blob: e87da3ec3299f376afdfbd45ab979d22d6a01fd4 [file] [log] [blame]
/*
* HTTP protocol analyzer
*
* Copyright 2000-2006 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <common/appsession.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/debug.h>
#include <common/memory.h>
#include <common/mini-clist.h>
#include <common/standard.h>
#include <common/time.h>
#include <common/uri_auth.h>
#include <common/version.h>
#include <types/capture.h>
#include <types/client.h>
#include <types/global.h>
#include <types/httperr.h>
#include <types/polling.h>
#include <types/proxy.h>
#include <types/server.h>
#include <proto/backend.h>
#include <proto/buffers.h>
#include <proto/fd.h>
#include <proto/log.h>
#include <proto/hdr_idx.h>
#include <proto/proto_http.h>
#include <proto/queue.h>
#include <proto/session.h>
#include <proto/task.h>
#define DEBUG_PARSE_NO_SPEEDUP
#undef DEBUG_PARSE_NO_SPEEDUP
/* This is used to perform a quick jump as an alternative to a break/continue
* instruction. The first argument is the label for normal operation, and the
* second one is the break/continue instruction in the no_speedup mode.
*/
#ifdef DEBUG_PARSE_NO_SPEEDUP
#define QUICK_JUMP(x,y) y
#else
#define QUICK_JUMP(x,y) goto x
#endif
/* This is used by remote monitoring */
const char *HTTP_200 =
"HTTP/1.0 200 OK\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n"
"<html><body><h1>200 OK</h1>\nHAProxy: service ready.\n</body></html>\n";
/* Warning: this one is an sprintf() fmt string, with <realm> as its only argument */
const char *HTTP_401_fmt =
"HTTP/1.0 401 Unauthorized\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"WWW-Authenticate: Basic realm=\"%s\"\r\n"
"\r\n"
"<html><body><h1>401 Unauthorized</h1>\nYou need a valid user and password to access this content.\n</body></html>\n";
/*
* We have 26 list of methods (1 per first letter), each of which can have
* up to 3 entries (2 valid, 1 null).
*/
struct http_method_desc {
http_meth_t meth;
int len;
const char text[8];
};
static struct http_method_desc http_methods[26][3] = {
['C' - 'A'] = {
[0] = { .meth = HTTP_METH_CONNECT , .len=7, .text="CONNECT" },
},
['D' - 'A'] = {
[0] = { .meth = HTTP_METH_DELETE , .len=6, .text="DELETE" },
},
['G' - 'A'] = {
[0] = { .meth = HTTP_METH_GET , .len=3, .text="GET" },
},
['H' - 'A'] = {
[0] = { .meth = HTTP_METH_HEAD , .len=4, .text="HEAD" },
},
['P' - 'A'] = {
[0] = { .meth = HTTP_METH_POST , .len=4, .text="POST" },
[1] = { .meth = HTTP_METH_PUT , .len=3, .text="PUT" },
},
['T' - 'A'] = {
[0] = { .meth = HTTP_METH_TRACE , .len=5, .text="TRACE" },
},
/* rest is empty like this :
* [1] = { .meth = HTTP_METH_NONE , .len=0, .text="" },
*/
};
#ifdef DEBUG_FULL
static char *cli_stnames[5] = {"HDR", "DAT", "SHR", "SHW", "CLS" };
static char *srv_stnames[7] = {"IDL", "CON", "HDR", "DAT", "SHR", "SHW", "CLS" };
#endif
/*
* returns a message to the client ; the connection is shut down for read,
* and the request is cleared so that no server connection can be initiated.
* The client must be in a valid state for this (HEADER, DATA ...).
* Nothing is performed on the server side.
* The reply buffer doesn't need to be empty before this.
*/
void client_retnclose(struct session *s, int len, const char *msg)
{
MY_FD_CLR(s->cli_fd, StaticReadEvent);
MY_FD_SET(s->cli_fd, StaticWriteEvent);
tv_eternity(&s->req->rex);
if (s->fe->clitimeout)
tv_delayfrom(&s->rep->wex, &now, s->fe->clitimeout);
else
tv_eternity(&s->rep->wex);
shutdown(s->cli_fd, SHUT_RD);
s->cli_state = CL_STSHUTR;
buffer_flush(s->rep);
buffer_write(s->rep, msg, len);
s->req->l = 0;
}
/*
* returns a message into the rep buffer, and flushes the req buffer.
* The reply buffer doesn't need to be empty before this.
*/
void client_return(struct session *s, int len, const char *msg)
{
buffer_flush(s->rep);
buffer_write(s->rep, msg, len);
s->req->l = 0;
}
/* This function turns the server state into the SV_STCLOSE, and sets
* indicators accordingly. Note that if <status> is 0, no message is
* returned.
*/
void srv_close_with_err(struct session *t, int err, int finst,
int status, int msglen, const char *msg)
{
t->srv_state = SV_STCLOSE;
if (status > 0) {
t->logs.status = status;
if (t->fe->mode == PR_MODE_HTTP)
client_return(t, msglen, msg);
}
if (!(t->flags & SN_ERR_MASK))
t->flags |= err;
if (!(t->flags & SN_FINST_MASK))
t->flags |= finst;
}
/*
* returns HTTP_METH_NONE if there is nothing valid to read (empty or non-text
* string), HTTP_METH_OTHER for unknown methods, or the identified method.
*/
static http_meth_t find_http_meth(const char *str, const int len)
{
unsigned char m;
struct http_method_desc *h;
m = ((unsigned)*str - 'A');
if (m < 26) {
int l;
for (h = http_methods[m]; (l = (h->len)) > 0; h++) {
if (len <= l)
continue;
if (str[l] != ' ' && str[l] != '\t')
continue;
if (memcmp(str, h->text, l) == 0) {
return h->meth;
}
};
return HTTP_METH_OTHER;
}
return HTTP_METH_NONE;
}
/* Processes the client and server jobs of a session task, then
* puts it back to the wait queue in a clean state, or
* cleans up its resources if it must be deleted. Returns
* the time the task accepts to wait, or TIME_ETERNITY for
* infinity.
*/
int process_session(struct task *t)
{
struct session *s = t->context;
int fsm_resync = 0;
do {
fsm_resync = 0;
//fprintf(stderr,"before_cli:cli=%d, srv=%d\n", s->cli_state, s->srv_state);
fsm_resync |= process_cli(s);
//fprintf(stderr,"cli/srv:cli=%d, srv=%d\n", s->cli_state, s->srv_state);
fsm_resync |= process_srv(s);
//fprintf(stderr,"after_srv:cli=%d, srv=%d\n", s->cli_state, s->srv_state);
} while (fsm_resync);
if (s->cli_state != CL_STCLOSE || s->srv_state != SV_STCLOSE) {
struct timeval min1, min2;
s->req->flags &= BF_CLEAR_READ & BF_CLEAR_WRITE;
s->rep->flags &= BF_CLEAR_READ & BF_CLEAR_WRITE;
tv_min(&min1, &s->req->rex, &s->req->wex);
tv_min(&min2, &s->rep->rex, &s->rep->wex);
tv_min(&min1, &min1, &s->req->cex);
tv_min(&t->expire, &min1, &min2);
/* restore t to its place in the task list */
task_queue(t);
#ifdef DEBUG_FULL
/* DEBUG code : this should never ever happen, otherwise it indicates
* that a task still has something to do and will provoke a quick loop.
*/
if (tv_remain2(&now, &t->expire) <= 0)
exit(100);
#endif
return tv_remain2(&now, &t->expire); /* nothing more to do */
}
s->fe->nbconn--;
actconn--;
if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
int len;
len = sprintf(trash, "%08x:%s.closed[%04x:%04x]\n",
s->uniq_id, s->be->beprm->id,
(unsigned short)s->cli_fd, (unsigned short)s->srv_fd);
write(1, trash, len);
}
s->logs.t_close = tv_diff(&s->logs.tv_accept, &now);
if (s->rep != NULL)
s->logs.bytes = s->rep->total;
/* let's do a final log if we need it */
if (s->logs.logwait &&
!(s->flags & SN_MONITOR) &&
(!(s->fe->options & PR_O_NULLNOLOG) || s->req->total))
sess_log(s);
/* the task MUST not be in the run queue anymore */
task_delete(t);
session_free(s);
task_free(t);
return TIME_ETERNITY; /* rest in peace for eternity */
}
/*
* FIXME: This should move to the HTTP_flow_analyzer code
*/
/*
* manages the client FSM and its socket. BTW, it also tries to handle the
* cookie. It returns 1 if a state has changed (and a resync may be needed),
* 0 else.
*/
int process_cli(struct session *t)
{
int s = t->srv_state;
int c = t->cli_state;
struct buffer *req = t->req;
struct buffer *rep = t->rep;
int delete_header = 0;
int cur_hdr;
DPRINTF(stderr,"process_cli: c=%s s=%s set(r,w)=%d,%d exp(r,w)=%d.%d,%d.%d\n",
cli_stnames[c], srv_stnames[s],
MY_FD_ISSET(t->cli_fd, StaticReadEvent), MY_FD_ISSET(t->cli_fd, StaticWriteEvent),
req->rex.tv_sec, req->rex.tv_usec,
rep->wex.tv_sec, rep->wex.tv_usec);
if (c == CL_STHEADERS) {
/*
* Now parse the partial (or complete) lines.
* We will check the request syntax, and also join multi-line
* headers. An index of all the lines will be elaborated while
* parsing.
*
* For the parsing, we use a 10 states FSM.
*
* RFC2616 requires that both LF and CRLF are recognized as
* line breaks, but that any other combination is an error.
* To avoid duplicating all the states above to check for CR,
* we use a special bit HTTP_PA_LF_EXP that we 'OR' with the
* state we will switch to if the LF is seen, so that we know
* whether there's a pending CR or not. We can check it
* globally since all CR followed by anything but LF are
* errors. Each state is entered with the first character is
* has to process at req->lr. We also have HTTP_PA_CR_SKIP
* indicating that a CR has been seen on current line and
* skipped.
*
* Here is the information we currently have :
* req->data + req->sor = beginning of request
* req->data + req->eoh = end of (parsed) headers
* req->lr = first non-visited byte
* req->r = end of data
*/
char *sol, *eol; /* Start Of Line, End Of Line */
struct proxy *cur_proxy;
eol = sol = req->data + t->hreq.eoh;
while (req->lr < req->r) {
int parse;
FSM_PRINTF(stderr, "WHL: hdr_st=0x%02x, hdr_used=%d hdr_tail=%d hdr_last=%d, h=%d, lr=%d, r=%d, eoh=%d\n",
t->hreq.hdr_state, t->hreq.hdr_idx.used, t->hreq.hdr_idx.tail, t->hreq.hdr_idx.last,
sol - req->data, req->lr - req->data, req->r - req->data, t->hreq.eoh);
if (t->hreq.hdr_state & HTTP_PA_LF_EXP) {
if (*req->lr != '\n') {
t->hreq.hdr_state = HTTP_PA_ERROR;
break;
}
t->hreq.hdr_state &= ~HTTP_PA_LF_EXP;
}
parse = t->hreq.hdr_state & ~HTTP_PA_CR_SKIP;;
if (parse == HTTP_PA_HDR_LF) {
parse_hdr_lf:
/* The LF validating last header, but it
* may also be an LWS, in which case we will
* need more data to know if we can close this
* header or not. However, we must check right
* now if this LF/CRLF closes an empty line, in
* which case it means the end of the request.
*/
eol = req->lr;
if (t->hreq.hdr_state & HTTP_PA_CR_SKIP)
eol--; /* Get back to the CR */
if (eol == sol) {
/* We have found the end of the headers.
* sol points to the ending LF/CRLF,
* and req->lr points to the first byte
* after the LF, so it is easy to append
* anything there.
*/
t->hreq.hdr_state = HTTP_PA_LFLF;
QUICK_JUMP(parse_lflf, continue);
}
if (req->lr + 1 >= req->r) /* LF, ?? */
break;
req->lr++;
/* Right now, we *know* that there is one char
* available at req->lr.
*/
if (*req->lr == ' ' || *req->lr == '\t') {
/* We have an LWS, we will replace the
* CR and LF with spaces as RFC2616
* allows it. <lr> now points to the
* first space char of the LWS part.
*/
for (;eol < req->lr; eol++)
*eol = ' ';
t->hreq.hdr_state = HTTP_PA_HDR_LWS;
QUICK_JUMP(parse_hdr_lws, continue);
}
/**********************************************
* We now have one complete header between *
* sol and eol, with a possible CR at eol, *
* everything ending before req->lr. Some very*
* early processing can be applied. *
**********************************************/
/*
* FIXME: insert a REQHEADER hook here.
* For instance, we could check the header's
* syntax such as forbidding the leading space
* in the first header (Apache also has the same problem)
*/
/* 1: we might have to print this header */
if ((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))
debug_hdr("clihdr", t, sol, eol);
/* 2: maybe we have to copy this header for the logs ? */
if (t->logs.logwait & LW_REQHDR) {
/* FIXME: we must *search* the value after the ':' and not
* consider that it's necessary after one single space.*/
struct cap_hdr *h;
int len;
for (h = t->fe->fiprm->req_cap; h; h = h->next) {
if ((h->namelen + 2 <= eol - sol) &&
(sol[h->namelen] == ':') &&
(strncasecmp(sol, h->name, h->namelen) == 0)) {
if (t->hreq.cap[h->index] == NULL)
t->hreq.cap[h->index] =
pool_alloc_from(h->pool, h->len + 1);
if (t->hreq.cap[h->index] == NULL) {
Alert("HTTP capture : out of memory.\n");
continue;
}
len = eol - (sol + h->namelen + 2);
if (len > h->len)
len = h->len;
memcpy(t->hreq.cap[h->index], sol + h->namelen + 2, len);
t->hreq.cap[h->index][len]=0;
}
}
}
/* 3: We might need to remove "connection:" */
if (!delete_header && (t->fe->options & PR_O_HTTP_CLOSE)
&& (strncasecmp(sol, "Connection:", 11) == 0)) {
delete_header = 1;
}
/* OK, that's enough processing for the first step.
* Now either we index this header or we remove it.
*/
if (!delete_header) {
/* we insert it into the index */
if (hdr_idx_add(eol - sol, req->lr - eol - 1,
&t->hreq.hdr_idx, t->hreq.hdr_idx.tail) < 0) {
t->hreq.hdr_state = HTTP_PA_ERROR;
break;
}
} else {
/* we remove it */
delete_header = 0;
buffer_replace2(req, sol, req->lr, NULL, 0);
/* WARNING: eol is not valid anymore, since the
* header may have been deleted or truncated ! */
}
/* In any case, we set the next header pointer
* to the next line.
