blob: 656c0a1bce2f97527033a25eff733f42fffe943a [file] [log] [blame]
/*
* HTT/1 mux-demux for connections
*
* Copyright 2018 Christopher Faulet <cfaulet@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <import/ebistree.h>
#include <haproxy/api.h>
#include <haproxy/cfgparse.h>
#include <haproxy/connection.h>
#include <haproxy/h1.h>
#include <haproxy/h1_htx.h>
#include <haproxy/h2.h>
#include <haproxy/http_htx.h>
#include <haproxy/htx.h>
#include <haproxy/istbuf.h>
#include <haproxy/log.h>
#include <haproxy/pipe-t.h>
#include <haproxy/proxy-t.h>
#include <haproxy/session-t.h>
#include <haproxy/stream.h>
#include <haproxy/stream_interface.h>
#include <haproxy/trace.h>
/*
* H1 Connection flags (32 bits)
*/
#define H1C_F_NONE 0x00000000
/* Flags indicating why writing output data are blocked */
#define H1C_F_OUT_ALLOC 0x00000001 /* mux is blocked on lack of output buffer */
#define H1C_F_OUT_FULL 0x00000002 /* mux is blocked on output buffer full */
/* 0x00000004 - 0x00000008 unused */
/* Flags indicating why reading input data are blocked. */
#define H1C_F_IN_ALLOC 0x00000010 /* mux is blocked on lack of input buffer */
#define H1C_F_IN_FULL 0x00000020 /* mux is blocked on input buffer full */
#define H1C_F_IN_SALLOC 0x00000040 /* mux is blocked on lack of stream's request buffer */
/* 0x00000080 unused */
/* Flags indicating the connection state */
#define H1C_F_ST_EMBRYONIC 0x00000100 /* Set when a H1 stream with no conn-stream is attached to the connection */
#define H1C_F_ST_ATTACHED 0x00000200 /* Set when a H1 stream with a conn-stream is attached to the connection (may be not READY) */
#define H1C_F_ST_IDLE 0x00000400 /* connection is idle and may be reused
* (exclusive to all H1C_F_ST flags and never set when an h1s is attached) */
#define H1C_F_ST_ERROR 0x00000800 /* connection must be closed ASAP because an error occurred (conn-stream may still be attached) */
#define H1C_F_ST_SHUTDOWN 0x00001000 /* connection must be shut down ASAP flushing output first (conn-stream may still be attached) */
#define H1C_F_ST_READY 0x00002000 /* Set in ATTACHED state with a READY conn-stream. A conn-stream is not ready when
* a TCP>H1 upgrade is in progress Thus this flag is only set if ATTACHED is also set */
#define H1C_F_ST_ALIVE (H1C_F_ST_IDLE|H1C_F_ST_EMBRYONIC|H1C_F_ST_ATTACHED)
/* 0x00004000 - 0x00008000 unused */
#define H1C_F_WANT_SPLICE 0x00010000 /* Don't read into a buffer because we want to use or we are using splicing */
#define H1C_F_ERR_PENDING 0x00020000 /* Send an error and close the connection ASAP (implies H1C_F_ST_ERROR) */
#define H1C_F_WAIT_NEXT_REQ 0x00040000 /* waiting for the next request to start, use keep-alive timeout */
#define H1C_F_UPG_H2C 0x00080000 /* set if an upgrade to h2 should be done */
#define H1C_F_CO_MSG_MORE 0x00100000 /* set if CO_SFL_MSG_MORE must be set when calling xprt->snd_buf() */
#define H1C_F_CO_STREAMER 0x00200000 /* set if CO_SFL_STREAMER must be set when calling xprt->snd_buf() */
#define H1C_F_WAIT_OUTPUT 0x00400000 /* Don't read more data for now, waiting sync with output side */
#define H1C_F_WAIT_INPUT 0x00800000 /* Don't send more data for now, waiting sync with input side */
/* 0x01000000 - 0x40000000 unusued*/
#define H1C_F_IS_BACK 0x80000000 /* Set on outgoing connection */
/*
* H1 Stream flags (32 bits)
*/
#define H1S_F_NONE 0x00000000
/* 0x00000001..0x00000004 unused */
#define H1S_F_REOS 0x00000008 /* End of input stream seen even if not delivered yet */
#define H1S_F_WANT_KAL 0x00000010
#define H1S_F_WANT_TUN 0x00000020
#define H1S_F_WANT_CLO 0x00000040
#define H1S_F_WANT_MSK 0x00000070
#define H1S_F_NOT_FIRST 0x00000080 /* The H1 stream is not the first one */
#define H1S_F_BODYLESS_RESP 0x00000100 /* Bodyless response message */
/* 0x00000200 unused */
#define H1S_F_NOT_IMPL_ERROR 0x00000400 /* Set when a feature is not implemented during the message parsing */
#define H1S_F_PARSING_ERROR 0x00000800 /* Set when an error occurred during the message parsing */
#define H1S_F_PROCESSING_ERROR 0x00001000 /* Set when an error occurred during the message xfer */
#define H1S_F_ERROR 0x00001800 /* stream error mask */
#define H1S_F_HAVE_SRV_NAME 0x00002000 /* Set during output process if the server name header was added to the request */
#define H1S_F_HAVE_O_CONN 0x00004000 /* Set during output process to know connection mode was processed */
/* H1 connection descriptor */
struct h1c {
struct connection *conn;
struct proxy *px;
uint32_t flags; /* Connection flags: H1C_F_* */
unsigned int errcode; /* Status code when an error occurred at the H1 connection level */
struct buffer ibuf; /* Input buffer to store data before parsing */
struct buffer obuf; /* Output buffer to store data after reformatting */
struct buffer_wait buf_wait; /* Wait list for buffer allocation */
struct wait_event wait_event; /* To be used if we're waiting for I/Os */
struct h1s *h1s; /* H1 stream descriptor */
struct task *task; /* timeout management task */
int idle_exp; /* idle expiration date (http-keep-alive or http-request timeout) */
int timeout; /* client/server timeout duration */
int shut_timeout; /* client-fin/server-fin timeout duration */
};
/* H1 stream descriptor */
struct h1s {
struct h1c *h1c;
struct conn_stream *cs;
uint32_t flags; /* Connection flags: H1S_F_* */
struct wait_event *subs; /* Address of the wait_event the conn_stream associated is waiting on */
struct session *sess; /* Associated session */
struct buffer rxbuf; /* receive buffer, always valid (buf_empty or real buffer) */
struct h1m req;
struct h1m res;
enum http_meth_t meth; /* HTTP request method */
uint16_t status; /* HTTP response status */
char ws_key[25]; /* websocket handshake key */
};
/* Map of headers used to convert outgoing headers */
struct h1_hdrs_map {
char *name;
struct eb_root map;
};
/* An entry in a headers map */
struct h1_hdr_entry {
struct ist name;
struct ebpt_node node;
};
/* Declare the headers map */
static struct h1_hdrs_map hdrs_map = { .name = NULL, .map = EB_ROOT };
/* trace source and events */
static void h1_trace(enum trace_level level, uint64_t mask,
const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4);
/* The event representation is split like this :
* h1c - internal H1 connection
* h1s - internal H1 stream
* strm - application layer
* rx - data receipt
* tx - data transmission
*
*/
static const struct trace_event h1_trace_events[] = {
#define H1_EV_H1C_NEW (1ULL << 0)
{ .mask = H1_EV_H1C_NEW, .name = "h1c_new", .desc = "new H1 connection" },
#define H1_EV_H1C_RECV (1ULL << 1)
{ .mask = H1_EV_H1C_RECV, .name = "h1c_recv", .desc = "Rx on H1 connection" },
#define H1_EV_H1C_SEND (1ULL << 2)
{ .mask = H1_EV_H1C_SEND, .name = "h1c_send", .desc = "Tx on H1 connection" },
#define H1_EV_H1C_BLK (1ULL << 3)
{ .mask = H1_EV_H1C_BLK, .name = "h1c_blk", .desc = "H1 connection blocked" },
#define H1_EV_H1C_WAKE (1ULL << 4)
{ .mask = H1_EV_H1C_WAKE, .name = "h1c_wake", .desc = "H1 connection woken up" },
#define H1_EV_H1C_END (1ULL << 5)
{ .mask = H1_EV_H1C_END, .name = "h1c_end", .desc = "H1 connection terminated" },
#define H1_EV_H1C_ERR (1ULL << 6)
{ .mask = H1_EV_H1C_ERR, .name = "h1c_err", .desc = "error on H1 connection" },
#define H1_EV_RX_DATA (1ULL << 7)
{ .mask = H1_EV_RX_DATA, .name = "rx_data", .desc = "receipt of any H1 data" },
#define H1_EV_RX_EOI (1ULL << 8)
{ .mask = H1_EV_RX_EOI, .name = "rx_eoi", .desc = "receipt of end of H1 input" },
#define H1_EV_RX_HDRS (1ULL << 9)
{ .mask = H1_EV_RX_HDRS, .name = "rx_headers", .desc = "receipt of H1 headers" },
#define H1_EV_RX_BODY (1ULL << 10)
{ .mask = H1_EV_RX_BODY, .name = "rx_body", .desc = "receipt of H1 body" },
#define H1_EV_RX_TLRS (1ULL << 11)
{ .mask = H1_EV_RX_TLRS, .name = "rx_trailerus", .desc = "receipt of H1 trailers" },
#define H1_EV_TX_DATA (1ULL << 12)
{ .mask = H1_EV_TX_DATA, .name = "tx_data", .desc = "transmission of any H1 data" },
#define H1_EV_TX_EOI (1ULL << 13)
{ .mask = H1_EV_TX_EOI, .name = "tx_eoi", .desc = "transmission of end of H1 input" },
#define H1_EV_TX_HDRS (1ULL << 14)
{ .mask = H1_EV_TX_HDRS, .name = "tx_headers", .desc = "transmission of all headers" },
#define H1_EV_TX_BODY (1ULL << 15)
{ .mask = H1_EV_TX_BODY, .name = "tx_body", .desc = "transmission of H1 body" },
#define H1_EV_TX_TLRS (1ULL << 16)
{ .mask = H1_EV_TX_TLRS, .name = "tx_trailerus", .desc = "transmission of H1 trailers" },
#define H1_EV_H1S_NEW (1ULL << 17)
{ .mask = H1_EV_H1S_NEW, .name = "h1s_new", .desc = "new H1 stream" },
#define H1_EV_H1S_BLK (1ULL << 18)
{ .mask = H1_EV_H1S_BLK, .name = "h1s_blk", .desc = "H1 stream blocked" },
#define H1_EV_H1S_END (1ULL << 19)
{ .mask = H1_EV_H1S_END, .name = "h1s_end", .desc = "H1 stream terminated" },
#define H1_EV_H1S_ERR (1ULL << 20)
{ .mask = H1_EV_H1S_ERR, .name = "h1s_err", .desc = "error on H1 stream" },
#define H1_EV_STRM_NEW (1ULL << 21)
{ .mask = H1_EV_STRM_NEW, .name = "strm_new", .desc = "app-layer stream creation" },
#define H1_EV_STRM_RECV (1ULL << 22)
{ .mask = H1_EV_STRM_RECV, .name = "strm_recv", .desc = "receiving data for stream" },
#define H1_EV_STRM_SEND (1ULL << 23)
{ .mask = H1_EV_STRM_SEND, .name = "strm_send", .desc = "sending data for stream" },
#define H1_EV_STRM_WAKE (1ULL << 24)
{ .mask = H1_EV_STRM_WAKE, .name = "strm_wake", .desc = "stream woken up" },
#define H1_EV_STRM_SHUT (1ULL << 25)
{ .mask = H1_EV_STRM_SHUT, .name = "strm_shut", .desc = "stream shutdown" },
#define H1_EV_STRM_END (1ULL << 26)
{ .mask = H1_EV_STRM_END, .name = "strm_end", .desc = "detaching app-layer stream" },
#define H1_EV_STRM_ERR (1ULL << 27)
{ .mask = H1_EV_STRM_ERR, .name = "strm_err", .desc = "stream error" },
{ }
};
static const struct name_desc h1_trace_lockon_args[4] = {
/* arg1 */ { /* already used by the connection */ },
/* arg2 */ { .name="h1s", .desc="H1 stream" },
/* arg3 */ { },
/* arg4 */ { }
};
static const struct name_desc h1_trace_decoding[] = {
#define H1_VERB_CLEAN 1
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
#define H1_VERB_MINIMAL 2
{ .name="minimal", .desc="report only h1c/h1s state and flags, no real decoding" },
#define H1_VERB_SIMPLE 3
{ .name="simple", .desc="add request/response status line or htx info when available" },
#define H1_VERB_ADVANCED 4
{ .name="advanced", .desc="add header fields or frame decoding when available" },
#define H1_VERB_COMPLETE 5
{ .name="complete", .desc="add full data dump when available" },
{ /* end */ }
};
static struct trace_source trace_h1 = {
.name = IST("h1"),
.desc = "HTTP/1 multiplexer",
.arg_def = TRC_ARG1_CONN, // TRACE()'s first argument is always a connection
.default_cb = h1_trace,
.known_events = h1_trace_events,
.lockon_args = h1_trace_lockon_args,
.decoding = h1_trace_decoding,
.report_events = ~0, // report everything by default
};
#define TRACE_SOURCE &trace_h1
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
/* the h1c and h1s pools */
DECLARE_STATIC_POOL(pool_head_h1c, "h1c", sizeof(struct h1c));
DECLARE_STATIC_POOL(pool_head_h1s, "h1s", sizeof(struct h1s));
static int h1_recv(struct h1c *h1c);
static int h1_send(struct h1c *h1c);
static int h1_process(struct h1c *h1c);
/* h1_io_cb is exported to see it resolved in "show fd" */
struct task *h1_io_cb(struct task *t, void *ctx, unsigned int state);
struct task *h1_timeout_task(struct task *t, void *context, unsigned int state);
static void h1_shutw_conn(struct connection *conn, enum cs_shw_mode mode);
static void h1_wake_stream_for_recv(struct h1s *h1s);
static void h1_wake_stream_for_send(struct h1s *h1s);
/* the H1 traces always expect that arg1, if non-null, is of type connection
* (from which we can derive h1c), that arg2, if non-null, is of type h1s, and
* that arg3, if non-null, is a htx for rx/tx headers.
*/
static void h1_trace(enum trace_level level, uint64_t mask, const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4)
{
const struct connection *conn = a1;
const struct h1c *h1c = conn ? conn->ctx : NULL;
const struct h1s *h1s = a2;
const struct htx *htx = a3;
const size_t *val = a4;
if (!h1c)
h1c = (h1s ? h1s->h1c : NULL);
if (!h1c || src->verbosity < H1_VERB_CLEAN)
return;
/* Display frontend/backend info by default */
chunk_appendf(&trace_buf, " : [%c]", ((h1c->flags & H1C_F_IS_BACK) ? 'B' : 'F'));
/* Display request and response states if h1s is defined */
if (h1s)
chunk_appendf(&trace_buf, " [%s, %s]",
h1m_state_str(h1s->req.state), h1m_state_str(h1s->res.state));
if (src->verbosity == H1_VERB_CLEAN)
return;
/* Display the value to the 4th argument (level > STATE) */
if (src->level > TRACE_LEVEL_STATE && val)
chunk_appendf(&trace_buf, " - VAL=%lu", (long)*val);
/* Display status-line if possible (verbosity > MINIMAL) */
if (src->verbosity > H1_VERB_MINIMAL && htx && htx_nbblks(htx)) {
const struct htx_blk *blk = htx_get_head_blk(htx);
const struct htx_sl *sl = htx_get_blk_ptr(htx, blk);
enum htx_blk_type type = htx_get_blk_type(blk);
if (type == HTX_BLK_REQ_SL || type == HTX_BLK_RES_SL)
chunk_appendf(&trace_buf, " - \"%.*s %.*s %.*s\"",
HTX_SL_P1_LEN(sl), HTX_SL_P1_PTR(sl),
HTX_SL_P2_LEN(sl), HTX_SL_P2_PTR(sl),
HTX_SL_P3_LEN(sl), HTX_SL_P3_PTR(sl));
}
/* Display h1c info and, if defined, h1s info (pointer + flags) */
chunk_appendf(&trace_buf, " - h1c=%p(0x%08x)", h1c, h1c->flags);
if (h1s)
chunk_appendf(&trace_buf, " h1s=%p(0x%08x)", h1s, h1s->flags);
if (src->verbosity == H1_VERB_MINIMAL)
return;
/* Display input and output buffer info (level > USER & verbosity > SIMPLE) */
if (src->level > TRACE_LEVEL_USER) {
if (src->verbosity == H1_VERB_COMPLETE ||
(src->verbosity == H1_VERB_ADVANCED && (mask & (H1_EV_H1C_RECV|H1_EV_STRM_RECV))))
chunk_appendf(&trace_buf, " ibuf=%u@%p+%u/%u",
(unsigned int)b_data(&h1c->ibuf), b_orig(&h1c->ibuf),
(unsigned int)b_head_ofs(&h1c->ibuf), (unsigned int)b_size(&h1c->ibuf));
if (src->verbosity == H1_VERB_COMPLETE ||
(src->verbosity == H1_VERB_ADVANCED && (mask & (H1_EV_H1C_SEND|H1_EV_STRM_SEND))))
chunk_appendf(&trace_buf, " obuf=%u@%p+%u/%u",
(unsigned int)b_data(&h1c->obuf), b_orig(&h1c->obuf),
(unsigned int)b_head_ofs(&h1c->obuf), (unsigned int)b_size(&h1c->obuf));
}
/* Display htx info if defined (level > USER) */
if (src->level > TRACE_LEVEL_USER && htx) {
int full = 0;
/* Full htx info (level > STATE && verbosity > SIMPLE) */
if (src->level > TRACE_LEVEL_STATE) {
if (src->verbosity == H1_VERB_COMPLETE)
full = 1;
else if (src->verbosity == H1_VERB_ADVANCED && (mask & (H1_EV_RX_HDRS|H1_EV_TX_HDRS)))
full = 1;
}
chunk_memcat(&trace_buf, "\n\t", 2);
htx_dump(&trace_buf, htx, full);
}
}
/*****************************************************/
/* functions below are for dynamic buffer management */
/*****************************************************/
/*
* Indicates whether or not we may receive data. The rules are the following :
* - if an error or a shutdown for reads was detected on the connection we
* must not attempt to receive
* - if we are waiting for the connection establishment, we must not attempt
* to receive
* - if an error was detected on the stream we must not attempt to receive
* - if reads are explicitly disabled, we must not attempt to receive
* - if the input buffer failed to be allocated or is full , we must not try
* to receive
* - if the mux is not blocked on an input condition, we may attempt to receive
* - otherwise must may not attempt to receive
*/
static inline int h1_recv_allowed(const struct h1c *h1c)
{
if (h1c->flags & H1C_F_ST_ERROR) {
TRACE_DEVEL("recv not allowed because of error on h1c", H1_EV_H1C_RECV|H1_EV_H1C_BLK, h1c->conn);
return 0;
}
if (h1c->conn->flags & (CO_FL_ERROR|CO_FL_SOCK_RD_SH|CO_FL_WAIT_L4_CONN|CO_FL_WAIT_L6_CONN)) {
TRACE_DEVEL("recv not allowed because of (error|read0|waitl4|waitl6) on connection", H1_EV_H1C_RECV|H1_EV_H1C_BLK, h1c->conn);
return 0;
}
if (h1c->h1s && (h1c->h1s->flags & H1S_F_ERROR)) {
TRACE_DEVEL("recv not allowed because of error on h1s", H1_EV_H1C_RECV|H1_EV_H1C_BLK, h1c->conn);
return 0;
}
if (h1c->flags & H1C_F_WAIT_OUTPUT) {
TRACE_DEVEL("recv not allowed (wait_output)", H1_EV_H1C_RECV|H1_EV_H1C_BLK, h1c->conn);
return 0;
}
if (!(h1c->flags & (H1C_F_IN_ALLOC|H1C_F_IN_FULL|H1C_F_IN_SALLOC)))
return 1;
TRACE_DEVEL("recv not allowed because input is blocked", H1_EV_H1C_RECV|H1_EV_H1C_BLK, h1c->conn);
return 0;
}
/*
* Tries to grab a buffer and to re-enables processing on mux <target>. The h1
* flags are used to figure what buffer was requested. It returns 1 if the
* allocation succeeds, in which case the connection is woken up, or 0 if it's
* impossible to wake up and we prefer to be woken up later.
