| /* |
| * Memory management functions. |
| * |
| * Copyright 2000-2007 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <sys/mman.h> |
| #include <errno.h> |
| |
| #include <haproxy/activity.h> |
| #include <haproxy/api.h> |
| #include <haproxy/applet-t.h> |
| #include <haproxy/cfgparse.h> |
| #include <haproxy/channel.h> |
| #include <haproxy/cli.h> |
| #include <haproxy/errors.h> |
| #include <haproxy/global.h> |
| #include <haproxy/list.h> |
| #include <haproxy/pool.h> |
| #include <haproxy/sc_strm.h> |
| #include <haproxy/stats-t.h> |
| #include <haproxy/stconn.h> |
| #include <haproxy/thread.h> |
| #include <haproxy/tools.h> |
| |
| |
| /* These ones are initialized per-thread on startup by init_pools() */ |
| THREAD_LOCAL size_t pool_cache_bytes = 0; /* total cache size */ |
| THREAD_LOCAL size_t pool_cache_count = 0; /* #cache objects */ |
| |
| static struct list pools __read_mostly = LIST_HEAD_INIT(pools); |
| int mem_poison_byte __read_mostly = 'P'; |
| uint pool_debugging __read_mostly = /* set of POOL_DBG_* flags */ |
| #ifdef DEBUG_FAIL_ALLOC |
| POOL_DBG_FAIL_ALLOC | |
| #endif |
| #ifdef DEBUG_DONT_SHARE_POOLS |
| POOL_DBG_DONT_MERGE | |
| #endif |
| #ifdef DEBUG_POOL_INTEGRITY |
| POOL_DBG_COLD_FIRST | |
| #endif |
| #ifdef DEBUG_POOL_INTEGRITY |
| POOL_DBG_INTEGRITY | |
| #endif |
| #ifdef CONFIG_HAP_NO_GLOBAL_POOLS |
| POOL_DBG_NO_GLOBAL | |
| #endif |
| #ifndef CONFIG_HAP_POOLS |
| POOL_DBG_NO_CACHE | |
| #endif |
| #if defined(DEBUG_POOL_TRACING) |
| POOL_DBG_CALLER | |
| #endif |
| #if defined(DEBUG_MEMORY_POOLS) |
| POOL_DBG_TAG | |
| #endif |
| 0; |
| |
| static const struct { |
| uint flg; |
| const char *set; |
| const char *clr; |
| const char *hlp; |
| } dbg_options[] = { |
| /* flg, set, clr, hlp */ |
| { POOL_DBG_FAIL_ALLOC, "fail", "no-fail", "randomly fail allocations" }, |
| { POOL_DBG_DONT_MERGE, "no-merge", "merge", "disable merging of similar pools" }, |
| { POOL_DBG_COLD_FIRST, "cold-first", "hot-first", "pick cold objects first" }, |
| { POOL_DBG_INTEGRITY, "integrity", "no-integrity", "enable cache integrity checks" }, |
| { POOL_DBG_NO_GLOBAL, "no-global", "global", "disable global shared cache" }, |
| { POOL_DBG_NO_CACHE, "no-cache", "cache", "disable thread-local cache" }, |
| { POOL_DBG_CALLER, "caller", "no-caller", "save caller information in cache" }, |
| { POOL_DBG_TAG, "tag", "no-tag", "add tag at end of allocated objects" }, |
| { POOL_DBG_POISON, "poison", "no-poison", "poison newly allocated objects" }, |
| { 0 /* end */ } |
| }; |
| |
| /* describes a snapshot of a pool line about to be dumped by "show pools" */ |
| struct pool_dump_info { |
| const struct pool_head *entry; |
| ulong alloc_items; |
| ulong alloc_bytes; |
| ulong used_items; |
| ulong cached_items; |
| ulong need_avg; |
| ulong failed_items; |
| }; |
| |
| /* context used by "show pools" */ |
| struct show_pools_ctx { |
| char *prefix; /* if non-null, match this prefix name for the pool */ |
| int by_what; /* 0=no sort, 1=by name, 2=by item size, 3=by total alloc */ |
| int maxcnt; /* 0=no limit, other=max number of output entries */ |
| }; |
| |
| static int mem_fail_rate __read_mostly = 0; |
| static int using_default_allocator __read_mostly = 1; |
| static int disable_trim __read_mostly = 0; |
| static int(*my_mallctl)(const char *, void *, size_t *, void *, size_t) = NULL; |
| |
| /* ask the allocator to trim memory pools. |
| * This must run under thread isolation so that competing threads trying to |
| * allocate or release memory do not prevent the allocator from completing |
| * its job. We just have to be careful as callers might already be isolated |
| * themselves. |
| */ |
| static void trim_all_pools(void) |
| { |
| int isolated = thread_isolated(); |
| |
| if (disable_trim) |
| return; |
| |
| if (!isolated) |
| thread_isolate(); |
| |
| if (my_mallctl) { |
| unsigned int i, narenas = 0; |
| size_t len = sizeof(narenas); |
| |
| if (my_mallctl("arenas.narenas", &narenas, &len, NULL, 0) == 0) { |
| for (i = 0; i < narenas; i ++) { |
| char mib[32] = {0}; |
| snprintf(mib, sizeof(mib), "arena.%u.purge", i); |
| (void)my_mallctl(mib, NULL, NULL, NULL, 0); |
| } |
| } |
| } else { |
| #if defined(HA_HAVE_MALLOC_TRIM) |
| if (using_default_allocator) |
| malloc_trim(0); |
| #elif defined(HA_HAVE_MALLOC_ZONE) |
| if (using_default_allocator) { |
| vm_address_t *zones; |
| unsigned int i, nzones; |
| |
| if (malloc_get_all_zones(0, NULL, &zones, &nzones) == KERN_SUCCESS) { |
| for (i = 0; i < nzones; i ++) { |
| malloc_zone_t *zone = (malloc_zone_t *)zones[i]; |
| |
| /* we cannot purge anonymous zones */ |
| if (zone->zone_name) |
| malloc_zone_pressure_relief(zone, 0); |
| } |
| } |
| } |
| #endif |
| } |
| |
| if (!isolated) |
| thread_release(); |
| } |
| |
| /* check if we're using the same allocator as the one that provides |
| * malloc_trim() and mallinfo(). The principle is that on glibc, both |
| * malloc_trim() and mallinfo() are provided, and using mallinfo() we |
| * can check if malloc() is performed through glibc or any other one |
| * the executable was linked against (e.g. jemalloc). Prior to this we |
| * have to check whether we're running on jemalloc by verifying if the |