*/
sol = req->lr;
#ifdef DEBUG_PARSE_NO_SPEEDUP
t->hreq.hdr_state = HTTP_PA_HEADER;
continue;
#else
/*
* We know that at least one character remains.
* It is interesting to directly branch to the
* matching state.
*/
eol = req->lr;
if (IS_CTL(*req->lr)) {
if (*eol == '\r') {
req->lr++;
t->hreq.hdr_state = HTTP_PA_LFLF | HTTP_PA_LF_EXP;
continue;
}
else if (*eol == '\n') {
t->hreq.hdr_state = HTTP_PA_LFLF;
goto parse_lflf;
}
else {
t->hreq.hdr_state = HTTP_PA_ERROR;
break;
}
}
t->hreq.hdr_state = HTTP_PA_HEADER;
goto parse_inside_hdr;
#endif
} else if (parse == HTTP_PA_STRT_LF) {
parse_strt_lf:
/* The LF validating the request line */
eol = req->lr;
if (t->hreq.hdr_state & HTTP_PA_CR_SKIP)
eol--; /* Get back to the CR */
/* We have the complete start line between
* sol and eol (excluded). lr points to
* the LF.
*/
/* FIXME: insert a REQUESTURI hook here. */
/* 1: we might have to print this header */
if ((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))
debug_hdr("clireq", t, sol, eol);
/* 2: maybe we have to copy the original REQURI for the logs ? */
if (t->logs.logwait & LW_REQ) {
/* we have a complete HTTP request that we must log */
if ((t->logs.uri = pool_alloc(requri)) != NULL) {
int urilen = eol - sol;
if (urilen >= REQURI_LEN)
urilen = REQURI_LEN - 1;
memcpy(t->logs.uri, sol, urilen);
t->logs.uri[urilen] = 0;
if (!(t->logs.logwait &= ~LW_REQ))
sess_log(t);
} else {
Alert("HTTP logging : out of memory.\n");
}
}
/* 3: reference this line as the start line */
if (hdr_idx_add(eol - sol, req->lr - eol,
&t->hreq.hdr_idx, t->hreq.hdr_idx.tail) < 0) {
t->hreq.hdr_state = HTTP_PA_ERROR;
break;
}
req->lr++;
sol = req->lr;
/* in fact, a state is missing here, we should
* be able to distinguish between an empty line
* and a header.
*/
t->hreq.hdr_state = HTTP_PA_HEADER;
#ifdef DEBUG_PARSE_NO_SPEEDUP
continue;
#else
if (req->lr < req->r)
goto parse_inside_hdr;
else
break;
#endif
} else if (parse == HTTP_PA_HEADER) {
char *ptr;
/* Inside a non-empty header */
parse_inside_hdr:
delete_header = 0;
ptr = req->lr;
#ifdef GCC_FINALLY_PRODUCES_EFFICIENT_WHILE_LOOPS
/* This code is disabled right now because
* eventhough it seems straightforward, the
* object code produced by GCC is so much
* suboptimal that about 10% of the time
* spend parsing header is there.
*/
while (ptr < req->r && !IS_CTL(*ptr))
ptr++;
req->lr = ptr;
if (ptr == req->r)
break;
#else
/* Just by using this loop instead of the previous one,
* the global performance increases by about 2% ! The
* code is also smaller by about 50 bytes.
*/
goto reqhdr_loop_chk;
reqhdr_loop:
ptr++;
reqhdr_loop_chk:
if (ptr == req->r) {
req->lr = ptr;
break;
}
if (*ptr != 0x7F && (unsigned)*ptr >= 0x20)
goto reqhdr_loop;
req->lr = ptr;
#endif
/* we have a CTL char */
if (*ptr == '\r') {
t->hreq.hdr_state = HTTP_PA_HDR_LF | HTTP_PA_CR_SKIP | HTTP_PA_LF_EXP;
req->lr++;
continue;
}
else if (*ptr == '\n') {
t->hreq.hdr_state = HTTP_PA_HDR_LF;
QUICK_JUMP(parse_hdr_lf, continue);
}
t->hreq.hdr_state = HTTP_PA_ERROR;
break;
} else if (parse == HTTP_PA_EMPTY) {
/* leading empty lines */
if (*req->lr == '\n') {
req->lr ++;
t->hreq.hdr_state = HTTP_PA_EMPTY;
continue;
}
else if (*req->lr == '\r') {
req->lr ++;
t->hreq.hdr_state = HTTP_PA_EMPTY | HTTP_PA_CR_SKIP | HTTP_PA_LF_EXP;
continue;
}
FSM_PRINTF(stderr, "PA_EMPTY[0]: h=%d, lr=%d, r=%d\n",
sol - req->data, req->lr - req->data, req->r - req->data);
#if PARSE_PRESERVE_EMPTY_LINES
/* only skip empty leading lines, don't remove them */
t->hreq.hdr_idx.v[0].len = req->lr - sol;
t->hreq.sor = t->hreq.hdr_idx.v[0].len;
#else
/* remove empty leading lines, as recommended by
* RFC2616. This takes a lot of time because we
* must move all the buffer backwards, but this
* is rarely needed. The method above will be
* cleaner when we'll be able to start sending
* the request from any place in the buffer.
*/
buffer_replace2(req, sol, req->lr, NULL, 0);
#endif
sol = req->lr;
FSM_PRINTF(stderr, "PA_EMPTY[1]: h=%d, lr=%d, r=%d\n",
sol - req->data, req->lr - req->data, req->r - req->data);
t->hreq.hdr_state = HTTP_PA_START;
/* we know that we still have one char available */
QUICK_JUMP(parse_start, continue);
} else if (parse == HTTP_PA_START) {
char *ptr;
/* Inside the start line */
parse_start:
ptr = req->lr;
#ifdef GCC_FINALLY_PRODUCES_EFFICIENT_WHILE_LOOPS
/* This code is disabled right now because
* eventhough it seems straightforward, the
* object code produced by GCC is so much
* suboptimal that about 10% of the time
* spend parsing header is there.
*/
while (ptr < req->r && !IS_CTL(*ptr))
ptr++;
req->lr = ptr;
if (ptr == req->r)
break;
#else
/* Just by using this loop instead of the previous one,
* the global performance increases by about 2% ! The
* code is also smaller by about 50 bytes.
*/
goto reqstrt_loop_chk;
reqstrt_loop:
ptr++;
reqstrt_loop_chk:
if (ptr == req->r) {
req->lr = ptr;
break;
}
if (*ptr != 0x7F && (unsigned)*ptr >= 0x20)
goto reqstrt_loop;
req->lr = ptr;
#endif
/* we have a CTL char */
if (*ptr == '\r') {
req->lr++;
t->hreq.hdr_state = HTTP_PA_STRT_LF | HTTP_PA_CR_SKIP | HTTP_PA_LF_EXP;
continue;
}
else if (*ptr == '\n') {
t->hreq.hdr_state = HTTP_PA_STRT_LF;
/* we know that we still have one char available */
QUICK_JUMP(parse_strt_lf, continue);
}
t->hreq.hdr_state = HTTP_PA_ERROR;
break;
} else if (parse == HTTP_PA_LFLF) {
parse_lflf:
req->lr ++;
/* sol points to either CR or CRLF, and
* req->lr points to 1 char after LF.
*/
/*
* FIXME: insert a hook here for the end of the headers
*/
break;
} else if (parse == HTTP_PA_HDR_LWS) {
parse_hdr_lws:
/* Inside an LWS. We just replace tabs with
* spaces and fall back to the HEADER state
* at the first non-space character
*/
while (req->lr < req->r) {
if (*req->lr == '\t')
*req->lr = ' ';
else if (*req->lr != ' ') {
t->hreq.hdr_state = HTTP_PA_HEADER;
QUICK_JUMP(parse_inside_hdr, break);
}
req->lr++;
}
continue;
} else if (parse == HTTP_PA_ERROR) {
break;
}
} /* end of the "while(req->lr < req->r)" loop */
/* update the end of headers */
t->hreq.eoh = sol - req->data;
FSM_PRINTF(stderr, "END: hdr_st=0x%02x, hdr_used=%d hdr_tail=%d hdr_last=%d, h=%d, lr=%d, r=%d, eoh=%d\n",
t->hreq.hdr_state, t->hreq.hdr_idx.used, t->hreq.hdr_idx.tail, t->hreq.hdr_idx.last,
sol - req->data, req->lr - req->data, req->r - req->data, t->hreq.eoh);
/*
* Now, let's catch bad requests.
*/
if (t->hreq.hdr_state == HTTP_PA_ERROR)
goto return_bad_req;
/*
* Now we quickly check if we have found a full request.
* If not so, we check the FD and buffer states before leaving.
* A full request is indicated by the fact that we have seen
* the double LF/CRLF, so the state is HTTP_PA_LFLF.
*
*/
if (t->hreq.hdr_state != HTTP_PA_LFLF) { /* Request not complete yet */
/* 1: Since we are in header mode, if there's no space
* left for headers, we won't be able to free more
* later, so the session will never terminate. We
* must terminate it now.
*/
if (req->l >= req->rlim - req->data) {
/* FIXME: check if hreq.hdr_state & mask < HTTP_PA_HEADER,
* and return Status 414 Request URI too long instead.
*/
goto return_bad_req;
}
/* 2: have we encountered a read error or a close ? */
else if (req->flags & (BF_READ_ERROR | BF_READ_NULL)) {
/* read error, or last read : give up. */
tv_eternity(&req->rex);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLICL;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 1;
}
/* 3: has the read timeout expired ? */
else if (tv_cmp2_ms(&req->rex, &now) <= 0) {
/* read timeout : give up with an error message. */
t->logs.status = 408;
client_retnclose(t, t->fe->errmsg.len408, t->fe->errmsg.msg408);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLITO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 1;
}
/* 4: do we need to re-enable the read socket ? */
else if (! MY_FD_ISSET(t->cli_fd, StaticReadEvent)) {
/* fd in StaticReadEvent was disabled, perhaps because of a previous buffer
* full. We cannot loop here since stream_sock_read will disable it only if
* req->l == rlim-data
*/
MY_FD_SET(t->cli_fd, StaticReadEvent);
if (t->fe->clitimeout)
tv_delayfrom(&req->rex, &now, t->fe->clitimeout);
else
tv_eternity(&req->rex);
}
return t->cli_state != CL_STHEADERS;
}
/****************************************************************
* More interesting part now : we know that we have a complete *
* request which at least looks like HTTP. We have an indicator *
* of each header's length, so we can parse them quickly. *
****************************************************************/
/*
* 1: check if the URI matches the monitor_uri.
* We have to do this for every request which gets in, because
* the monitor-uri is defined by the frontend. To speed-up the
* test, we include the leading and trailing spaces in the
* comparison. This is generally not a problem because the
* monitor-uri is primarily used by external checkers which
* send pre-formatted requests too.
*/
t->hreq.start.str = req->data + t->hreq.sor; /* start of the REQURI */
t->hreq.start.len = t->hreq.hdr_idx.v[t->hreq.hdr_idx.v[0].next].len; /* end of the REQURI */
t->hreq.meth = find_http_meth(t->hreq.start.str, t->hreq.start.len);
if ((t->fe->monitor_uri_len != 0) &&
(t->hreq.start.len >= t->fe->monitor_uri_len)) {
char *p = t->hreq.start.str;
int idx = 0;
/* skip the method so that we accept any method */
while (idx < t->hreq.start.len && p[idx] != ' ')
idx++;
p += idx;
if (t->hreq.start.len - idx >= t->fe->monitor_uri_len &&
!memcmp(p, t->fe->monitor_uri, t->fe->monitor_uri_len)) {
/*
* We have found the monitor URI
*/
t->flags |= SN_MONITOR;
t->logs.status = 200;
client_retnclose(t, strlen(HTTP_200), HTTP_200);
goto return_prx_cond;
}
}
/*
* 2: we will have to evaluate the filters.
* As opposed to version 1.2, now they will be evaluated in the
* filters order and not in the header order. This means that
* each filter has to be validated among all headers.
*
* We can now check whether we want to switch to another
* backend, in which case we will re-check the backend's
* filters and various options. In order to support 3-level
* switching, here's how we should proceed :
*
* a) run be->fiprm.
* if (switch) then switch ->be to the new backend.
* b) run be->fiprm if (be != fe).
* There cannot be any switch from there, so ->be cannot be
* changed anymore.
*
* => filters always apply to ->be, then ->be may change.
*
* The response path will be able to apply either ->be, or
* ->be then ->fe filters in order to match the reverse of
* the forward sequence.
*/
do {
struct proxy *rule_set = t->be->fiprm;
cur_proxy = t->be;
/* try headers filters */
if (rule_set->req_exp != NULL) {
apply_filters_to_session(t, req, rule_set->req_exp);
/* the start line might have been modified */
t->hreq.start.len = t->hreq.hdr_idx.v[t->hreq.hdr_idx.v[0].next].len;
t->hreq.meth = find_http_meth(t->hreq.start.str, t->hreq.start.len);
}
/* has the request been denied ? */
if (t->flags & SN_CLDENY) {
/* no need to go further */
t->logs.status = 403;
/* let's log the request time */
t->logs.t_request = tv_diff(&t->logs.tv_accept, &now);
client_retnclose(t, t->fe->errmsg.len403, t->fe->errmsg.msg403);
goto return_prx_cond;
}
/* add request headers from the rule sets in the same order */
for (cur_hdr = 0; cur_hdr < rule_set->nb_reqadd; cur_hdr++) {
int len;
len = sprintf(trash, "%s\r\n", rule_set->req_add[cur_hdr]);
len = buffer_replace2(req, req->data + t->hreq.eoh,
req->data + t->hreq.eoh, trash, len);
t->hreq.eoh += len;
if (hdr_idx_add(len - 2, 1, &t->hreq.hdr_idx, t->hreq.hdr_idx.tail) < 0)
goto return_bad_req;
}
if (rule_set->uri_auth != NULL && t->hreq.meth == HTTP_METH_GET) {
/* we have to check the URI and auth for this request */
if (stats_check_uri_auth(t, rule_set))
return 1;
}
} while (cur_proxy != t->be); /* we loop only if t->be has changed */
/*
* Right now, we know that we have processed the entire headers
* and that unwanted requests have been filtered out. We can do
* whatever we want with the remaining request. Also, now we
* may have separate values for ->fe, ->be.
*/
/*
* 3: the appsession cookie was looked up very early in 1.2,
* so let's do the same now.