*/
static int h1_buf_available(void *target)
{
struct h1c *h1c = target;
if ((h1c->flags & H1C_F_IN_ALLOC) && b_alloc(&h1c->ibuf)) {
TRACE_STATE("unblocking h1c, ibuf allocated", H1_EV_H1C_RECV|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1c->conn);
h1c->flags &= ~H1C_F_IN_ALLOC;
if (h1_recv_allowed(h1c))
tasklet_wakeup(h1c->wait_event.tasklet);
return 1;
}
if ((h1c->flags & H1C_F_OUT_ALLOC) && b_alloc(&h1c->obuf)) {
TRACE_STATE("unblocking h1s, obuf allocated", H1_EV_TX_DATA|H1_EV_H1S_BLK|H1_EV_STRM_WAKE, h1c->conn, h1c->h1s);
h1c->flags &= ~H1C_F_OUT_ALLOC;
if (h1c->h1s)
h1_wake_stream_for_send(h1c->h1s);
return 1;
}
if ((h1c->flags & H1C_F_IN_SALLOC) && h1c->h1s && b_alloc(&h1c->h1s->rxbuf)) {
TRACE_STATE("unblocking h1c, stream rxbuf allocated", H1_EV_H1C_RECV|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1c->conn);
h1c->flags &= ~H1C_F_IN_SALLOC;
tasklet_wakeup(h1c->wait_event.tasklet);
return 1;
}
return 0;
}
/*
* Allocate a buffer. If if fails, it adds the mux in buffer wait queue.
*/
static inline struct buffer *h1_get_buf(struct h1c *h1c, struct buffer *bptr)
{
struct buffer *buf = NULL;
if (likely(!LIST_ADDED(&h1c->buf_wait.list)) &&
unlikely((buf = b_alloc(bptr)) == NULL)) {
h1c->buf_wait.target = h1c;
h1c->buf_wait.wakeup_cb = h1_buf_available;
LIST_ADDQ(&ti->buffer_wq, &h1c->buf_wait.list);
}
return buf;
}
/*
* Release a buffer, if any, and try to wake up entities waiting in the buffer
* wait queue.
*/
static inline void h1_release_buf(struct h1c *h1c, struct buffer *bptr)
{
if (bptr->size) {
b_free(bptr);
offer_buffers(h1c->buf_wait.target, 1);
}
}
/* returns the number of streams in use on a connection to figure if it's idle
* or not. We rely on H1C_F_ST_IDLE to know if the connection is in-use or
* not. This flag is only set when no H1S is attached and when the previous
* stream, if any, was fully terminated without any error and in K/A mode.
*/
static int h1_used_streams(struct connection *conn)
{
struct h1c *h1c = conn->ctx;
return ((h1c->flags & H1C_F_ST_IDLE) ? 0 : 1);
}
/* returns the number of streams still available on a connection */
static int h1_avail_streams(struct connection *conn)
{
return 1 - h1_used_streams(conn);
}
/* Refresh the h1c task timeout if necessary */
static void h1_refresh_timeout(struct h1c *h1c)
{
if (h1c->task) {
if (!(h1c->flags & H1C_F_ST_ALIVE) || (h1c->flags & H1C_F_ST_SHUTDOWN)) {
/* half-closed or dead connections : switch to clientfin/serverfin
* timeouts so that we don't hang too long on clients that have
* gone away (especially in tunnel mode).
*/
h1c->task->expire = tick_add(now_ms, h1c->shut_timeout);
TRACE_DEVEL("refreshing connection's timeout (dead or half-closed)", H1_EV_H1C_SEND|H1_EV_H1C_RECV, h1c->conn);
}
else if (b_data(&h1c->obuf)) {
/* connection with pending outgoing data, need a timeout (server or client). */
h1c->task->expire = tick_add(now_ms, h1c->timeout);
TRACE_DEVEL("refreshing connection's timeout (pending outgoing data)", H1_EV_H1C_SEND|H1_EV_H1C_RECV, h1c->conn);
}
else if (!(h1c->flags & (H1C_F_IS_BACK|H1C_F_ST_READY))) {
/* front connections waiting for a fully usable stream need a timeout. */
h1c->task->expire = tick_add(now_ms, h1c->timeout);
TRACE_DEVEL("refreshing connection's timeout (alive front h1c but not ready)", H1_EV_H1C_SEND|H1_EV_H1C_RECV, h1c->conn);
}
else {
/* alive back connections of front connections with a conn-stream attached */
h1c->task->expire = TICK_ETERNITY;
TRACE_DEVEL("no connection timeout (alive back h1c or front h1c with a CS)", H1_EV_H1C_SEND|H1_EV_H1C_RECV, h1c->conn);
}
/* Finally set the idle expiration date if shorter */
h1c->task->expire = tick_first(h1c->task->expire, h1c->idle_exp);
TRACE_DEVEL("new expiration date", H1_EV_H1C_SEND|H1_EV_H1C_RECV, h1c->conn, 0, 0, (size_t[]){h1c->task->expire});
task_queue(h1c->task);
}
}
static void h1_set_idle_expiration(struct h1c *h1c)
{
if (h1c->flags & H1C_F_IS_BACK || !h1c->task) {
TRACE_DEVEL("no idle expiration (backend connection || no task)", H1_EV_H1C_RECV, h1c->conn);
h1c->idle_exp = TICK_ETERNITY;
return;
}
if (h1c->flags & H1C_F_ST_IDLE) {
if (!tick_isset(h1c->idle_exp)) {
if ((h1c->flags & H1C_F_WAIT_NEXT_REQ) && /* Not the first request */
!b_data(&h1c->ibuf) && /* No input data */
tick_isset(h1c->px->timeout.httpka)) { /* K-A timeout set */
h1c->idle_exp = tick_add_ifset(now_ms, h1c->px->timeout.httpka);
TRACE_DEVEL("set idle expiration (keep-alive timeout)", H1_EV_H1C_RECV, h1c->conn);
}
else {
h1c->idle_exp = tick_add_ifset(now_ms, h1c->px->timeout.httpreq);
TRACE_DEVEL("set idle expiration (http-request timeout)", H1_EV_H1C_RECV, h1c->conn);
}
}
}
else if ((h1c->flags & H1C_F_ST_ALIVE) && !(h1c->flags & H1C_F_ST_READY)) {
if (!tick_isset(h1c->idle_exp)) {
h1c->idle_exp = tick_add_ifset(now_ms, h1c->px->timeout.httpreq);
TRACE_DEVEL("set idle expiration (http-request timeout)", H1_EV_H1C_RECV, h1c->conn);
}
}
else { // CS_ATTACHED or SHUTDOWN
h1c->idle_exp = TICK_ETERNITY;
TRACE_DEVEL("unset idle expiration (attached || shutdown)", H1_EV_H1C_RECV, h1c->conn);
}
}
/*****************************************************************/
/* functions below are dedicated to the mux setup and management */
/*****************************************************************/
/* returns non-zero if there are input data pending for stream h1s. */
static inline size_t h1s_data_pending(const struct h1s *h1s)
{
const struct h1m *h1m;
h1m = ((h1s->h1c->flags & H1C_F_IS_BACK) ? &h1s->res : &h1s->req);
return ((h1m->state == H1_MSG_DONE) ? 0 : b_data(&h1s->h1c->ibuf));
}
/* Creates a new conn-stream and the associate stream. <input> is used as input
* buffer for the stream. On success, it is transferred to the stream and the
* mux is no longer responsible of it. On error, <input> is unchanged, thus the
* mux must still take care of it. However, there is nothing special to do
* because, on success, <input> is updated to points on BUF_NULL. Thus, calling
* b_free() on it is always safe. This function returns the conn-stream on
* success or NULL on error. */
static struct conn_stream *h1s_new_cs(struct h1s *h1s, struct buffer *input)
{
struct conn_stream *cs;
TRACE_ENTER(H1_EV_STRM_NEW, h1s->h1c->conn, h1s);
cs = cs_new(h1s->h1c->conn, h1s->h1c->conn->target);
if (!cs) {
TRACE_ERROR("CS allocation failure", H1_EV_STRM_NEW|H1_EV_STRM_END|H1_EV_STRM_ERR, h1s->h1c->conn, h1s);
goto err;
}
h1s->cs = cs;
cs->ctx = h1s;
if (h1s->flags & H1S_F_NOT_FIRST)
cs->flags |= CS_FL_NOT_FIRST;
if (global.tune.options & GTUNE_USE_SPLICE) {
TRACE_STATE("notify the mux can use splicing", H1_EV_STRM_NEW, h1s->h1c->conn, h1s);
cs->flags |= CS_FL_MAY_SPLICE;
}
if (stream_create_from_cs(cs, input) < 0) {
TRACE_DEVEL("leaving on stream creation failure", H1_EV_STRM_NEW|H1_EV_STRM_END|H1_EV_STRM_ERR, h1s->h1c->conn, h1s);
goto err;
}
h1s->h1c->flags = (h1s->h1c->flags & ~H1C_F_ST_EMBRYONIC) | H1C_F_ST_ATTACHED | H1C_F_ST_READY;
TRACE_LEAVE(H1_EV_STRM_NEW, h1s->h1c->conn, h1s);
return cs;
err:
cs_free(cs);
h1s->cs = NULL;
TRACE_DEVEL("leaving on error", H1_EV_STRM_NEW|H1_EV_STRM_ERR, h1s->h1c->conn, h1s);
return NULL;
}
static struct conn_stream *h1s_upgrade_cs(struct h1s *h1s, struct buffer *input)
{
TRACE_ENTER(H1_EV_STRM_NEW, h1s->h1c->conn, h1s);
if (stream_upgrade_from_cs(h1s->cs, input) < 0) {
TRACE_ERROR("stream upgrade failure", H1_EV_STRM_NEW|H1_EV_STRM_END|H1_EV_STRM_ERR, h1s->h1c->conn, h1s);
goto err;
}
if (global.tune.options & GTUNE_USE_SPLICE) {
TRACE_STATE("notify the mux can use splicing", H1_EV_STRM_NEW, h1s->h1c->conn, h1s);
h1s->cs->flags |= CS_FL_MAY_SPLICE;
}
h1s->h1c->flags |= H1C_F_ST_READY;
TRACE_LEAVE(H1_EV_STRM_NEW, h1s->h1c->conn, h1s);
return h1s->cs;
err:
TRACE_DEVEL("leaving on error", H1_EV_STRM_NEW|H1_EV_STRM_ERR, h1s->h1c->conn, h1s);
return NULL;
}
static struct h1s *h1s_new(struct h1c *h1c)
{
struct h1s *h1s;
TRACE_ENTER(H1_EV_H1S_NEW, h1c->conn);
h1s = pool_alloc(pool_head_h1s);
if (!h1s) {
TRACE_ERROR("H1S allocation failure", H1_EV_H1S_NEW|H1_EV_H1S_END|H1_EV_H1S_ERR, h1c->conn);
goto fail;
}
h1s->h1c = h1c;
h1c->h1s = h1s;
h1s->sess = NULL;
h1s->cs = NULL;
h1s->flags = H1S_F_WANT_KAL;
h1s->subs = NULL;
h1s->rxbuf = BUF_NULL;
memset(h1s->ws_key, 0, sizeof(h1s->ws_key));
h1m_init_req(&h1s->req);
h1s->req.flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR);
h1m_init_res(&h1s->res);
h1s->res.flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR);
h1s->status = 0;
h1s->meth = HTTP_METH_OTHER;
if (h1c->flags & H1C_F_WAIT_NEXT_REQ)
h1s->flags |= H1S_F_NOT_FIRST;
h1c->flags = (h1c->flags & ~(H1C_F_ST_IDLE|H1C_F_WAIT_NEXT_REQ)) | H1C_F_ST_EMBRYONIC;
TRACE_LEAVE(H1_EV_H1S_NEW, h1c->conn, h1s);
return h1s;
fail:
TRACE_DEVEL("leaving on error", H1_EV_STRM_NEW|H1_EV_STRM_ERR, h1c->conn);
return NULL;
}
static struct h1s *h1c_frt_stream_new(struct h1c *h1c)
{
struct session *sess = h1c->conn->owner;
struct h1s *h1s;
TRACE_ENTER(H1_EV_H1S_NEW, h1c->conn);
h1s = h1s_new(h1c);
if (!h1s)
goto fail;
h1s->sess = sess;
if (h1c->px->options2 & PR_O2_REQBUG_OK)
h1s->req.err_pos = -1;
h1c->idle_exp = TICK_ETERNITY;
h1_set_idle_expiration(h1c);
TRACE_LEAVE(H1_EV_H1S_NEW, h1c->conn, h1s);
return h1s;
fail:
TRACE_DEVEL("leaving on error", H1_EV_STRM_NEW|H1_EV_STRM_ERR, h1c->conn);
return NULL;
}
static struct h1s *h1c_bck_stream_new(struct h1c *h1c, struct conn_stream *cs, struct session *sess)
{
struct h1s *h1s;
TRACE_ENTER(H1_EV_H1S_NEW, h1c->conn);
h1s = h1s_new(h1c);
if (!h1s)
goto fail;
h1s->cs = cs;
h1s->sess = sess;
cs->ctx = h1s;
h1c->flags = (h1c->flags & ~H1C_F_ST_EMBRYONIC) | H1C_F_ST_ATTACHED | H1C_F_ST_READY;
if (h1c->px->options2 & PR_O2_RSPBUG_OK)
h1s->res.err_pos = -1;
TRACE_LEAVE(H1_EV_H1S_NEW, h1c->conn, h1s);
return h1s;
fail:
TRACE_DEVEL("leaving on error", H1_EV_STRM_NEW|H1_EV_STRM_ERR, h1c->conn);
return NULL;
}
static void h1s_destroy(struct h1s *h1s)
{
if (h1s) {
struct h1c *h1c = h1s->h1c;
TRACE_POINT(H1_EV_H1S_END, h1c->conn, h1s);
h1c->h1s = NULL;
if (h1s->subs)
h1s->subs->events = 0;
h1_release_buf(h1c, &h1s->rxbuf);
h1c->flags &= ~(H1C_F_WAIT_INPUT|H1C_F_WAIT_OUTPUT|H1C_F_WANT_SPLICE|
H1C_F_ST_EMBRYONIC|H1C_F_ST_ATTACHED|H1C_F_ST_READY|
H1C_F_OUT_FULL|H1C_F_OUT_ALLOC|H1C_F_IN_SALLOC|
H1C_F_CO_MSG_MORE|H1C_F_CO_STREAMER);
if (h1s->flags & H1S_F_ERROR) {
h1c->flags |= H1C_F_ST_ERROR;
TRACE_ERROR("h1s on error, set error on h1c", H1_EV_H1S_END|H1_EV_H1C_ERR, h1c->conn, h1s);
}
if (!(h1c->flags & (H1C_F_ST_ERROR|H1C_F_ST_SHUTDOWN)) && /* No error/shutdown on h1c */
!(h1c->conn->flags & (CO_FL_ERROR|CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH)) && /* No error/shutdown on conn */
(h1s->flags & H1S_F_WANT_KAL) && /* K/A possible */
h1s->req.state == H1_MSG_DONE && h1s->res.state == H1_MSG_DONE) { /* req/res in DONE state */
h1c->flags |= (H1C_F_ST_IDLE|H1C_F_WAIT_NEXT_REQ);
TRACE_STATE("set idle mode on h1c, waiting for the next request", H1_EV_H1C_ERR, h1c->conn, h1s);
}
else {
TRACE_STATE("set shudown on h1c", H1_EV_H1S_END, h1c->conn, h1s);
h1c->flags |= H1C_F_ST_SHUTDOWN;
}
pool_free(pool_head_h1s, h1s);
}
}
/*
* Initialize the mux once it's attached. It is expected that conn->ctx points
* to the existing conn_stream (for outgoing connections or for incoming ones
* during a mux upgrade) or NULL (for incoming ones during the connection
* establishment). <input> is always used as Input buffer and may contain
* data. It is the caller responsibility to not reuse it anymore. Returns < 0 on
* error.
*/
static int h1_init(struct connection *conn, struct proxy *proxy, struct session *sess,
struct buffer *input)
{
struct h1c *h1c;
struct task *t = NULL;
void *conn_ctx = conn->ctx;
TRACE_ENTER(H1_EV_H1C_NEW);
h1c = pool_alloc(pool_head_h1c);
if (!h1c) {
TRACE_ERROR("H1C allocation failure", H1_EV_H1C_NEW|H1_EV_H1C_END|H1_EV_H1C_ERR);
goto fail_h1c;
}
h1c->conn = conn;
h1c->px = proxy;
h1c->flags = H1C_F_ST_IDLE;
h1c->errcode = 0;
h1c->ibuf = *input;
h1c->obuf = BUF_NULL;
h1c->h1s = NULL;
h1c->task = NULL;
LIST_INIT(&h1c->buf_wait.list);
h1c->wait_event.tasklet = tasklet_new();
if (!h1c->wait_event.tasklet)
goto fail;
h1c->wait_event.tasklet->process = h1_io_cb;
h1c->wait_event.tasklet->context = h1c;
h1c->wait_event.events = 0;
h1c->idle_exp = TICK_ETERNITY;
if (conn_is_back(conn)) {
h1c->flags |= (H1C_F_IS_BACK|H1C_F_WAIT_OUTPUT);
h1c->shut_timeout = h1c->timeout = proxy->timeout.server;
if (tick_isset(proxy->timeout.serverfin))
h1c->shut_timeout = proxy->timeout.serverfin;
} else {
h1c->shut_timeout = h1c->timeout = proxy->timeout.client;
if (tick_isset(proxy->timeout.clientfin))
h1c->shut_timeout = proxy->timeout.clientfin;
}
if (tick_isset(h1c->timeout)) {
t = task_new(tid_bit);
if (!t) {
TRACE_ERROR("H1C task allocation failure", H1_EV_H1C_NEW|H1_EV_H1C_END|H1_EV_H1C_ERR);
goto fail;
}
h1c->task = t;
t->process = h1_timeout_task;
t->context = h1c;
t->expire = tick_add(now_ms, h1c->timeout);
}
conn->ctx = h1c;
if (h1c->flags & H1C_F_IS_BACK) {
/* Create a new H1S now for backend connection only */
if (!h1c_bck_stream_new(h1c, conn_ctx, sess))
goto fail;
}
else if (conn_ctx) {
/* Upgraded frontend connection (from TCP) */
struct conn_stream *cs = conn_ctx;
if (!h1c_frt_stream_new(h1c))
goto fail;
h1c->h1s->cs = cs;
cs->ctx = h1c->h1s;
/* Attach the CS but Not ready yet */
h1c->flags = (h1c->flags & ~H1C_F_ST_EMBRYONIC) | H1C_F_ST_ATTACHED;
TRACE_DEVEL("Inherit the CS from TCP connection to perform an upgrade",
H1_EV_H1C_NEW|H1_EV_STRM_NEW, h1c->conn, h1c->h1s);
}
if (t) {
h1_set_idle_expiration(h1c);
t->expire = tick_first(t->expire, h1c->idle_exp);
task_queue(t);
}
/* prepare to read something */
if (b_data(&h1c->ibuf))
tasklet_wakeup(h1c->wait_event.tasklet);
else if (h1_recv_allowed(h1c))
h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event);
/* mux->wake will be called soon to complete the operation */
TRACE_LEAVE(H1_EV_H1C_NEW, conn, h1c->h1s);
return 0;
fail:
task_destroy(t);
if (h1c->wait_event.tasklet)
tasklet_free(h1c->wait_event.tasklet);
pool_free(pool_head_h1c, h1c);
fail_h1c:
conn->ctx = conn_ctx; // restore saved context
TRACE_DEVEL("leaving in error", H1_EV_H1C_NEW|H1_EV_H1C_END|H1_EV_H1C_ERR);
return -1;
}
/* release function. This one should be called to free all resources allocated
* to the mux.
