if (!h1sl) {
/* If there no start-line, be sure to only parse the headers */
h1m->flags |= H1_MF_HDRS_ONLY;
}
ret = h1_headers_to_hdr_list(b_peek(srcbuf, ofs), b_tail(srcbuf),
hdrs, sizeof(hdrs)/sizeof(hdrs[0]), h1m, h1sl);
if (ret <= 0) {
/* Incomplete or invalid message. If the input buffer only
* contains headers and is full, which is detected by it being
* full and the offset to be zero, it's an error because
* headers are too large to be handled by the parser. */
if (ret < 0 || (!ret && !ofs && !buf_room_for_htx_data(srcbuf)))
goto error;
goto end;
}
total = ret;
/* messages headers fully parsed, do some checks to prepare the body
* parsing.
*/
if (!(h1m->flags & H1_MF_RESP)) {
if (!h1_process_req_vsn(h1m, h1sl)) {
h1m->err_pos = h1sl->rq.v.ptr - b_head(srcbuf);
h1m->err_state = h1m->state;
goto vsn_error;
}
ret = h1_postparse_req_hdrs(h1m, h1sl, dsthtx, hdrs, max);
if (ret < 0)
return ret;
}
else {
if (h1sl && !h1_process_res_vsn(h1m, h1sl)) {
h1m->err_pos = h1sl->st.v.ptr - b_head(srcbuf);
h1m->err_state = h1m->state;
goto vsn_error;
}
ret = h1_postparse_res_hdrs(h1m, h1sl, dsthtx, hdrs, max);
if (ret < 0)
return ret;
}
/* Switch messages without any payload to DONE state */
if (((h1m->flags & H1_MF_CLEN) && h1m->body_len == 0) ||
((h1m->flags & (H1_MF_XFER_LEN|H1_MF_CLEN|H1_MF_CHNK)) == H1_MF_XFER_LEN)) {
h1m->state = H1_MSG_DONE;
dsthtx->flags |= HTX_FL_EOM;
}
end:
return total;
error:
h1m->err_pos = h1m->next;
h1m->err_state = h1m->state;
vsn_error:
dsthtx->flags |= HTX_FL_PARSING_ERROR;
return -1;
}
/* Copy data from <srbuf> into an DATA block in <dsthtx>. If possible, a
* zero-copy is performed. It returns the number of bytes copied.
*/
static size_t h1_copy_msg_data(struct htx **dsthtx, struct buffer *srcbuf, size_t ofs,
size_t count, size_t max, struct buffer *htxbuf)
{
struct htx *tmp_htx = *dsthtx;
size_t block1, block2, ret = 0;
/* Be prepared to create at least one HTX block by reserving its size
* and adjust <count> accordingly.
*/
max -= sizeof(struct htx_blk);
if (count > max)
count = max;
/* very often with large files we'll face the following
* situation :
* - htx is empty and points to <htxbuf>
* - count == srcbuf->data
* - srcbuf->head == sizeof(struct htx)
* => we can swap the buffers and place an htx header into
* the target buffer instead
*/
if (unlikely(htx_is_empty(tmp_htx) && count == b_data(srcbuf) &&
!ofs && b_head_ofs(srcbuf) == sizeof(struct htx))) {
void *raw_area = srcbuf->area;
void *htx_area = htxbuf->area;
struct htx_blk *blk;
srcbuf->area = htx_area;
htxbuf->area = raw_area;
tmp_htx = (struct htx *)htxbuf->area;
tmp_htx->size = htxbuf->size - sizeof(*tmp_htx);
htx_reset(tmp_htx);
b_set_data(htxbuf, b_size(htxbuf));
blk = htx_add_blk(tmp_htx, HTX_BLK_DATA, count);
blk->info += count;
*dsthtx = tmp_htx;
/* nothing else to do, the old buffer now contains an
* empty pre-initialized HTX header
*/
return count;
}
/* * First block is the copy of contiguous data starting at offset <ofs>
* with <count> as max. <max> is updated accordingly
*
* * Second block is the remaining (count - block1) if <max> is large
* enough. Another HTX block is reserved.