*/
/* It needs to look into the URI */
if (t->be->beprm->appsession_name) {
get_srv_from_appsession(t,
t->hreq.start.str,
t->hreq.start.str + t->hreq.start.len);
}
/*
* 4: Now we can work with the cookies.
* Note that doing so might move headers in the request, but
* the fields will stay coherent and the URI will not move.
* This should only be performed in the backend.
*/
if (!(t->flags & (SN_CLDENY|SN_CLTARPIT)))
manage_client_side_cookies(t, req);
/*
* 5: add X-Forwarded-For : Should depend on the backend only.
*/
if (t->be->beprm->options & PR_O_FWDFOR) {
if (t->cli_addr.ss_family == AF_INET) {
int len;
unsigned char *pn;
pn = (unsigned char *)&((struct sockaddr_in *)&t->cli_addr)->sin_addr;
len = sprintf(trash, "X-Forwarded-For: %d.%d.%d.%d\r\n",
pn[0], pn[1], pn[2], pn[3]);
len = buffer_replace2(req, req->data + t->hreq.eoh,
req->data + t->hreq.eoh, trash, len);
t->hreq.eoh += len;
if (hdr_idx_add(len - 2, 1, &t->hreq.hdr_idx, t->hreq.hdr_idx.tail) < 0)
goto return_bad_req;
}
else if (t->cli_addr.ss_family == AF_INET6) {
int len;
char pn[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6,
(const void *)&((struct sockaddr_in6 *)(&t->cli_addr))->sin6_addr,
pn, sizeof(pn));
len = sprintf(trash, "X-Forwarded-For: %s\r\n", pn);
len = buffer_replace2(req, req->data + t->hreq.eoh,
req->data + t->hreq.eoh, trash, len);
t->hreq.eoh += len;
if (hdr_idx_add(len - 2, 1, &t->hreq.hdr_idx, t->hreq.hdr_idx.tail) < 0)
goto return_bad_req;
}
}
/*
* 6: add "Connection:"
*/
/* add a "connection: close" line if needed.
* FIXME: this should depend on both the frontend and the backend.
* Header removals should be performed when the filters are run.
*/
if (t->fe->options & PR_O_HTTP_CLOSE) {
int len;
len = buffer_replace2(req, req->data + t->hreq.eoh,
req->data + t->hreq.eoh, "Connection: close\r\n", 19);
t->hreq.eoh += len;
if (hdr_idx_add(17, 1, &t->hreq.hdr_idx, t->hreq.hdr_idx.tail) < 0)
goto return_bad_req;
}
/*************************************************************
* OK, that's finished for the headers. We have done what we *
* could. Let's switch to the DATA state. *
************************************************************/
t->cli_state = CL_STDATA;
req->rlim = req->data + BUFSIZE; /* no more rewrite needed */
t->logs.t_request = tv_diff(&t->logs.tv_accept, &now);
if (!t->fe->clitimeout ||
(t->srv_state < SV_STDATA && t->be->beprm->srvtimeout)) {
/* If the client has no timeout, or if the server is not ready yet,
* and we know for sure that it can expire, then it's cleaner to
* disable the timeout on the client side so that too low values
* cannot make the sessions abort too early.
*
* FIXME-20050705: the server needs a way to re-enable this time-out
* when it switches its state, otherwise a client can stay connected
* indefinitely. This now seems to be OK.
*/
tv_eternity(&req->rex);
}
/* When a connection is tarpitted, we use the queue timeout for the
* tarpit delay, which currently happens to be the server's connect
* timeout. If unset, then set it to zero because we really want it
* to expire at one moment.
*/
if (t->flags & SN_CLTARPIT) {
t->req->l = 0;
/* flush the request so that we can drop the connection early
* if the client closes first.
*/
tv_delayfrom(&req->cex, &now,
t->be->beprm->contimeout ? t->be->beprm->contimeout : 0);
}
#if DEBUG_HTTP_PARSER
/* example: dump each line */
fprintf(stderr, "t->flags=0x%08x\n", t->flags & (SN_CLALLOW|SN_CLDENY|SN_CLTARPIT));
fprintf(stderr, "sol=%d\n", sol - req->data);
sol = req->data + t->hreq.sor;
cur_hdr = 0;
cur_idx = t->hreq.hdr_idx.v[0].next;
cur_hdr = 1;
while (cur_hdr < t->hreq.hdr_idx.used) {
eol = sol + t->hreq.hdr_idx.v[cur_idx].len + t->hreq.hdr_idx.v[cur_idx].cr + 1;
fprintf(stderr, "lr=%d r=%d hdr=%d idx=%d adr=%d..%d len=%d cr=%d data:\n",
req->lr - req->data, req->r - req->data,
cur_hdr, cur_idx,
sol - req->data,
sol - req->data + t->hreq.hdr_idx.v[cur_idx].len + t->hreq.hdr_idx.v[cur_idx].cr,
t->hreq.hdr_idx.v[cur_idx].len,
t->hreq.hdr_idx.v[cur_idx].cr);
write(2, sol, eol - sol);
sol = eol;
cur_idx = t->hreq.hdr_idx.v[cur_idx].next;
cur_hdr++;
}
#endif
goto process_data;
return_bad_req: /* let's centralize all bad requests */
t->hreq.hdr_state = HTTP_PA_ERROR;
t->logs.status = 400;
client_retnclose(t, t->fe->errmsg.len400, t->fe->errmsg.msg400);
return_prx_cond:
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 1;
}
else if (c == CL_STDATA) {
process_data:
/* FIXME: this error handling is partly buggy because we always report
* a 'DATA' phase while we don't know if the server was in IDLE, CONN
* or HEADER phase. BTW, it's not logical to expire the client while
* we're waiting for the server to connect.
*/
/* read or write error */
if (rep->flags & BF_WRITE_ERROR || req->flags & BF_READ_ERROR) {
tv_eternity(&req->rex);
tv_eternity(&rep->wex);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLICL;
if (!(t->flags & SN_FINST_MASK)) {
if (t->pend_pos)
t->flags |= SN_FINST_Q;
else if (s == SV_STCONN)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
return 1;
}
/* last read, or end of server write */
else if (req->flags & BF_READ_NULL || s == SV_STSHUTW || s == SV_STCLOSE) {
MY_FD_CLR(t->cli_fd, StaticReadEvent);
tv_eternity(&req->rex);
shutdown(t->cli_fd, SHUT_RD);
t->cli_state = CL_STSHUTR;
return 1;
}
/* last server read and buffer empty */
else if ((s == SV_STSHUTR || s == SV_STCLOSE) && (rep->l == 0)) {
MY_FD_CLR(t->cli_fd, StaticWriteEvent);
tv_eternity(&rep->wex);
shutdown(t->cli_fd, SHUT_WR);
/* We must ensure that the read part is still alive when switching
* to shutw */
MY_FD_SET(t->cli_fd, StaticReadEvent);
if (t->fe->clitimeout)
tv_delayfrom(&req->rex, &now, t->fe->clitimeout);
t->cli_state = CL_STSHUTW;
//fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state);
return 1;
}
/* read timeout */
else if (tv_cmp2_ms(&req->rex, &now) <= 0) {
MY_FD_CLR(t->cli_fd, StaticReadEvent);
tv_eternity(&req->rex);
shutdown(t->cli_fd, SHUT_RD);
t->cli_state = CL_STSHUTR;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLITO;
if (!(t->flags & SN_FINST_MASK)) {
if (t->pend_pos)
t->flags |= SN_FINST_Q;
else if (s == SV_STCONN)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
return 1;
}
/* write timeout */
else if (tv_cmp2_ms(&rep->wex, &now) <= 0) {
MY_FD_CLR(t->cli_fd, StaticWriteEvent);
tv_eternity(&rep->wex);
shutdown(t->cli_fd, SHUT_WR);
/* We must ensure that the read part is still alive when switching
* to shutw */
MY_FD_SET(t->cli_fd, StaticReadEvent);
if (t->fe->clitimeout)
tv_delayfrom(&req->rex, &now, t->fe->clitimeout);
t->cli_state = CL_STSHUTW;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLITO;
if (!(t->flags & SN_FINST_MASK)) {
if (t->pend_pos)
t->flags |= SN_FINST_Q;
else if (s == SV_STCONN)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
return 1;
}
if (req->l >= req->rlim - req->data) {
/* no room to read more data */
if (MY_FD_ISSET(t->cli_fd, StaticReadEvent)) {
/* stop reading until we get some space */
MY_FD_CLR(t->cli_fd, StaticReadEvent);
tv_eternity(&req->rex);
}
} else {
/* there's still some space in the buffer */
if (! MY_FD_ISSET(t->cli_fd, StaticReadEvent)) {
MY_FD_SET(t->cli_fd, StaticReadEvent);
if (!t->fe->clitimeout ||
(t->srv_state < SV_STDATA && t->be->beprm->srvtimeout))
/* If the client has no timeout, or if the server not ready yet, and we
* know for sure that it can expire, then it's cleaner to disable the
* timeout on the client side so that too low values cannot make the
* sessions abort too early.
*/
tv_eternity(&req->rex);
else
tv_delayfrom(&req->rex, &now, t->fe->clitimeout);
}
}
if ((rep->l == 0) ||
((s < SV_STDATA) /* FIXME: this may be optimized && (rep->w == rep->h)*/)) {
if (MY_FD_ISSET(t->cli_fd, StaticWriteEvent)) {
MY_FD_CLR(t->cli_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&rep->wex);
}
} else {
/* buffer not empty */
if (! MY_FD_ISSET(t->cli_fd, StaticWriteEvent)) {
MY_FD_SET(t->cli_fd, StaticWriteEvent); /* restart writing */
if (t->fe->clitimeout) {
tv_delayfrom(&rep->wex, &now, t->fe->clitimeout);
/* FIXME: to prevent the client from expiring read timeouts during writes,
* we refresh it. */
req->rex = rep->wex;
}
else
tv_eternity(&rep->wex);
}
}
return 0; /* other cases change nothing */
}
else if (c == CL_STSHUTR) {
if (rep->flags & BF_WRITE_ERROR) {
tv_eternity(&rep->wex);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLICL;
if (!(t->flags & SN_FINST_MASK)) {
if (t->pend_pos)
t->flags |= SN_FINST_Q;
else if (s == SV_STCONN)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
return 1;
}
else if ((s == SV_STSHUTR || s == SV_STCLOSE) && (rep->l == 0)
&& !(t->flags & SN_SELF_GEN)) {
tv_eternity(&rep->wex);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
return 1;
}
else if (tv_cmp2_ms(&rep->wex, &now) <= 0) {
tv_eternity(&rep->wex);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLITO;
if (!(t->flags & SN_FINST_MASK)) {
if (t->pend_pos)
t->flags |= SN_FINST_Q;
else if (s == SV_STCONN)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
return 1;
}
if (t->flags & SN_SELF_GEN) {
produce_content(t);
if (rep->l == 0) {
tv_eternity(&rep->wex);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
return 1;
}
}
if ((rep->l == 0)
|| ((s == SV_STHEADERS) /* FIXME: this may be optimized && (rep->w == rep->h)*/)) {
if (MY_FD_ISSET(t->cli_fd, StaticWriteEvent)) {
MY_FD_CLR(t->cli_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&rep->wex);
}
} else {
/* buffer not empty */
if (! MY_FD_ISSET(t->cli_fd, StaticWriteEvent)) {
MY_FD_SET(t->cli_fd, StaticWriteEvent); /* restart writing */
if (t->fe->clitimeout) {
tv_delayfrom(&rep->wex, &now, t->fe->clitimeout);
/* FIXME: to prevent the client from expiring read timeouts during writes,
* we refresh it. */
req->rex = rep->wex;
}
else
tv_eternity(&rep->wex);
}
}
return 0;
}
else if (c == CL_STSHUTW) {
if (req->flags & BF_READ_ERROR) {
tv_eternity(&req->rex);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLICL;
if (!(t->flags & SN_FINST_MASK)) {
if (t->pend_pos)
t->flags |= SN_FINST_Q;
else if (s == SV_STCONN)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
return 1;
}
else if (req->flags & BF_READ_NULL || s == SV_STSHUTW || s == SV_STCLOSE) {
tv_eternity(&req->rex);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
return 1;
}
else if (tv_cmp2_ms(&req->rex, &now) <= 0) {
tv_eternity(&req->rex);
fd_delete(t->cli_fd);
t->cli_state = CL_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_CLITO;
if (!(t->flags & SN_FINST_MASK)) {
if (t->pend_pos)
t->flags |= SN_FINST_Q;
else if (s == SV_STCONN)
t->flags |= SN_FINST_C;
else
t->flags |= SN_FINST_D;
}
return 1;
}
else if (req->l >= req->rlim - req->data) {
/* no room to read more data */
/* FIXME-20050705: is it possible for a client to maintain a session
* after the timeout by sending more data after it receives a close ?
*/
if (MY_FD_ISSET(t->cli_fd, StaticReadEvent)) {
/* stop reading until we get some space */
MY_FD_CLR(t->cli_fd, StaticReadEvent);
tv_eternity(&req->rex);
//fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state);
}
} else {
/* there's still some space in the buffer */
if (! MY_FD_ISSET(t->cli_fd, StaticReadEvent)) {
MY_FD_SET(t->cli_fd, StaticReadEvent);
if (t->fe->clitimeout)
tv_delayfrom(&req->rex, &now, t->fe->clitimeout);
else
tv_eternity(&req->rex);
//fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state);
}
}
return 0;
}
else { /* CL_STCLOSE: nothing to do */
if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
int len;
len = sprintf(trash, "%08x:%s.clicls[%04x:%04x]\n", t->uniq_id, t->be->beprm->id, (unsigned short)t->cli_fd, (unsigned short)t->srv_fd);
write(1, trash, len);
}
return 0;
}
return 0;
}
/*
* manages the server FSM and its socket. It returns 1 if a state has changed
* (and a resync may be needed), 0 else.