| * mallctl() function is provided. Its pointer will be used later. |
| */ |
| static void detect_allocator(void) |
| { |
| #if defined(__ELF__) |
| extern int mallctl(const char *, void *, size_t *, void *, size_t) __attribute__((weak)); |
| |
| my_mallctl = mallctl; |
| #endif |
| |
| if (!my_mallctl) { |
| my_mallctl = get_sym_curr_addr("mallctl"); |
| using_default_allocator = (my_mallctl == NULL); |
| } |
| |
| if (!my_mallctl) { |
| #if defined(HA_HAVE_MALLOC_TRIM) |
| #ifdef HA_HAVE_MALLINFO2 |
| struct mallinfo2 mi1, mi2; |
| #else |
| struct mallinfo mi1, mi2; |
| #endif |
| void *ptr; |
| |
| #ifdef HA_HAVE_MALLINFO2 |
| mi1 = mallinfo2(); |
| #else |
| mi1 = mallinfo(); |
| #endif |
| ptr = DISGUISE(malloc(1)); |
| #ifdef HA_HAVE_MALLINFO2 |
| mi2 = mallinfo2(); |
| #else |
| mi2 = mallinfo(); |
| #endif |
| free(DISGUISE(ptr)); |
| |
| using_default_allocator = !!memcmp(&mi1, &mi2, sizeof(mi1)); |
| #elif defined(HA_HAVE_MALLOC_ZONE) |
| using_default_allocator = (malloc_default_zone() != NULL); |
| #endif |
| } |
| } |
| |
| static int is_trim_enabled(void) |
| { |
| return using_default_allocator; |
| } |
| |
| static int mem_should_fail(const struct pool_head *pool) |
| { |
| int ret = 0; |
| |
| if (mem_fail_rate > 0 && !(global.mode & MODE_STARTING)) { |
| if (mem_fail_rate > statistical_prng_range(100)) |
| ret = 1; |
| else |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| /* Try to find an existing shared pool with the same characteristics and |
| * returns it, otherwise creates this one. NULL is returned if no memory |
| * is available for a new creation. Two flags are supported : |
| * - MEM_F_SHARED to indicate that the pool may be shared with other users |
| * - MEM_F_EXACT to indicate that the size must not be rounded up |
| */ |
| struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags) |
| { |
| unsigned int extra_mark, extra_caller, extra; |
| struct pool_head *pool; |
| struct pool_head *entry; |
| struct list *start; |
| unsigned int align; |
| int thr __maybe_unused; |
| |
| /* We need to store a (void *) at the end of the chunks. Since we know |
| * that the malloc() function will never return such a small size, |
| * let's round the size up to something slightly bigger, in order to |
| * ease merging of entries. Note that the rounding is a power of two. |
| * This extra (void *) is not accounted for in the size computation |
| * so that the visible parts outside are not affected. |
| * |
| * Note: for the LRU cache, we need to store 2 doubly-linked lists. |
| */ |
| |
| extra_mark = (pool_debugging & POOL_DBG_TAG) ? POOL_EXTRA_MARK : 0; |
| extra_caller = (pool_debugging & POOL_DBG_CALLER) ? POOL_EXTRA_CALLER : 0; |
| extra = extra_mark + extra_caller; |
| |
| if (!(flags & MEM_F_EXACT)) { |
| align = 4 * sizeof(void *); // 2 lists = 4 pointers min |
| size = ((size + extra + align - 1) & -align) - extra; |
| } |
| |
| if (!(pool_debugging & POOL_DBG_NO_CACHE)) { |
| /* we'll store two lists there, we need the room for this. This is |
| * guaranteed by the test above, except if MEM_F_EXACT is set, or if |
| * the only EXTRA part is in fact the one that's stored in the cache |
| * in addition to the pci struct. |
| */ |
| if (size + extra - extra_caller < sizeof(struct pool_cache_item)) |
| size = sizeof(struct pool_cache_item) + extra_caller - extra; |
| } |
| |
| /* TODO: thread: we do not lock pool list for now because all pools are |
| * created during HAProxy startup (so before threads creation) */ |
| start = &pools; |
| pool = NULL; |
| |
| list_for_each_entry(entry, &pools, list) { |
| if (entry->size == size) { |
| /* either we can share this place and we take it, or |
| * we look for a shareable one or for the next position |
| * before which we will insert a new one. |
| */ |
| if ((flags & entry->flags & MEM_F_SHARED) && |
| (!(pool_debugging & POOL_DBG_DONT_MERGE) || |
| strcmp(name, entry->name) == 0)) { |
| /* we can share this one */ |
| pool = entry; |
| DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name); |
| break; |
| } |
| } |
| else if (entry->size > size) { |
| /* insert before this one */ |
| start = &entry->list; |
| break; |
| } |
| } |
| |
| if (!pool) { |
| void *pool_addr; |
| |
| pool_addr = calloc(1, sizeof(*pool) + __alignof__(*pool)); |
| if (!pool_addr) |
| return NULL; |
| |
| /* always provide an aligned pool */ |
| pool = (struct pool_head*)((((size_t)pool_addr) + __alignof__(*pool)) & -(size_t)__alignof__(*pool)); |
| pool->base_addr = pool_addr; // keep it, it's the address to free later |
| |
| if (name) |
| strlcpy2(pool->name, name, sizeof(pool->name)); |
| pool->alloc_sz = size + extra; |
| pool->size = size; |
| pool->flags = flags; |
| LIST_APPEND(start, &pool->list); |
| |
| if (!(pool_debugging & POOL_DBG_NO_CACHE)) { |
| /* update per-thread pool cache if necessary */ |
| for (thr = 0; thr < MAX_THREADS; thr++) { |
| LIST_INIT(&pool->cache[thr].list); |
| pool->cache[thr].tid = thr; |
| pool->cache[thr].pool = pool; |
| } |
| } |
| } |
| pool->users++; |
| return pool; |
| } |
| |
| /* Tries to allocate an object for the pool <pool> using the system's allocator |
| * and directly returns it. The pool's allocated counter is checked and updated, |