*/
block1 = b_contig_data(srcbuf, ofs);
block2 = 0;
if (block1 > count)
block1 = count;
max -= block1;
if (max > sizeof(struct htx_blk)) {
block2 = count - block1;
max -= sizeof(struct htx_blk);
if (block2 > max)
block2 = max;
}
ret = htx_add_data(tmp_htx, ist2(b_peek(srcbuf, ofs), block1));
if (ret == block1 && block2)
ret += htx_add_data(tmp_htx, ist2(b_orig(srcbuf), block2));
end:
return ret;
}
static const char hextable[] = {
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,-1,-1,-1,-1,-1,-1,
-1,10,11,12,13,14,15,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,10,11,12,13,14,15,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
};
/* Generic function to parse the current HTTP chunk. It may be used to parsed
* any kind of chunks, including incomplete HTTP chunks or split chunks
* because the buffer wraps. This version tries to performed zero-copy on large
* chunks if possible.
*/
static size_t h1_parse_chunk(struct h1m *h1m, struct htx **dsthtx,
struct buffer *srcbuf, size_t ofs, size_t *max,
struct buffer *htxbuf)
{
uint64_t chksz;
size_t sz, used, lmax, total = 0;
int ret = 0;
lmax = *max;
switch (h1m->state) {
case H1_MSG_DATA:
new_chunk:
used = htx_used_space(*dsthtx);
if (b_data(srcbuf) == ofs || !lmax)
break;
sz = b_data(srcbuf) - ofs;
if (unlikely(sz > h1m->curr_len))
sz = h1m->curr_len;
sz = h1_copy_msg_data(dsthtx, srcbuf, ofs, sz, lmax, htxbuf);
lmax -= htx_used_space(*dsthtx) - used;
ofs += sz;
total += sz;
h1m->curr_len -= sz;
if (h1m->curr_len)
break;
h1m->state = H1_MSG_CHUNK_CRLF;
__fallthrough;
case H1_MSG_CHUNK_CRLF:
ret = h1_skip_chunk_crlf(srcbuf, ofs, b_data(srcbuf));
if (ret <= 0)
break;
ofs += ret;
total += ret;
/* Don't parse next chunk to try to handle contiguous chunks if possible */
h1m->state = H1_MSG_CHUNK_SIZE;
break;
case H1_MSG_CHUNK_SIZE:
ret = h1_parse_chunk_size(srcbuf, ofs, b_data(srcbuf), &chksz);
if (ret <= 0)
break;
h1m->state = ((!chksz) ? H1_MSG_TRAILERS : H1_MSG_DATA);
h1m->curr_len = chksz;
h1m->body_len += chksz;
ofs += ret;
total += ret;
if (h1m->curr_len) {
h1m->state = H1_MSG_DATA;
goto new_chunk;
}
h1m->state = H1_MSG_TRAILERS;
break;
default:
/* unexpected */
ret = -1;
break;
}
if (ret < 0) {
(*dsthtx)->flags |= HTX_FL_PARSING_ERROR;
h1m->err_state = h1m->state;
h1m->err_pos = ofs;
total = 0;
}
/* Don't forget to update htx->extra */
(*dsthtx)->extra = h1m->curr_len;
*max = lmax;
return total;
}
/* Parses full contiguous HTTP chunks. This version is optimized for small
* chunks and does not performed zero-copy. It must be called in
* H1_MSG_CHUNK_SIZE state. Be careful if you change something in this
* function. It is really sensitive, any change may have an impact on
* performance.
*/
static size_t h1_parse_full_contig_chunks(struct h1m *h1m, struct htx **dsthtx,
struct buffer *srcbuf, size_t ofs, size_t *max,
struct buffer *htxbuf)
{
char *start, *end, *dptr;
ssize_t dpos, ridx, save;
size_t lmax, total = 0;
uint64_t chksz;
struct htx_ret htxret;
/* source info :
* start : pointer at <ofs> position
* end : pointer marking the end of data to parse
* ridx : the reverse index (negative) marking the parser position (end[ridx])
*/
ridx = -b_contig_data(srcbuf, ofs);
if (!ridx)
goto out;
start = b_peek(srcbuf, ofs);
end = start - ridx;
/* Reserve the maximum possible size for the data */
htxret = htx_reserve_max_data(*dsthtx);
if (!htxret.blk)
goto out;
/* destination info :
* dptr : pointer on the beginning of the data
* dpos : current position where to copy data
*/
dptr = htx_get_blk_ptr(*dsthtx, htxret.blk);
dpos = htxret.ret;
/* Empty DATA block is not possible, thus if <dpos> is the beginning of
* the block, it means it is a new block. We can remove the block size
* from <max>. Then we must adjust it if it exceeds the free size in the
* block.