*/
int process_srv(struct session *t)
{
int s = t->srv_state;
int c = t->cli_state;
struct buffer *req = t->req;
struct buffer *rep = t->rep;
appsess *asession_temp = NULL;
appsess local_asession;
int conn_err;
#ifdef DEBUG_FULL
fprintf(stderr,"process_srv: c=%s, s=%s\n", cli_stnames[c], srv_stnames[s]);
#endif
//fprintf(stderr,"process_srv: c=%d, s=%d, cr=%d, cw=%d, sr=%d, sw=%d\n", c, s,
//MY_FD_ISSET(t->cli_fd, StaticReadEvent), MY_FD_ISSET(t->cli_fd, StaticWriteEvent),
//MY_FD_ISSET(t->srv_fd, StaticReadEvent), MY_FD_ISSET(t->srv_fd, StaticWriteEvent)
//);
if (s == SV_STIDLE) {
if (c == CL_STHEADERS)
return 0; /* stay in idle, waiting for data to reach the client side */
else if (c == CL_STCLOSE || c == CL_STSHUTW ||
(c == CL_STSHUTR &&
(t->req->l == 0 || t->be->beprm->options & PR_O_ABRT_CLOSE))) { /* give up */
tv_eternity(&req->cex);
if (t->pend_pos)
t->logs.t_queue = tv_diff(&t->logs.tv_accept, &now);
/* note that this must not return any error because it would be able to
* overwrite the client_retnclose() output.
*/
if (t->flags & SN_CLTARPIT)
srv_close_with_err(t, SN_ERR_CLICL, SN_FINST_T, 0, 0, NULL);
else
srv_close_with_err(t, SN_ERR_CLICL, t->pend_pos ? SN_FINST_Q : SN_FINST_C, 0, 0, NULL);
return 1;
}
else {
if (t->flags & SN_CLTARPIT) {
/* This connection is being tarpitted. The CLIENT side has
* already set the connect expiration date to the right
* timeout. We just have to check that it has not expired.
*/
if (tv_cmp2_ms(&req->cex, &now) > 0)
return 0;
/* We will set the queue timer to the time spent, just for
* logging purposes. We fake a 500 server error, so that the
* attacker will not suspect his connection has been tarpitted.
* It will not cause trouble to the logs because we can exclude
* the tarpitted connections by filtering on the 'PT' status flags.
*/
tv_eternity(&req->cex);
t->logs.t_queue = tv_diff(&t->logs.tv_accept, &now);
srv_close_with_err(t, SN_ERR_PRXCOND, SN_FINST_T,
500, t->fe->errmsg.len500, t->fe->errmsg.msg500);
return 1;
}
/* Right now, we will need to create a connection to the server.
* We might already have tried, and got a connection pending, in
* which case we will not do anything till it's pending. It's up
* to any other session to release it and wake us up again.
*/
if (t->pend_pos) {
if (tv_cmp2_ms(&req->cex, &now) > 0)
return 0;
else {
/* we've been waiting too long here */
tv_eternity(&req->cex);
t->logs.t_queue = tv_diff(&t->logs.tv_accept, &now);
srv_close_with_err(t, SN_ERR_SRVTO, SN_FINST_Q,
503, t->fe->errmsg.len503, t->fe->errmsg.msg503);
if (t->srv)
t->srv->failed_conns++;
t->fe->failed_conns++;
return 1;
}
}
do {
/* first, get a connection */
if (srv_redispatch_connect(t))
return t->srv_state != SV_STIDLE;
/* try to (re-)connect to the server, and fail if we expire the
* number of retries.
*/
if (srv_retryable_connect(t)) {
t->logs.t_queue = tv_diff(&t->logs.tv_accept, &now);
return t->srv_state != SV_STIDLE;
}
} while (1);
}
}
else if (s == SV_STCONN) { /* connection in progress */
if (c == CL_STCLOSE || c == CL_STSHUTW ||
(c == CL_STSHUTR &&
(t->req->l == 0 || t->be->beprm->options & PR_O_ABRT_CLOSE))) { /* give up */
tv_eternity(&req->cex);
fd_delete(t->srv_fd);
if (t->srv)
t->srv->cur_sess--;
/* note that this must not return any error because it would be able to
* overwrite the client_retnclose() output.
*/
srv_close_with_err(t, SN_ERR_CLICL, SN_FINST_C, 0, 0, NULL);
return 1;
}
if (!(req->flags & BF_WRITE_STATUS) && tv_cmp2_ms(&req->cex, &now) > 0) {
//fprintf(stderr,"1: c=%d, s=%d, now=%d.%06d, exp=%d.%06d\n", c, s, now.tv_sec, now.tv_usec, req->cex.tv_sec, req->cex.tv_usec);
return 0; /* nothing changed */
}
else if (!(req->flags & BF_WRITE_STATUS) || (req->flags & BF_WRITE_ERROR)) {
/* timeout, asynchronous connect error or first write error */
//fprintf(stderr,"2: c=%d, s=%d\n", c, s);
fd_delete(t->srv_fd);
if (t->srv)
t->srv->cur_sess--;
if (!(req->flags & BF_WRITE_STATUS))
conn_err = SN_ERR_SRVTO; // it was a connect timeout.
else
conn_err = SN_ERR_SRVCL; // it was an asynchronous connect error.
/* ensure that we have enough retries left */
if (srv_count_retry_down(t, conn_err))
return 1;
if (t->srv && t->conn_retries == 0 && t->be->beprm->options & PR_O_REDISP) {
/* We're on our last chance, and the REDISP option was specified.
* We will ignore cookie and force to balance or use the dispatcher.
*/
/* let's try to offer this slot to anybody */
if (may_dequeue_tasks(t->srv, t->be->beprm))
task_wakeup(&rq, t->srv->queue_mgt);
if (t->srv)
t->srv->failed_conns++;
t->be->beprm->failed_conns++;
t->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET);
t->srv = NULL; /* it's left to the dispatcher to choose a server */
if ((t->flags & SN_CK_MASK) == SN_CK_VALID) {
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_DOWN;
}
/* first, get a connection */
if (srv_redispatch_connect(t))
return t->srv_state != SV_STIDLE;
}
do {
/* Now we will try to either reconnect to the same server or
* connect to another server. If the connection gets queued
* because all servers are saturated, then we will go back to
* the SV_STIDLE state.
*/
if (srv_retryable_connect(t)) {
t->logs.t_queue = tv_diff(&t->logs.tv_accept, &now);
return t->srv_state != SV_STCONN;
}
/* we need to redispatch the connection to another server */
if (srv_redispatch_connect(t))
return t->srv_state != SV_STCONN;
} while (1);
}
else { /* no error or write 0 */
t->logs.t_connect = tv_diff(&t->logs.tv_accept, &now);
//fprintf(stderr,"3: c=%d, s=%d\n", c, s);
if (req->l == 0) /* nothing to write */ {
MY_FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&req->wex);
} else /* need the right to write */ {
MY_FD_SET(t->srv_fd, StaticWriteEvent);
if (t->be->beprm->srvtimeout) {
tv_delayfrom(&req->wex, &now, t->be->beprm->srvtimeout);
/* FIXME: to prevent the server from expiring read timeouts during writes,
* we refresh it. */
rep->rex = req->wex;
}
else
tv_eternity(&req->wex);
}
if (t->be->beprm->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */
MY_FD_SET(t->srv_fd, StaticReadEvent);
if (t->be->beprm->srvtimeout)
tv_delayfrom(&rep->rex, &now, t->be->beprm->srvtimeout);
else
tv_eternity(&rep->rex);
t->srv_state = SV_STDATA;
if (t->srv)
t->srv->cum_sess++;
rep->rlim = rep->data + BUFSIZE; /* no rewrite needed */
/* if the user wants to log as soon as possible, without counting
bytes from the server, then this is the right moment. */
if (t->fe->to_log && !(t->logs.logwait & LW_BYTES)) {
t->logs.t_close = t->logs.t_connect; /* to get a valid end date */
sess_log(t);
}
}
else {
t->srv_state = SV_STHEADERS;
if (t->srv)
t->srv->cum_sess++;
rep->rlim = rep->data + BUFSIZE - MAXREWRITE; /* rewrite needed */
}
tv_eternity(&req->cex);
return 1;
}
}
else if (s == SV_STHEADERS) { /* receiving server headers */
/* now parse the partial (or complete) headers */
while (rep->lr < rep->r) { /* this loop only sees one header at each iteration */
char *ptr;
int delete_header;
ptr = rep->lr;
/* look for the end of the current header */
while (ptr < rep->r && *ptr != '\n' && *ptr != '\r')
ptr++;
if (ptr == rep->h) {
int line, len;
/* we can only get here after an end of headers */
/* first, we'll block if security checks have caught nasty things */
if (t->flags & SN_CACHEABLE) {
if ((t->flags & SN_CACHE_COOK) &&
(t->flags & SN_SCK_ANY) &&
(t->be->beprm->options & PR_O_CHK_CACHE)) {
/* we're in presence of a cacheable response containing
* a set-cookie header. We'll block it as requested by
* the 'checkcache' option, and send an alert.
*/
tv_eternity(&rep->rex);
tv_eternity(&req->wex);
fd_delete(t->srv_fd);
if (t->srv) {
t->srv->cur_sess--;
t->srv->failed_secu++;
}
t->be->failed_secu++;
t->srv_state = SV_STCLOSE;
t->logs.status = 502;
client_return(t, t->fe->errmsg.len502, t->fe->errmsg.msg502);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
Alert("Blocking cacheable cookie in response from instance %s, server %s.\n", t->be->beprm->id, t->srv->id);
send_log(t->be, LOG_ALERT, "Blocking cacheable cookie in response from instance %s, server %s.\n", t->be->beprm->id, t->srv->id);
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->be->beprm))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
}
/* next, we'll block if an 'rspideny' or 'rspdeny' filter matched */
if (t->flags & SN_SVDENY) {
tv_eternity(&rep->rex);
tv_eternity(&req->wex);
fd_delete(t->srv_fd);
if (t->srv) {
t->srv->cur_sess--;
t->srv->failed_secu++;
}
t->be->failed_secu++;
t->srv_state = SV_STCLOSE;
t->logs.status = 502;
client_return(t, t->fe->errmsg.len502, t->fe->errmsg.msg502);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->be->beprm))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
/* we'll have something else to do here : add new headers ... */
if ((t->srv) && !(t->flags & SN_DIRECT) && (t->be->beprm->options & PR_O_COOK_INS) &&
(!(t->be->beprm->options & PR_O_COOK_POST) || (t->hreq.meth == HTTP_METH_POST))) {
/* the server is known, it's not the one the client requested, we have to
* insert a set-cookie here, except if we want to insert only on POST
* requests and this one isn't. Note that servers which don't have cookies
* (eg: some backup servers) will return a full cookie removal request.
*/
len = sprintf(trash, "Set-Cookie: %s=%s; path=/\r\n",
t->be->beprm->cookie_name,
t->srv->cookie ? t->srv->cookie : "; Expires=Thu, 01-Jan-1970 00:00:01 GMT");
t->flags |= SN_SCK_INSERTED;
/* Here, we will tell an eventual cache on the client side that we don't
* want it to cache this reply because HTTP/1.0 caches also cache cookies !
* Some caches understand the correct form: 'no-cache="set-cookie"', but
* others don't (eg: apache <= 1.3.26). So we use 'private' instead.
*/
if (t->be->beprm->options & PR_O_COOK_NOC)
//len += sprintf(newhdr + len, "Cache-control: no-cache=\"set-cookie\"\r\n");
len += sprintf(trash + len, "Cache-control: private\r\n");
if (rep->data + rep->l < rep->h)
/* The data has been stolen, we will crash cleanly instead of corrupting memory */
*(int *)0 = 0;
buffer_replace2(rep, rep->h, rep->h, trash, len);
}
/* headers to be added */
/* FIXME: we should add headers from BE then from FE */
for (line = 0; line < t->be->fiprm->nb_rspadd; line++) {
len = sprintf(trash, "%s\r\n", t->be->fiprm->rsp_add[line]);
buffer_replace2(rep, rep->h, rep->h, trash, len);
}
/* add a "connection: close" line if needed */
if (t->fe->options & PR_O_HTTP_CLOSE)
buffer_replace2(rep, rep->h, rep->h, "Connection: close\r\n", 19);
t->srv_state = SV_STDATA;
rep->rlim = rep->data + BUFSIZE; /* no more rewrite needed */
t->logs.t_data = tv_diff(&t->logs.tv_accept, &now);
/* client connection already closed or option 'httpclose' required :
* we close the server's outgoing connection right now.
*/
if ((req->l == 0) &&
(c == CL_STSHUTR || c == CL_STCLOSE || t->be->beprm->options & PR_O_FORCE_CLO)) {
MY_FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&req->wex);
/* We must ensure that the read part is still alive when switching
* to shutw */
MY_FD_SET(t->srv_fd, StaticReadEvent);
if (t->be->beprm->srvtimeout)
tv_delayfrom(&rep->rex, &now, t->be->beprm->srvtimeout);
shutdown(t->srv_fd, SHUT_WR);
t->srv_state = SV_STSHUTW;
}
/* if the user wants to log as soon as possible, without counting
bytes from the server, then this is the right moment. */
if (t->fe->to_log && !(t->logs.logwait & LW_BYTES)) {
t->logs.t_close = t->logs.t_data; /* to get a valid end date */
t->logs.bytes = rep->h - rep->data;
sess_log(t);
}
break;
}
/* to get a complete header line, we need the ending \r\n, \n\r, \r or \n too */
if (ptr > rep->r - 2) {
/* this is a partial header, let's wait for more to come */
rep->lr = ptr;
break;
}
// fprintf(stderr,"h=%p, ptr=%p, lr=%p, r=%p, *h=", rep->h, ptr, rep->lr, rep->r);
// write(2, rep->h, ptr - rep->h); fprintf(stderr,"\n");
/* now we know that *ptr is either \r or \n,
* and that there are at least 1 char after it.
*/
if ((ptr[0] == ptr[1]) || (ptr[1] != '\r' && ptr[1] != '\n'))
rep->lr = ptr + 1; /* \r\r, \n\n, \r[^\n], \n[^\r] */
else
rep->lr = ptr + 2; /* \r\n or \n\r */
/*
* now we know that we have a full header ; we can do whatever
* we want with these pointers :
* rep->h = beginning of header
* ptr = end of header (first \r or \n)
* rep->lr = beginning of next line (next rep->h)
* rep->r = end of data (not used at this stage)
*/
if (t->logs.status == -1) {
t->logs.logwait &= ~LW_RESP;
t->logs.status = atoi(rep->h + 9);
switch (t->logs.status) {
case 200:
case 203:
case 206:
case 300:
case 301:
case 410:
/* RFC2616 @13.4:
* "A response received with a status code of
* 200, 203, 206, 300, 301 or 410 MAY be stored
* by a cache (...) unless a cache-control
* directive prohibits caching."
*
* RFC2616 @9.5: POST method :
* "Responses to this method are not cacheable,
* unless the response includes appropriate
* Cache-Control or Expires header fields."