*/
static void h1_release(struct h1c *h1c)
{
struct connection *conn = NULL;
TRACE_POINT(H1_EV_H1C_END);
if (h1c) {
/* The connection must be aattached to this mux to be released */
if (h1c->conn && h1c->conn->ctx == h1c)
conn = h1c->conn;
TRACE_DEVEL("freeing h1c", H1_EV_H1C_END, conn);
if (conn && h1c->flags & H1C_F_UPG_H2C) {
TRACE_DEVEL("upgrading H1 to H2", H1_EV_H1C_END, conn);
/* Make sure we're no longer subscribed to anything */
if (h1c->wait_event.events)
conn->xprt->unsubscribe(conn, conn->xprt_ctx,
h1c->wait_event.events, &h1c->wait_event);
if (conn_upgrade_mux_fe(conn, NULL, &h1c->ibuf, ist("h2"), PROTO_MODE_HTTP) != -1) {
/* connection successfully upgraded to H2, this
* mux was already released */
return;
}
TRACE_ERROR("h2 upgrade failed", H1_EV_H1C_END|H1_EV_H1C_ERR, conn);
sess_log(conn->owner); /* Log if the upgrade failed */
}
if (LIST_ADDED(&h1c->buf_wait.list))
LIST_DEL_INIT(&h1c->buf_wait.list);
h1_release_buf(h1c, &h1c->ibuf);
h1_release_buf(h1c, &h1c->obuf);
if (h1c->task) {
h1c->task->context = NULL;
task_wakeup(h1c->task, TASK_WOKEN_OTHER);
h1c->task = NULL;
}
if (h1c->wait_event.tasklet)
tasklet_free(h1c->wait_event.tasklet);
h1s_destroy(h1c->h1s);
if (conn && h1c->wait_event.events != 0)
conn->xprt->unsubscribe(conn, conn->xprt_ctx, h1c->wait_event.events,
&h1c->wait_event);
pool_free(pool_head_h1c, h1c);
}
if (conn) {
conn->mux = NULL;
conn->ctx = NULL;
TRACE_DEVEL("freeing conn", H1_EV_H1C_END, conn);
conn_stop_tracking(conn);
conn_full_close(conn);
if (conn->destroy_cb)
conn->destroy_cb(conn);
conn_free(conn);
}
}
/******************************************************/
/* functions below are for the H1 protocol processing */
/******************************************************/
/* Parse the request version and set H1_MF_VER_11 on <h1m> if the version is
* greater or equal to 1.1
*/
static void h1_parse_req_vsn(struct h1m *h1m, const struct htx_sl *sl)
{
const char *p = HTX_SL_REQ_VPTR(sl);
if ((HTX_SL_REQ_VLEN(sl) == 8) &&
(*(p + 5) > '1' ||
(*(p + 5) == '1' && *(p + 7) >= '1')))
h1m->flags |= H1_MF_VER_11;
}
/* Parse the response version and set H1_MF_VER_11 on <h1m> if the version is
* greater or equal to 1.1
*/
static void h1_parse_res_vsn(struct h1m *h1m, const struct htx_sl *sl)
{
const char *p = HTX_SL_RES_VPTR(sl);
if ((HTX_SL_RES_VLEN(sl) == 8) &&
(*(p + 5) > '1' ||
(*(p + 5) == '1' && *(p + 7) >= '1')))
h1m->flags |= H1_MF_VER_11;
}
/* Deduce the connection mode of the client connection, depending on the
* configuration and the H1 message flags. This function is called twice, the
* first time when the request is parsed and the second time when the response
* is parsed.
*/
static void h1_set_cli_conn_mode(struct h1s *h1s, struct h1m *h1m)
{
struct proxy *fe = h1s->h1c->px;
if (h1m->flags & H1_MF_RESP) {
/* Output direction: second pass */
if ((h1s->meth == HTTP_METH_CONNECT && h1s->status >= 200 && h1s->status < 300) ||
h1s->status == 101) {
/* Either we've established an explicit tunnel, or we're
* switching the protocol. In both cases, we're very unlikely to
* understand the next protocols. We have to switch to tunnel
* mode, so that we transfer the request and responses then let
* this protocol pass unmodified. When we later implement
* specific parsers for such protocols, we'll want to check the
* Upgrade header which contains information about that protocol
* for responses with status 101 (eg: see RFC2817 about TLS).
*/
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_TUN;
TRACE_STATE("set tunnel mode (resp)", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s);
}
else if (h1s->flags & H1S_F_WANT_KAL) {
/* By default the client is in KAL mode. CLOSE mode mean
* it is imposed by the client itself. So only change
* KAL mode here. */
if (!(h1m->flags & H1_MF_XFER_LEN) || (h1m->flags & H1_MF_CONN_CLO)) {
/* no length known or explicit close => close */
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
TRACE_STATE("detect close mode (resp)", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s);
}
else if (!(h1m->flags & H1_MF_CONN_KAL) &&
(fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO) {
/* no explicit keep-alive and option httpclose => close */
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
TRACE_STATE("force close mode (resp)", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s);
}
}
}
else {
/* Input direction: first pass */
if (!(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL)) || h1m->flags & H1_MF_CONN_CLO) {
/* no explicit keep-alive in HTTP/1.0 or explicit close => close*/
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
TRACE_STATE("detect close mode (req)", H1_EV_RX_DATA|H1_EV_RX_HDRS, h1s->h1c->conn, h1s);
}
}
/* If KAL, check if the frontend is stopping. If yes, switch in CLO mode */
if (h1s->flags & H1S_F_WANT_KAL && fe->disabled) {
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
TRACE_STATE("stopping, set close mode", H1_EV_RX_DATA|H1_EV_RX_HDRS|H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s);
}
}
/* Deduce the connection mode of the client connection, depending on the
* configuration and the H1 message flags. This function is called twice, the
* first time when the request is parsed and the second time when the response
* is parsed.
*/
static void h1_set_srv_conn_mode(struct h1s *h1s, struct h1m *h1m)
{
struct session *sess = h1s->sess;
struct proxy *be = h1s->h1c->px;
int fe_flags = sess ? sess->fe->options : 0;
if (h1m->flags & H1_MF_RESP) {
/* Input direction: second pass */
if ((h1s->meth == HTTP_METH_CONNECT && h1s->status >= 200 && h1s->status < 300) ||
h1s->status == 101) {
/* Either we've established an explicit tunnel, or we're
* switching the protocol. In both cases, we're very unlikely to
* understand the next protocols. We have to switch to tunnel
* mode, so that we transfer the request and responses then let
* this protocol pass unmodified. When we later implement
* specific parsers for such protocols, we'll want to check the
* Upgrade header which contains information about that protocol
* for responses with status 101 (eg: see RFC2817 about TLS).
*/
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_TUN;
TRACE_STATE("set tunnel mode (resp)", H1_EV_RX_DATA|H1_EV_RX_HDRS, h1s->h1c->conn, h1s);
}
else if (h1s->flags & H1S_F_WANT_KAL) {
/* By default the server is in KAL mode. CLOSE mode mean
* it is imposed by haproxy itself. So only change KAL
* mode here. */
if (!(h1m->flags & H1_MF_XFER_LEN) || h1m->flags & H1_MF_CONN_CLO ||
!(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL))){
/* no length known or explicit close or no explicit keep-alive in HTTP/1.0 => close */
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
TRACE_STATE("detect close mode (resp)", H1_EV_RX_DATA|H1_EV_RX_HDRS, h1s->h1c->conn, h1s);
}
}
}
else {
/* Output direction: first pass */
if (h1m->flags & H1_MF_CONN_CLO) {
/* explicit close => close */
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
TRACE_STATE("detect close mode (req)", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s);
}
else if (!(h1m->flags & H1_MF_CONN_KAL) &&
((fe_flags & PR_O_HTTP_MODE) == PR_O_HTTP_SCL ||
(be->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL ||
(fe_flags & PR_O_HTTP_MODE) == PR_O_HTTP_CLO ||
(be->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO)) {
/* no explicit keep-alive option httpclose/server-close => close */
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
TRACE_STATE("force close mode (req)", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s);
}
}
/* If KAL, check if the backend is stopping. If yes, switch in CLO mode */
if (h1s->flags & H1S_F_WANT_KAL && be->disabled) {
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
TRACE_STATE("stopping, set close mode", H1_EV_RX_DATA|H1_EV_RX_HDRS|H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s);
}
}
static void h1_update_req_conn_value(struct h1s *h1s, struct h1m *h1m, struct ist *conn_val)
{
struct proxy *px = h1s->h1c->px;
/* Don't update "Connection:" header in TUNNEL mode or if "Upgrage"
* token is found
*/
if (h1s->flags & H1S_F_WANT_TUN || h1m->flags & H1_MF_CONN_UPG)
return;
if (h1s->flags & H1S_F_WANT_KAL || px->options2 & PR_O2_FAKE_KA) {
if (!(h1m->flags & H1_MF_VER_11)) {
TRACE_STATE("add \"Connection: keep-alive\"", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s);
*conn_val = ist("keep-alive");
}
}
else { /* H1S_F_WANT_CLO && !PR_O2_FAKE_KA */
if (h1m->flags & H1_MF_VER_11) {
TRACE_STATE("add \"Connection: close\"", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s);
*conn_val = ist("close");
}
}
}
static void h1_update_res_conn_value(struct h1s *h1s, struct h1m *h1m, struct ist *conn_val)
{
/* Don't update "Connection:" header in TUNNEL mode or if "Upgrage"
* token is found
*/
if (h1s->flags & H1S_F_WANT_TUN || h1m->flags & H1_MF_CONN_UPG)
return;
if (h1s->flags & H1S_F_WANT_KAL) {
if (!(h1m->flags & H1_MF_VER_11) ||
!((h1m->flags & h1s->req.flags) & H1_MF_VER_11)) {
TRACE_STATE("add \"Connection: keep-alive\"", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s);
*conn_val = ist("keep-alive");
}
}
else { /* H1S_F_WANT_CLO */
if (h1m->flags & H1_MF_VER_11) {
TRACE_STATE("add \"Connection: close\"", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s);
*conn_val = ist("close");
}
}
}
static void h1_process_input_conn_mode(struct h1s *h1s, struct h1m *h1m, struct htx *htx)
{
if (!(h1s->h1c->flags & H1C_F_IS_BACK))
h1_set_cli_conn_mode(h1s, h1m);
else
h1_set_srv_conn_mode(h1s, h1m);
}
static void h1_process_output_conn_mode(struct h1s *h1s, struct h1m *h1m, struct ist *conn_val)
{
if (!(h1s->h1c->flags & H1C_F_IS_BACK))
h1_set_cli_conn_mode(h1s, h1m);
else
h1_set_srv_conn_mode(h1s, h1m);
if (!(h1m->flags & H1_MF_RESP))
h1_update_req_conn_value(h1s, h1m, conn_val);
else
h1_update_res_conn_value(h1s, h1m, conn_val);
}
/* Try to adjust the case of the message header name using the global map
* <hdrs_map>.
*/
static void h1_adjust_case_outgoing_hdr(struct h1s *h1s, struct h1m *h1m, struct ist *name)
{
struct ebpt_node *node;
struct h1_hdr_entry *entry;
/* No entry in the map, do nothing */
if (eb_is_empty(&hdrs_map.map))
return;
/* No conversion for the request headers */
if (!(h1m->flags & H1_MF_RESP) && !(h1s->h1c->px->options2 & PR_O2_H1_ADJ_BUGSRV))
return;
/* No conversion for the response headers */
if ((h1m->flags & H1_MF_RESP) && !(h1s->h1c->px->options2 & PR_O2_H1_ADJ_BUGCLI))
return;
node = ebis_lookup_len(&hdrs_map.map, name->ptr, name->len);
if (!node)
return;
entry = container_of(node, struct h1_hdr_entry, node);
name->ptr = entry->name.ptr;
name->len = entry->name.len;
}
/* Append the description of what is present in error snapshot <es> into <out>.
* The description must be small enough to always fit in a buffer. The output
* buffer may be the trash so the trash must not be used inside this function.
*/
static void h1_show_error_snapshot(struct buffer *out, const struct error_snapshot *es)
{
chunk_appendf(out,
" H1 connection flags 0x%08x, H1 stream flags 0x%08x\n"
" H1 msg state %s(%d), H1 msg flags 0x%08x\n"
" H1 chunk len %lld bytes, H1 body len %lld bytes :\n",
es->ctx.h1.c_flags, es->ctx.h1.s_flags,
h1m_state_str(es->ctx.h1.state), es->ctx.h1.state,
es->ctx.h1.m_flags, es->ctx.h1.m_clen, es->ctx.h1.m_blen);
}
/*
* Capture a bad request or response and archive it in the proxy's structure.
* By default it tries to report the error position as h1m->err_pos. However if
* this one is not set, it will then report h1m->next, which is the last known
* parsing point. The function is able to deal with wrapping buffers. It always
* displays buffers as a contiguous area starting at buf->p. The direction is
* determined thanks to the h1m's flags.
*/
static void h1_capture_bad_message(struct h1c *h1c, struct h1s *h1s,
struct h1m *h1m, struct buffer *buf)
{
struct session *sess = h1s->sess;
struct proxy *proxy = h1c->px;
struct proxy *other_end;
union error_snapshot_ctx ctx;
if ((h1c->flags & H1C_F_ST_ATTACHED) && h1s->cs->data) {
if (sess == NULL)
sess = si_strm(h1s->cs->data)->sess;
if (!(h1m->flags & H1_MF_RESP))
other_end = si_strm(h1s->cs->data)->be;
else
other_end = sess->fe;
} else
other_end = NULL;
/* http-specific part now */
ctx.h1.state = h1m->state;
ctx.h1.c_flags = h1c->flags;
ctx.h1.s_flags = h1s->flags;
ctx.h1.m_flags = h1m->flags;
ctx.h1.m_clen = h1m->curr_len;
ctx.h1.m_blen = h1m->body_len;
proxy_capture_error(proxy, !!(h1m->flags & H1_MF_RESP), other_end,
h1c->conn->target, sess, buf, 0, 0,
(h1m->err_pos >= 0) ? h1m->err_pos : h1m->next,
&ctx, h1_show_error_snapshot);
}
/* Emit the chunksize followed by a CRLF in front of data of the buffer
* <buf>. It goes backwards and starts with the byte before the buffer's
* head. The caller is responsible for ensuring there is enough room left before
* the buffer's head for the string.
*/
static void h1_emit_chunk_size(struct buffer *buf, size_t chksz)
{
char *beg, *end;
beg = end = b_head(buf);
*--beg = '\n';
*--beg = '\r';
do {
*--beg = hextab[chksz & 0xF];
} while (chksz >>= 4);
buf->head -= (end - beg);
b_add(buf, end - beg);
}
/* Emit a CRLF after the data of the buffer <buf>. The caller is responsible for
* ensuring there is enough room left in the buffer for the string. */
static void h1_emit_chunk_crlf(struct buffer *buf)
{
*(b_peek(buf, b_data(buf))) = '\r';
*(b_peek(buf, b_data(buf) + 1)) = '\n';
b_add(buf, 2);
}
/*
* Switch the stream to tunnel mode. This function must only be called on 2xx
* (successful) replies to CONNECT requests or on 101 (switching protocol).
*/
static void h1_set_tunnel_mode(struct h1s *h1s)
{
struct h1c *h1c = h1s->h1c;
h1s->req.state = H1_MSG_TUNNEL;
h1s->req.flags &= ~(H1_MF_XFER_LEN|H1_MF_CLEN|H1_MF_CHNK);
h1s->res.state = H1_MSG_TUNNEL;
h1s->res.flags &= ~(H1_MF_XFER_LEN|H1_MF_CLEN|H1_MF_CHNK);
TRACE_STATE("switch H1 stream in tunnel mode", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s);
if (h1c->flags & H1C_F_WAIT_OUTPUT) {
h1c->flags &= ~H1C_F_WAIT_OUTPUT;
if (b_data(&h1c->ibuf))
h1_wake_stream_for_recv(h1s);
tasklet_wakeup(h1c->wait_event.tasklet);
TRACE_STATE("Re-enable read on h1c", H1_EV_RX_DATA|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1c->conn, h1s);
}
if (h1c->flags & H1C_F_WAIT_INPUT) {
h1c->flags &= ~H1C_F_WAIT_INPUT;
h1_wake_stream_for_send(h1s);
if (b_data(&h1c->obuf))
tasklet_wakeup(h1c->wait_event.tasklet);
TRACE_STATE("Re-enable send on h1c", H1_EV_TX_DATA|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1c->conn, h1s);
}
}
/* Search for a websocket key header. The message should have been identified
* as a valid websocket handshake.
*
* On the request side, if found the key is stored in the session. It might be
* needed to calculate response key if the server side is using http/2.
*
* On the response side, the key might be verified if haproxy has been
* responsible for the generation of a key. This happens when a h2 client is
* interfaced with a h1 server.
*
* Returns 0 if no key found or invalid key
*/
static int h1_search_websocket_key(struct h1s *h1s, struct h1m *h1m, struct htx *htx)
{
struct htx_blk *blk;
enum htx_blk_type type;
struct ist n, v;
int ws_key_found = 0, idx;
idx = htx_get_head(htx); // returns the SL that we skip
while ((idx = htx_get_next(htx, idx)) != -1) {
blk = htx_get_blk(htx, idx);
type = htx_get_blk_type(blk);
if (type == HTX_BLK_UNUSED)
continue;
if (type != HTX_BLK_HDR)
break;
n = htx_get_blk_name(htx, blk);
v = htx_get_blk_value(htx, blk);
/* Websocket key is base64 encoded of 16 bytes */
if (isteqi(n, ist("sec-websocket-key")) && v.len == 24 &&
!(h1m->flags & H1_MF_RESP)) {
/* Copy the key on request side
* we might need it if the server is using h2 and does
* not provide the response
*/
memcpy(h1s->ws_key, v.ptr, 24);
ws_key_found = 1;
break;
}
else if (isteqi(n, ist("sec-websocket-accept")) &&
h1m->flags & H1_MF_RESP) {
/* Need to verify the response key if the input was
* generated by haproxy
*/
if (h1s->ws_key[0]) {
char key[29];
h1_calculate_ws_output_key(h1s->ws_key, key);
if (!isteqi(ist(key), v))
break;
}
ws_key_found = 1;
break;
}
}
/* missing websocket key, reject the message */
if (!ws_key_found) {
htx->flags |= HTX_FL_PARSING_ERROR;
return 0;
}
return 1;
}
/*
* Parse HTTP/1 headers. It returns the number of bytes parsed if > 0, or 0 if
* it couldn't proceed. Parsing errors are reported by setting H1S_F_*_ERROR
* flag. If relies on the function http_parse_msg_hdrs() to do the parsing.