| * but no other checks are performed. |
| */ |
| void *pool_get_from_os(struct pool_head *pool) |
| { |
| if (!pool->limit || pool->allocated < pool->limit) { |
| void *ptr = pool_alloc_area(pool->alloc_sz); |
| if (ptr) { |
| _HA_ATOMIC_INC(&pool->allocated); |
| return ptr; |
| } |
| _HA_ATOMIC_INC(&pool->failed); |
| } |
| activity[tid].pool_fail++; |
| return NULL; |
| |
| } |
| |
| /* Releases a pool item back to the operating system and atomically updates |
| * the allocation counter. |
| */ |
| void pool_put_to_os(struct pool_head *pool, void *ptr) |
| { |
| #ifdef DEBUG_UAF |
| /* This object will be released for real in order to detect a use after |
| * free. We also force a write to the area to ensure we crash on double |
| * free or free of a const area. |
| */ |
| *(uint32_t *)ptr = 0xDEADADD4; |
| #endif /* DEBUG_UAF */ |
| |
| pool_free_area(ptr, pool->alloc_sz); |
| _HA_ATOMIC_DEC(&pool->allocated); |
| } |
| |
| /* Tries to allocate an object for the pool <pool> using the system's allocator |
| * and directly returns it. The pool's counters are updated but the object is |
| * never cached, so this is usable with and without local or shared caches. |
| */ |
| void *pool_alloc_nocache(struct pool_head *pool) |
| { |
| void *ptr = NULL; |
| |
| ptr = pool_get_from_os(pool); |
| if (!ptr) |
| return NULL; |
| |
| swrate_add_scaled(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used, POOL_AVG_SAMPLES/4); |
| _HA_ATOMIC_INC(&pool->used); |
| |
| /* keep track of where the element was allocated from */ |
| POOL_DEBUG_SET_MARK(pool, ptr); |
| POOL_DEBUG_TRACE_CALLER(pool, (struct pool_cache_item *)ptr, NULL); |
| return ptr; |
| } |
| |
| /* Release a pool item back to the OS and keeps the pool's counters up to date. |
| * This is always defined even when pools are not enabled (their usage stats |
| * are maintained). |
| */ |
| void pool_free_nocache(struct pool_head *pool, void *ptr) |
| { |
| _HA_ATOMIC_DEC(&pool->used); |
| swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used); |
| pool_put_to_os(pool, ptr); |
| } |
| |
| |
| /* Updates <pch>'s fill_pattern and fills the free area after <item> with it, |
| * up to <size> bytes. The item part is left untouched. |
| */ |
| void pool_fill_pattern(struct pool_cache_head *pch, struct pool_cache_item *item, uint size) |
| { |
| ulong *ptr = (ulong *)item; |
| uint ofs; |
| ulong u; |
| |
| if (size <= sizeof(*item)) |
| return; |
| |
| /* Upgrade the fill_pattern to change about half of the bits |
| * (to be sure to catch static flag corruption), and apply it. |
| */ |
| u = pch->fill_pattern += ~0UL / 3; // 0x55...55 |
| ofs = sizeof(*item) / sizeof(*ptr); |
| while (ofs < size / sizeof(*ptr)) |
| ptr[ofs++] = u; |
| } |
| |
| /* check for a pool_cache_item integrity after extracting it from the cache. It |
| * must have been previously initialized using pool_fill_pattern(). If any |
| * corruption is detected, the function provokes an immediate crash. |
| */ |
| void pool_check_pattern(struct pool_cache_head *pch, struct pool_cache_item *item, uint size) |
| { |
| const ulong *ptr = (const ulong *)item; |
| uint ofs; |
| ulong u; |
| |
| if (size <= sizeof(*item)) |
| return; |
| |
| /* let's check that all words past *item are equal */ |
| ofs = sizeof(*item) / sizeof(*ptr); |
| u = ptr[ofs++]; |
| while (ofs < size / sizeof(*ptr)) { |
| if (unlikely(ptr[ofs] != u)) |
| ABORT_NOW(); |
| ofs++; |
| } |
| } |
| |
| /* removes up to <count> items from the end of the local pool cache <ph> for |
| * pool <pool>. The shared pool is refilled with these objects in the limit |
| * of the number of acceptable objects, and the rest will be released to the |
| * OS. It is not a problem is <count> is larger than the number of objects in |
| * the local cache. The counters are automatically updated. Must not be used |
| * with pools disabled. |
| */ |
| static void pool_evict_last_items(struct pool_head *pool, struct pool_cache_head *ph, uint count) |
| { |
| struct pool_cache_item *item; |
| struct pool_item *pi, *head = NULL; |
| uint released = 0; |
| uint cluster = 0; |
| uint to_free_max; |
| |
| BUG_ON(pool_debugging & POOL_DBG_NO_CACHE); |
| |
| /* Note: this will be zero when global pools are disabled */ |
| to_free_max = pool_releasable(pool); |
| |
| while (released < count && !LIST_ISEMPTY(&ph->list)) { |
| item = LIST_PREV(&ph->list, typeof(item), by_pool); |
| BUG_ON(&item->by_pool == &ph->list); |
| if (unlikely(pool_debugging & POOL_DBG_INTEGRITY)) |
| pool_check_pattern(ph, item, pool->size); |
| LIST_DELETE(&item->by_pool); |
| LIST_DELETE(&item->by_lru); |
| |
| if (to_free_max > released || cluster) { |
| /* will never match when global pools are disabled */ |
| pi = (struct pool_item *)item; |
| pi->next = NULL; |
| pi->down = head; |
| head = pi; |
| cluster++; |
| if (cluster >= CONFIG_HAP_POOL_CLUSTER_SIZE) { |
| /* enough to make a cluster */ |
| pool_put_to_shared_cache(pool, head, cluster); |
| cluster = 0; |
| head = NULL; |
| } |
| } else |
| pool_free_nocache(pool, item); |
| |
| released++; |
| } |
| |
| /* incomplete cluster left */ |
| if (cluster) |
| pool_put_to_shared_cache(pool, head, cluster); |