*/
if (!(t->hreq.meth == HTTP_METH_POST) && (t->be->beprm->options & PR_O_CHK_CACHE))
t->flags |= SN_CACHEABLE | SN_CACHE_COOK;
break;
default:
break;
}
}
else if (t->logs.logwait & LW_RSPHDR) {
struct cap_hdr *h;
int len;
for (h = t->fe->fiprm->rsp_cap; h; h = h->next) {
if ((h->namelen + 2 <= ptr - rep->h) &&
(rep->h[h->namelen] == ':') &&
(strncasecmp(rep->h, h->name, h->namelen) == 0)) {
if (t->rsp_cap[h->index] == NULL)
t->rsp_cap[h->index] = pool_alloc_from(h->pool, h->len + 1);
len = ptr - (rep->h + h->namelen + 2);
if (len > h->len)
len = h->len;
memcpy(t->rsp_cap[h->index], rep->h + h->namelen + 2, len);
t->rsp_cap[h->index][len]=0;
}
}
}
delete_header = 0;
if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))
debug_hdr("srvhdr", t, rep->h, ptr);
/* remove "connection: " if needed */
if (!delete_header && (t->fe->options & PR_O_HTTP_CLOSE)
&& (strncasecmp(rep->h, "Connection: ", 12) == 0)) {
delete_header = 1;
}
/* try headers regexps */
if (!delete_header && t->be->fiprm->rsp_exp != NULL
&& !(t->flags & SN_SVDENY)) {
struct hdr_exp *exp;
char term;
term = *ptr;
*ptr = '\0';
exp = t->be->fiprm->rsp_exp;
do {
if (regexec(exp->preg, rep->h, MAX_MATCH, pmatch, 0) == 0) {
switch (exp->action) {
case ACT_ALLOW:
if (!(t->flags & SN_SVDENY))
t->flags |= SN_SVALLOW;
break;
case ACT_REPLACE:
if (!(t->flags & SN_SVDENY)) {
int len = exp_replace(trash, rep->h, exp->replace, pmatch);
ptr += buffer_replace2(rep, rep->h, ptr, trash, len);
}
break;
case ACT_REMOVE:
if (!(t->flags & SN_SVDENY))
delete_header = 1;
break;
case ACT_DENY:
if (!(t->flags & SN_SVALLOW))
t->flags |= SN_SVDENY;
break;
case ACT_PASS: /* we simply don't deny this one */
break;
}
break;
}
} while ((exp = exp->next) != NULL);
*ptr = term; /* restore the string terminator */
}
/* check for cache-control: or pragma: headers */
if (!delete_header && (t->flags & SN_CACHEABLE)) {
if (strncasecmp(rep->h, "Pragma: no-cache", 16) == 0)
t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK;
else if (strncasecmp(rep->h, "Cache-control: ", 15) == 0) {
if (strncasecmp(rep->h + 15, "no-cache", 8) == 0) {
if (rep->h + 23 == ptr || rep->h[23] == ',')
t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK;
else {
if (strncasecmp(rep->h + 23, "=\"set-cookie", 12) == 0
&& (rep->h[35] == '"' || rep->h[35] == ','))
t->flags &= ~SN_CACHE_COOK;
}
} else if ((strncasecmp(rep->h + 15, "private", 7) == 0 &&
(rep->h + 22 == ptr || rep->h[22] == ','))
|| (strncasecmp(rep->h + 15, "no-store", 8) == 0 &&
(rep->h + 23 == ptr || rep->h[23] == ','))) {
t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK;
} else if (strncasecmp(rep->h + 15, "max-age=0", 9) == 0 &&
(rep->h + 24 == ptr || rep->h[24] == ',')) {
t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK;
} else if (strncasecmp(rep->h + 15, "s-maxage=0", 10) == 0 &&
(rep->h + 25 == ptr || rep->h[25] == ',')) {
t->flags &= ~SN_CACHEABLE & ~SN_CACHE_COOK;
} else if (strncasecmp(rep->h + 15, "public", 6) == 0 &&
(rep->h + 21 == ptr || rep->h[21] == ',')) {
t->flags |= SN_CACHEABLE | SN_CACHE_COOK;
}
}
}
/* check for server cookies */
if (!delete_header /*&& (t->proxy->options & PR_O_COOK_ANY)*/
&& (t->be->beprm->cookie_name != NULL ||
t->be->fiprm->capture_name != NULL ||
t->be->beprm->appsession_name !=NULL)
&& (strncasecmp(rep->h, "Set-Cookie: ", 12) == 0)) {
char *p1, *p2, *p3, *p4;
t->flags |= SN_SCK_ANY;
p1 = rep->h + 12; /* first char after 'Set-Cookie: ' */
while (p1 < ptr) { /* in fact, we'll break after the first cookie */
while (p1 < ptr && (isspace((int)*p1)))
p1++;
if (p1 == ptr || *p1 == ';') /* end of cookie */
break;
/* p1 is at the beginning of the cookie name */
p2 = p1;
while (p2 < ptr && *p2 != '=' && *p2 != ';')
p2++;
if (p2 == ptr || *p2 == ';') /* next cookie */
break;
p3 = p2 + 1; /* skips the '=' sign */
if (p3 == ptr)
break;
p4 = p3;
while (p4 < ptr && !isspace((int)*p4) && *p4 != ';')
p4++;
/* here, we have the cookie name between p1 and p2,
* and its value between p3 and p4.
* we can process it.
*/
/* first, let's see if we want to capture it */
if (t->be->fiprm->capture_name != NULL &&
t->logs.srv_cookie == NULL &&
(p4 - p1 >= t->be->fiprm->capture_namelen) &&
memcmp(p1, t->be->fiprm->capture_name, t->be->fiprm->capture_namelen) == 0) {
int log_len = p4 - p1;
if ((t->logs.srv_cookie = pool_alloc(capture)) == NULL) {
Alert("HTTP logging : out of memory.\n");
}
if (log_len > t->be->fiprm->capture_len)
log_len = t->be->fiprm->capture_len;
memcpy(t->logs.srv_cookie, p1, log_len);
t->logs.srv_cookie[log_len] = 0;
}
if ((p2 - p1 == t->be->beprm->cookie_len) && (t->be->beprm->cookie_name != NULL) &&
(memcmp(p1, t->be->beprm->cookie_name, p2 - p1) == 0)) {
/* Cool... it's the right one */
t->flags |= SN_SCK_SEEN;
/* If the cookie is in insert mode on a known server, we'll delete
* this occurrence because we'll insert another one later.
* We'll delete it too if the "indirect" option is set and we're in
* a direct access. */
if (((t->srv) && (t->be->beprm->options & PR_O_COOK_INS)) ||
((t->flags & SN_DIRECT) && (t->be->beprm->options & PR_O_COOK_IND))) {
/* this header must be deleted */
delete_header = 1;
t->flags |= SN_SCK_DELETED;
}
else if ((t->srv) && (t->be->beprm->options & PR_O_COOK_RW)) {
/* replace bytes p3->p4 with the cookie name associated
* with this server since we know it.
*/
buffer_replace2(rep, p3, p4, t->srv->cookie, t->srv->cklen);
t->flags |= SN_SCK_INSERTED | SN_SCK_DELETED;
}
else if ((t->srv) && (t->be->beprm->options & PR_O_COOK_PFX)) {
/* insert the cookie name associated with this server
* before existing cookie, and insert a delimitor between them..
*/
buffer_replace2(rep, p3, p3, t->srv->cookie, t->srv->cklen + 1);
p3[t->srv->cklen] = COOKIE_DELIM;
t->flags |= SN_SCK_INSERTED | SN_SCK_DELETED;
}
break;
}
/* first, let's see if the cookie is our appcookie*/
if ((t->be->beprm->appsession_name != NULL) &&
(memcmp(p1, t->be->beprm->appsession_name, p2 - p1) == 0)) {
/* Cool... it's the right one */
size_t server_id_len = strlen(t->srv->id) + 1;
asession_temp = &local_asession;
if ((asession_temp->sessid = pool_alloc_from(apools.sessid, apools.ses_msize)) == NULL) {
Alert("Not enought Memory process_srv():asession->sessid:malloc().\n");
send_log(t->be, LOG_ALERT, "Not enought Memory process_srv():asession->sessid:malloc().\n");
}
memcpy(asession_temp->sessid, p3, t->be->beprm->appsession_len);
asession_temp->sessid[t->be->beprm->appsession_len] = 0;
asession_temp->serverid = NULL;
/* only do insert, if lookup fails */
if (chtbl_lookup(&(t->be->htbl_proxy), (void *) &asession_temp) != 0) {
if ((asession_temp = pool_alloc(appsess)) == NULL) {
Alert("Not enought Memory process_srv():asession:calloc().\n");
send_log(t->be, LOG_ALERT, "Not enought Memory process_srv():asession:calloc().\n");
return 0;
}
asession_temp->sessid = local_asession.sessid;
asession_temp->serverid = local_asession.serverid;
chtbl_insert(&(t->be->beprm->htbl_proxy), (void *) asession_temp);
}/* end if (chtbl_lookup()) */
else {
/* free wasted memory */
pool_free_to(apools.sessid, local_asession.sessid);
} /* end else from if (chtbl_lookup()) */
if (asession_temp->serverid == NULL) {
if ((asession_temp->serverid = pool_alloc_from(apools.serverid, apools.ser_msize)) == NULL) {
Alert("Not enought Memory process_srv():asession->sessid:malloc().\n");
send_log(t->be, LOG_ALERT, "Not enought Memory process_srv():asession->sessid:malloc().\n");
}
asession_temp->serverid[0] = '\0';
}
if (asession_temp->serverid[0] == '\0')
memcpy(asession_temp->serverid,t->srv->id,server_id_len);
tv_delayfrom(&asession_temp->expire, &now, t->be->beprm->appsession_timeout);
#if defined(DEBUG_HASH)
print_table(&(t->be->beprm->htbl_proxy));
#endif
break;
}/* end if ((t->proxy->appsession_name != NULL) ... */
else {
// fprintf(stderr,"Ignoring unknown cookie : ");
// write(2, p1, p2-p1);
// fprintf(stderr," = ");
// write(2, p3, p4-p3);
// fprintf(stderr,"\n");
}
break; /* we don't want to loop again since there cannot be another cookie on the same line */
} /* we're now at the end of the cookie value */
} /* end of cookie processing */
/* check for any set-cookie in case we check for cacheability */
if (!delete_header && !(t->flags & SN_SCK_ANY) &&
(t->be->beprm->options & PR_O_CHK_CACHE) &&
(strncasecmp(rep->h, "Set-Cookie: ", 12) == 0)) {
t->flags |= SN_SCK_ANY;
}
/* let's look if we have to delete this header */
if (delete_header && !(t->flags & SN_SVDENY))
buffer_replace2(rep, rep->h, rep->lr, "", 0);
rep->h = rep->lr;
} /* while (rep->lr < rep->r) */
/* end of header processing (even if incomplete) */
if ((rep->l < rep->rlim - rep->data) && ! MY_FD_ISSET(t->srv_fd, StaticReadEvent)) {
/* fd in StaticReadEvent was disabled, perhaps because of a previous buffer
* full. We cannot loop here since stream_sock_read will disable it only if
* rep->l == rlim-data
*/
MY_FD_SET(t->srv_fd, StaticReadEvent);
if (t->be->beprm->srvtimeout)
tv_delayfrom(&rep->rex, &now, t->be->beprm->srvtimeout);
else
tv_eternity(&rep->rex);
}
/* read error, write error */
if (req->flags & BF_WRITE_ERROR || rep->flags & BF_READ_ERROR) {
tv_eternity(&rep->rex);
tv_eternity(&req->wex);
fd_delete(t->srv_fd);
if (t->srv) {
t->srv->cur_sess--;
t->srv->failed_resp++;
}
t->be->failed_resp++;
t->srv_state = SV_STCLOSE;
t->logs.status = 502;
client_return(t, t->fe->errmsg.len502, t->fe->errmsg.msg502);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVCL;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->be->beprm))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
/* end of client write or end of server read.
* since we are in header mode, if there's no space left for headers, we
* won't be able to free more later, so the session will never terminate.
*/
else if (rep->flags & BF_READ_NULL || c == CL_STSHUTW || c == CL_STCLOSE || rep->l >= rep->rlim - rep->data) {
MY_FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&rep->rex);
shutdown(t->srv_fd, SHUT_RD);
t->srv_state = SV_STSHUTR;
//fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state);
return 1;
}
/* read timeout : return a 504 to the client.
*/
else if (MY_FD_ISSET(t->srv_fd, StaticReadEvent) && tv_cmp2_ms(&rep->rex, &now) <= 0) {
tv_eternity(&rep->rex);
tv_eternity(&req->wex);
fd_delete(t->srv_fd);
if (t->srv) {
t->srv->cur_sess--;
t->srv->failed_resp++;
}
t->be->failed_resp++;
t->srv_state = SV_STCLOSE;
t->logs.status = 504;
client_return(t, t->fe->errmsg.len504, t->fe->errmsg.msg504);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVTO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->be->beprm))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
/* last client read and buffer empty */
/* FIXME!!! here, we don't want to switch to SHUTW if the
* client shuts read too early, because we may still have
* some work to do on the headers.
* The side-effect is that if the client completely closes its
* connection during SV_STHEADER, the connection to the server
* is kept until a response comes back or the timeout is reached.
*/
else if ((/*c == CL_STSHUTR ||*/ c == CL_STCLOSE) && (req->l == 0)) {
MY_FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&req->wex);
/* We must ensure that the read part is still alive when switching
* to shutw */
MY_FD_SET(t->srv_fd, StaticReadEvent);
if (t->be->beprm->srvtimeout)
tv_delayfrom(&rep->rex, &now, t->be->beprm->srvtimeout);
shutdown(t->srv_fd, SHUT_WR);
t->srv_state = SV_STSHUTW;
return 1;
}
/* write timeout */
/* FIXME!!! here, we don't want to switch to SHUTW if the
* client shuts read too early, because we may still have
* some work to do on the headers.