*/
static size_t h1_process_headers(struct h1s *h1s, struct h1m *h1m, struct htx *htx,
struct buffer *buf, size_t *ofs, size_t max)
{
union h1_sl h1sl;
int ret = 0;
TRACE_ENTER(H1_EV_RX_DATA|H1_EV_RX_HDRS, h1s->h1c->conn, h1s, 0, (size_t[]){max});
if (h1s->meth == HTTP_METH_CONNECT)
h1m->flags |= H1_MF_METH_CONNECT;
if (h1s->meth == HTTP_METH_HEAD)
h1m->flags |= H1_MF_METH_HEAD;
ret = h1_parse_msg_hdrs(h1m, &h1sl, htx, buf, *ofs, max);
if (!ret) {
TRACE_DEVEL("leaving on missing data or error", H1_EV_RX_DATA|H1_EV_RX_HDRS, h1s->h1c->conn, h1s);
if (htx->flags & HTX_FL_PARSING_ERROR) {
h1s->flags |= H1S_F_PARSING_ERROR;
TRACE_ERROR("parsing error, reject H1 message", H1_EV_RX_DATA|H1_EV_RX_HDRS|H1_EV_H1S_ERR, h1s->h1c->conn, h1s);
h1_capture_bad_message(h1s->h1c, h1s, h1m, buf);
}
goto end;
}
/* If websocket handshake, search for the websocket key */
if ((h1m->flags & (H1_MF_CONN_UPG|H1_MF_UPG_WEBSOCKET)) ==
(H1_MF_CONN_UPG|H1_MF_UPG_WEBSOCKET)) {
int ws_ret = h1_search_websocket_key(h1s, h1m, htx);
if (!ws_ret) {
h1s->flags |= H1S_F_PARSING_ERROR;
TRACE_ERROR("missing/invalid websocket key, reject H1 message", H1_EV_RX_DATA|H1_EV_RX_HDRS|H1_EV_H1S_ERR, h1s->h1c->conn, h1s);
h1_capture_bad_message(h1s->h1c, h1s, h1m, buf);
ret = 0;
goto end;
}
}
if (h1m->err_pos >= 0) {
/* Maybe we found an error during the parsing while we were
* configured not to block on that, so we have to capture it
* now.
*/
TRACE_STATE("Ignored parsing error", H1_EV_RX_DATA|H1_EV_RX_HDRS, h1s->h1c->conn, h1s);
h1_capture_bad_message(h1s->h1c, h1s, h1m, buf);
}
if (!(h1m->flags & H1_MF_RESP)) {
h1s->meth = h1sl.rq.meth;
if (h1s->meth == HTTP_METH_HEAD)
h1s->flags |= H1S_F_BODYLESS_RESP;
}
else {
h1s->status = h1sl.st.status;
if (h1s->status == 204 || h1s->status == 304)
h1s->flags |= H1S_F_BODYLESS_RESP;
}
h1_process_input_conn_mode(h1s, h1m, htx);
*ofs += ret;
end:
TRACE_LEAVE(H1_EV_RX_DATA|H1_EV_RX_HDRS, h1s->h1c->conn, h1s, 0, (size_t[]){ret});
return ret;
}
/*
* Parse HTTP/1 body. It returns the number of bytes parsed if > 0, or 0 if it
* couldn't proceed. Parsing errors are reported by setting H1S_F_*_ERROR flag.
* If relies on the function http_parse_msg_data() to do the parsing.
*/
static size_t h1_process_data(struct h1s *h1s, struct h1m *h1m, struct htx **htx,
struct buffer *buf, size_t *ofs, size_t max,
struct buffer *htxbuf)
{
int ret;
TRACE_ENTER(H1_EV_RX_DATA|H1_EV_RX_BODY, h1s->h1c->conn, h1s, 0, (size_t[]){max});
ret = h1_parse_msg_data(h1m, htx, buf, *ofs, max, htxbuf);
if (!ret) {
TRACE_DEVEL("leaving on missing data or error", H1_EV_RX_DATA|H1_EV_RX_BODY, h1s->h1c->conn, h1s);
if ((*htx)->flags & HTX_FL_PARSING_ERROR) {
h1s->flags |= H1S_F_PARSING_ERROR;
TRACE_ERROR("parsing error, reject H1 message", H1_EV_RX_DATA|H1_EV_RX_BODY|H1_EV_H1S_ERR, h1s->h1c->conn, h1s);
h1_capture_bad_message(h1s->h1c, h1s, h1m, buf);
}
goto end;
}
*ofs += ret;
end:
TRACE_LEAVE(H1_EV_RX_DATA|H1_EV_RX_BODY, h1s->h1c->conn, h1s, 0, (size_t[]){ret});
return ret;
}
/*
* Parse HTTP/1 trailers. It returns the number of bytes parsed if > 0, or 0 if
* it couldn't proceed. Parsing errors are reported by setting H1S_F_*_ERROR
* flag and filling h1s->err_pos and h1s->err_state fields. This functions is
* responsible to update the parser state <h1m>.
*/
static size_t h1_process_trailers(struct h1s *h1s, struct h1m *h1m, struct htx *htx,
struct buffer *buf, size_t *ofs, size_t max)
{
int ret;
TRACE_ENTER(H1_EV_RX_DATA|H1_EV_RX_TLRS, h1s->h1c->conn, h1s, 0, (size_t[]){max});
ret = h1_parse_msg_tlrs(h1m, htx, buf, *ofs, max);
if (!ret) {
TRACE_DEVEL("leaving on missing data or error", H1_EV_RX_DATA|H1_EV_RX_BODY, h1s->h1c->conn, h1s);
if (htx->flags & HTX_FL_PARSING_ERROR) {
h1s->flags |= H1S_F_PARSING_ERROR;
TRACE_ERROR("parsing error, reject H1 message", H1_EV_RX_DATA|H1_EV_RX_TLRS|H1_EV_H1S_ERR, h1s->h1c->conn, h1s);
h1_capture_bad_message(h1s->h1c, h1s, h1m, buf);
}
goto end;
}
*ofs += ret;
end:
TRACE_LEAVE(H1_EV_RX_DATA|H1_EV_RX_TLRS, h1s->h1c->conn, h1s, 0, (size_t[]){ret});
return ret;
}
/*
* Process incoming data. It parses data and transfer them from h1c->ibuf into
* <buf>. It returns the number of bytes parsed and transferred if > 0, or 0 if
* it couldn't proceed.
*/
static size_t h1_process_input(struct h1c *h1c, struct buffer *buf, size_t count)
{
struct h1s *h1s = h1c->h1s;
struct h1m *h1m;
struct htx *htx;
size_t data;
size_t ret = 0;
size_t total = 0;
htx = htx_from_buf(buf);
TRACE_ENTER(H1_EV_RX_DATA, h1c->conn, h1s, htx, (size_t[]){count});
h1m = (!(h1c->flags & H1C_F_IS_BACK) ? &h1s->req : &h1s->res);
data = htx->data;
if (h1s->flags & (H1S_F_PARSING_ERROR|H1S_F_NOT_IMPL_ERROR))
goto end;
if (h1c->flags & H1C_F_WAIT_OUTPUT)
goto end;
do {
size_t used = htx_used_space(htx);
if (h1m->state <= H1_MSG_LAST_LF) {
TRACE_PROTO("parsing message headers", H1_EV_RX_DATA|H1_EV_RX_HDRS, h1c->conn, h1s);
ret = h1_process_headers(h1s, h1m, htx, &h1c->ibuf, &total, count);
if (!ret)
break;
TRACE_USER((!(h1m->flags & H1_MF_RESP) ? "rcvd H1 request headers" : "rcvd H1 response headers"),
H1_EV_RX_DATA|H1_EV_RX_HDRS, h1c->conn, h1s, htx, (size_t[]){ret});
/* Reject Protocol upgrade request with payload */
if ((h1m->flags & (H1_MF_RESP|H1_MF_CONN_UPG)) == H1_MF_CONN_UPG && h1m->state != H1_MSG_DONE) {
h1s->flags |= H1S_F_NOT_IMPL_ERROR;
TRACE_ERROR("Upgrade with body not implemented, reject H1 message",
H1_EV_RX_DATA|H1_EV_RX_HDRS|H1_EV_H1S_ERR, h1s->h1c->conn, h1s);
break;
}
if ((h1m->flags & H1_MF_RESP) &&
h1s->status < 200 && (h1s->status == 100 || h1s->status >= 102)) {
h1m_init_res(&h1s->res);
h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR);
TRACE_STATE("1xx response rcvd", H1_EV_RX_DATA|H1_EV_RX_HDRS, h1c->conn, h1s);
}
}
else if (h1m->state < H1_MSG_TRAILERS) {
TRACE_PROTO("parsing message payload", H1_EV_RX_DATA|H1_EV_RX_BODY, h1c->conn, h1s);
ret = h1_process_data(h1s, h1m, &htx, &h1c->ibuf, &total, count, buf);
if (!ret && h1m->state != H1_MSG_DONE)
break;
TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "rcvd H1 request payload data" : "rcvd H1 response payload data"),
H1_EV_RX_DATA|H1_EV_RX_BODY, h1c->conn, h1s, htx, (size_t[]){ret});
}
else if (h1m->state == H1_MSG_TRAILERS) {
TRACE_PROTO("parsing message trailers", H1_EV_RX_DATA|H1_EV_RX_TLRS, h1c->conn, h1s);
ret = h1_process_trailers(h1s, h1m, htx, &h1c->ibuf, &total, count);
if (!ret && h1m->state != H1_MSG_DONE)
break;
TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "rcvd H1 request trailers" : "rcvd H1 response trailers"),
H1_EV_RX_DATA|H1_EV_RX_TLRS, h1c->conn, h1s, htx, (size_t[]){ret});
}
else if (h1m->state == H1_MSG_DONE) {
TRACE_USER((!(h1m->flags & H1_MF_RESP) ? "H1 request fully rcvd" : "H1 response fully rcvd"),
H1_EV_RX_DATA|H1_EV_RX_EOI, h1c->conn, h1s, htx);
if ((h1m->flags & H1_MF_RESP) &&
((h1s->meth == HTTP_METH_CONNECT && h1s->status >= 200 && h1s->status < 300) || h1s->status == 101))
h1_set_tunnel_mode(h1s);
else {
if (h1s->req.state < H1_MSG_DONE || h1s->res.state < H1_MSG_DONE) {
/* Unfinished transaction: block this input side waiting the end of the output side */
h1c->flags |= H1C_F_WAIT_OUTPUT;
TRACE_STATE("Disable read on h1c (wait_output)", H1_EV_RX_DATA|H1_EV_H1C_BLK, h1c->conn, h1s);
}
if (h1s->h1c->flags & H1C_F_WAIT_INPUT) {
h1s->h1c->flags &= ~H1C_F_WAIT_INPUT;
h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_SEND, &h1c->wait_event);
TRACE_STATE("Re-enable send on h1c", H1_EV_TX_DATA|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1c->conn, h1s);
}
break;
}
}
else if (h1m->state == H1_MSG_TUNNEL) {
TRACE_PROTO("parsing tunneled data", H1_EV_RX_DATA, h1c->conn, h1s);
ret = h1_process_data(h1s, h1m, &htx, &h1c->ibuf, &total, count, buf);
if (!ret)
break;
TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "rcvd H1 request tunneled data" : "rcvd H1 response tunneled data"),
H1_EV_RX_DATA|H1_EV_RX_EOI, h1c->conn, h1s, htx, (size_t[]){ret});
}
else {
h1s->flags |= H1S_F_PARSING_ERROR;
break;
}
count -= htx_used_space(htx) - used;
} while (!(h1s->flags & (H1S_F_PARSING_ERROR|H1S_F_NOT_IMPL_ERROR)) && !(h1c->flags & H1C_F_WAIT_OUTPUT));
if (h1s->flags & (H1S_F_PARSING_ERROR|H1S_F_NOT_IMPL_ERROR)) {
TRACE_ERROR("parsing or not-implemented error", H1_EV_RX_DATA|H1_EV_H1S_ERR, h1c->conn, h1s);
goto err;
}
b_del(&h1c->ibuf, total);
htx_to_buf(htx, buf);
TRACE_DEVEL("incoming data parsed", H1_EV_RX_DATA, h1c->conn, h1s, htx, (size_t[]){ret});
ret = htx->data - data;
if ((h1c->flags & H1C_F_IN_FULL) && buf_room_for_htx_data(&h1c->ibuf)) {
h1c->flags &= ~H1C_F_IN_FULL;
TRACE_STATE("h1c ibuf not full anymore", H1_EV_RX_DATA|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1c->conn, h1s);
h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event);
}
if (!b_data(&h1c->ibuf))
h1_release_buf(h1c, &h1c->ibuf);
if (!(h1c->flags & H1C_F_ST_READY)) {
/* The H1 connection is not ready. Most of time, there is no CS
* attached, except for TCP>H1 upgrade, from a TCP frontend. In both
* cases, it is only possible on the client side.
*/
BUG_ON(h1c->flags & H1C_F_IS_BACK);
if (h1m->state <= H1_MSG_LAST_LF) {
TRACE_STATE("Incomplete message, subscribing", H1_EV_RX_DATA|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1c->conn, h1s);
h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event);
goto end;
}
if (!(h1c->flags & H1C_F_ST_ATTACHED)) {
TRACE_DEVEL("request headers fully parsed, create and attach the CS", H1_EV_RX_DATA, h1c->conn, h1s);
BUG_ON(h1s->cs);
if (!h1s_new_cs(h1s, buf)) {
h1c->flags |= H1C_F_ST_ERROR;
goto err;
}
}
else {
TRACE_DEVEL("request headers fully parsed, upgrade the inherited CS", H1_EV_RX_DATA, h1c->conn, h1s);
BUG_ON(h1s->cs == NULL);
if (!h1s_upgrade_cs(h1s, buf)) {
h1c->flags |= H1C_F_ST_ERROR;
TRACE_ERROR("H1S upgrade failure", H1_EV_RX_DATA|H1_EV_H1S_ERR, h1c->conn, h1s);
goto err;
}
}
}
/* Here h1s->cs is always defined */
if (!(h1m->flags & H1_MF_CHNK) &&
((h1m->state == H1_MSG_DATA && h1m->curr_len) || (h1m->state == H1_MSG_TUNNEL))) {
TRACE_STATE("notify the mux can use splicing", H1_EV_RX_DATA|H1_EV_RX_BODY, h1c->conn, h1s);
h1s->cs->flags |= CS_FL_MAY_SPLICE;
}
else {
TRACE_STATE("notify the mux can't use splicing anymore", H1_EV_RX_DATA|H1_EV_RX_BODY, h1c->conn, h1s);
h1s->cs->flags &= ~CS_FL_MAY_SPLICE;
}
/* Set EOI on conn-stream in DONE state iff:
* - it is a response
* - it is a request but no a protocol upgrade nor a CONNECT
*
* If not set, Wait the response to do so or not depending on the status
* code.
*/
if (((h1m->state == H1_MSG_DONE) && (h1m->flags & H1_MF_RESP)) ||
((h1m->state == H1_MSG_DONE) && (h1s->meth != HTTP_METH_CONNECT) && !(h1m->flags & H1_MF_CONN_UPG)))
h1s->cs->flags |= CS_FL_EOI;
if (h1s_data_pending(h1s) && !htx_is_empty(htx))
h1s->cs->flags |= CS_FL_RCV_MORE | CS_FL_WANT_ROOM;
else {
h1s->cs->flags &= ~(CS_FL_RCV_MORE | CS_FL_WANT_ROOM);
if (h1s->flags & H1S_F_REOS) {
h1s->cs->flags |= CS_FL_EOS;
if (h1m->state >= H1_MSG_DONE || !(h1m->flags & H1_MF_XFER_LEN)) {
/* DONE or TUNNEL or SHUTR without XFER_LEN, set
* EOI on the conn-stream */
h1s->cs->flags |= CS_FL_EOI;
}
else if (h1m->state > H1_MSG_LAST_LF && h1m->state < H1_MSG_DONE) {
h1s->cs->flags |= CS_FL_ERROR;
TRACE_ERROR("message aborted, set error on CS", H1_EV_RX_DATA|H1_EV_H1S_ERR, h1c->conn, h1s);
}
if (h1s->h1c->flags & H1C_F_WAIT_INPUT) {
h1s->h1c->flags &= ~H1C_F_WAIT_INPUT;
h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_SEND, &h1c->wait_event);
TRACE_STATE("Re-enable send on h1c", H1_EV_TX_DATA|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1c->conn, h1s);
}
}
}
end:
TRACE_LEAVE(H1_EV_RX_DATA, h1c->conn, h1s, htx, (size_t[]){ret});
return ret;
err:
b_reset(&h1c->ibuf);
htx_to_buf(htx, buf);
if (h1s->cs)
h1s->cs->flags |= CS_FL_EOI;
TRACE_DEVEL("leaving on error", H1_EV_RX_DATA|H1_EV_STRM_ERR, h1c->conn, h1s);
return 0;
}
/*
* Process outgoing data. It parses data and transfer them from the channel buffer into
* h1c->obuf. It returns the number of bytes parsed and transferred if > 0, or
* 0 if it couldn't proceed.
*/
static size_t h1_process_output(struct h1c *h1c, struct buffer *buf, size_t count)
{
struct h1s *h1s = h1c->h1s;
struct h1m *h1m;
struct htx *chn_htx = NULL;
struct htx_blk *blk;
struct buffer tmp;
size_t total = 0;
int last_data = 0;
int ws_key_found = 0;
chn_htx = htxbuf(buf);
TRACE_ENTER(H1_EV_TX_DATA, h1c->conn, h1s, chn_htx, (size_t[]){count});
if (htx_is_empty(chn_htx))
goto end;
if (h1s->flags & H1S_F_PROCESSING_ERROR)
goto end;
if (h1c->flags & H1C_F_WAIT_INPUT)
goto end;
if (!h1_get_buf(h1c, &h1c->obuf)) {
h1c->flags |= H1C_F_OUT_ALLOC;
TRACE_STATE("waiting for h1c obuf allocation", H1_EV_TX_DATA|H1_EV_H1S_BLK, h1c->conn, h1s);
goto end;
}
h1m = (!(h1c->flags & H1C_F_IS_BACK) ? &h1s->res : &h1s->req);
/* the htx is non-empty thus has at least one block */
blk = htx_get_head_blk(chn_htx);
/* Perform some optimizations to reduce the number of buffer copies.
* First, if the mux's buffer is empty and the htx area contains
* exactly one data block of the same size as the requested count,
* then it's possible to simply swap the caller's buffer with the
* mux's output buffer and adjust offsets and length to match the
* entire DATA HTX block in the middle. In this case we perform a
* true zero-copy operation from end-to-end. This is the situation
* that happens all the time with large files. Second, if this is not
* possible, but the mux's output buffer is empty, we still have an
* opportunity to avoid the copy to the intermediary buffer, by making
* the intermediary buffer's area point to the output buffer's area.
* In this case we want to skip the HTX header to make sure that copies
* remain aligned and that this operation remains possible all the
* time. This goes for headers, data blocks and any data extracted from
* the HTX blocks.