| |
| ph->count -= released; |
| pool_cache_count -= released; |
| pool_cache_bytes -= released * pool->size; |
| } |
| |
| /* Evicts some of the oldest objects from one local cache, until its number of |
| * objects is no more than 16+1/8 of the total number of locally cached objects |
| * or the total size of the local cache is no more than 75% of its maximum (i.e. |
| * we don't want a single cache to use all the cache for itself). For this, the |
| * list is scanned in reverse. If <full> is non-null, all objects are evicted. |
| * Must not be used when pools are disabled. |
| */ |
| void pool_evict_from_local_cache(struct pool_head *pool, int full) |
| { |
| struct pool_cache_head *ph = &pool->cache[tid]; |
| |
| BUG_ON(pool_debugging & POOL_DBG_NO_CACHE); |
| |
| while ((ph->count && full) || |
| (ph->count >= CONFIG_HAP_POOL_CLUSTER_SIZE && |
| ph->count >= 16 + pool_cache_count / 8 && |
| pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4)) { |
| pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE); |
| } |
| } |
| |
| /* Evicts some of the oldest objects from the local cache, pushing them to the |
| * global pool. Must not be used when pools are disabled. |
| */ |
| void pool_evict_from_local_caches() |
| { |
| struct pool_cache_item *item; |
| struct pool_cache_head *ph; |
| struct pool_head *pool; |
| |
| BUG_ON(pool_debugging & POOL_DBG_NO_CACHE); |
| |
| do { |
| item = LIST_PREV(&th_ctx->pool_lru_head, struct pool_cache_item *, by_lru); |
| BUG_ON(&item->by_lru == &th_ctx->pool_lru_head); |
| /* note: by definition we remove oldest objects so they also are the |
| * oldest in their own pools, thus their next is the pool's head. |
| */ |
| ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list); |
| BUG_ON(ph->tid != tid); |
| |
| pool = container_of(ph - tid, struct pool_head, cache); |
| BUG_ON(pool != ph->pool); |
| |
| pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE); |
| } while (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 7 / 8); |
| } |
| |
| /* Frees an object to the local cache, possibly pushing oldest objects to the |
| * shared cache, which itself may decide to release some of them to the OS. |
| * While it is unspecified what the object becomes past this point, it is |
| * guaranteed to be released from the users' perpective. A caller address may |
| * be passed and stored into the area when DEBUG_POOL_TRACING is set. Must not |
| * be used with pools disabled. |
| */ |
| void pool_put_to_cache(struct pool_head *pool, void *ptr, const void *caller) |
| { |
| struct pool_cache_item *item = (struct pool_cache_item *)ptr; |
| struct pool_cache_head *ph = &pool->cache[tid]; |
| |
| BUG_ON(pool_debugging & POOL_DBG_NO_CACHE); |
| |
| LIST_INSERT(&ph->list, &item->by_pool); |
| LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru); |
| POOL_DEBUG_TRACE_CALLER(pool, item, caller); |
| ph->count++; |
| if (unlikely(pool_debugging & POOL_DBG_INTEGRITY)) |
| pool_fill_pattern(ph, item, pool->size); |
| pool_cache_count++; |
| pool_cache_bytes += pool->size; |
| |
| if (unlikely(pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4)) { |
| if (ph->count >= 16 + pool_cache_count / 8 + CONFIG_HAP_POOL_CLUSTER_SIZE) |
| pool_evict_from_local_cache(pool, 0); |
| if (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE) |
| pool_evict_from_local_caches(); |
| } |
| } |
| |
| /* Tries to refill the local cache <pch> from the shared one for pool <pool>. |
| * This is only used when pools are in use and shared pools are enabled. No |
| * malloc() is attempted, and poisonning is never performed. The purpose is to |
| * get the fastest possible refilling so that the caller can easily check if |
| * the cache has enough objects for its use. Must not be used when pools are |
| * disabled. |
| */ |
| void pool_refill_local_from_shared(struct pool_head *pool, struct pool_cache_head *pch) |
| { |
| struct pool_cache_item *item; |
| struct pool_item *ret, *down; |
| uint count; |
| |
| BUG_ON(pool_debugging & POOL_DBG_NO_CACHE); |
| |
| /* we'll need to reference the first element to figure the next one. We |
| * must temporarily lock it so that nobody allocates then releases it, |
| * or the dereference could fail. |
| */ |
| ret = _HA_ATOMIC_LOAD(&pool->free_list); |
| do { |
| while (unlikely(ret == POOL_BUSY)) { |
| __ha_cpu_relax(); |
| ret = _HA_ATOMIC_LOAD(&pool->free_list); |
| } |
| if (ret == NULL) |
| return; |
| } while (unlikely((ret = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY)); |
| |
| if (unlikely(ret == NULL)) { |
| HA_ATOMIC_STORE(&pool->free_list, NULL); |
| return; |
| } |
| |
| /* this releases the lock */ |
| HA_ATOMIC_STORE(&pool->free_list, ret->next); |
| |
| /* now store the retrieved object(s) into the local cache */ |
| count = 0; |
| for (; ret; ret = down) { |
| down = ret->down; |
| item = (struct pool_cache_item *)ret; |
| POOL_DEBUG_TRACE_CALLER(pool, item, NULL); |
| LIST_INSERT(&pch->list, &item->by_pool); |
| LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru); |
| count++; |
| if (unlikely(pool_debugging & POOL_DBG_INTEGRITY)) |
| pool_fill_pattern(pch, item, pool->size); |
| } |
| HA_ATOMIC_ADD(&pool->used, count); |