*/
else if (MY_FD_ISSET(t->srv_fd, StaticWriteEvent) && tv_cmp2_ms(&req->wex, &now) <= 0) {
MY_FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&req->wex);
shutdown(t->srv_fd, SHUT_WR);
/* We must ensure that the read part is still alive when switching
* to shutw */
MY_FD_SET(t->srv_fd, StaticReadEvent);
if (t->be->beprm->srvtimeout)
tv_delayfrom(&rep->rex, &now, t->be->beprm->srvtimeout);
/* We must ensure that the read part is still alive when switching
* to shutw */
MY_FD_SET(t->srv_fd, StaticReadEvent);
if (t->be->beprm->srvtimeout)
tv_delayfrom(&rep->rex, &now, t->be->beprm->srvtimeout);
t->srv_state = SV_STSHUTW;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVTO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_H;
return 1;
}
if (req->l == 0) {
if (MY_FD_ISSET(t->srv_fd, StaticWriteEvent)) {
MY_FD_CLR(t->srv_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&req->wex);
}
}
else { /* client buffer not empty */
if (! MY_FD_ISSET(t->srv_fd, StaticWriteEvent)) {
MY_FD_SET(t->srv_fd, StaticWriteEvent); /* restart writing */
if (t->be->beprm->srvtimeout) {
tv_delayfrom(&req->wex, &now, t->be->beprm->srvtimeout);
/* FIXME: to prevent the server from expiring read timeouts during writes,
* we refresh it. */
rep->rex = req->wex;
}
else
tv_eternity(&req->wex);
}
}
/* be nice with the client side which would like to send a complete header
* FIXME: COMPLETELY BUGGY !!! not all headers may be processed because the client
* would read all remaining data at once ! The client should not write past rep->lr
* when the server is in header state.
*/
//return header_processed;
return t->srv_state != SV_STHEADERS;
}
else if (s == SV_STDATA) {
/* read or write error */
if (req->flags & BF_WRITE_ERROR || rep->flags & BF_READ_ERROR) {
tv_eternity(&rep->rex);
tv_eternity(&req->wex);
fd_delete(t->srv_fd);
if (t->srv) {
t->srv->cur_sess--;
t->srv->failed_resp++;
}
t->be->failed_resp++;
t->srv_state = SV_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVCL;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_D;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->be->beprm))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
/* last read, or end of client write */
else if (rep->flags & BF_READ_NULL || c == CL_STSHUTW || c == CL_STCLOSE) {
MY_FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&rep->rex);
shutdown(t->srv_fd, SHUT_RD);
t->srv_state = SV_STSHUTR;
//fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state);
return 1;
}
/* end of client read and no more data to send */
else if ((c == CL_STSHUTR || c == CL_STCLOSE) && (req->l == 0)) {
MY_FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&req->wex);
shutdown(t->srv_fd, SHUT_WR);
/* We must ensure that the read part is still alive when switching
* to shutw */
MY_FD_SET(t->srv_fd, StaticReadEvent);
if (t->be->beprm->srvtimeout)
tv_delayfrom(&rep->rex, &now, t->be->beprm->srvtimeout);
t->srv_state = SV_STSHUTW;
return 1;
}
/* read timeout */
else if (tv_cmp2_ms(&rep->rex, &now) <= 0) {
MY_FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&rep->rex);
shutdown(t->srv_fd, SHUT_RD);
t->srv_state = SV_STSHUTR;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVTO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_D;
return 1;
}
/* write timeout */
else if (tv_cmp2_ms(&req->wex, &now) <= 0) {
MY_FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&req->wex);
shutdown(t->srv_fd, SHUT_WR);
/* We must ensure that the read part is still alive when switching
* to shutw */
MY_FD_SET(t->srv_fd, StaticReadEvent);
if (t->be->beprm->srvtimeout)
tv_delayfrom(&rep->rex, &now, t->be->beprm->srvtimeout);
t->srv_state = SV_STSHUTW;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVTO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_D;
return 1;
}
/* recompute request time-outs */
if (req->l == 0) {
if (MY_FD_ISSET(t->srv_fd, StaticWriteEvent)) {
MY_FD_CLR(t->srv_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&req->wex);
}
}
else { /* buffer not empty, there are still data to be transferred */
if (! MY_FD_ISSET(t->srv_fd, StaticWriteEvent)) {
MY_FD_SET(t->srv_fd, StaticWriteEvent); /* restart writing */
if (t->be->beprm->srvtimeout) {
tv_delayfrom(&req->wex, &now, t->be->beprm->srvtimeout);
/* FIXME: to prevent the server from expiring read timeouts during writes,
* we refresh it. */
rep->rex = req->wex;
}
else
tv_eternity(&req->wex);
}
}
/* recompute response time-outs */
if (rep->l == BUFSIZE) { /* no room to read more data */
if (MY_FD_ISSET(t->srv_fd, StaticReadEvent)) {
MY_FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&rep->rex);
}
}
else {
if (! MY_FD_ISSET(t->srv_fd, StaticReadEvent)) {
MY_FD_SET(t->srv_fd, StaticReadEvent);
if (t->be->beprm->srvtimeout)
tv_delayfrom(&rep->rex, &now, t->be->beprm->srvtimeout);
else
tv_eternity(&rep->rex);
}
}
return 0; /* other cases change nothing */
}
else if (s == SV_STSHUTR) {
if (req->flags & BF_WRITE_ERROR) {
//MY_FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&req->wex);
fd_delete(t->srv_fd);
if (t->srv) {
t->srv->cur_sess--;
t->srv->failed_resp++;
}
t->be->failed_resp++;
//close(t->srv_fd);
t->srv_state = SV_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVCL;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_D;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->be->beprm))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
else if ((c == CL_STSHUTR || c == CL_STCLOSE) && (req->l == 0)) {
//MY_FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&req->wex);
fd_delete(t->srv_fd);
if (t->srv)
t->srv->cur_sess--;
//close(t->srv_fd);
t->srv_state = SV_STCLOSE;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->be->beprm))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
else if (tv_cmp2_ms(&req->wex, &now) <= 0) {
//MY_FD_CLR(t->srv_fd, StaticWriteEvent);
tv_eternity(&req->wex);
fd_delete(t->srv_fd);
if (t->srv)
t->srv->cur_sess--;
//close(t->srv_fd);
t->srv_state = SV_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVTO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_D;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->be->beprm))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
else if (req->l == 0) {
if (MY_FD_ISSET(t->srv_fd, StaticWriteEvent)) {
MY_FD_CLR(t->srv_fd, StaticWriteEvent); /* stop writing */
tv_eternity(&req->wex);
}
}
else { /* buffer not empty */
if (! MY_FD_ISSET(t->srv_fd, StaticWriteEvent)) {
MY_FD_SET(t->srv_fd, StaticWriteEvent); /* restart writing */
if (t->be->beprm->srvtimeout) {
tv_delayfrom(&req->wex, &now, t->be->beprm->srvtimeout);
/* FIXME: to prevent the server from expiring read timeouts during writes,
* we refresh it. */
rep->rex = req->wex;
}
else
tv_eternity(&req->wex);
}
}
return 0;
}
else if (s == SV_STSHUTW) {
if (rep->flags & BF_READ_ERROR) {
//MY_FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&rep->rex);
fd_delete(t->srv_fd);
if (t->srv) {
t->srv->cur_sess--;
t->srv->failed_resp++;
}
t->be->failed_resp++;
//close(t->srv_fd);
t->srv_state = SV_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVCL;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_D;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->be->beprm))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
else if (rep->flags & BF_READ_NULL || c == CL_STSHUTW || c == CL_STCLOSE) {
//MY_FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&rep->rex);
fd_delete(t->srv_fd);
if (t->srv)
t->srv->cur_sess--;
//close(t->srv_fd);
t->srv_state = SV_STCLOSE;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->be->beprm))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
else if (tv_cmp2_ms(&rep->rex, &now) <= 0) {
//MY_FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&rep->rex);
fd_delete(t->srv_fd);
if (t->srv)
t->srv->cur_sess--;
//close(t->srv_fd);
t->srv_state = SV_STCLOSE;
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_SRVTO;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_D;
/* We used to have a free connection slot. Since we'll never use it,
* we have to inform the server that it may be used by another session.
*/
if (may_dequeue_tasks(t->srv, t->be->beprm))
task_wakeup(&rq, t->srv->queue_mgt);
return 1;
}
else if (rep->l == BUFSIZE) { /* no room to read more data */
if (MY_FD_ISSET(t->srv_fd, StaticReadEvent)) {
MY_FD_CLR(t->srv_fd, StaticReadEvent);
tv_eternity(&rep->rex);
}
}
else {
if (! MY_FD_ISSET(t->srv_fd, StaticReadEvent)) {
MY_FD_SET(t->srv_fd, StaticReadEvent);
if (t->be->beprm->srvtimeout)
tv_delayfrom(&rep->rex, &now, t->be->beprm->srvtimeout);
else
tv_eternity(&rep->rex);
}
}
return 0;
}
else { /* SV_STCLOSE : nothing to do */
if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
int len;
len = sprintf(trash, "%08x:%s.srvcls[%04x:%04x]\n", t->uniq_id, t->be->beprm->id, (unsigned short)t->cli_fd, (unsigned short)t->srv_fd);
write(1, trash, len);
}
return 0;
}
return 0;
}
/*
* Produces data for the session <s> depending on its source. Expects to be
* called with s->cli_state == CL_STSHUTR. Right now, only statistics can be
* produced. It stops by itself by unsetting the SN_SELF_GEN flag from the
* session, which it uses to keep on being called when there is free space in
* the buffer, of simply by letting an empty buffer upon return. It returns 1
* if it changes the session state from CL_STSHUTR, otherwise 0.
*/
int produce_content(struct session *s)
{
struct buffer *rep = s->rep;
struct proxy *px;
struct server *sv;
int msglen;
if (s->data_source == DATA_SRC_NONE) {
s->flags &= ~SN_SELF_GEN;
return 1;
}
else if (s->data_source == DATA_SRC_STATS) {
msglen = 0;
if (s->data_state == DATA_ST_INIT) { /* the function had not been called yet */
unsigned int up;
s->flags |= SN_SELF_GEN; // more data will follow
/* send the start of the HTTP response */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"HTTP/1.0 200 OK\r\n"
"Cache-Control: no-cache\r\n"
"Connection: close\r\n"
"Content-Type: text/html\r\n"
"\r\n\r\n");
s->logs.status = 200;
client_retnclose(s, msglen, trash); // send the start of the response.
msglen = 0;
if (!(s->flags & SN_ERR_MASK)) // this is not really an error but it is
s->flags |= SN_ERR_PRXCOND; // to mark that it comes from the proxy
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_R;
/* WARNING! This must fit in the first buffer !!! */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<html><head><title>Statistics Report for " PRODUCT_NAME "</title>\n"
"<meta http-equiv=\"content-type\" content=\"text/html; charset=iso-8859-1\">\n"
"<style type=\"text/css\"><!--\n"
"body {"
" font-family: helvetica, arial;"
" font-size: 12px;"
" font-weight: normal;"
" color: black;"
" background: white;"
"}\n"
"td {"
" font-size: 12px;"
" align: center;"
"}\n"
"h1 {"
" font-size: xx-large;"
" margin-bottom: 0.5em;"
"}\n"
"h2 {"
" font-family: helvetica, arial;"
" font-size: x-large;"
" font-weight: bold;"
" font-style: italic;"
" color: #6020a0;"
" margin-top: 0em;"
" margin-bottom: 0em;"
"}\n"
"h3 {"
" font-family: helvetica, arial;"
" font-size: 16px;"
" font-weight: bold;"
" color: #b00040;"
" background: #e8e8d0;"
" margin-top: 0em;"
" margin-bottom: 0em;"
"}\n"
"li {"
" margin-top: 0.25em;"
" margin-right: 2em;"
"}\n"
".hr {"
" margin-top: 0.25em;"
" border-color: black;"
" border-bottom-style: solid;"
"}\n"
"table.tbl { border-collapse: collapse; border-width: 1px; border-style: solid; border-color: gray;}\n"
"table.tbl td { border-width: 1px 1px 1px 1px; border-style: solid solid solid solid; border-color: gray; }\n"
"table.tbl th { border-width: 1px; border-style: solid solid solid solid; border-color: gray; }\n"
"table.lgd { border-collapse: collapse; border-width: 1px; border-style: none none none solid; border-color: black;}\n"
"table.lgd td { border-width: 1px; border-style: solid solid solid solid; border-color: gray; padding: 2px;}\n"
"-->"
"</style></head>");
if (buffer_write(rep, trash, msglen) != 0)
return 0;
msglen = 0;
up = (now.tv_sec - start_date.tv_sec);
/* WARNING! this has to fit the first packet too */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<body><h1>" PRODUCT_NAME "</h1>\n"
"<h2>Statistics Report for pid %d</h2>\n"
"<hr width=\"100%%\" class=\"hr\">\n"
"<h3>&gt; General process information</h3>\n"
"<table border=0><tr><td align=\"left\">\n"
"<p><b>pid = </b> %d (nbproc = %d)<br>\n"
"<b>uptime = </b> %dd %dh%02dm%02ds<br>\n"
"<b>system limits :</b> memmax = %s%s ; ulimit-n = %d<br>\n"
"<b>maxsock = </b> %d<br>\n"
"<b>maxconn = </b> %d (current conns = %d)<br>\n"
"</td><td width=\"10%%\">\n"
"</td><td align=\"right\">\n"
"<table class=\"lgd\">"
"<tr><td bgcolor=\"#C0FFC0\">&nbsp;</td><td style=\"border-style: none;\">active UP </td>"
"<td bgcolor=\"#B0D0FF\">&nbsp;</td><td style=\"border-style: none;\">backup UP </td></tr>"
"<tr><td bgcolor=\"#FFFFA0\"></td><td style=\"border-style: none;\">active UP, going down </td>"
"<td bgcolor=\"#C060FF\"></td><td style=\"border-style: none;\">backup UP, going down </td></tr>"
"<tr><td bgcolor=\"#FFD020\"></td><td style=\"border-style: none;\">active DOWN, going up </td>"
"<td bgcolor=\"#FF80FF\"></td><td style=\"border-style: none;\">backup DOWN, going up </td></tr>"
"<tr><td bgcolor=\"#FF9090\"></td><td style=\"border-style: none;\">active or backup DOWN &nbsp;</td>"
"<td bgcolor=\"#E0E0E0\"></td><td style=\"border-style: none;\">not checked </td></tr>"
"</table>\n"
"</tr></table>\n"
"",
pid, pid, global.nbproc,