*/
lmax = *max;
if (!dpos)
lmax -= sizeof(struct htx_blk);
if (lmax > htx_get_blksz(htxret.blk) - dpos)
lmax = htx_get_blksz(htxret.blk) - dpos;
while (1) {
/* The chunk size is in the following form, though we are only
* interested in the size and CRLF :
* 1*HEXDIGIT *WSP *[ ';' extensions ] CRLF
*/
chksz = 0;
save = ridx; /* Save the parser position to rewind if necessary */
while (1) {
int c;
if (!ridx)
goto end_parsing;
/* Convert current character */
c = hextable[(unsigned char)end[ridx]];
/* not a hex digit anymore */
if (c & 0xF0)
break;
/* Update current chunk size */
chksz = (chksz << 4) + c;
if (unlikely(chksz & 0xF0000000000000ULL)) {
/* Don't get more than 13 hexa-digit (2^52 - 1)
* to never fed possibly bogus values from
* languages that use floats for their integers
*/
goto parsing_error;
}
++ridx;
}
if (unlikely(chksz > lmax))
goto end_parsing;
if (unlikely(ridx == save)) {
/* empty size not allowed */
goto parsing_error;
}
/* Skip spaces */
while (HTTP_IS_SPHT(end[ridx])) {
if (!++ridx)
goto end_parsing;
}
/* Up to there, we know that at least one byte is present. Check
* for the end of chunk size.
*/
while (1) {
if (likely(end[ridx] == '\r')) {
/* Parse CRLF */
if (!++ridx)
goto end_parsing;
if (unlikely(end[ridx] != '\n')) {
/* CR must be followed by LF */
goto parsing_error;
}
/* done */
++ridx;
break;
}
else if (end[ridx] == '\n') {
/* Parse LF only, nothing more to do */
++ridx;
break;
}
else if (likely(end[ridx] == ';')) {
/* chunk extension, ends at next CRLF */
if (!++ridx)
goto end_parsing;
while (!HTTP_IS_CRLF(end[ridx])) {
if (!++ridx)
goto end_parsing;
}
/* we have a CRLF now, loop above */
continue;
}
else {
/* all other characters are unexpected */
goto parsing_error;
}
}
/* Exit if it is the last chunk */
if (unlikely(!chksz)) {
h1m->state = H1_MSG_TRAILERS;
save = ridx;
goto end_parsing;
}
/* Now check if the whole chunk is here (including the CRLF at
* the end), otherwise we switch in H1_MSG_DATA state.
*/
if (chksz + 2 > -ridx) {
h1m->curr_len = chksz;
h1m->body_len += chksz;
h1m->state = H1_MSG_DATA;
(*dsthtx)->extra = h1m->curr_len;
save = ridx;
goto end_parsing;
}
memcpy(dptr + dpos, end + ridx, chksz);
h1m->body_len += chksz;
lmax -= chksz;
dpos += chksz;
ridx += chksz;
/* Parse CRLF or LF (always present) */
if (likely(end[ridx] == '\r'))
++ridx;
if (end[ridx] != '\n') {
h1m->state = H1_MSG_CHUNK_CRLF;
goto parsing_error;
}
++ridx;
}
end_parsing:
ridx = save;
/* Adjust the HTX block size or remove the block if nothing was copied
* (Empty HTX data block are not supported).
*/
if (!dpos)
htx_remove_blk(*dsthtx, htxret.blk);
else
htx_change_blk_value_len(*dsthtx, htxret.blk, dpos);
total = end + ridx - start;
*max = lmax;
out:
return total;
parsing_error:
(*dsthtx)->flags |= HTX_FL_PARSING_ERROR;
h1m->err_state = h1m->state;
h1m->err_pos = ofs + end + ridx - start;
return 0;
}
/* Parse HTTP chunks. This function relies on an optimized function to parse
* contiguous chunks if possible. Otherwise, when a chunk is incomplete or when
* the underlying buffer is wrapping, a generic function is used.
*/
static size_t h1_parse_msg_chunks(struct h1m *h1m, struct htx **dsthtx,
struct buffer *srcbuf, size_t ofs, size_t max,
struct buffer *htxbuf)
{
size_t ret, total = 0;
while (ofs < b_data(srcbuf)) {
ret = 0;
/* First parse full contiguous chunks. It is only possible if we
* are waiting for the next chunk size.
*/
if (h1m->state == H1_MSG_CHUNK_SIZE) {
ret = h1_parse_full_contig_chunks(h1m, dsthtx, srcbuf, ofs, &max, htxbuf);
/* exit on error */
if (!ret && (*dsthtx)->flags & HTX_FL_PARSING_ERROR) {
total = 0;
break;
}
/* or let a chance to parse remaining data */
total += ret;
ofs += ret;
ret = 0;
}
/* If some data remains, try to parse it using the generic
* function handling incomplete chunks and split chunks
* because of a wrapping buffer.