*/
if (!b_data(&h1c->obuf)) {
if ((h1m->state == H1_MSG_DATA || h1m->state == H1_MSG_TUNNEL) &&
(!(h1m->flags & H1_MF_RESP) || !(h1s->flags & H1S_F_BODYLESS_RESP)) &&
htx_nbblks(chn_htx) == 1 &&
htx_get_blk_type(blk) == HTX_BLK_DATA &&
htx_get_blk_value(chn_htx, blk).len == count) {
void *old_area;
TRACE_PROTO("sending message data (zero-copy)", H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s, chn_htx, (size_t[]){count});
if (h1m->state == H1_MSG_DATA && chn_htx->flags & HTX_FL_EOM) {
TRACE_DEVEL("last message block", H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s);
last_data = 1;
}
old_area = h1c->obuf.area;
h1c->obuf.area = buf->area;
h1c->obuf.head = sizeof(struct htx) + blk->addr;
h1c->obuf.data = count;
buf->area = old_area;
buf->data = buf->head = 0;
chn_htx = (struct htx *)buf->area;
htx_reset(chn_htx);
/* The message is chunked. We need to emit the chunk
* size and eventually the last chunk. We have at least
* the size of the struct htx to write the chunk
* envelope. It should be enough.
*/
if (h1m->flags & H1_MF_CHNK) {
h1_emit_chunk_size(&h1c->obuf, count);
h1_emit_chunk_crlf(&h1c->obuf);
if (last_data) {
/* Emit the last chunk too at the buffer's end */
b_putblk(&h1c->obuf, "0\r\n\r\n", 5);
}
}
if (h1m->state == H1_MSG_DATA)
TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "H1 request payload data xferred" : "H1 response payload data xferred"),
H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s, 0, (size_t[]){count});
else
TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "H1 request tunneled data xferred" : "H1 response tunneled data xferred"),
H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s, 0, (size_t[]){count});
total += count;
if (last_data) {
h1m->state = H1_MSG_DONE;
if (h1s->h1c->flags & H1C_F_WAIT_OUTPUT) {
h1s->h1c->flags &= ~H1C_F_WAIT_OUTPUT;
h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event);
TRACE_STATE("Re-enable read on h1c", H1_EV_TX_DATA|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1c->conn, h1s);
}
TRACE_USER((!(h1m->flags & H1_MF_RESP) ? "H1 request fully xferred" : "H1 response fully xferred"),
H1_EV_TX_DATA, h1c->conn, h1s);
}
goto out;
}
tmp.area = h1c->obuf.area + h1c->obuf.head;
}
else
tmp.area = trash.area;
tmp.data = 0;
tmp.size = b_room(&h1c->obuf);
while (count && !(h1s->flags & H1S_F_PROCESSING_ERROR) && !(h1c->flags & H1C_F_WAIT_INPUT) && blk) {
struct htx_sl *sl;
struct ist n, v;
enum htx_blk_type type = htx_get_blk_type(blk);
uint32_t sz = htx_get_blksz(blk);
uint32_t vlen, chklen;
vlen = sz;
if (type != HTX_BLK_DATA && vlen > count)
goto full;
if (type == HTX_BLK_UNUSED)
goto nextblk;
switch (h1m->state) {
case H1_MSG_RQBEFORE:
if (type != HTX_BLK_REQ_SL)
goto error;
TRACE_USER("sending request headers", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s, chn_htx);
sl = htx_get_blk_ptr(chn_htx, blk);
h1s->meth = sl->info.req.meth;
h1_parse_req_vsn(h1m, sl);
if (!h1_format_htx_reqline(sl, &tmp))
goto full;
h1m->flags |= H1_MF_XFER_LEN;
if (sl->flags & HTX_SL_F_BODYLESS)
h1m->flags |= H1_MF_CLEN;
h1m->state = H1_MSG_HDR_FIRST;
if (h1s->meth == HTTP_METH_HEAD)
h1s->flags |= H1S_F_BODYLESS_RESP;
if (h1c->flags & H1C_F_WAIT_OUTPUT) {
h1c->flags &= ~H1C_F_WAIT_OUTPUT;
h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event);
TRACE_STATE("Re-enable read on h1c", H1_EV_TX_DATA|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1c->conn, h1s);
}
break;
case H1_MSG_RPBEFORE:
if (type != HTX_BLK_RES_SL)
goto error;
TRACE_USER("sending response headers", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s, chn_htx);
sl = htx_get_blk_ptr(chn_htx, blk);
h1s->status = sl->info.res.status;
h1_parse_res_vsn(h1m, sl);
if (!h1_format_htx_stline(sl, &tmp))
goto full;
if (sl->flags & HTX_SL_F_XFER_LEN)
h1m->flags |= H1_MF_XFER_LEN;
if (h1s->status < 200)
h1s->flags |= H1S_F_HAVE_O_CONN;
else if (h1s->status == 204 || h1s->status == 304)
h1s->flags |= H1S_F_BODYLESS_RESP;
h1m->state = H1_MSG_HDR_FIRST;
break;
case H1_MSG_HDR_FIRST:
case H1_MSG_HDR_NAME:
case H1_MSG_HDR_L2_LWS:
if (type == HTX_BLK_EOH)
goto last_lf;
if (type != HTX_BLK_HDR)
goto error;
h1m->state = H1_MSG_HDR_NAME;
n = htx_get_blk_name(chn_htx, blk);
v = htx_get_blk_value(chn_htx, blk);
/* Skip all pseudo-headers */
if (*(n.ptr) == ':')
goto skip_hdr;
if (isteq(n, ist("transfer-encoding"))) {
if ((h1m->flags & H1_MF_RESP) && (h1s->status < 200 || h1s->status == 204))
goto skip_hdr;
h1_parse_xfer_enc_header(h1m, v);
}
else if (isteq(n, ist("content-length"))) {
if ((h1m->flags & H1_MF_RESP) && (h1s->status < 200 || h1s->status == 204))
goto skip_hdr;
/* Only skip C-L header with invalid value. */
if (h1_parse_cont_len_header(h1m, &v) < 0)
goto skip_hdr;
}
else if (isteq(n, ist("connection"))) {
h1_parse_connection_header(h1m, &v);
if (!v.len)
goto skip_hdr;
}
else if (isteq(n, ist("upgrade"))) {
h1_parse_upgrade_header(h1m, v);
}
else if ((isteq(n, ist("sec-websocket-accept")) &&
h1m->flags & H1_MF_RESP) ||
(isteq(n, ist("sec-websocket-key")) &&
!(h1m->flags & H1_MF_RESP))) {
ws_key_found = 1;
}
/* Skip header if same name is used to add the server name */
if (!(h1m->flags & H1_MF_RESP) && h1c->px->server_id_hdr_name &&
isteqi(n, ist2(h1c->px->server_id_hdr_name, h1c->px->server_id_hdr_len)))
goto skip_hdr;
/* Try to adjust the case of the header name */
if (h1c->px->options2 & (PR_O2_H1_ADJ_BUGCLI|PR_O2_H1_ADJ_BUGSRV))
h1_adjust_case_outgoing_hdr(h1s, h1m, &n);
if (!h1_format_htx_hdr(n, v, &tmp))
goto full;
skip_hdr:
h1m->state = H1_MSG_HDR_L2_LWS;
break;
case H1_MSG_LAST_LF:
if (type != HTX_BLK_EOH)
goto error;
last_lf:
h1m->state = H1_MSG_LAST_LF;
if (!(h1s->flags & H1S_F_HAVE_O_CONN)) {
/* If the reply comes from haproxy while the request is
* not finished, we force the connection close. */
if ((chn_htx->flags & HTX_FL_PROXY_RESP) && h1s->req.state != H1_MSG_DONE) {
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
TRACE_STATE("force close mode (resp)", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1s->h1c->conn, h1s);
}
/* the conn_mode must be processed. So do it */
n = ist("connection");
v = ist("");
h1_process_output_conn_mode(h1s, h1m, &v);
if (v.len) {
/* Try to adjust the case of the header name */
if (h1c->px->options2 & (PR_O2_H1_ADJ_BUGCLI|PR_O2_H1_ADJ_BUGSRV))
h1_adjust_case_outgoing_hdr(h1s, h1m, &n);
if (!h1_format_htx_hdr(n, v, &tmp))
goto full;
}
h1s->flags |= H1S_F_HAVE_O_CONN;
}
if ((h1s->meth != HTTP_METH_CONNECT &&
(h1m->flags & (H1_MF_VER_11|H1_MF_RESP|H1_MF_CLEN|H1_MF_CHNK|H1_MF_XFER_LEN)) ==
(H1_MF_VER_11|H1_MF_XFER_LEN)) ||
(h1s->status >= 200 && !(h1s->flags & H1S_F_BODYLESS_RESP) &&
!(h1s->meth == HTTP_METH_CONNECT && h1s->status >= 200 && h1s->status < 300) &&
(h1m->flags & (H1_MF_VER_11|H1_MF_RESP|H1_MF_CLEN|H1_MF_CHNK|H1_MF_XFER_LEN)) ==
(H1_MF_VER_11|H1_MF_RESP|H1_MF_XFER_LEN))) {
/* chunking needed but header not seen */
n = ist("transfer-encoding");
v = ist("chunked");
if (h1c->px->options2 & (PR_O2_H1_ADJ_BUGCLI|PR_O2_H1_ADJ_BUGSRV))
h1_adjust_case_outgoing_hdr(h1s, h1m, &n);
if (!h1_format_htx_hdr(n, v, &tmp))
goto full;
TRACE_STATE("add \"Transfer-Encoding: chunked\"", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s);
h1m->flags |= H1_MF_CHNK;
}
/* Now add the server name to a header (if requested) */
if (!(h1s->flags & H1S_F_HAVE_SRV_NAME) &&
!(h1m->flags & H1_MF_RESP) && h1c->px->server_id_hdr_name) {
struct server *srv = objt_server(h1c->conn->target);
if (srv) {
n = ist2(h1c->px->server_id_hdr_name, h1c->px->server_id_hdr_len);
v = ist(srv->id);
/* Try to adjust the case of the header name */
if (h1c->px->options2 & (PR_O2_H1_ADJ_BUGCLI|PR_O2_H1_ADJ_BUGSRV))
h1_adjust_case_outgoing_hdr(h1s, h1m, &n);
if (!h1_format_htx_hdr(n, v, &tmp))
goto full;
}
TRACE_STATE("add server name header", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s);
h1s->flags |= H1S_F_HAVE_SRV_NAME;
}
/* Add websocket handshake key if needed */
if ((h1m->flags & (H1_MF_CONN_UPG|H1_MF_UPG_WEBSOCKET)) == (H1_MF_CONN_UPG|H1_MF_UPG_WEBSOCKET) &&
!ws_key_found) {
if (!(h1m->flags & H1_MF_RESP)) {
/* generate a random websocket key
* stored in the session to
* verify it on the response side
*/
h1_generate_random_ws_input_key(h1s->ws_key);
if (!h1_format_htx_hdr(ist("Sec-Websocket-Key"),
ist(h1s->ws_key),
&tmp)) {
goto full;
}
}
else {
/* add the response header key */
char key[29];
h1_calculate_ws_output_key(h1s->ws_key, key);
if (!h1_format_htx_hdr(ist("Sec-Websocket-Accept"),
ist(key),
&tmp)) {
goto full;
}
}
}
TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "H1 request headers xferred" : "H1 response headers xferred"),
H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s);
if (!(h1m->flags & H1_MF_RESP) && h1s->meth == HTTP_METH_CONNECT) {
if (!chunk_memcat(&tmp, "\r\n", 2))
goto full;
goto done;
}
else if ((h1m->flags & H1_MF_RESP) &&
((h1s->meth == HTTP_METH_CONNECT && h1s->status >= 200 && h1s->status < 300) || h1s->status == 101)) {
if (!chunk_memcat(&tmp, "\r\n", 2))
goto full;
goto done;
}
else if ((h1m->flags & H1_MF_RESP) &&
h1s->status < 200 && (h1s->status == 100 || h1s->status >= 102)) {
if (!chunk_memcat(&tmp, "\r\n", 2))
goto full;
h1m_init_res(&h1s->res);
h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR);
h1s->flags &= ~H1S_F_HAVE_O_CONN;
TRACE_STATE("1xx response xferred", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s);
}
else {
/* EOM flag is set and it is the last block */
if (htx_is_unique_blk(chn_htx, blk) && (chn_htx->flags & HTX_FL_EOM)) {
if (h1m->flags & H1_MF_CHNK) {
if (!chunk_memcat(&tmp, "\r\n0\r\n\r\n", 7))
goto full;
}
else if (!chunk_memcat(&tmp, "\r\n", 2))
goto full;
goto done;
}
else if (!chunk_memcat(&tmp, "\r\n", 2))
goto full;
h1m->state = H1_MSG_DATA;
}
break;
case H1_MSG_DATA:
case H1_MSG_TUNNEL:
if (type == HTX_BLK_EOT || type == HTX_BLK_TLR) {
if ((h1m->flags & H1_MF_RESP) && (h1s->flags & H1S_F_BODYLESS_RESP))
goto trailers;
/* If the message is not chunked, never
* add the last chunk. */
if ((h1m->flags & H1_MF_CHNK) && !chunk_memcat(&tmp, "0\r\n", 3))
goto full;
TRACE_PROTO("sending message trailers", H1_EV_TX_DATA|H1_EV_TX_TLRS, h1c->conn, h1s, chn_htx);
goto trailers;
}
else if (type != HTX_BLK_DATA)
goto error;
TRACE_PROTO("sending message data", H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s, chn_htx, (size_t[]){sz});
/* It is the last block of this message. After this one,
* only tunneled data may be forwarded. */
if (h1m->state == H1_MSG_DATA && htx_is_unique_blk(chn_htx, blk) && (chn_htx->flags & HTX_FL_EOM)) {
TRACE_DEVEL("last message block", H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s);
last_data = 1;
}
if (vlen > count) {
/* Get the maximum amount of data we can xferred */
vlen = count;
last_data = 0;
}
if (h1m->state == H1_MSG_DATA && (h1m->flags & H1_MF_RESP) && (h1s->flags & H1S_F_BODYLESS_RESP)) {
TRACE_PROTO("Skip data for bodyless response", H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s, chn_htx);
goto skip_data;
}
chklen = 0;
if (h1m->flags & H1_MF_CHNK) {
chklen = b_room(&tmp);
chklen = ((chklen < 16) ? 1 : (chklen < 256) ? 2 :
(chklen < 4096) ? 3 : (chklen < 65536) ? 4 :
(chklen < 1048576) ? 5 : 8);
chklen += 4; /* 2 x CRLF */
/* If it is the end of the chunked message (without EOT), reserve the
* last chunk size */
if (last_data)
chklen += 5;
}
if (vlen + chklen > b_room(&tmp)) {
/* too large for the buffer */
if (chklen >= b_room(&tmp))
goto full;
vlen = b_room(&tmp) - chklen;
last_data = 0;
}
v = htx_get_blk_value(chn_htx, blk);
v.len = vlen;
if (!h1_format_htx_data(v, &tmp, !!(h1m->flags & H1_MF_CHNK)))
goto full;
/* Space already reserved, so it must succeed */
if ((h1m->flags & H1_MF_CHNK) && last_data && !chunk_memcat(&tmp, "0\r\n\r\n", 5))
goto error;
if (h1m->state == H1_MSG_DATA)
TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "H1 request payload data xferred" : "H1 response payload data xferred"),
H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s, 0, (size_t[]){v.len});
else
TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "H1 request tunneled data xferred" : "H1 response tunneled data xferred"),
H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s, 0, (size_t[]){v.len});
skip_data:
if (last_data)
goto done;
break;
case H1_MSG_TRAILERS:
if (type != HTX_BLK_TLR && type != HTX_BLK_EOT)
goto error;
trailers:
h1m->state = H1_MSG_TRAILERS;
/* If the message is not chunked, ignore
* trailers. It may happen with H2 messages. */
if (!(h1m->flags & H1_MF_CHNK)) {
if (type == HTX_BLK_EOT)
goto done;
break;
}
if ((h1m->flags & H1_MF_RESP) && (h1s->flags & H1S_F_BODYLESS_RESP)) {
TRACE_PROTO("Skip trailers for bodyless response", H1_EV_TX_DATA|H1_EV_TX_BODY, h1c->conn, h1s, chn_htx);
if (type == HTX_BLK_EOT)
goto done;
break;
}
if (type == HTX_BLK_EOT) {
if (!chunk_memcat(&tmp, "\r\n", 2))
goto full;
TRACE_PROTO((!(h1m->flags & H1_MF_RESP) ? "H1 request trailers xferred" : "H1 response trailers xferred"),
H1_EV_TX_DATA|H1_EV_TX_TLRS, h1c->conn, h1s);
goto done;
}
else { // HTX_BLK_TLR
n = htx_get_blk_name(chn_htx, blk);
v = htx_get_blk_value(chn_htx, blk);
/* Try to adjust the case of the header name */
if (h1c->px->options2 & (PR_O2_H1_ADJ_BUGCLI|PR_O2_H1_ADJ_BUGSRV))
h1_adjust_case_outgoing_hdr(h1s, h1m, &n);
if (!h1_format_htx_hdr(n, v, &tmp))
goto full;
}
break;
case H1_MSG_DONE:
TRACE_STATE("unexpected data xferred in done state", H1_EV_TX_DATA|H1_EV_H1C_ERR|H1_EV_H1S_ERR, h1c->conn, h1s);
goto error; /* For now return an error */
done:
if (!(chn_htx->flags & HTX_FL_EOM)) {
TRACE_STATE("No EOM flags in done state", H1_EV_TX_DATA|H1_EV_H1C_ERR|H1_EV_H1S_ERR, h1c->conn, h1s);
goto error; /* For now return an error */
}
h1m->state = H1_MSG_DONE;
if (!(h1m->flags & H1_MF_RESP) && h1s->meth == HTTP_METH_CONNECT) {
h1c->flags |= H1C_F_WAIT_INPUT;
TRACE_STATE("Disable send on h1c (wait_input)", H1_EV_TX_DATA|H1_EV_H1C_BLK, h1c->conn, h1s);
}
else if ((h1m->flags & H1_MF_RESP) &&
((h1s->meth == HTTP_METH_CONNECT && h1s->status >= 200 && h1s->status < 300) || h1s->status == 101)) {
/* a successful reply to a CONNECT or a protocol switching is sent
* to the client. Switch the response to tunnel mode.
*/
h1_set_tunnel_mode(h1s);
TRACE_STATE("switch H1 response in tunnel mode", H1_EV_TX_DATA|H1_EV_TX_HDRS, h1c->conn, h1s);
}
if (h1s->h1c->flags & H1C_F_WAIT_OUTPUT) {
h1s->h1c->flags &= ~H1C_F_WAIT_OUTPUT;
h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event);
TRACE_STATE("Re-enable read on h1c", H1_EV_TX_DATA|H1_EV_H1C_BLK|H1_EV_H1C_WAKE, h1c->conn, h1s);
}
TRACE_USER((!(h1m->flags & H1_MF_RESP) ? "H1 request fully xferred" : "H1 response fully xferred"),
H1_EV_TX_DATA, h1c->conn, h1s);
break;
default:
error:
/* Unexpected error during output processing */
chn_htx->flags |= HTX_FL_PROCESSING_ERROR;
h1s->flags |= H1S_F_PROCESSING_ERROR;
h1c->flags |= H1C_F_ST_ERROR;
TRACE_ERROR("processing output error, set error on h1c/h1s",
H1_EV_TX_DATA|H1_EV_STRM_ERR|H1_EV_H1C_ERR|H1_EV_H1S_ERR, h1c->conn, h1s);
break;
}
nextblk:
total += vlen;
count -= vlen;
if (sz == vlen)
blk = htx_remove_blk(chn_htx, blk);
else {
htx_cut_data_blk(chn_htx, blk, vlen);
break;
}
}
copy:
/* when the output buffer is empty, tmp shares the same area so that we
* only have to update pointers and lengths.