up / 86400, (up % 86400) / 3600,
(up % 3600) / 60, (up % 60),
global.rlimit_memmax ? ultoa(global.rlimit_memmax) : "unlimited",
global.rlimit_memmax ? " MB" : "",
global.rlimit_nofile,
global.maxsock,
global.maxconn,
actconn
);
if (buffer_write(rep, trash, msglen) != 0)
return 0;
msglen = 0;
s->data_state = DATA_ST_DATA;
memset(&s->data_ctx, 0, sizeof(s->data_ctx));
px = s->data_ctx.stats.px = proxy;
s->data_ctx.stats.px_st = DATA_ST_INIT;
}
while (s->data_ctx.stats.px) {
int dispatch_sess, dispatch_cum;
int failed_checks, down_trans;
int failed_secu, failed_conns, failed_resp;
if (s->data_ctx.stats.px_st == DATA_ST_INIT) {
/* we are on a new proxy */
px = s->data_ctx.stats.px;
/* skip the disabled proxies */
if (px->state == PR_STSTOPPED)
goto next_proxy;
if (s->be->fiprm->uri_auth && s->be->fiprm->uri_auth->scope) {
/* we have a limited scope, we have to check the proxy name */
struct stat_scope *scope;
int len;
len = strlen(px->id);
scope = s->be->fiprm->uri_auth->scope;
while (scope) {
/* match exact proxy name */
if (scope->px_len == len && !memcmp(px->id, scope->px_id, len))
break;
/* match '.' which means 'self' proxy */
if (!strcmp(scope->px_id, ".") && px == s->fe)
break;
scope = scope->next;
}
/* proxy name not found */
if (scope == NULL)
goto next_proxy;
}
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<h3>&gt; Proxy instance %s : "
"%d conns (maxconn=%d), %d queued (%d unassigned), %d total conns</h3>\n"
"",
px->id,
px->nbconn, px->maxconn, px->totpend, px->nbpend, px->cum_conn);
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<table cols=\"16\" class=\"tbl\">\n"
"<tr align=\"center\" bgcolor=\"#20C0C0\">"
"<th colspan=5>Server</th>"
"<th colspan=2>Queue</th>"
"<th colspan=4>Sessions</th>"
"<th colspan=5>Errors</th></tr>\n"
"<tr align=\"center\" bgcolor=\"#20C0C0\">"
"<th>Name</th><th>Weight</th><th>Status</th><th>Act.</th><th>Bck.</th>"
"<th>Curr.</th><th>Max.</th>"
"<th>Curr.</th><th>Max.</th><th>Limit</th><th>Cumul.</th>"
"<th>Conn.</th><th>Resp.</th><th>Sec.</th><th>Check</th><th>Down</th></tr>\n");
if (buffer_write(rep, trash, msglen) != 0)
return 0;
msglen = 0;
s->data_ctx.stats.sv = px->srv;
s->data_ctx.stats.px_st = DATA_ST_DATA;
}
px = s->data_ctx.stats.px;
/* stats.sv has been initialized above */
while (s->data_ctx.stats.sv != NULL) {
static char *act_tab_bg[5] = { /*down*/"#FF9090", /*rising*/"#FFD020", /*failing*/"#FFFFA0", /*up*/"#C0FFC0", /*unchecked*/"#E0E0E0" };
static char *bck_tab_bg[5] = { /*down*/"#FF9090", /*rising*/"#FF80ff", /*failing*/"#C060FF", /*up*/"#B0D0FF", /*unchecked*/"#E0E0E0" };
static char *srv_hlt_st[5] = { "DOWN", "DN %d/%d &uarr;", "UP %d/%d &darr;", "UP", "<i>no check</i>" };
int sv_state; /* 0=DOWN, 1=going up, 2=going down, 3=UP */
sv = s->data_ctx.stats.sv;
/* FIXME: produce some small strings for "UP/DOWN x/y &#xxxx;" */
if (!(sv->state & SRV_CHECKED))
sv_state = 4;
else if (sv->state & SRV_RUNNING)
if (sv->health == sv->rise + sv->fall - 1)
sv_state = 3; /* UP */
else
sv_state = 2; /* going down */
else
if (sv->health)
sv_state = 1; /* going up */
else
sv_state = 0; /* DOWN */
/* name, weight */
msglen += snprintf(trash, sizeof(trash),
"<tr align=center bgcolor=\"%s\"><td>%s</td><td>%d</td><td>",
(sv->state & SRV_BACKUP) ? bck_tab_bg[sv_state] : act_tab_bg[sv_state],
sv->id, sv->uweight+1);
/* status */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen, srv_hlt_st[sv_state],
(sv->state & SRV_RUNNING) ? (sv->health - sv->rise + 1) : (sv->health),
(sv->state & SRV_RUNNING) ? (sv->fall) : (sv->rise));
/* act, bck */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"</td><td>%s</td><td>%s</td>",
(sv->state & SRV_BACKUP) ? "-" : "Y",
(sv->state & SRV_BACKUP) ? "Y" : "-");
/* queue : current, max */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td>",
sv->nbpend, sv->nbpend_max);
/* sessions : current, max, limit, cumul */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td><td align=right>%s</td><td align=right>%d</td>",
sv->cur_sess, sv->cur_sess_max, sv->maxconn ? ultoa(sv->maxconn) : "-", sv->cum_sess);
/* errors : connect, response, security */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td><td align=right>%d</td>\n",
sv->failed_conns, sv->failed_resp, sv->failed_secu);
/* check failures : unique, fatal */
if (sv->state & SRV_CHECKED)
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td></tr>\n",
sv->failed_checks, sv->down_trans);
else
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>-</td><td align=right>-</td></tr>\n");
if (buffer_write(rep, trash, msglen) != 0)
return 0;
msglen = 0;
s->data_ctx.stats.sv = sv->next;
} /* while sv */
/* now we are past the last server, we'll dump information about the dispatcher */
/* We have to count down from the proxy to the servers to tell how
* many sessions are on the dispatcher, and how many checks have
* failed. We cannot count this during the servers dump because it
* might be interrupted multiple times.
*/
dispatch_sess = px->nbconn;
dispatch_cum = px->cum_conn;
failed_secu = px->failed_secu;
failed_conns = px->failed_conns;
failed_resp = px->failed_resp;
failed_checks = down_trans = 0;
sv = px->srv;
while (sv) {
dispatch_sess -= sv->cur_sess;
dispatch_cum -= sv->cum_sess;
failed_conns -= sv->failed_conns;
failed_resp -= sv->failed_resp;
failed_secu -= sv->failed_secu;
if (sv->state & SRV_CHECKED) {
failed_checks += sv->failed_checks;
down_trans += sv->down_trans;
}
sv = sv->next;
}
/* name, weight, status, act, bck */
msglen += snprintf(trash + msglen, sizeof(trash),
"<tr align=center bgcolor=\"#e8e8d0\">"
"<td>Dispatcher</td><td>-</td>"
"<td>%s</td><td>-</td><td>-</td>",
px->state == PR_STRUN ? "UP" : "DOWN");
/* queue : current, max */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td>",
px->nbpend, px->nbpend_max);
/* sessions : current, max, limit, cumul. */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td><td align=right>%d</td><td align=right>%d</td>",
dispatch_sess, px->nbconn_max, px->maxconn, dispatch_cum);
/* errors : connect, response, security */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td><td align=right>%d</td>\n",
failed_conns, failed_resp, failed_secu);
/* check failures : unique, fatal */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>-</td><td align=right>-</td></tr>\n");
/* now the summary for the whole proxy */
/* name, weight, status, act, bck */
msglen += snprintf(trash + msglen, sizeof(trash),
"<tr align=center style=\"color: #ffff80; background: #20C0C0;\">"
"<td><b>Total</b></td><td>-</td>"
"<td><b>%s</b></td><td><b>%d</b></td><td><b>%d</b></td>",
(px->state == PR_STRUN && ((px->srv == NULL) || px->srv_act || px->srv_bck)) ? "UP" : "DOWN",
px->srv_act, px->srv_bck);
/* queue : current, max */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right><b>%d</b></td><td align=right><b>%d</b></td>",
px->totpend, px->nbpend_max);
/* sessions : current, max, limit, cumul */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right><b>%d</b></td><td align=right><b>%d</b></td><td align=right><b>%d</b></td><td align=right><b>%d</b></td>",
px->nbconn, px->nbconn_max, px->maxconn, px->cum_conn);
/* errors : connect, response, security */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td><td align=right>%d</td>\n",
px->failed_conns, px->failed_resp, px->failed_secu);
/* check failures : unique, fatal */
msglen += snprintf(trash + msglen, sizeof(trash) - msglen,
"<td align=right>%d</td><td align=right>%d</td></tr>\n",
failed_checks, down_trans);
msglen += snprintf(trash + msglen, sizeof(trash) - msglen, "</table><p>\n");
if (buffer_write(rep, trash, msglen) != 0)
return 0;
msglen = 0;
s->data_ctx.stats.px_st = DATA_ST_INIT;
next_proxy:
s->data_ctx.stats.px = px->next;
} /* proxy loop */
/* here, we just have reached the sv == NULL and px == NULL */
s->flags &= ~SN_SELF_GEN;
return 1;
}
else {
/* unknown data source */
s->logs.status = 500;
client_retnclose(s, s->fe->errmsg.len500, s->fe->errmsg.msg500);
if (!(s->flags & SN_ERR_MASK))
s->flags |= SN_ERR_PRXCOND;
if (!(s->flags & SN_FINST_MASK))
s->flags |= SN_FINST_R;
s->flags &= SN_SELF_GEN;
return 1;
}
}
/*
* Apply all the req filters <exp> to all headers in buffer <req> of session <t>
*/
void apply_filters_to_session(struct session *t, struct buffer *req, struct hdr_exp *exp)
{
/* iterate through the filters in the outer loop */
while (exp && !(t->flags & (SN_CLDENY|SN_CLTARPIT))) {
char term;
char *cur_ptr, *cur_end, *cur_next;
int cur_idx, old_idx, abort_filt;
/*
* The interleaving of transformations and verdicts
* makes it difficult to decide to continue or stop
* the evaluation.
*/
if ((t->flags & SN_CLALLOW) &&
(exp->action == ACT_ALLOW || exp->action == ACT_DENY ||
exp->action == ACT_TARPIT || exp->action == ACT_PASS)) {
exp = exp->next;
continue;
}
/* Iterate through the headers in the inner loop.
* we start with the start line.
*/
old_idx = cur_idx = 0;
cur_next = req->data + t->hreq.sor;
abort_filt = 0;
while (!abort_filt && (cur_idx = t->hreq.hdr_idx.v[cur_idx].next)) {
struct hdr_idx_elem *cur_hdr = &t->hreq.hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
/* Now we have one header between cur_ptr and cur_end,
* and the next header starts at cur_next.
*/
/* The annoying part is that pattern matching needs
* that we modify the contents to null-terminate all
* strings before testing them.
*/
term = *cur_end;
*cur_end = '\0';
if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) {
switch (exp->action) {
case ACT_ALLOW:
if (!(t->flags & (SN_CLDENY | SN_CLTARPIT))) {
t->flags |= SN_CLALLOW;
abort_filt = 1;
}
break;
case ACT_REPLACE:
if (!(t->flags & (SN_CLDENY | SN_CLTARPIT))) {
int len, delta;
len = exp_replace(trash, cur_ptr, exp->replace, pmatch);
delta = buffer_replace2(req, cur_ptr, cur_end, trash, len);
/* FIXME: if the user adds a newline in the replacement, the
* index will not be recalculated for now, and the new line
* will not be counted for a new header.
*/
cur_end += delta;
cur_next += delta;
cur_hdr->len += delta;
t->hreq.eoh += delta;
}
break;
case ACT_REMOVE:
if (!(t->flags & (SN_CLDENY | SN_CLTARPIT))) {
int delta = buffer_replace2(req, cur_ptr, cur_next, NULL, 0);
cur_next += delta;
/* FIXME: this should be a separate function */
t->hreq.eoh += delta;
t->hreq.hdr_idx.v[old_idx].next = cur_hdr->next;
t->hreq.hdr_idx.used--;
cur_hdr->len = 0;
cur_end = NULL; /* null-term has been rewritten */
}
break;
case ACT_DENY:
if (!(t->flags & (SN_CLALLOW | SN_CLTARPIT))) {
t->flags |= SN_CLDENY;
abort_filt = 1;
}
break;
case ACT_TARPIT:
if (!(t->flags & (SN_CLALLOW | SN_CLDENY))) {
t->flags |= SN_CLTARPIT;
abort_filt = 1;
}
break;
//case ACT_PASS: /* FIXME: broken as of now. We should mark the header as "ignored". */
// break;
}
}
if (cur_end)
*cur_end = term; /* restore the string terminator */
/* keep the link from this header to next one */
old_idx = cur_idx;
}
exp = exp->next;
}
}
/*
* Manager client-side cookie
*/
void manage_client_side_cookies(struct session *t, struct buffer *req)
{
char *p1, *p2, *p3, *p4;
char *del_colon, *del_cookie, *colon;
int app_cookies;
appsess *asession_temp = NULL;
appsess local_asession;
char *cur_ptr, *cur_end, *cur_next;
int cur_idx, old_idx, abort_filt;
if (t->be->beprm->cookie_name == NULL &&
t->be->beprm->appsession_name ==NULL &&
t->be->fiprm->capture_name != NULL)
return;
/* Iterate through the headers.
* we start with the start line.
*/
old_idx = cur_idx = 0;
cur_next = req->data + t->hreq.sor;
abort_filt = 0;
while ((cur_idx = t->hreq.hdr_idx.v[cur_idx].next)) {
struct hdr_idx_elem *cur_hdr;
cur_hdr = &t->hreq.hdr_idx.v[cur_idx];
cur_ptr = cur_next;
cur_end = cur_ptr + cur_hdr->len;
cur_next = cur_end + cur_hdr->cr + 1;
/* We have one full header between cur_ptr and cur_end, and the
* next header starts at cur_next. We're only interested in
* "Cookie:" headers.
*/
if ((cur_end - cur_ptr <= 7) ||
(strncasecmp(cur_ptr, "Cookie:", 7) != 0)) {
old_idx = cur_idx;
continue;
}
/* Now look for cookies. Conforming to RFC2109, we have to support
* attributes whose name begin with a '$', and associate them with
* the right cookie, if we want to delete this cookie.
* So there are 3 cases for each cookie read :
* 1) it's a special attribute, beginning with a '$' : ignore it.
* 2) it's a server id cookie that we *MAY* want to delete : save
* some pointers on it (last semi-colon, beginning of cookie...)
* 3) it's an application cookie : we *MAY* have to delete a previous
* "special" cookie.
* At the end of loop, if a "special" cookie remains, we may have to
* remove it. If no application cookie persists in the header, we
* *MUST* delete it
*/
p1 = cur_ptr + 7; /* first char after 'Cookie:' */
if (isspace((int)*p1)) /* try to get the first space with it */
p1++;
colon = p1;
/* del_cookie == NULL => nothing to be deleted */
del_colon = del_cookie = NULL;
app_cookies = 0;
while (p1 < cur_end) {
/* skip spaces and colons, but keep an eye on these ones */
while (p1 < cur_end) {
if (*p1 == ';' || *p1 == ',')
colon = p1;
else if (!isspace((int)*p1))
break;
p1++;
}
if (p1 == cur_end)
break;
/* p1 is at the beginning of the cookie name */
p2 = p1;
while (p2 < cur_end && *p2 != '=')
p2++;
if (p2 == cur_end)
break;
p3 = p2 + 1; /* skips the '=' sign */
if (p3 == cur_end)
break;
p4 = p3;
while (p4 < cur_end && !isspace((int)*p4) && *p4 != ';' && *p4 != ',')
p4++;
/* here, we have the cookie name between p1 and p2,
* and its value between p3 and p4.