*/
if (h1m->state < H1_MSG_TRAILERS && ofs < b_data(srcbuf)) {
ret = h1_parse_chunk(h1m, dsthtx, srcbuf, ofs, &max, htxbuf);
total += ret;
ofs += ret;
}
/* nothing more was parsed or parsing was stopped on incomplete
* chunk, we can exit, handling parsing error if necessary.
*/
if (!ret || h1m->state != H1_MSG_CHUNK_SIZE) {
if ((*dsthtx)->flags & HTX_FL_PARSING_ERROR)
total = 0;
break;
}
}
return total;
}
/* Parse HTTP/1 body. It returns the number of bytes parsed if > 0, or 0 if it
* couldn't proceed. Parsing errors are reported by setting the htx flags
* HTX_FL_PARSING_ERROR and filling h1m->err_pos and h1m->err_state fields. This
* functions is responsible to update the parser state <h1m>.
*/
size_t h1_parse_msg_data(struct h1m *h1m, struct htx **dsthtx,
struct buffer *srcbuf, size_t ofs, size_t max,
struct buffer *htxbuf)
{
size_t sz, total = 0;
if (b_data(srcbuf) == ofs || !max)
return 0;
if (h1m->flags & H1_MF_CLEN) {
/* content-length: read only h2m->body_len */
sz = b_data(srcbuf) - ofs;
if (unlikely(sz > h1m->curr_len))
sz = h1m->curr_len;
sz = h1_copy_msg_data(dsthtx, srcbuf, ofs, sz, max, htxbuf);
h1m->curr_len -= sz;
(*dsthtx)->extra = h1m->curr_len;
total += sz;
if (!h1m->curr_len) {
h1m->state = H1_MSG_DONE;
(*dsthtx)->flags |= HTX_FL_EOM;
}
}
else if (h1m->flags & H1_MF_CHNK) {
/* te:chunked : parse chunks */
total += h1_parse_msg_chunks(h1m, dsthtx, srcbuf, ofs, max, htxbuf);
}
else if (h1m->flags & H1_MF_XFER_LEN) {
/* XFER_LEN is set but not CLEN nor CHNK, it means there is no
* body. Switch the message in DONE state
*/
h1m->state = H1_MSG_DONE;
(*dsthtx)->flags |= HTX_FL_EOM;
}
else {
/* no content length, read till SHUTW */
sz = b_data(srcbuf) - ofs;
sz = h1_copy_msg_data(dsthtx, srcbuf, ofs, sz, max, htxbuf);
total += sz;
}
return total;
}
/* Parse HTTP/1 trailers. It returns the number of bytes parsed on success, 0 if
* trailers are incomplete, -1 if an error occurred or -2 if it needs more space
* to proceed while the output buffer is not empty. Parsing errors are reported
* by setting the htx flags HTX_FL_PARSING_ERROR and filling h1m->err_pos and
* h1m->err_state fields. This functions is responsible to update the parser
* state <h1m>.
*/
int h1_parse_msg_tlrs(struct h1m *h1m, struct htx *dsthtx,
struct buffer *srcbuf, size_t ofs, size_t max)
{
struct http_hdr hdrs[global.tune.max_http_hdr];
struct h1m tlr_h1m;
int ret = 0;
if (b_data(srcbuf) == ofs) {
/* Nothing to parse */
goto end;
}
if (!max) {
/* No more room */
goto output_full;
}
/* Realing input buffer if necessary */
if (b_peek(srcbuf, ofs) > b_tail(srcbuf))
b_slow_realign_ofs(srcbuf, trash.area, 0);
tlr_h1m.flags = (H1_MF_NO_PHDR|H1_MF_HDRS_ONLY);
ret = h1_headers_to_hdr_list(b_peek(srcbuf, ofs), b_tail(srcbuf),
hdrs, sizeof(hdrs)/sizeof(hdrs[0]), &tlr_h1m, NULL);
if (ret <= 0) {
/* Incomplete or invalid trailers. If the input buffer only
* contains trailers and is full, which is detected by it being
* full and the offset to be zero, it's an error because
* trailers are too large to be handled by the parser. */
if (ret < 0 || (!ret && !ofs && !buf_room_for_htx_data(srcbuf)))
goto error;
goto end;
}
/* messages trailers fully parsed. */
if (h1_eval_htx_hdrs_size(hdrs) > max) {
if (htx_is_empty(dsthtx))
goto error;
goto output_full;
}
if (!htx_add_all_trailers(dsthtx, hdrs))
goto error;
h1m->state = H1_MSG_DONE;
dsthtx->flags |= HTX_FL_EOM;
end:
return ret;
output_full:
return -2;
error:
h1m->err_state = h1m->state;
h1m->err_pos = h1m->next;
dsthtx->flags |= HTX_FL_PARSING_ERROR;
return -1;
}
/* Appends the H1 representation of the request line <sl> to the chunk <chk>. It
* returns 1 if data are successfully appended, otherwise it returns 0.