*/
if (tmp.area == h1c->obuf.area + h1c->obuf.head)
h1c->obuf.data = tmp.data;
else
b_putblk(&h1c->obuf, tmp.area, tmp.data);
htx_to_buf(chn_htx, buf);
out:
if (!buf_room_for_htx_data(&h1c->obuf)) {
TRACE_STATE("h1c obuf full", H1_EV_TX_DATA|H1_EV_H1S_BLK, h1c->conn, h1s);
h1c->flags |= H1C_F_OUT_FULL;
}
end:
/* Both the request and the response reached the DONE state. So set EOI
* flag on the conn-stream. Most of time, the flag will already be set,
* except for protocol upgrades. Report an error if data remains blocked
* in the output buffer.
*/
if (h1s->req.state == H1_MSG_DONE && h1s->res.state == H1_MSG_DONE) {
if (!htx_is_empty(chn_htx)) {
h1c->flags |= H1C_F_ST_ERROR;
TRACE_ERROR("txn done but data waiting to be sent, set error on h1c", H1_EV_H1C_ERR, h1c->conn, h1s);
}
h1s->cs->flags |= CS_FL_EOI;
}
TRACE_LEAVE(H1_EV_TX_DATA, h1c->conn, h1s, chn_htx, (size_t[]){total});
return total;
full:
TRACE_STATE("h1c obuf full", H1_EV_TX_DATA|H1_EV_H1S_BLK, h1c->conn, h1s);
h1c->flags |= H1C_F_OUT_FULL;
goto copy;
}
/*********************************************************/
/* functions below are I/O callbacks from the connection */
/*********************************************************/
static void h1_wake_stream_for_recv(struct h1s *h1s)
{
if (h1s && h1s->subs && h1s->subs->events & SUB_RETRY_RECV) {
TRACE_POINT(H1_EV_STRM_WAKE, h1s->h1c->conn, h1s);
tasklet_wakeup(h1s->subs->tasklet);
h1s->subs->events &= ~SUB_RETRY_RECV;
if (!h1s->subs->events)
h1s->subs = NULL;
}
}
static void h1_wake_stream_for_send(struct h1s *h1s)
{
if (h1s && h1s->subs && h1s->subs->events & SUB_RETRY_SEND) {
TRACE_POINT(H1_EV_STRM_WAKE, h1s->h1c->conn, h1s);
tasklet_wakeup(h1s->subs->tasklet);
h1s->subs->events &= ~SUB_RETRY_SEND;
if (!h1s->subs->events)
h1s->subs = NULL;
}
}
/* alerts the data layer following this sequence :
* - if the h1s' data layer is subscribed to recv, then it's woken up for recv
* - if its subscribed to send, then it's woken up for send
* - if it was subscribed to neither, its ->wake() callback is called
*/
static void h1_alert(struct h1s *h1s)
{
if (h1s->subs) {
h1_wake_stream_for_recv(h1s);
h1_wake_stream_for_send(h1s);
}
else if (h1s->cs && h1s->cs->data_cb->wake != NULL) {
TRACE_POINT(H1_EV_STRM_WAKE, h1s->h1c->conn, h1s);
h1s->cs->data_cb->wake(h1s->cs);
}
}
/* Try to send an HTTP error with h1c->errcode status code. It returns 1 on success
* and 0 on error. The flag H1C_F_ERR_PENDING is set on the H1 connection for
* retryable errors (allocation error or buffer full). On success, the error is
* copied in the output buffer.
*/
static int h1_send_error(struct h1c *h1c)
{
int rc = http_get_status_idx(h1c->errcode);
int ret = 0;
TRACE_ENTER(H1_EV_H1C_ERR, h1c->conn, 0, 0, (size_t[]){h1c->errcode});
/* Verify if the error is mapped on /dev/null or any empty file */
/// XXX: do a function !
if (h1c->px->replies[rc] &&
h1c->px->replies[rc]->type == HTTP_REPLY_ERRMSG &&
h1c->px->replies[rc]->body.errmsg &&
b_is_null(h1c->px->replies[rc]->body.errmsg)) {
/* Empty error, so claim a success */
ret = 1;
goto out;
}
if (h1c->flags & (H1C_F_OUT_ALLOC|H1C_F_OUT_FULL)) {
h1c->flags |= H1C_F_ERR_PENDING;
goto out;
}
if (!h1_get_buf(h1c, &h1c->obuf)) {
h1c->flags |= (H1C_F_OUT_ALLOC|H1C_F_ERR_PENDING);
TRACE_STATE("waiting for h1c obuf allocation", H1_EV_H1C_ERR|H1_EV_H1C_BLK, h1c->conn);
goto out;
}
ret = b_istput(&h1c->obuf, ist2(http_err_msgs[rc], strlen(http_err_msgs[rc])));
if (unlikely(ret <= 0)) {
if (!ret) {
h1c->flags |= (H1C_F_OUT_FULL|H1C_F_ERR_PENDING);
TRACE_STATE("h1c obuf full", H1_EV_H1C_ERR|H1_EV_H1C_BLK, h1c->conn);
goto out;
}
else {
/* we cannot report this error, so claim a success */
ret = 1;
}
}
h1c->flags &= ~H1C_F_ERR_PENDING;
out:
TRACE_LEAVE(H1_EV_H1C_ERR, h1c->conn);
return ret;
}
/* Try to send a 500 internal error. It relies on h1_send_error to send the
* error. This function takes care of incrementing stats and tracked counters.
*/
static int h1_handle_internal_err(struct h1c *h1c)
{
struct session *sess = h1c->conn->owner;
int ret = 1;
session_inc_http_req_ctr(sess);
proxy_inc_fe_req_ctr(sess->listener, sess->fe);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.p.http.rsp[5], 1);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.internal_errors, 1);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->internal_errors, 1);
h1c->errcode = 500;
ret = h1_send_error(h1c);
sess_log(sess);
return ret;
}
/* Try to send a 400 bad request error. It relies on h1_send_error to send the
* error. This function takes care of incrementing stats and tracked counters.
*/
static int h1_handle_bad_req(struct h1c *h1c)
{
struct session *sess = h1c->conn->owner;
int ret = 1;
if (!b_data(&h1c->ibuf) && ((h1c->flags & H1C_F_WAIT_NEXT_REQ) || (sess->fe->options & PR_O_IGNORE_PRB)))
goto end;
session_inc_http_req_ctr(sess);
session_inc_http_err_ctr(sess);
proxy_inc_fe_req_ctr(sess->listener, sess->fe);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.p.http.rsp[4], 1);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
h1c->errcode = 400;
ret = h1_send_error(h1c);
sess_log(sess);
end:
return ret;
}
/* Try to send a 501 not implemented error. It relies on h1_send_error to send
* the error. This function takes care of incrementing stats and tracked
* counters.
*/
static int h1_handle_not_impl_err(struct h1c *h1c)
{
struct session *sess = h1c->conn->owner;
int ret = 1;
if (!b_data(&h1c->ibuf) && ((h1c->flags & H1C_F_WAIT_NEXT_REQ) || (sess->fe->options & PR_O_IGNORE_PRB)))
goto end;
session_inc_http_req_ctr(sess);
proxy_inc_fe_req_ctr(sess->listener, sess->fe);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.p.http.rsp[4], 1);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
h1c->errcode = 501;
ret = h1_send_error(h1c);
sess_log(sess);
end:
return ret;
}
/* Try to send a 408 timeout error. It relies on h1_send_error to send the
* error. This function takes care of incrementing stats and tracked counters.
*/
static int h1_handle_req_tout(struct h1c *h1c)
{
struct session *sess = h1c->conn->owner;
int ret = 1;
if (!b_data(&h1c->ibuf) && ((h1c->flags & H1C_F_WAIT_NEXT_REQ) || (sess->fe->options & PR_O_IGNORE_PRB)))
goto end;
session_inc_http_req_ctr(sess);
proxy_inc_fe_req_ctr(sess->listener, sess->fe);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.p.http.rsp[4], 1);
_HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener && sess->listener->counters)
_HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
h1c->errcode = 408;
ret = h1_send_error(h1c);
sess_log(sess);
end:
return ret;
}
/*
* Attempt to read data, and subscribe if none available
*/
static int h1_recv(struct h1c *h1c)
{
struct connection *conn = h1c->conn;
size_t ret = 0, max;
int flags = 0;
TRACE_ENTER(H1_EV_H1C_RECV, h1c->conn);
if (h1c->wait_event.events & SUB_RETRY_RECV) {
TRACE_DEVEL("leaving on sub_recv", H1_EV_H1C_RECV, h1c->conn);
return (b_data(&h1c->ibuf));
}
if ((h1c->flags & H1C_F_WANT_SPLICE) || !h1_recv_allowed(h1c)) {
TRACE_DEVEL("leaving on (want_splice|!recv_allowed)", H1_EV_H1C_RECV, h1c->conn);
return 1;
}
if (!h1_get_buf(h1c, &h1c->ibuf)) {
h1c->flags |= H1C_F_IN_ALLOC;
TRACE_STATE("waiting for h1c ibuf allocation", H1_EV_H1C_RECV|H1_EV_H1C_BLK, h1c->conn);
return 0;
}
/*
* If we only have a small amount of data, realign it,
* it's probably cheaper than doing 2 recv() calls.
*/
if (b_data(&h1c->ibuf) > 0 && b_data(&h1c->ibuf) < 128)
b_slow_realign(&h1c->ibuf, trash.area, 0);
/* avoid useless reads after first responses */
if (!h1c->h1s ||
(!(h1c->flags & H1C_F_IS_BACK) && h1c->h1s->req.state == H1_MSG_RQBEFORE) ||
((h1c->flags & H1C_F_IS_BACK) && h1c->h1s->res.state == H1_MSG_RPBEFORE))
flags |= CO_RFL_READ_ONCE;
max = buf_room_for_htx_data(&h1c->ibuf);
if (max) {
if (h1c->flags & H1C_F_IN_FULL) {
h1c->flags &= ~H1C_F_IN_FULL;
TRACE_STATE("h1c ibuf not full anymore", H1_EV_H1C_RECV|H1_EV_H1C_BLK);
}
if (!b_data(&h1c->ibuf)) {
/* try to pre-align the buffer like the rxbufs will be
* to optimize memory copies.
*/
h1c->ibuf.head = sizeof(struct htx);
}
ret = conn->xprt->rcv_buf(conn, conn->xprt_ctx, &h1c->ibuf, max, flags);
}
if (max && !ret && h1_recv_allowed(h1c)) {
TRACE_STATE("failed to receive data, subscribing", H1_EV_H1C_RECV, h1c->conn);
conn->xprt->subscribe(conn, conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event);
}
else {
h1_wake_stream_for_recv(h1c->h1s);
TRACE_DATA("data received", H1_EV_H1C_RECV, h1c->conn, 0, 0, (size_t[]){ret});
}
if (!b_data(&h1c->ibuf))
h1_release_buf(h1c, &h1c->ibuf);
else if (!buf_room_for_htx_data(&h1c->ibuf)) {
h1c->flags |= H1C_F_IN_FULL;
TRACE_STATE("h1c ibuf full", H1_EV_H1C_RECV|H1_EV_H1C_BLK);
}
TRACE_LEAVE(H1_EV_H1C_RECV, h1c->conn);
return !!ret || (conn->flags & CO_FL_ERROR) || conn_xprt_read0_pending(conn);
}
/*
* Try to send data if possible
*/
static int h1_send(struct h1c *h1c)
{
struct connection *conn = h1c->conn;
unsigned int flags = 0;
size_t ret;
int sent = 0;
TRACE_ENTER(H1_EV_H1C_SEND, h1c->conn);
if (conn->flags & CO_FL_ERROR) {
TRACE_DEVEL("leaving on connection error", H1_EV_H1C_SEND, h1c->conn);
b_reset(&h1c->obuf);
return 1;
}
if (!b_data(&h1c->obuf))
goto end;
if (h1c->flags & H1C_F_CO_MSG_MORE)
flags |= CO_SFL_MSG_MORE;
if (h1c->flags & H1C_F_CO_STREAMER)
flags |= CO_SFL_STREAMER;
ret = conn->xprt->snd_buf(conn, conn->xprt_ctx, &h1c->obuf, b_data(&h1c->obuf), flags);
if (ret > 0) {
TRACE_DATA("data sent", H1_EV_H1C_SEND, h1c->conn, 0, 0, (size_t[]){ret});
if (h1c->flags & H1C_F_OUT_FULL) {
h1c->flags &= ~H1C_F_OUT_FULL;
TRACE_STATE("h1c obuf not full anymore", H1_EV_STRM_SEND|H1_EV_H1S_BLK, h1c->conn);
}
b_del(&h1c->obuf, ret);
sent = 1;
}
if (conn->flags & (CO_FL_ERROR|CO_FL_SOCK_WR_SH)) {
TRACE_DEVEL("connection error or output closed", H1_EV_H1C_SEND, h1c->conn);
/* error or output closed, nothing to send, clear the buffer to release it */
b_reset(&h1c->obuf);
}
end:
if (!(h1c->flags & (H1C_F_OUT_FULL|H1C_F_WAIT_INPUT)))
h1_wake_stream_for_send(h1c->h1s);
/* We're done, no more to send */
if (!b_data(&h1c->obuf)) {
TRACE_DEVEL("leaving with everything sent", H1_EV_H1C_SEND, h1c->conn);
h1_release_buf(h1c, &h1c->obuf);
if (h1c->flags & H1C_F_ST_SHUTDOWN) {
TRACE_STATE("process pending shutdown for writes", H1_EV_H1C_SEND, h1c->conn);
h1_shutw_conn(conn, CS_SHW_NORMAL);
}
}
else if (!(h1c->wait_event.events & SUB_RETRY_SEND)) {
TRACE_STATE("more data to send, subscribing", H1_EV_H1C_SEND, h1c->conn);
conn->xprt->subscribe(conn, conn->xprt_ctx, SUB_RETRY_SEND, &h1c->wait_event);
}
TRACE_LEAVE(H1_EV_H1C_SEND, h1c->conn);
return sent;
}
/* callback called on any event by the connection handler.
* It applies changes and returns zero, or < 0 if it wants immediate
* destruction of the connection.
*/
static int h1_process(struct h1c * h1c)
{
struct connection *conn = h1c->conn;
struct h1s *h1s = h1c->h1s;
TRACE_ENTER(H1_EV_H1C_WAKE, conn);
/* Try to parse now the first block of a request, creating the H1 stream if necessary */
if (b_data(&h1c->ibuf) && /* Input data to be processed */
(h1c->flags & H1C_F_ST_ALIVE) && !(h1c->flags & H1C_F_ST_READY) && /* ST_IDLE/ST_EMBRYONIC or ST_ATTACH but not ST_READY */
!(h1c->flags & H1C_F_IN_SALLOC)) { /* No allocation failure on the stream rxbuf */
struct buffer *buf;
size_t count;
/* When it happens for a backend connection, we may release it (it is probably a 408) */
if (h1c->flags & H1C_F_IS_BACK)
goto release;
/* First of all handle H1 to H2 upgrade (no need to create the H1 stream) */
if (!(h1c->flags & H1C_F_WAIT_NEXT_REQ) && /* First request */
!(h1c->px->options2 & PR_O2_NO_H2_UPGRADE)) { /* H2 upgrade supported by the proxy */
/* Try to match H2 preface before parsing the request headers. */
if (b_isteq(&h1c->ibuf, 0, b_data(&h1c->ibuf), ist(H2_CONN_PREFACE)) > 0) {
h1c->flags |= H1C_F_UPG_H2C;
if (h1c->flags & H1C_F_ST_ATTACHED) {
/* Force the REOS here to be sure to release the CS.
Here ATTACHED implies !READY, and h1s defined
*/
BUG_ON(!h1s || (h1c->flags & H1C_F_ST_READY));
h1s->flags |= H1S_F_REOS;
}
TRACE_STATE("release h1c to perform H2 upgrade ", H1_EV_RX_DATA|H1_EV_H1C_WAKE);
goto release;
}
}
/* Create the H1 stream if not already there */
if (!h1s) {
h1s = h1c_frt_stream_new(h1c);
if (!h1s) {
b_reset(&h1c->ibuf);
h1c->flags = (h1c->flags & ~(H1C_F_ST_IDLE|H1C_F_WAIT_NEXT_REQ)) | H1C_F_ST_ERROR;
goto no_parsing;
}
}
if (h1s->sess->t_idle == -1)
h1s->sess->t_idle = tv_ms_elapsed(&h1s->sess->tv_accept, &now) - h1s->sess->t_handshake;
/* Get the stream rxbuf */
buf = h1_get_buf(h1c, &h1s->rxbuf);
if (!buf) {
h1c->flags |= H1C_F_IN_SALLOC;
TRACE_STATE("waiting for stream rxbuf allocation", H1_EV_H1C_WAKE|H1_EV_H1C_BLK, h1c->conn);
return 0;
}
count = (buf->size - sizeof(struct htx) - global.tune.maxrewrite);
h1_process_input(h1c, buf, count);
h1_release_buf(h1c, &h1s->rxbuf);
h1_set_idle_expiration(h1c);
no_parsing:
if (h1c->flags & H1C_F_ST_ERROR) {
h1_handle_internal_err(h1c);
h1c->flags &= ~(H1C_F_ST_IDLE|H1C_F_WAIT_NEXT_REQ);
TRACE_ERROR("internal error detected", H1_EV_H1C_WAKE|H1_EV_H1C_ERR);
}
else if (h1s->flags & H1S_F_PARSING_ERROR) {
h1_handle_bad_req(h1c);
h1c->flags = (h1c->flags & ~(H1C_F_ST_IDLE|H1C_F_WAIT_NEXT_REQ)) | H1C_F_ST_ERROR;
TRACE_ERROR("parsing error detected", H1_EV_H1C_WAKE|H1_EV_H1C_ERR);
}
else if (h1s->flags & H1S_F_NOT_IMPL_ERROR) {
h1_handle_not_impl_err(h1c);
h1c->flags = (h1c->flags & ~(H1C_F_ST_IDLE|H1C_F_WAIT_NEXT_REQ)) | H1C_F_ST_ERROR;
TRACE_ERROR("not-implemented error detected", H1_EV_H1C_WAKE|H1_EV_H1C_ERR);
}
}
h1_send(h1c);
if ((conn->flags & CO_FL_ERROR) || conn_xprt_read0_pending(conn) || (h1c->flags & H1C_F_ST_ERROR)) {
if (!(h1c->flags & H1C_F_ST_READY)) {
/* No conn-stream or not ready */
/* shutdown for reads and error on the frontend connection: Send an error */
if (!(h1c->flags & (H1C_F_IS_BACK|H1C_F_ST_ERROR))) {
if (h1_handle_bad_req(h1c))
h1_send(h1c);
h1c->flags = (h1c->flags & ~(H1C_F_ST_IDLE|H1C_F_WAIT_NEXT_REQ)) | H1C_F_ST_ERROR;
}
/* Handle pending error, if any (only possible on frontend connection) */
if (h1c->flags & H1C_F_ERR_PENDING) {
BUG_ON(h1c->flags & H1C_F_IS_BACK);
if (h1_send_error(h1c))
h1_send(h1c);
}
/* If there is some pending outgoing data or error, just wait */
if (b_data(&h1c->obuf) || (h1c->flags & H1C_F_ERR_PENDING))
goto end;
/* Otherwise we can release the H1 connection */
goto release;
}
else {
/* Here there is still a H1 stream with a conn-stream.