| pch->count += count; |
| pool_cache_count += count; |
| pool_cache_bytes += count * pool->size; |
| } |
| |
| /* Adds pool item cluster <item> to the shared cache, which contains <count> |
| * elements. The caller is advised to first check using pool_releasable() if |
| * it's wise to add this series of objects there. Both the pool and the item's |
| * head must be valid. |
| */ |
| void pool_put_to_shared_cache(struct pool_head *pool, struct pool_item *item, uint count) |
| { |
| struct pool_item *free_list; |
| |
| _HA_ATOMIC_SUB(&pool->used, count); |
| free_list = _HA_ATOMIC_LOAD(&pool->free_list); |
| do { |
| while (unlikely(free_list == POOL_BUSY)) { |
| __ha_cpu_relax(); |
| free_list = _HA_ATOMIC_LOAD(&pool->free_list); |
| } |
| _HA_ATOMIC_STORE(&item->next, free_list); |
| __ha_barrier_atomic_store(); |
| } while (!_HA_ATOMIC_CAS(&pool->free_list, &free_list, item)); |
| __ha_barrier_atomic_store(); |
| swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used); |
| } |
| |
| /* |
| * This function frees whatever can be freed in pool <pool>. |
| */ |
| void pool_flush(struct pool_head *pool) |
| { |
| struct pool_item *next, *temp, *down; |
| |
| if (!pool || (pool_debugging & (POOL_DBG_NO_CACHE|POOL_DBG_NO_GLOBAL))) |
| return; |
| |
| /* The loop below atomically detaches the head of the free list and |
| * replaces it with a NULL. Then the list can be released. |
| */ |
| next = pool->free_list; |
| do { |
| while (unlikely(next == POOL_BUSY)) { |
| __ha_cpu_relax(); |
| next = _HA_ATOMIC_LOAD(&pool->free_list); |
| } |
| if (next == NULL) |
| return; |
| } while (unlikely((next = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY)); |
| _HA_ATOMIC_STORE(&pool->free_list, NULL); |
| __ha_barrier_atomic_store(); |
| |
| while (next) { |
| temp = next; |
| next = temp->next; |
| for (; temp; temp = down) { |
| down = temp->down; |
| pool_put_to_os(pool, temp); |
| } |
| } |
| /* here, we should have pool->allocated == pool->used */ |
| } |
| |
| /* |
| * This function frees whatever can be freed in all pools, but respecting |
| * the minimum thresholds imposed by owners. It makes sure to be alone to |
| * run by using thread_isolate(). <pool_ctx> is unused. |
| */ |
| void pool_gc(struct pool_head *pool_ctx) |
| { |
| struct pool_head *entry; |
| int isolated = thread_isolated(); |
| |
| if (!isolated) |
| thread_isolate(); |
| |
| list_for_each_entry(entry, &pools, list) { |
| struct pool_item *temp, *down; |
| |
| while (entry->free_list && |
| (int)(entry->allocated - entry->used) > (int)entry->minavail) { |
| temp = entry->free_list; |
| entry->free_list = temp->next; |
| for (; temp; temp = down) { |
| down = temp->down; |
| pool_put_to_os(entry, temp); |
| } |
| } |
| } |
| |
| trim_all_pools(); |
| |
| if (!isolated) |
| thread_release(); |
| } |
| |
| /* |
| * Returns a pointer to type <type> taken from the pool <pool_type> or |
| * dynamically allocated. In the first case, <pool_type> is updated to point to |
| * the next element in the list. <flags> is a binary-OR of POOL_F_* flags. |
| * Prefer using pool_alloc() which does the right thing without flags. |
| */ |
| void *__pool_alloc(struct pool_head *pool, unsigned int flags) |
| { |
| void *p = NULL; |
| void *caller = __builtin_return_address(0); |
| |
| if (unlikely(pool_debugging & POOL_DBG_FAIL_ALLOC)) |
| if (!(flags & POOL_F_NO_FAIL) && mem_should_fail(pool)) |
| return NULL; |
| |
| if (likely(!(pool_debugging & POOL_DBG_NO_CACHE)) && !p) |
| p = pool_get_from_cache(pool, caller); |
| |
| if (unlikely(!p)) |
| p = pool_alloc_nocache(pool); |
| |
| if (likely(p)) { |
| #ifdef USE_MEMORY_PROFILING |
| if (unlikely(profiling & HA_PROF_MEMORY)) { |
| struct memprof_stats *bin; |
| |
| bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_P_ALLOC); |
| _HA_ATOMIC_ADD(&bin->alloc_calls, 1); |
| _HA_ATOMIC_ADD(&bin->alloc_tot, pool->size); |
| _HA_ATOMIC_STORE(&bin->info, pool); |
| } |
| #endif |
| if (unlikely(flags & POOL_F_MUST_ZERO)) |
| memset(p, 0, pool->size); |
| else if (unlikely(!(flags & POOL_F_NO_POISON) && (pool_debugging & POOL_DBG_POISON))) |
| memset(p, mem_poison_byte, pool->size); |
| } |
| return p; |
| } |
| |
| /* |
| * Puts a memory area back to the corresponding pool. <ptr> be valid. Using |
| * pool_free() is preferred. |
| */ |
| void __pool_free(struct pool_head *pool, void *ptr) |
| { |
| const void *caller = __builtin_return_address(0); |
| |
| /* we'll get late corruption if we refill to the wrong pool or double-free */ |
| POOL_DEBUG_CHECK_MARK(pool, ptr); |
| POOL_DEBUG_RESET_MARK(pool, ptr); |
| |
| #ifdef USE_MEMORY_PROFILING |
| if (unlikely(profiling & HA_PROF_MEMORY) && ptr) { |
| struct memprof_stats *bin; |
| |
| bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_P_FREE); |
| _HA_ATOMIC_ADD(&bin->free_calls, 1); |
| _HA_ATOMIC_ADD(&bin->free_tot, pool->size); |
| _HA_ATOMIC_STORE(&bin->info, pool); |
| } |
| #endif |
| |
| if (unlikely(pool_debugging & POOL_DBG_NO_CACHE)) { |
| pool_free_nocache(pool, ptr); |
| return; |
| } |
| |
| pool_put_to_cache(pool, ptr, caller); |
| } |
| |
| |
| #ifdef DEBUG_UAF |
| |
| /************* use-after-free allocator *************/ |
| |