*/
int h1_format_htx_reqline(const struct htx_sl *sl, struct buffer *chk)
{
struct ist uri;
size_t sz = chk->data;
uri = h1_get_uri(sl);
if (!chunk_memcat(chk, HTX_SL_REQ_MPTR(sl), HTX_SL_REQ_MLEN(sl)) ||
!chunk_memcat(chk, " ", 1) ||
!chunk_memcat(chk, uri.ptr, uri.len) ||
!chunk_memcat(chk, " ", 1))
goto full;
if (sl->flags & HTX_SL_F_VER_11) {
if (!chunk_memcat(chk, "HTTP/1.1", 8))
goto full;
}
else {
if (!chunk_memcat(chk, HTX_SL_REQ_VPTR(sl), HTX_SL_REQ_VLEN(sl)))
goto full;
}
if (!chunk_memcat(chk, "\r\n", 2))
goto full;
return 1;
full:
chk->data = sz;
return 0;
}
/* Appends the H1 representation of the status line <sl> to the chunk <chk>. It
* returns 1 if data are successfully appended, otherwise it returns 0.
*/
int h1_format_htx_stline(const struct htx_sl *sl, struct buffer *chk)
{
size_t sz = chk->data;
if (HTX_SL_LEN(sl) + 4 > b_room(chk))
return 0;
if (sl->flags & HTX_SL_F_VER_11) {
if (!chunk_memcat(chk, "HTTP/1.1", 8))
goto full;
}
else {
if (!chunk_memcat(chk, HTX_SL_RES_VPTR(sl), HTX_SL_RES_VLEN(sl)))
goto full;
}
if (!chunk_memcat(chk, " ", 1) ||
!chunk_memcat(chk, HTX_SL_RES_CPTR(sl), HTX_SL_RES_CLEN(sl)) ||
!chunk_memcat(chk, " ", 1) ||
!chunk_memcat(chk, HTX_SL_RES_RPTR(sl), HTX_SL_RES_RLEN(sl)) ||
!chunk_memcat(chk, "\r\n", 2))
goto full;
return 1;
full:
chk->data = sz;
return 0;
}
/* Appends the H1 representation of the header <n> with the value <v> to the
* chunk <chk>. It returns 1 if data are successfully appended, otherwise it
* returns 0.
*/
int h1_format_htx_hdr(const struct ist n, const struct ist v, struct buffer *chk)
{
size_t sz = chk->data;
if (n.len + v.len + 4 > b_room(chk))
return 0;
if (!chunk_memcat(chk, n.ptr, n.len) ||
!chunk_memcat(chk, ": ", 2) ||
!chunk_memcat(chk, v.ptr, v.len) ||
!chunk_memcat(chk, "\r\n", 2))
goto full;
return 1;
full:
chk->data = sz;
return 0;
}
/* Appends the H1 representation of the data <data> to the chunk <chk>. If
* <chunked> is non-zero, it emits HTTP/1 chunk-encoded data. It returns 1 if
* data are successfully appended, otherwise it returns 0.
*/
int h1_format_htx_data(const struct ist data, struct buffer *chk, int chunked)
{
size_t sz = chk->data;
if (chunked) {
uint32_t chksz;
char tmp[10];
char *beg, *end;
chksz = data.len;
beg = end = tmp+10;
*--beg = '\n';
*--beg = '\r';
do {
*--beg = hextab[chksz & 0xF];
} while (chksz >>= 4);
if (!chunk_memcat(chk, beg, end - beg) ||
!chunk_memcat(chk, data.ptr, data.len) ||
!chunk_memcat(chk, "\r\n", 2))
goto full;
}
else {
if (!chunk_memcat(chk, data.ptr, data.len))
return 0;
}
return 1;
full:
chk->data = sz;
return 0;
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/