* Report the connection state at the stream level
*/
if (conn_xprt_read0_pending(conn)) {
h1s->flags |= H1S_F_REOS;
TRACE_STATE("read0 on connection", H1_EV_H1C_RECV, conn, h1s);
}
if ((h1c->flags & H1C_F_ST_ERROR) || (conn->flags & CO_FL_ERROR))
h1s->cs->flags |= CS_FL_ERROR;
TRACE_POINT(H1_EV_STRM_WAKE, h1c->conn, h1s);
h1_alert(h1s);
}
}
if (!b_data(&h1c->ibuf))
h1_release_buf(h1c, &h1c->ibuf);
if ((h1c->flags & H1C_F_WANT_SPLICE) && !h1s_data_pending(h1s)) {
TRACE_DEVEL("xprt rcv_buf blocked (want_splice), notify h1s for recv", H1_EV_H1C_RECV, h1c->conn);
h1_wake_stream_for_recv(h1s);
}
end:
h1_refresh_timeout(h1c);
TRACE_LEAVE(H1_EV_H1C_WAKE, conn);
return 0;
release:
if (h1c->flags & H1C_F_ST_ATTACHED) {
/* Don't release the H1 connection right now, we must destroy the
* attached CS first. Here, the H1C must not be READY */
BUG_ON(!h1s || h1c->flags & H1C_F_ST_READY);
if (conn_xprt_read0_pending(conn) || (h1s->flags & H1S_F_REOS))
h1s->cs->flags |= CS_FL_EOS;
if ((h1c->flags & H1C_F_ST_ERROR) || (conn->flags & CO_FL_ERROR))
h1s->cs->flags |= CS_FL_ERROR;
h1_alert(h1s);
TRACE_DEVEL("waiting to release the CS before releasing the connection", H1_EV_H1C_WAKE);
}
else {
h1_release(h1c);
TRACE_DEVEL("leaving after releasing the connection", H1_EV_H1C_WAKE);
}
return -1;
}
struct task *h1_io_cb(struct task *t, void *ctx, unsigned int state)
{
struct connection *conn;
struct tasklet *tl = (struct tasklet *)t;
int conn_in_list;
struct h1c *h1c = ctx;
int ret = 0;
if (state & TASK_F_USR1) {
/* the tasklet was idling on an idle connection, it might have
* been stolen, let's be careful!
*/
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
if (tl->context == NULL) {
/* The connection has been taken over by another thread,
* we're no longer responsible for it, so just free the
* tasklet, and do nothing.
*/
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
tasklet_free(tl);
return NULL;
}
conn = h1c->conn;
TRACE_POINT(H1_EV_H1C_WAKE, conn);
/* Remove the connection from the list, to be sure nobody attempts
* to use it while we handle the I/O events
*/
conn_in_list = conn->flags & CO_FL_LIST_MASK;
if (conn_in_list)
conn_delete_from_tree(&conn->hash_node->node);
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
} else {
/* we're certain the connection was not in an idle list */
conn = h1c->conn;
TRACE_ENTER(H1_EV_H1C_WAKE, conn);
conn_in_list = 0;
}
if (!(h1c->wait_event.events & SUB_RETRY_SEND))
ret = h1_send(h1c);
if (!(h1c->wait_event.events & SUB_RETRY_RECV))
ret |= h1_recv(h1c);
if (ret || b_data(&h1c->ibuf))
ret = h1_process(h1c);
/* If we were in an idle list, we want to add it back into it,
* unless h1_process() returned -1, which mean it has destroyed
* the connection (testing !ret is enough, if h1_process() wasn't
* called then ret will be 0 anyway.
*/
if (ret < 0)
t = NULL;
if (!ret && conn_in_list) {
struct server *srv = objt_server(conn->target);
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
if (conn_in_list == CO_FL_SAFE_LIST)
ebmb_insert(&srv->per_thr[tid].safe_conns, &conn->hash_node->node, sizeof(conn->hash_node->hash));
else
ebmb_insert(&srv->per_thr[tid].idle_conns, &conn->hash_node->node, sizeof(conn->hash_node->hash));
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
}
return t;
}
static int h1_wake(struct connection *conn)
{
struct h1c *h1c = conn->ctx;
int ret;
TRACE_POINT(H1_EV_H1C_WAKE, conn);
h1_send(h1c);
ret = h1_process(h1c);
if (ret == 0) {
struct h1s *h1s = h1c->h1s;
if (h1c->flags & H1C_F_ST_ATTACHED)
h1_alert(h1s);
}
return ret;
}
/* Connection timeout management. The principle is that if there's no receipt
* nor sending for a certain amount of time, the connection is closed.
*/
struct task *h1_timeout_task(struct task *t, void *context, unsigned int state)
{
struct h1c *h1c = context;
int expired = tick_is_expired(t->expire, now_ms);
TRACE_ENTER(H1_EV_H1C_WAKE, h1c ? h1c->conn : NULL);
if (h1c) {
/* Make sure nobody stole the connection from us */
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
/* Somebody already stole the connection from us, so we should not
* free it, we just have to free the task.
*/
if (!t->context) {
h1c = NULL;
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
goto do_leave;
}
if (!expired) {
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
TRACE_DEVEL("leaving (not expired)", H1_EV_H1C_WAKE, h1c->conn, h1c->h1s);
return t;
}
/* If a conn-stream is still attached and ready to the mux, wait for the
* stream's timeout
*/
if (h1c->flags & H1C_F_ST_READY) {
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
t->expire = TICK_ETERNITY;
TRACE_DEVEL("leaving (CS still attached)", H1_EV_H1C_WAKE, h1c->conn, h1c->h1s);
return t;
}
/* Try to send an error to the client */
if (!(h1c->flags & (H1C_F_IS_BACK|H1C_F_ST_ERROR|H1C_F_ERR_PENDING|H1C_F_ST_SHUTDOWN))) {
h1c->flags = (h1c->flags & ~H1C_F_ST_IDLE) | H1C_F_ST_ERROR;
TRACE_DEVEL("timeout error detected", H1_EV_H1C_WAKE|H1_EV_H1C_ERR, h1c->conn, h1c->h1s);
if (h1_handle_req_tout(h1c))
h1_send(h1c);
if (b_data(&h1c->obuf) || (h1c->flags & H1C_F_ERR_PENDING)) {
h1_refresh_timeout(h1c);
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
return t;
}
}
if (h1c->flags & H1C_F_ST_ATTACHED) {
/* Don't release the H1 connection right now, we must destroy the
* attached CS first. Here, the H1C must not be READY */
h1c->h1s->cs->flags |= (CS_FL_EOS|CS_FL_ERROR);
h1_alert(h1c->h1s);
h1_refresh_timeout(h1c);
HA_SPIN_UNLOCK(OTHER_LOCK, &idle_conns[tid].idle_conns_lock);
TRACE_DEVEL("waiting to release the CS before releasing the connection", H1_EV_H1C_WAKE);
return t;
}
/* We're about to destroy the connection, so make sure nobody attempts
* to steal it from us.
*/
if (h1c->conn->flags & CO_FL_LIST_MASK)
conn_delete_from_tree(&h1c->conn->hash_node->node);
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
}
do_leave:
task_destroy(t);
if (!h1c) {
/* resources were already deleted */
TRACE_DEVEL("leaving (not more h1c)", H1_EV_H1C_WAKE);
return NULL;
}
h1c->task = NULL;
h1_release(h1c);
TRACE_LEAVE(H1_EV_H1C_WAKE);
return NULL;
}
/*******************************************/
/* functions below are used by the streams */
/*******************************************/
/*
* Attach a new stream to a connection
* (Used for outgoing connections)
*/
static struct conn_stream *h1_attach(struct connection *conn, struct session *sess)
{
struct h1c *h1c = conn->ctx;
struct conn_stream *cs = NULL;
struct h1s *h1s;
TRACE_ENTER(H1_EV_STRM_NEW, conn);
if (h1c->flags & H1C_F_ST_ERROR) {
TRACE_ERROR("h1c on error", H1_EV_STRM_NEW|H1_EV_STRM_END|H1_EV_STRM_ERR, conn);
goto err;
}
cs = cs_new(h1c->conn, h1c->conn->target);
if (!cs) {
TRACE_ERROR("CS allocation failure", H1_EV_STRM_NEW|H1_EV_STRM_END|H1_EV_STRM_ERR, conn);
goto err;
}
h1s = h1c_bck_stream_new(h1c, cs, sess);
if (h1s == NULL) {
TRACE_ERROR("h1s creation failure", H1_EV_STRM_NEW|H1_EV_STRM_END|H1_EV_STRM_ERR, conn);
goto err;
}
/* the connection is not idle anymore, let's mark this */
HA_ATOMIC_AND(&h1c->wait_event.tasklet->state, ~TASK_F_USR1);
xprt_set_used(conn, conn->xprt, conn->xprt_ctx);
TRACE_LEAVE(H1_EV_STRM_NEW, conn, h1s);
return cs;
err:
cs_free(cs);
TRACE_DEVEL("leaving on error", H1_EV_STRM_NEW|H1_EV_STRM_END|H1_EV_STRM_ERR, conn);
return NULL;
}
/* Retrieves a valid conn_stream from this connection, or returns NULL. For
* this mux, it's easy as we can only store a single conn_stream.
*/
static const struct conn_stream *h1_get_first_cs(const struct connection *conn)
{
struct h1c *h1c = conn->ctx;
struct h1s *h1s = h1c->h1s;
if (h1s)
return h1s->cs;
return NULL;
}
static void h1_destroy(void *ctx)
{
struct h1c *h1c = ctx;
TRACE_POINT(H1_EV_H1C_END, h1c->conn);
if (!h1c->h1s || !h1c->conn || h1c->conn->ctx != h1c)
h1_release(h1c);
}
/*
* Detach the stream from the connection and possibly release the connection.
*/
static void h1_detach(struct conn_stream *cs)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c;
struct session *sess;
int is_not_first;
TRACE_ENTER(H1_EV_STRM_END, h1s ? h1s->h1c->conn : NULL, h1s);
cs->ctx = NULL;
if (!h1s) {
TRACE_LEAVE(H1_EV_STRM_END);
return;
}
sess = h1s->sess;
h1c = h1s->h1c;
h1s->cs = NULL;
sess->accept_date = date;
sess->tv_accept = now;
sess->t_handshake = 0;
sess->t_idle = -1;
is_not_first = h1s->flags & H1S_F_NOT_FIRST;
h1s_destroy(h1s);
if ((h1c->flags & (H1C_F_IS_BACK|H1C_F_ST_IDLE)) == (H1C_F_IS_BACK|H1C_F_ST_IDLE)) {
/* If there are any excess server data in the input buffer,
* release it and close the connection ASAP (some data may
* remain in the output buffer). This happens if a server sends
* invalid responses. So in such case, we don't want to reuse
* the connection
*/
if (b_data(&h1c->ibuf)) {
h1_release_buf(h1c, &h1c->ibuf);
h1c->flags = (h1c->flags & ~H1C_F_ST_IDLE) | H1C_F_ST_SHUTDOWN;
TRACE_DEVEL("remaining data on detach, kill connection", H1_EV_STRM_END|H1_EV_H1C_END);
goto release;
}
if (h1c->conn->flags & CO_FL_PRIVATE) {
/* Add the connection in the session server list, if not already done */
if (!session_add_conn(sess, h1c->conn, h1c->conn->target)) {
h1c->conn->owner = NULL;
h1c->conn->mux->destroy(h1c);
goto end;
}
/* Always idle at this step */
if (session_check_idle_conn(sess, h1c->conn)) {
/* The connection got destroyed, let's leave */
TRACE_DEVEL("outgoing connection killed", H1_EV_STRM_END|H1_EV_H1C_END);
goto end;
}
}
else {
if (h1c->conn->owner == sess)
h1c->conn->owner = NULL;
/* mark that the tasklet may lose its context to another thread and
* that the handler needs to check it under the idle conns lock.
*/
HA_ATOMIC_OR(&h1c->wait_event.tasklet->state, TASK_F_USR1);
h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event);
xprt_set_idle(h1c->conn, h1c->conn->xprt, h1c->conn->xprt_ctx);
if (!srv_add_to_idle_list(objt_server(h1c->conn->target), h1c->conn, is_not_first)) {
/* The server doesn't want it, let's kill the connection right away */
h1c->conn->mux->destroy(h1c);
TRACE_DEVEL("outgoing connection killed", H1_EV_STRM_END|H1_EV_H1C_END);
goto end;
}
/* At this point, the connection has been added to the
* server idle list, so another thread may already have
* hijacked it, so we can't do anything with it.
*/
return;
}
}
release:
/* We don't want to close right now unless the connection is in error or shut down for writes */
if ((h1c->flags & H1C_F_ST_ERROR) ||
(h1c->conn->flags & (CO_FL_ERROR|CO_FL_SOCK_WR_SH)) ||
((h1c->flags & H1C_F_ST_SHUTDOWN) && !b_data(&h1c->obuf)) ||
!h1c->conn->owner) {
TRACE_DEVEL("killing dead connection", H1_EV_STRM_END, h1c->conn);
h1_release(h1c);
}
else {
if (h1c->flags & H1C_F_ST_IDLE) {
/* If we have a new request, process it immediately or
* subscribe for reads waiting for new data
*/
if (unlikely(b_data(&h1c->ibuf))) {
if (h1_process(h1c) == -1)
goto end;
}
else
h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event);
}
h1_set_idle_expiration(h1c);
h1_refresh_timeout(h1c);
}
end:
TRACE_LEAVE(H1_EV_STRM_END);
}
static void h1_shutr(struct conn_stream *cs, enum cs_shr_mode mode)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c;
if (!h1s)
return;
h1c = h1s->h1c;
TRACE_ENTER(H1_EV_STRM_SHUT, h1c->conn, h1s);
if (cs->flags & CS_FL_SHR)
goto end;
if (cs->flags & CS_FL_KILL_CONN) {
TRACE_STATE("stream wants to kill the connection", H1_EV_STRM_SHUT, h1c->conn, h1s);
goto do_shutr;
}
if (h1c->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH)) {
TRACE_STATE("shutdown on connection (error|rd_sh|wr_sh)", H1_EV_STRM_SHUT, h1c->conn, h1s);
goto do_shutr;
}
if (!(h1c->flags & (H1C_F_ST_READY|H1C_F_ST_ERROR))) {
/* Here attached is implicit because there is CS */
TRACE_STATE("keep connection alive (ALIVE but not READY nor ERROR)", H1_EV_STRM_SHUT, h1c->conn, h1s);
goto end;
}
if (h1s->flags & H1S_F_WANT_KAL) {
TRACE_STATE("keep connection alive (want_kal)", H1_EV_STRM_SHUT, h1c->conn, h1s);
goto end;
}
do_shutr:
/* NOTE: Be sure to handle abort (cf. h2_shutr) */
if (cs->flags & CS_FL_SHR)
goto end;
if (conn_xprt_ready(cs->conn) && cs->conn->xprt->shutr)
cs->conn->xprt->shutr(cs->conn, cs->conn->xprt_ctx,
(mode == CS_SHR_DRAIN));
end:
TRACE_LEAVE(H1_EV_STRM_SHUT, h1c->conn, h1s);
}
static void h1_shutw(struct conn_stream *cs, enum cs_shw_mode mode)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c;
if (!h1s)
return;
h1c = h1s->h1c;
TRACE_ENTER(H1_EV_STRM_SHUT, h1c->conn, h1s);
if (cs->flags & CS_FL_SHW)
goto end;
if (cs->flags & CS_FL_KILL_CONN) {
TRACE_STATE("stream wants to kill the connection", H1_EV_STRM_SHUT, h1c->conn, h1s);
goto do_shutw;
}
if (h1c->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH)) {
TRACE_STATE("shutdown on connection (error|rd_sh|wr_sh)", H1_EV_STRM_SHUT, h1c->conn, h1s);
goto do_shutw;
}
if (!(h1c->flags & (H1C_F_ST_READY|H1C_F_ST_ERROR))) {
/* Here attached is implicit because there is CS */
TRACE_STATE("keep connection alive (ALIVE but not READY nor ERROR)", H1_EV_STRM_SHUT, h1c->conn, h1s);
goto end;
}
if (((h1s->flags & H1S_F_WANT_KAL) && h1s->req.state == H1_MSG_DONE && h1s->res.state == H1_MSG_DONE)) {
TRACE_STATE("keep connection alive (want_kal)", H1_EV_STRM_SHUT, h1c->conn, h1s);
goto end;
}
do_shutw:
h1c->flags |= H1C_F_ST_SHUTDOWN;
if (!b_data(&h1c->obuf))
h1_shutw_conn(cs->conn, mode);
end:
TRACE_LEAVE(H1_EV_STRM_SHUT, h1c->conn, h1s);
}
static void h1_shutw_conn(struct connection *conn, enum cs_shw_mode mode)
{
struct h1c *h1c = conn->ctx;
if (conn->flags & CO_FL_SOCK_WR_SH)
return;
TRACE_ENTER(H1_EV_STRM_SHUT, conn, h1c->h1s);
conn_xprt_shutw(conn);
conn_sock_shutw(conn, (mode == CS_SHW_NORMAL));
TRACE_LEAVE(H1_EV_STRM_SHUT, conn, h1c->h1s);
}
/* Called from the upper layer, to unsubscribe <es> from events <event_type>
* The <es> pointer is not allowed to differ from the one passed to the
* subscribe() call. It always returns zero.
*/
static int h1_unsubscribe(struct conn_stream *cs, int event_type, struct wait_event *es)
{
struct h1s *h1s = cs->ctx;
if (!h1s)
return 0;
BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV));
BUG_ON(h1s->subs && h1s->subs != es);
es->events &= ~event_type;
if (!es->events)
h1s->subs = NULL;
if (event_type & SUB_RETRY_RECV)
TRACE_DEVEL("unsubscribe(recv)", H1_EV_STRM_RECV, h1s->h1c->conn, h1s);
if (event_type & SUB_RETRY_SEND)
TRACE_DEVEL("unsubscribe(send)", H1_EV_STRM_SEND, h1s->h1c->conn, h1s);
return 0;
}
/* Called from the upper layer, to subscribe <es> to events <event_type>. The
* event subscriber <es> is not allowed to change from a previous call as long
* as at least one event is still subscribed. The <event_type> must only be a
* combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0, unless
* the conn_stream <cs> was already detached, in which case it will return -1.
*/
static int h1_subscribe(struct conn_stream *cs, int event_type, struct wait_event *es)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c;
if (!h1s)
return -1;
BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV));
BUG_ON(h1s->subs && h1s->subs != es);
es->events |= event_type;
h1s->subs = es;
if (event_type & SUB_RETRY_RECV)
TRACE_DEVEL("subscribe(recv)", H1_EV_STRM_RECV, h1s->h1c->conn, h1s);
if (event_type & SUB_RETRY_SEND) {
TRACE_DEVEL("subscribe(send)", H1_EV_STRM_SEND, h1s->h1c->conn, h1s);
/*
* If the conn_stream attempt to subscribe, and the
* mux isn't subscribed to the connection, then it
* probably means the connection wasn't established
* yet, so we have to subscribe.