| /* allocates an area of size <size> and returns it. The semantics are similar |
| * to those of malloc(). However the allocation is rounded up to 4kB so that a |
| * full page is allocated. This ensures the object can be freed alone so that |
| * future dereferences are easily detected. The returned object is always |
| * 16-bytes aligned to avoid issues with unaligned structure objects. In case |
| * some padding is added, the area's start address is copied at the end of the |
| * padding to help detect underflows. |
| */ |
| void *pool_alloc_area_uaf(size_t size) |
| { |
| size_t pad = (4096 - size) & 0xFF0; |
| void *ret; |
| |
| ret = mmap(NULL, (size + 4095) & -4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
| if (ret != MAP_FAILED) { |
| /* let's dereference the page before returning so that the real |
| * allocation in the system is performed without holding the lock. |
| */ |
| *(int *)ret = 0; |
| if (pad >= sizeof(void *)) |
| *(void **)(ret + pad - sizeof(void *)) = ret + pad; |
| ret += pad; |
| } else { |
| ret = NULL; |
| } |
| return ret; |
| } |
| |
| /* frees an area <area> of size <size> allocated by pool_alloc_area(). The |
| * semantics are identical to free() except that the size must absolutely match |
| * the one passed to pool_alloc_area(). In case some padding is added, the |
| * area's start address is compared to the one at the end of the padding, and |
| * a segfault is triggered if they don't match, indicating an underflow. |
| */ |
| void pool_free_area_uaf(void *area, size_t size) |
| { |
| size_t pad = (4096 - size) & 0xFF0; |
| |
| if (pad >= sizeof(void *) && *(void **)(area - sizeof(void *)) != area) |
| ABORT_NOW(); |
| |
| munmap(area - pad, (size + 4095) & -4096); |
| } |
| |
| #endif /* DEBUG_UAF */ |
| |
| /* |
| * This function destroys a pool by freeing it completely, unless it's still |
| * in use. This should be called only under extreme circumstances. It always |
| * returns NULL if the resulting pool is empty, easing the clearing of the old |
| * pointer, otherwise it returns the pool. |
| * . |
| */ |
| void *pool_destroy(struct pool_head *pool) |
| { |
| if (pool) { |
| if (!(pool_debugging & POOL_DBG_NO_CACHE)) |
| pool_evict_from_local_cache(pool, 1); |
| |
| pool_flush(pool); |
| if (pool->used) |
| return pool; |
| pool->users--; |
| if (!pool->users) { |
| LIST_DELETE(&pool->list); |
| /* note that if used == 0, the cache is empty */ |
| free(pool->base_addr); |
| } |
| } |
| return NULL; |
| } |
| |
| /* This destroys all pools on exit. It is *not* thread safe. */ |
| void pool_destroy_all() |
| { |
| struct pool_head *entry, *back; |
| |
| list_for_each_entry_safe(entry, back, &pools, list) { |
| /* there's only one occurrence of each pool in the list, |
| * and we're existing instead of looping on the whole |
| * list just to decrement users, force it to 1 here. |
| */ |
| entry->users = 1; |
| pool_destroy(entry); |
| } |
| } |
| |
| /* used by qsort in "show pools" to sort by name */ |
| static int cmp_dump_pools_name(const void *a, const void *b) |
| { |
| const struct pool_dump_info *l = (const struct pool_dump_info *)a; |
| const struct pool_dump_info *r = (const struct pool_dump_info *)b; |
| |
| return strcmp(l->entry->name, r->entry->name); |
| } |
| |
| /* used by qsort in "show pools" to sort by item size */ |
| static int cmp_dump_pools_size(const void *a, const void *b) |
| { |
| const struct pool_dump_info *l = (const struct pool_dump_info *)a; |
| const struct pool_dump_info *r = (const struct pool_dump_info *)b; |
| |
| if (l->entry->size > r->entry->size) |
| return -1; |
| else if (l->entry->size < r->entry->size) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* used by qsort in "show pools" to sort by usage */ |
| static int cmp_dump_pools_usage(const void *a, const void *b) |
| { |
| const struct pool_dump_info *l = (const struct pool_dump_info *)a; |
| const struct pool_dump_info *r = (const struct pool_dump_info *)b; |
| |
| if (l->alloc_bytes > r->alloc_bytes) |
| return -1; |
| else if (l->alloc_bytes < r->alloc_bytes) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* will not dump more than this number of entries. Anything beyond this will |
| * likely not fit into a regular output buffer anyway. |
| */ |
| #define POOLS_MAX_DUMPED_ENTRIES 1024 |
| |
| /* This function dumps memory usage information into the trash buffer. |
| * It may sort by a criterion if <by_what> is non-zero, and limit the |
| * number of output lines if <max> is non-zero. It may limit only to |
| * pools whose names start with <pfx> if <pfx> is non-null. |
| */ |
| void dump_pools_to_trash(int by_what, int max, const char *pfx) |
| { |
| struct pool_dump_info pool_info[POOLS_MAX_DUMPED_ENTRIES]; |
| struct pool_head *entry; |
| unsigned long long allocated, used; |
| int nbpools, i; |
| unsigned long long cached_bytes = 0; |
| uint cached = 0; |
| |
| allocated = used = nbpools = 0; |
| |
| list_for_each_entry(entry, &pools, list) { |
| if (nbpools >= POOLS_MAX_DUMPED_ENTRIES) |
| break; |
| |
| /* do not dump unused entries when sorting by usage */ |
| if (by_what == 3 && !entry->allocated) |
| continue; |
| |
| /* verify the pool name if a prefix is requested */ |