* we can process it :
*
* Cookie: NAME=VALUE;
* | || || |
* | || || +--> p4
* | || |+-------> p3
* | || +--------> p2
* | |+------------> p1
* | +-------------> colon
* +--------------------> cur_ptr
*/
if (*p1 == '$') {
/* skip this one */
}
else {
/* first, let's see if we want to capture it */
if (t->fe->fiprm->capture_name != NULL &&
t->logs.cli_cookie == NULL &&
(p4 - p1 >= t->fe->fiprm->capture_namelen) &&
memcmp(p1, t->fe->fiprm->capture_name, t->fe->fiprm->capture_namelen) == 0) {
int log_len = p4 - p1;
if ((t->logs.cli_cookie = pool_alloc(capture)) == NULL) {
Alert("HTTP logging : out of memory.\n");
} else {
if (log_len > t->fe->fiprm->capture_len)
log_len = t->fe->fiprm->capture_len;
memcpy(t->logs.cli_cookie, p1, log_len);
t->logs.cli_cookie[log_len] = 0;
}
}
if ((p2 - p1 == t->be->beprm->cookie_len) && (t->be->beprm->cookie_name != NULL) &&
(memcmp(p1, t->be->beprm->cookie_name, p2 - p1) == 0)) {
/* Cool... it's the right one */
struct server *srv = t->be->beprm->srv;
char *delim;
/* if we're in cookie prefix mode, we'll search the delimitor so that we
* have the server ID betweek p3 and delim, and the original cookie between
* delim+1 and p4. Otherwise, delim==p4 :
*
* Cookie: NAME=SRV~VALUE;
* | || || | |
* | || || | +--> p4
* | || || +--------> delim
* | || |+-----------> p3
* | || +------------> p2
* | |+----------------> p1
* | +-----------------> colon
* +------------------------> cur_ptr
*/
if (t->be->beprm->options & PR_O_COOK_PFX) {
for (delim = p3; delim < p4; delim++)
if (*delim == COOKIE_DELIM)
break;
}
else
delim = p4;
/* Here, we'll look for the first running server which supports the cookie.
* This allows to share a same cookie between several servers, for example
* to dedicate backup servers to specific servers only.
* However, to prevent clients from sticking to cookie-less backup server
* when they have incidentely learned an empty cookie, we simply ignore
* empty cookies and mark them as invalid.
*/
if (delim == p3)
srv = NULL;
while (srv) {
if ((srv->cklen == delim - p3) && !memcmp(p3, srv->cookie, delim - p3)) {
if (srv->state & SRV_RUNNING || t->be->beprm->options & PR_O_PERSIST) {
/* we found the server and it's usable */
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_VALID | SN_DIRECT | SN_ASSIGNED;
t->srv = srv;
break;
} else {
/* we found a server, but it's down */
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_DOWN;
}
}
srv = srv->next;
}
if (!srv && !(t->flags & SN_CK_DOWN)) {
/* no server matched this cookie */
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_INVALID;
}
/* depending on the cookie mode, we may have to either :
* - delete the complete cookie if we're in insert+indirect mode, so that
* the server never sees it ;
* - remove the server id from the cookie value, and tag the cookie as an
* application cookie so that it does not get accidentely removed later,
* if we're in cookie prefix mode
*/
if ((t->be->beprm->options & PR_O_COOK_PFX) && (delim != p4)) {
int delta; /* negative */
delta = buffer_replace2(req, p3, delim + 1, NULL, 0);
p4 += delta;
cur_end += delta;
cur_next += delta;
cur_hdr->len += delta;
t->hreq.eoh += delta;
del_cookie = del_colon = NULL;
app_cookies++; /* protect the header from deletion */
}
else if (del_cookie == NULL &&
(t->be->beprm->options & (PR_O_COOK_INS | PR_O_COOK_IND)) == (PR_O_COOK_INS | PR_O_COOK_IND)) {
del_cookie = p1;
del_colon = colon;
}
} else {
/* now we know that we must keep this cookie since it's
* not ours. But if we wanted to delete our cookie
* earlier, we cannot remove the complete header, but we
* can remove the previous block itself.
*/
app_cookies++;
if (del_cookie != NULL) {
int delta; /* negative */
delta = buffer_replace2(req, del_cookie, p1, NULL, 0);
p4 += delta;
cur_end += delta;
cur_next += delta;
cur_hdr->len += delta;
t->hreq.eoh += delta;
del_cookie = del_colon = NULL;
}
}
if ((t->be->beprm->appsession_name != NULL) &&
(memcmp(p1, t->be->beprm->appsession_name, p2 - p1) == 0)) {
/* first, let's see if the cookie is our appcookie*/
/* Cool... it's the right one */
asession_temp = &local_asession;
if ((asession_temp->sessid = pool_alloc_from(apools.sessid, apools.ses_msize)) == NULL) {
Alert("Not enough memory process_cli():asession->sessid:malloc().\n");
send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession->sessid:malloc().\n");
return;
}
memcpy(asession_temp->sessid, p3, t->be->beprm->appsession_len);
asession_temp->sessid[t->be->beprm->appsession_len] = 0;
asession_temp->serverid = NULL;
/* only do insert, if lookup fails */
if (chtbl_lookup(&(t->be->beprm->htbl_proxy), (void *) &asession_temp) != 0) {
if ((asession_temp = pool_alloc(appsess)) == NULL) {
/* free previously allocated memory */
pool_free_to(apools.sessid, local_asession.sessid);
Alert("Not enough memory process_cli():asession:calloc().\n");
send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession:calloc().\n");
return;
}
asession_temp->sessid = local_asession.sessid;
asession_temp->serverid = local_asession.serverid;
chtbl_insert(&(t->be->beprm->htbl_proxy), (void *) asession_temp);
} else {
/* free previously allocated memory */
pool_free_to(apools.sessid, local_asession.sessid);
}
if (asession_temp->serverid == NULL) {
Alert("Found Application Session without matching server.\n");
} else {
struct server *srv = t->be->beprm->srv;
while (srv) {
if (strcmp(srv->id, asession_temp->serverid) == 0) {
if (srv->state & SRV_RUNNING || t->be->beprm->options & PR_O_PERSIST) {
/* we found the server and it's usable */
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_VALID | SN_DIRECT | SN_ASSIGNED;
t->srv = srv;
break;
} else {
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_DOWN;
}
}
srv = srv->next;
}/* end while(srv) */
}/* end else if server == NULL */
tv_delayfrom(&asession_temp->expire, &now, t->be->beprm->appsession_timeout);
}/* end if ((t->proxy->appsession_name != NULL) ... */
}
/* we'll have to look for another cookie ... */
p1 = p4;
} /* while (p1 < cur_end) */
/* There's no more cookie on this line.
* We may have marked the last one(s) for deletion.
* We must do this now in two ways :
* - if there is no app cookie, we simply delete the header ;
* - if there are app cookies, we must delete the end of the
* string properly, including the colon/semi-colon before
* the cookie name.
*/
if (del_cookie != NULL) {
int delta;
if (app_cookies) {
delta = buffer_replace2(req, del_colon, cur_end, NULL, 0);
cur_end = del_colon;
cur_hdr->len += delta;
} else {
delta = buffer_replace2(req, cur_ptr, cur_next, NULL, 0);
/* FIXME: this should be a separate function */
t->hreq.hdr_idx.v[old_idx].next = cur_hdr->next;
t->hreq.hdr_idx.used--;
cur_hdr->len = 0;
}
cur_next += delta;
t->hreq.eoh += delta;
}
/* keep the link from this header to next one */
old_idx = cur_idx;
} /* end of cookie processing on this header */
}
/*
* Try to retrieve a known appsession in the URI, then the associated server.
* If the server is found, it's assigned to the session.
*/
void get_srv_from_appsession(struct session *t, const char *begin, const char *end)
{
appsess *asession_temp = NULL;
appsess local_asession;
char *request_line;
if (t->be->beprm->appsession_name == NULL ||
(t->hreq.meth != HTTP_METH_GET && t->hreq.meth != HTTP_METH_POST) ||
(request_line = memchr(begin, ';', end - begin)) == NULL ||
((1 + t->be->beprm->appsession_name_len + 1 + t->be->beprm->appsession_len) > (end - request_line)))
return;
/* skip ';' */
request_line++;
/* look if we have a jsessionid */
if (strncasecmp(request_line, t->be->beprm->appsession_name, t->be->beprm->appsession_name_len) != 0)
return;
/* skip jsessionid= */
request_line += t->be->beprm->appsession_name_len + 1;
/* First try if we already have an appsession */
asession_temp = &local_asession;
if ((asession_temp->sessid = pool_alloc_from(apools.sessid, apools.ses_msize)) == NULL) {
Alert("Not enough memory process_cli():asession_temp->sessid:calloc().\n");
send_log(t->be, LOG_ALERT, "Not enough Memory process_cli():asession_temp->sessid:calloc().\n");
return;
}
/* Copy the sessionid */
memcpy(asession_temp->sessid, request_line, t->be->beprm->appsession_len);
asession_temp->sessid[t->be->beprm->appsession_len] = 0;
asession_temp->serverid = NULL;
/* only do insert, if lookup fails */
if (chtbl_lookup(&(t->be->beprm->htbl_proxy), (void *)&asession_temp)) {
if ((asession_temp = pool_alloc(appsess)) == NULL) {
/* free previously allocated memory */
pool_free_to(apools.sessid, local_asession.sessid);
Alert("Not enough memory process_cli():asession:calloc().\n");
send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession:calloc().\n");
return;
}
asession_temp->sessid = local_asession.sessid;
asession_temp->serverid = local_asession.serverid;
chtbl_insert(&(t->be->beprm->htbl_proxy), (void *) asession_temp);
}
else {
/* free previously allocated memory */
pool_free_to(apools.sessid, local_asession.sessid);
}
tv_delayfrom(&asession_temp->expire, &now, t->be->beprm->appsession_timeout);
asession_temp->request_count++;
#if defined(DEBUG_HASH)
print_table(&(t->proxy->htbl_proxy));
#endif
if (asession_temp->serverid == NULL) {
Alert("Found Application Session without matching server.\n");
} else {
struct server *srv = t->be->beprm->srv;
while (srv) {
if (strcmp(srv->id, asession_temp->serverid) == 0) {
if (srv->state & SRV_RUNNING || t->be->beprm->options & PR_O_PERSIST) {
/* we found the server and it's usable */
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_VALID | SN_DIRECT | SN_ASSIGNED;
t->srv = srv;
break;
} else {
t->flags &= ~SN_CK_MASK;
t->flags |= SN_CK_DOWN;
}
}
srv = srv->next;
}
}
}
/*
* In a GET request, check if the requested URI matches the stats uri for the
* current backend, and if an authorization has been passed and is valid.
*
* It is assumed that the request is a GET and that the t->be->fiprm->uri_auth field
* is valid. An HTTP/401 response may be sent, or produce_content() can be
* called to start sending data.
*
* Returns 1 if the session's state changes, otherwise 0.
*/
int stats_check_uri_auth(struct session *t, struct proxy *backend)
{
struct uri_auth *uri_auth = backend->uri_auth;
struct user_auth *user;
int authenticated, cur_idx;
char *h;
if (t->hreq.start.len < uri_auth->uri_len + 4) /* +4 for "GET " */
return 0;
if (memcmp(t->hreq.start.str + 4, uri_auth->uri_prefix, uri_auth->uri_len) != 0)
return 0;
/* we are in front of a interceptable URI. Let's check
* if there's an authentication and if it's valid.
*/
user = uri_auth->users;
if (!user) {
/* no user auth required, it's OK */
authenticated = 1;
} else {
authenticated = 0;
/* a user list is defined, we have to check.
* skip 21 chars for "Authorization: Basic ".
*/
/* FIXME: this should move to an earlier place */
cur_idx = 0;
h = t->req->data + t->hreq.sor;
while ((cur_idx = t->hreq.hdr_idx.v[cur_idx].next)) {
int len = t->hreq.hdr_idx.v[cur_idx].len;
if (len > 14 &&
!strncasecmp("Authorization:", h, 14)) {
t->hreq.auth_hdr.str = h;
t->hreq.auth_hdr.len = len;
break;
}
h += len + t->hreq.hdr_idx.v[cur_idx].cr + 1;
}
if (t->hreq.auth_hdr.len < 21 ||
memcmp(t->hreq.auth_hdr.str + 14, " Basic ", 7))
user = NULL;
while (user) {
if ((t->hreq.auth_hdr.len == user->user_len + 14 + 7)
&& !memcmp(t->hreq.auth_hdr.str + 14 + 7,
user->user_pwd, user->user_len)) {
authenticated = 1;
break;
}
user = user->next;
}
}
if (!authenticated) {
int msglen;
/* no need to go further */
msglen = sprintf(trash, HTTP_401_fmt, uri_auth->auth_realm);
t->logs.status = 401;
client_retnclose(t, msglen, trash);
if (!(t->flags & SN_ERR_MASK))
t->flags |= SN_ERR_PRXCOND;
if (!(t->flags & SN_FINST_MASK))
t->flags |= SN_FINST_R;
return 1;
}
/* The request is valid, the user is authenticate. Let's start sending
* data.
*/
t->cli_state = CL_STSHUTR;
t->req->rlim = t->req->data + BUFSIZE; /* no more rewrite needed */
t->logs.t_request = tv_diff(&t->logs.tv_accept, &now);
t->data_source = DATA_SRC_STATS;
t->data_state = DATA_ST_INIT;
produce_content(t);
return 1;
}
/*
* Print a debug line with a header
*/
void debug_hdr(const char *dir, struct session *t, const char *start, const char *end)
{
int len, max;
len = sprintf(trash, "%08x:%s.%s[%04x:%04x]: ", t->uniq_id, t->be->id,
dir, (unsigned short)t->cli_fd, (unsigned short)t->srv_fd);
max = end - start;
UBOUND(max, sizeof(trash) - len - 1);
len += strlcpy2(trash + len, start, max + 1);
trash[len++] = '\n';
write(1, trash, len);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/