*/
h1c = h1s->h1c;
if (!(h1c->wait_event.events & SUB_RETRY_SEND))
h1c->conn->xprt->subscribe(h1c->conn,
h1c->conn->xprt_ctx,
SUB_RETRY_SEND,
&h1c->wait_event);
}
return 0;
}
/* Called from the upper layer, to receive data */
static size_t h1_rcv_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c = h1s->h1c;
struct h1m *h1m = (!(h1c->flags & H1C_F_IS_BACK) ? &h1s->req : &h1s->res);
size_t ret = 0;
TRACE_ENTER(H1_EV_STRM_RECV, h1c->conn, h1s, 0, (size_t[]){count});
/* Do nothing for now if not READY */
if (!(h1c->flags & H1C_F_ST_READY)) {
TRACE_DEVEL("h1c not ready yet", H1_EV_H1C_RECV|H1_EV_H1C_BLK, h1c->conn);
goto end;
}
if (!(h1c->flags & H1C_F_IN_ALLOC))
ret = h1_process_input(h1c, buf, count);
else
TRACE_DEVEL("h1c ibuf not allocated", H1_EV_H1C_RECV|H1_EV_H1C_BLK, h1c->conn);
if (flags & CO_RFL_BUF_FLUSH) {
if (h1m->state == H1_MSG_TUNNEL || (h1m->state == H1_MSG_DATA && h1m->curr_len)) {
h1c->flags |= H1C_F_WANT_SPLICE;
TRACE_STATE("Block xprt rcv_buf to flush stream's buffer (want_splice)", H1_EV_STRM_RECV, h1c->conn, h1s);
}
}
else {
if (h1m->state != H1_MSG_DONE && !(h1c->wait_event.events & SUB_RETRY_RECV))
h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event);
}
end:
TRACE_LEAVE(H1_EV_STRM_RECV, h1c->conn, h1s, 0, (size_t[]){ret});
return ret;
}
/* Called from the upper layer, to send data */
static size_t h1_snd_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c;
size_t total = 0;
if (!h1s)
return 0;
h1c = h1s->h1c;
TRACE_ENTER(H1_EV_STRM_SEND, h1c->conn, h1s, 0, (size_t[]){count});
/* If we're not connected yet, or we're waiting for a handshake, stop
* now, as we don't want to remove everything from the channel buffer
* before we're sure we can send it.
*/
if (h1c->conn->flags & CO_FL_WAIT_XPRT) {
TRACE_LEAVE(H1_EV_STRM_SEND, h1c->conn, h1s);
return 0;
}
if (h1c->flags & H1C_F_ST_ERROR) {
cs->flags |= CS_FL_ERROR;
TRACE_ERROR("H1C on error, leaving in error", H1_EV_STRM_SEND|H1_EV_H1C_ERR|H1_EV_H1S_ERR|H1_EV_STRM_ERR, h1c->conn, h1s);
return 0;
}
/* Inherit some flags from the upper layer */
h1c->flags &= ~(H1C_F_CO_MSG_MORE|H1C_F_CO_STREAMER);
if (flags & CO_SFL_MSG_MORE)
h1c->flags |= H1C_F_CO_MSG_MORE;
if (flags & CO_SFL_STREAMER)
h1c->flags |= H1C_F_CO_STREAMER;
while (count) {
size_t ret = 0;
if (!(h1c->flags & (H1C_F_OUT_FULL|H1C_F_OUT_ALLOC)))
ret = h1_process_output(h1c, buf, count);
else
TRACE_DEVEL("h1c obuf not allocated", H1_EV_STRM_SEND|H1_EV_H1S_BLK, h1c->conn, h1s);
if ((count - ret) > 0)
h1c->flags |= H1C_F_CO_MSG_MORE;
if (!ret)
break;
total += ret;
count -= ret;
if ((h1c->wait_event.events & SUB_RETRY_SEND) || !h1_send(h1c))
break;
}
if (h1c->flags & H1C_F_ST_ERROR) {
cs->flags |= CS_FL_ERROR;
TRACE_ERROR("reporting error to the app-layer stream", H1_EV_STRM_SEND|H1_EV_H1S_ERR|H1_EV_STRM_ERR, h1c->conn, h1s);
}
h1_refresh_timeout(h1c);
TRACE_LEAVE(H1_EV_STRM_SEND, h1c->conn, h1s, 0, (size_t[]){total});
return total;
}
#if defined(USE_LINUX_SPLICE)
/* Send and get, using splicing */
static int h1_rcv_pipe(struct conn_stream *cs, struct pipe *pipe, unsigned int count)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c = h1s->h1c;
struct h1m *h1m = (!(h1c->flags & H1C_F_IS_BACK) ? &h1s->req : &h1s->res);
int ret = 0;
TRACE_ENTER(H1_EV_STRM_RECV, cs->conn, h1s, 0, (size_t[]){count});
if ((h1m->flags & H1_MF_CHNK) || (h1m->state != H1_MSG_DATA && h1m->state != H1_MSG_TUNNEL)) {
h1c->flags &= ~H1C_F_WANT_SPLICE;
TRACE_STATE("Allow xprt rcv_buf on !(msg_data|msg_tunnel)", H1_EV_STRM_RECV, cs->conn, h1s);
if (!(h1c->wait_event.events & SUB_RETRY_RECV)) {
TRACE_STATE("restart receiving data, subscribing", H1_EV_STRM_RECV, cs->conn, h1s);
cs->conn->xprt->subscribe(cs->conn, cs->conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event);
}
goto end;
}
if (!(h1c->flags & H1C_F_WANT_SPLICE)) {
h1c->flags |= H1C_F_WANT_SPLICE;
TRACE_STATE("Block xprt rcv_buf to perform splicing", H1_EV_STRM_RECV, cs->conn, h1s);
}
if (h1s_data_pending(h1s)) {
TRACE_STATE("flush input buffer before splicing", H1_EV_STRM_RECV, cs->conn, h1s);
goto end;
}
if (!h1_recv_allowed(h1c)) {
TRACE_DEVEL("leaving on !recv_allowed", H1_EV_STRM_RECV, cs->conn, h1s);
goto end;
}
if (h1m->state == H1_MSG_DATA && count > h1m->curr_len)
count = h1m->curr_len;
ret = cs->conn->xprt->rcv_pipe(cs->conn, cs->conn->xprt_ctx, pipe, count);
if (h1m->state == H1_MSG_DATA && ret >= 0) {
h1m->curr_len -= ret;
if (!h1m->curr_len) {
h1c->flags &= ~H1C_F_WANT_SPLICE;
TRACE_STATE("Allow xprt rcv_buf on !curr_len", H1_EV_STRM_RECV, cs->conn, h1s);
}
}
end:
if (conn_xprt_read0_pending(cs->conn)) {
h1s->flags |= H1S_F_REOS;
h1c->flags &= ~H1C_F_WANT_SPLICE;
TRACE_STATE("Allow xprt rcv_buf on read0", H1_EV_STRM_RECV, cs->conn, h1s);
}
if ((h1s->flags & H1S_F_REOS) ||
(h1m->state != H1_MSG_TUNNEL && h1m->state != H1_MSG_DATA) ||
(h1m->state == H1_MSG_DATA && !h1m->curr_len)) {
TRACE_STATE("notify the mux can't use splicing anymore", H1_EV_STRM_RECV, h1c->conn, h1s);
cs->flags &= ~CS_FL_MAY_SPLICE;
}
TRACE_LEAVE(H1_EV_STRM_RECV, cs->conn, h1s, 0, (size_t[]){ret});
return ret;
}
static int h1_snd_pipe(struct conn_stream *cs, struct pipe *pipe)
{
struct h1s *h1s = cs->ctx;
int ret = 0;
TRACE_ENTER(H1_EV_STRM_SEND, cs->conn, h1s, 0, (size_t[]){pipe->data});
if (b_data(&h1s->h1c->obuf))
goto end;
ret = cs->conn->xprt->snd_pipe(cs->conn, cs->conn->xprt_ctx, pipe);
end:
if (pipe->data) {
if (!(h1s->h1c->wait_event.events & SUB_RETRY_SEND)) {
TRACE_STATE("more data to send, subscribing", H1_EV_STRM_SEND, cs->conn, h1s);
cs->conn->xprt->subscribe(cs->conn, cs->conn->xprt_ctx, SUB_RETRY_SEND, &h1s->h1c->wait_event);
}
}
TRACE_LEAVE(H1_EV_STRM_SEND, cs->conn, h1s, 0, (size_t[]){ret});
return ret;
}
#endif
static int h1_ctl(struct connection *conn, enum mux_ctl_type mux_ctl, void *output)
{
const struct h1c *h1c = conn->ctx;
int ret = 0;
switch (mux_ctl) {
case MUX_STATUS:
if (!(conn->flags & CO_FL_WAIT_XPRT))
ret |= MUX_STATUS_READY;
return ret;
case MUX_EXIT_STATUS:
ret = (h1c->errcode == 400 ? MUX_ES_INVALID_ERR :
(h1c->errcode == 408 ? MUX_ES_TOUT_ERR :
(h1c->errcode == 501 ? MUX_ES_NOTIMPL_ERR :
(h1c->errcode == 500 ? MUX_ES_INTERNAL_ERR :
MUX_ES_SUCCESS))));
return ret;
default:
return -1;
}
}
/* for debugging with CLI's "show fd" command */
static int h1_show_fd(struct buffer *msg, struct connection *conn)
{
struct h1c *h1c = conn->ctx;
struct h1s *h1s = h1c->h1s;
int ret = 0;
chunk_appendf(msg, " h1c.flg=0x%x .sub=%d .ibuf=%u@%p+%u/%u .obuf=%u@%p+%u/%u",
h1c->flags, h1c->wait_event.events,
(unsigned int)b_data(&h1c->ibuf), b_orig(&h1c->ibuf),
(unsigned int)b_head_ofs(&h1c->ibuf), (unsigned int)b_size(&h1c->ibuf),
(unsigned int)b_data(&h1c->obuf), b_orig(&h1c->obuf),
(unsigned int)b_head_ofs(&h1c->obuf), (unsigned int)b_size(&h1c->obuf));
if (h1s) {
char *method;
if (h1s->meth < HTTP_METH_OTHER)
method = http_known_methods[h1s->meth].ptr;
else
method = "UNKNOWN";
chunk_appendf(msg, " h1s=%p h1s.flg=0x%x .req.state=%s .res.state=%s"
" .meth=%s status=%d",
h1s, h1s->flags,
h1m_state_str(h1s->req.state),
h1m_state_str(h1s->res.state), method, h1s->status);
if (h1s->cs)
chunk_appendf(msg, " .cs.flg=0x%08x .cs.data=%p",
h1s->cs->flags, h1s->cs->data);
chunk_appendf(&trash, " .subs=%p", h1s->subs);
if (h1s->subs) {
chunk_appendf(&trash, "(ev=%d tl=%p", h1s->subs->events, h1s->subs->tasklet);
chunk_appendf(&trash, " tl.calls=%d tl.ctx=%p tl.fct=",
h1s->subs->tasklet->calls,
h1s->subs->tasklet->context);
if (h1s->subs->tasklet->calls >= 1000000)
ret = 1;
resolve_sym_name(&trash, NULL, h1s->subs->tasklet->process);
chunk_appendf(&trash, ")");
}
}
return ret;
}
/* Add an entry in the headers map. Returns -1 on error and 0 on success. */
static int add_hdr_case_adjust(const char *from, const char *to, char **err)
{
struct h1_hdr_entry *entry;
/* Be sure there is a non-empty <to> */
if (!strlen(to)) {
memprintf(err, "expect <to>");
return -1;
}
/* Be sure only the case differs between <from> and <to> */
if (strcasecmp(from, to) != 0) {
memprintf(err, "<from> and <to> must not differ execpt the case");
return -1;
}
/* Be sure <from> does not already existsin the tree */
if (ebis_lookup(&hdrs_map.map, from)) {
memprintf(err, "duplicate entry '%s'", from);
return -1;
}
/* Create the entry and insert it in the tree */
entry = malloc(sizeof(*entry));
if (!entry) {
memprintf(err, "out of memory");
return -1;
}
entry->node.key = strdup(from);
entry->name = ist(strdup(to));
if (!entry->node.key || !isttest(entry->name)) {
free(entry->node.key);
istfree(&entry->name);
free(entry);
memprintf(err, "out of memory");
return -1;
}
ebis_insert(&hdrs_map.map, &entry->node);
return 0;
}
/* Migrate the the connection to the current thread.
* Return 0 if successful, non-zero otherwise.
* Expected to be called with the old thread lock held.
*/
static int h1_takeover(struct connection *conn, int orig_tid)
{
struct h1c *h1c = conn->ctx;
struct task *task;
if (fd_takeover(conn->handle.fd, conn) != 0)
return -1;
if (conn->xprt->takeover && conn->xprt->takeover(conn, conn->xprt_ctx, orig_tid) != 0) {
/* We failed to takeover the xprt, even if the connection may
* still be valid, flag it as error'd, as we have already
* taken over the fd, and wake the tasklet, so that it will
* destroy it.
*/
conn->flags |= CO_FL_ERROR;
tasklet_wakeup_on(h1c->wait_event.tasklet, orig_tid);
return -1;
}
if (h1c->wait_event.events)
h1c->conn->xprt->unsubscribe(h1c->conn, h1c->conn->xprt_ctx,
h1c->wait_event.events, &h1c->wait_event);
/* To let the tasklet know it should free itself, and do nothing else,
* set its context to NULL.
*/
h1c->wait_event.tasklet->context = NULL;
tasklet_wakeup_on(h1c->wait_event.tasklet, orig_tid);
task = h1c->task;
if (task) {
task->context = NULL;
h1c->task = NULL;
__ha_barrier_store();
task_kill(task);
h1c->task = task_new(tid_bit);
if (!h1c->task) {
h1_release(h1c);
return -1;
}
h1c->task->process = h1_timeout_task;
h1c->task->context = h1c;
}
h1c->wait_event.tasklet = tasklet_new();
if (!h1c->wait_event.tasklet) {
h1_release(h1c);
return -1;
}
h1c->wait_event.tasklet->process = h1_io_cb;
h1c->wait_event.tasklet->context = h1c;
h1c->conn->xprt->subscribe(h1c->conn, h1c->conn->xprt_ctx,
SUB_RETRY_RECV, &h1c->wait_event);
return 0;
}
static void h1_hdeaders_case_adjust_deinit()
{
struct ebpt_node *node, *next;
struct h1_hdr_entry *entry;
node = ebpt_first(&hdrs_map.map);
while (node) {
next = ebpt_next(node);
ebpt_delete(node);
entry = container_of(node, struct h1_hdr_entry, node);
free(entry->node.key);
istfree(&entry->name);
free(entry);
node = next;
}
free(hdrs_map.name);
}
static int cfg_h1_headers_case_adjust_postparser()
{
FILE *file = NULL;
char *c, *key_beg, *key_end, *value_beg, *value_end;
char *err;
int rc, line = 0, err_code = 0;
if (!hdrs_map.name)
goto end;
file = fopen(hdrs_map.name, "r");
if (!file) {
ha_alert("config : h1-outgoing-headers-case-adjust-file '%s': failed to open file.\n",
hdrs_map.name);
err_code |= ERR_ALERT | ERR_FATAL;
goto end;
}
/* now parse all lines. The file may contain only two header name per
* line, separated by spaces. All heading and trailing spaces will be
* ignored. Lines starting with a # are ignored.
*/
while (fgets(trash.area, trash.size, file) != NULL) {
line++;
c = trash.area;
/* strip leading spaces and tabs */
while (*c == ' ' || *c == '\t')
c++;
/* ignore emptu lines, or lines beginning with a dash */
if (*c == '#' || *c == '\0' || *c == '\r' || *c == '\n')
continue;
/* look for the end of the key */
key_beg = c;
while (*c != '\0' && *c != ' ' && *c != '\t' && *c != '\n' && *c != '\r')
c++;
key_end = c;
/* strip middle spaces and tabs */
while (*c == ' ' || *c == '\t')
c++;
/* look for the end of the value, it is the end of the line */
value_beg = c;
while (*c && *c != '\n' && *c != '\r')
c++;
value_end = c;
/* trim possibly trailing spaces and tabs */
while (value_end > value_beg && (value_end[-1] == ' ' || value_end[-1] == '\t'))
value_end--;
/* set final \0 and check entries */
*key_end = '\0';
*value_end = '\0';
err = NULL;
rc = add_hdr_case_adjust(key_beg, value_beg, &err);
if (rc < 0) {
ha_alert("config : h1-outgoing-headers-case-adjust-file '%s' : %s at line %d.\n",
hdrs_map.name, err, line);
err_code |= ERR_ALERT | ERR_FATAL;
free(err);
goto end;
}
if (rc > 0) {
ha_warning("config : h1-outgoing-headers-case-adjust-file '%s' : %s at line %d.\n",
hdrs_map.name, err, line);
err_code |= ERR_WARN;
free(err);
}
}
end:
if (file)
fclose(file);
hap_register_post_deinit(h1_hdeaders_case_adjust_deinit);
return err_code;
}
/* config parser for global "h1-outgoing-header-case-adjust" */
static int cfg_parse_h1_header_case_adjust(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(2, args, err, NULL))
return -1;
if (!*(args[1]) || !*(args[2])) {
memprintf(err, "'%s' expects <from> and <to> as argument.", args[0]);
return -1;
}
return add_hdr_case_adjust(args[1], args[2], err);
}
/* config parser for global "h1-outgoing-headers-case-adjust-file" */
static int cfg_parse_h1_headers_case_adjust_file(char **args, int section_type, struct proxy *curpx,
const struct proxy *defpx, const char *file, int line,
char **err)
{
if (too_many_args(1, args, err, NULL))
return -1;
if (!*(args[1])) {
memprintf(err, "'%s' expects <file> as argument.", args[0]);
return -1;
}
free(hdrs_map.name);
hdrs_map.name = strdup(args[1]);
return 0;
}
/* config keyword parsers */
static struct cfg_kw_list cfg_kws = {{ }, {
{ CFG_GLOBAL, "h1-case-adjust", cfg_parse_h1_header_case_adjust },
{ CFG_GLOBAL, "h1-case-adjust-file", cfg_parse_h1_headers_case_adjust_file },
{ 0, NULL, NULL },
}
};
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
REGISTER_CONFIG_POSTPARSER("h1-headers-map", cfg_h1_headers_case_adjust_postparser);
/****************************************/
/* MUX initialization and instantiation */
/****************************************/
/* The mux operations */
static const struct mux_ops mux_h1_ops = {
.init = h1_init,
.wake = h1_wake,
.attach = h1_attach,
.get_first_cs = h1_get_first_cs,
.detach = h1_detach,
.destroy = h1_destroy,
.avail_streams = h1_avail_streams,
.used_streams = h1_used_streams,
.rcv_buf = h1_rcv_buf,
.snd_buf = h1_snd_buf,
#if defined(USE_LINUX_SPLICE)
.rcv_pipe = h1_rcv_pipe,
.snd_pipe = h1_snd_pipe,
#endif
.subscribe = h1_subscribe,
.unsubscribe = h1_unsubscribe,
.shutr = h1_shutr,
.shutw = h1_shutw,
.show_fd = h1_show_fd,
.ctl = h1_ctl,
.takeover = h1_takeover,
.flags = MX_FL_HTX,
.name = "H1",
};
/* this mux registers default HTX proto */
static struct mux_proto_list mux_proto_htx =
{ .token = IST(""), .mode = PROTO_MODE_HTTP, .side = PROTO_SIDE_BOTH, .mux = &mux_h1_ops };
INITCALL1(STG_REGISTER, register_mux_proto, &mux_proto_htx);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/