| if (pfx && strncmp(entry->name, pfx, strlen(pfx)) != 0) |
| continue; |
| |
| if (!(pool_debugging & POOL_DBG_NO_CACHE)) { |
| for (cached = i = 0; i < global.nbthread; i++) |
| cached += entry->cache[i].count; |
| } |
| pool_info[nbpools].entry = entry; |
| pool_info[nbpools].alloc_items = entry->allocated; |
| pool_info[nbpools].alloc_bytes = (ulong)entry->size * entry->allocated; |
| pool_info[nbpools].used_items = entry->used; |
| pool_info[nbpools].cached_items = cached; |
| pool_info[nbpools].need_avg = swrate_avg(entry->needed_avg, POOL_AVG_SAMPLES); |
| pool_info[nbpools].failed_items = entry->failed; |
| nbpools++; |
| } |
| |
| if (by_what == 1) /* sort by name */ |
| qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_name); |
| else if (by_what == 2) /* sort by item size */ |
| qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_size); |
| else if (by_what == 3) /* sort by total usage */ |
| qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_usage); |
| |
| chunk_printf(&trash, "Dumping pools usage"); |
| if (!max || max >= POOLS_MAX_DUMPED_ENTRIES) |
| max = POOLS_MAX_DUMPED_ENTRIES; |
| if (nbpools >= max) |
| chunk_appendf(&trash, " (limited to the first %u entries)", max); |
| chunk_appendf(&trash, ". Use SIGQUIT to flush them.\n"); |
| |
| for (i = 0; i < nbpools && i < max; i++) { |
| chunk_appendf(&trash, " - Pool %s (%lu bytes) : %lu allocated (%lu bytes), %lu used" |
| " (~%lu by thread caches)" |
| ", needed_avg %lu, %lu failures, %u users, @%p%s\n", |
| pool_info[i].entry->name, (ulong)pool_info[i].entry->size, |
| pool_info[i].alloc_items, pool_info[i].alloc_bytes, |
| pool_info[i].used_items, pool_info[i].cached_items, |
| pool_info[i].need_avg, pool_info[i].failed_items, |
| pool_info[i].entry->users, pool_info[i].entry, |
| (pool_info[i].entry->flags & MEM_F_SHARED) ? " [SHARED]" : ""); |
| |
| cached_bytes += pool_info[i].cached_items * (ulong)pool_info[i].entry->size; |
| allocated += pool_info[i].alloc_items * (ulong)pool_info[i].entry->size; |
| used += pool_info[i].used_items * (ulong)pool_info[i].entry->size; |
| } |
| |
| chunk_appendf(&trash, "Total: %d pools, %llu bytes allocated, %llu used" |
| " (~%llu by thread caches)" |
| ".\n", |
| nbpools, allocated, used, cached_bytes |
| ); |
| } |
| |
| /* Dump statistics on pools usage. */ |
| void dump_pools(void) |
| { |
| dump_pools_to_trash(0, 0, NULL); |
| qfprintf(stderr, "%s", trash.area); |
| } |
| |
| /* This function returns the total number of failed pool allocations */ |
| int pool_total_failures() |
| { |
| struct pool_head *entry; |
| int failed = 0; |
| |
| list_for_each_entry(entry, &pools, list) |
| failed += entry->failed; |
| return failed; |
| } |
| |
| /* This function returns the total amount of memory allocated in pools (in bytes) */ |
| unsigned long pool_total_allocated() |
| { |
| struct pool_head *entry; |
| unsigned long allocated = 0; |
| |
| list_for_each_entry(entry, &pools, list) |
| allocated += entry->allocated * entry->size; |
| return allocated; |
| } |
| |
| /* This function returns the total amount of memory used in pools (in bytes) */ |
| unsigned long pool_total_used() |
| { |
| struct pool_head *entry; |
| unsigned long used = 0; |
| |
| list_for_each_entry(entry, &pools, list) |
| used += entry->used * entry->size; |
| return used; |
| } |
| |
| /* This function parses a string made of a set of debugging features as |
| * specified after -dM on the command line, and will set pool_debugging |
| * accordingly. On success it returns a strictly positive value. It may zero |
| * with the first warning in <err>, -1 with a help message in <err>, or -2 with |
| * the first error in <err> return the first error in <err>. <err> is undefined |
| * on success, and will be non-null and locally allocated on help/error/warning. |
| * The caller must free it. Warnings are used to report features that were not |
| * enabled at build time, and errors are used to report unknown features. |
| */ |
| int pool_parse_debugging(const char *str, char **err) |
| { |
| struct ist args; |
| char *end; |
| uint new_dbg; |
| int v; |
| |
| |
| /* if it's empty or starts with a number, it's the mem poisonning byte */ |
| v = strtol(str, &end, 0); |
| if (!*end || *end == ',') { |
| mem_poison_byte = *str ? v : 'P'; |
| if (mem_poison_byte >= 0) |
| pool_debugging |= POOL_DBG_POISON; |
| else |
| pool_debugging &= ~POOL_DBG_POISON; |
| str = end; |
| } |
| |
| new_dbg = pool_debugging; |
| |
| for (args = ist(str); istlen(args); args = istadv(istfind(args, ','), 1)) { |
| struct ist feat = iststop(args, ','); |
| |
| if (!istlen(feat)) |
| continue; |
| |
| if (isteq(feat, ist("help"))) { |
| ha_free(err); |
| memprintf(err, |
| "-dM alone enables memory poisonning with byte 0x50 on allocation. A numeric\n" |
| "value may be appended immediately after -dM to use another value (0 supported).\n" |
| "Then an optional list of comma-delimited keywords may be appended to set or\n" |
| "clear some debugging options ('*' marks the current setting):\n\n" |
| " set clear description\n" |
| " -----------------+-----------------+-----------------------------------------\n"); |
| |
| for (v = 0; dbg_options[v].flg; v++) { |
| memprintf(err, "%s %c %-15s|%c %-15s| %s\n", |
| *err, |
| (pool_debugging & dbg_options[v].flg) ? '*' : ' ', |
| dbg_options[v].set, |
| (pool_debugging & dbg_options[v].flg) ? ' ' : '*', |
| dbg_options[v].clr, |
| dbg_options[v].hlp); |
| } |
| return -1; |
| } |
| |
| for (v = 0; dbg_options[v].flg; v++) { |
| if (isteq(feat, ist(dbg_options[v].set))) { |
| new_dbg |= dbg_options[v].flg; |
| break; |
| } |
| else if (isteq(feat, ist(dbg_options[v].clr))) { |
| new_dbg &= ~dbg_options[v].flg; |
| break; |
| } |
| } |
| |
| if (!dbg_options[v].flg) { |
| memprintf(err, "unknown pool debugging feature <%.*s>", (int)istlen(feat), istptr(feat)); |
| return -2; |
| } |
| } |
| |
| pool_debugging = new_dbg; |
| return 1; |
| } |
| |
| /* parse a "show pools" command. It returns 1 on failure, 0 if it starts to dump. */ |
| static int cli_parse_show_pools(char **args, char *payload, struct appctx *appctx, void *private) |
| { |
| struct show_pools_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx)); |
| int arg; |
| |
| for (arg = 2; *args[arg]; arg++) { |
| if (strcmp(args[arg], "byname") == 0) { |
| ctx->by_what = 1; // sort output by name |
| } |
| else if (strcmp(args[arg], "bysize") == 0) { |
| ctx->by_what = 2; // sort output by item size |
| } |
| else if (strcmp(args[arg], "byusage") == 0) { |
| ctx->by_what = 3; // sort output by total allocated size |
| } |
| else if (strcmp(args[arg], "match") == 0 && *args[arg+1]) { |
| ctx->prefix = strdup(args[arg+1]); // only pools starting with this |
| arg++; |
| } |
| else if (isdigit((unsigned char)*args[arg])) { |
| ctx->maxcnt = atoi(args[arg]); // number of entries to dump |
| } |
| else |
| return cli_err(appctx, "Expects either 'byname', 'bysize', 'byusage', 'match <pfx>', or a max number of output lines.\n"); |
| } |
| return 0; |
| } |
| |
| /* release the "show pools" context */ |
| static void cli_release_show_pools(struct appctx *appctx) |
| { |
| struct show_pools_ctx *ctx = appctx->svcctx; |
| |
| ha_free(&ctx->prefix); |
| } |
| |
| /* This function dumps memory usage information onto the stream connector's |
| * read buffer. It returns 0 as long as it does not complete, non-zero upon |
| * completion. No state is used. |
| */ |
| static int cli_io_handler_dump_pools(struct appctx *appctx) |
| { |
| struct show_pools_ctx *ctx = appctx->svcctx; |
| |
| dump_pools_to_trash(ctx->by_what, ctx->maxcnt, ctx->prefix); |
| if (applet_putchk(appctx, &trash) == -1) |
| return 0; |
| return 1; |
| } |
| |
| /* callback used to create early pool <name> of size <size> and store the |
| * resulting pointer into <ptr>. If the allocation fails, it quits with after |
| * emitting an error message. |
| */ |
| void create_pool_callback(struct pool_head **ptr, char *name, unsigned int size) |
| { |
| *ptr = create_pool(name, size, MEM_F_SHARED); |
| if (!*ptr) { |
| ha_alert("Failed to allocate pool '%s' of size %u : %s. Aborting.\n", |
| name, size, strerror(errno)); |
| exit(1); |
| } |
| } |
| |
| /* Initializes all per-thread arrays on startup */ |
| static void init_pools() |
| { |
| int thr; |
| |
| for (thr = 0; thr < MAX_THREADS; thr++) { |
| LIST_INIT(&ha_thread_ctx[thr].pool_lru_head); |
| } |
| |
| detect_allocator(); |
| } |
| |
| INITCALL0(STG_PREPARE, init_pools); |
| |
| /* Report in build options if trim is supported */ |
| static void pools_register_build_options(void) |
| { |
| if (is_trim_enabled()) { |
| char *ptr = NULL; |
| memprintf(&ptr, "Support for malloc_trim() is enabled."); |
| hap_register_build_opts(ptr, 1); |
| } |
| } |
| INITCALL0(STG_REGISTER, pools_register_build_options); |
| |
| /* register cli keywords */ |
| static struct cli_kw_list cli_kws = {{ },{ |
| { { "show", "pools", NULL }, "show pools [by*] [match <pfx>] [nb] : report information about the memory pools usage", cli_parse_show_pools, cli_io_handler_dump_pools, cli_release_show_pools }, |
| {{},} |
| }}; |
| |
| INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws); |
| |
| |
| /* config parser for global "tune.fail-alloc" */ |
| static int mem_parse_global_fail_alloc(char **args, int section_type, struct proxy *curpx, |
| const struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| if (too_many_args(1, args, err, NULL)) |
| return -1; |
| mem_fail_rate = atoi(args[1]); |
| if (mem_fail_rate < 0 || mem_fail_rate > 100) { |
| memprintf(err, "'%s' expects a numeric value between 0 and 100.", args[0]); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* config parser for global "no-memory-trimming" */ |
| static int mem_parse_global_no_mem_trim(char **args, int section_type, struct proxy *curpx, |
| const struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| if (too_many_args(0, args, err, NULL)) |
| return -1; |
| disable_trim = 1; |
| return 0; |
| } |
| |
| /* register global config keywords */ |
| static struct cfg_kw_list mem_cfg_kws = {ILH, { |
| { CFG_GLOBAL, "tune.fail-alloc", mem_parse_global_fail_alloc }, |
| { CFG_GLOBAL, "no-memory-trimming", mem_parse_global_no_mem_trim }, |
| { 0, NULL, NULL } |
| }}; |
| |
| INITCALL1(STG_REGISTER, cfg_register_keywords, &mem_cfg_kws); |
| |
| /* |
| * Local variables: |
| * c-indent-level: 8 |
| * c-basic-offset: 8 |
| * End: |
| */ |