blob: e172b1d4e57b17220c55a44f80c1b62d80908dea [file] [log] [blame]
/*
* RAW transport layer over SOCK_STREAM sockets.
*
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <netinet/tcp.h>
#include <haproxy/api.h>
#include <haproxy/buf.h>
#include <haproxy/connection.h>
#include <haproxy/errors.h>
#include <haproxy/fd.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/global.h>
#include <haproxy/pipe.h>
#include <haproxy/tools.h>
#if defined(USE_LINUX_SPLICE)
/* A pipe contains 16 segments max, and it's common to see segments of 1448 bytes
* because of timestamps. Use this as a hint for not looping on splice().
*/
#define SPLICE_FULL_HINT 16*1448
/* how many data we attempt to splice at once when the buffer is configured for
* infinite forwarding */
#define MAX_SPLICE_AT_ONCE (1<<30)
/* Returns :
* -1 if splice() is not supported
* >= 0 to report the amount of spliced bytes.
* connection flags are updated (error, read0, wait_room, wait_data).
* The caller must have previously allocated the pipe.
*/
int raw_sock_to_pipe(struct connection *conn, void *xprt_ctx, struct pipe *pipe, unsigned int count)
{
int ret;
int retval = 0;
if (!conn_ctrl_ready(conn))
return 0;
BUG_ON(conn->flags & CO_FL_FDLESS);
if (!fd_recv_ready(conn->handle.fd))
return 0;
conn->flags &= ~CO_FL_WAIT_ROOM;
errno = 0;
/* Under Linux, if FD_POLL_HUP is set, we have reached the end.
* Since older splice() implementations were buggy and returned
* EAGAIN on end of read, let's bypass the call to splice() now.
*/
if (unlikely(!(fdtab[conn->handle.fd].state & FD_POLL_IN))) {
/* stop here if we reached the end of data */
if ((fdtab[conn->handle.fd].state & (FD_POLL_ERR|FD_POLL_HUP)) == FD_POLL_HUP)
goto out_read0;
/* report error on POLL_ERR before connection establishment */
if ((fdtab[conn->handle.fd].state & FD_POLL_ERR) && (conn->flags & CO_FL_WAIT_L4_CONN)) {
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
errno = 0; /* let the caller do a getsockopt() if it wants it */
goto leave;
}
}
while (count) {
if (count > MAX_SPLICE_AT_ONCE)
count = MAX_SPLICE_AT_ONCE;
ret = splice(conn->handle.fd, NULL, pipe->prod, NULL, count,
SPLICE_F_MOVE|SPLICE_F_NONBLOCK);
if (ret <= 0) {
if (ret == 0)
goto out_read0;
if (errno == EAGAIN || errno == EWOULDBLOCK) {
/* there are two reasons for EAGAIN :
* - nothing in the socket buffer (standard)
* - pipe is full
* The difference between these two situations
* is problematic. Since we don't know if the
* pipe is full, we'll stop if the pipe is not
* empty. Anyway, we will almost always fill or
* empty the pipe.
*/
if (pipe->data) {
/* always stop reading until the pipe is flushed */
conn->flags |= CO_FL_WAIT_ROOM;
break;
}
/* socket buffer exhausted */
fd_cant_recv(conn->handle.fd);
break;
}
else if (errno == ENOSYS || errno == EINVAL || errno == EBADF) {
/* splice not supported on this end, disable it.
* We can safely return -1 since there is no
* chance that any data has been piped yet.
*/
retval = -1;
goto leave;
}
else if (errno == EINTR) {
/* try again */
continue;
}
/* here we have another error */
conn->flags |= CO_FL_ERROR;
break;
} /* ret <= 0 */
retval += ret;
pipe->data += ret;
count -= ret;
if (pipe->data >= SPLICE_FULL_HINT || ret >= global.tune.recv_enough) {
/* We've read enough of it for this time, let's stop before
* being asked to poll.
*/
conn->flags |= CO_FL_WAIT_ROOM;
break;
}
} /* while */
if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN) && retval)
conn->flags &= ~CO_FL_WAIT_L4_CONN;
leave:
if (retval > 0) {
/* we count the total bytes sent, and the send rate for 32-byte
* blocks. The reason for the latter is that freq_ctr are
* limited to 4GB and that it's not enough per second.
*/
_HA_ATOMIC_ADD(&global.out_bytes, retval);
_HA_ATOMIC_ADD(&global.spliced_out_bytes, retval);
update_freq_ctr(&global.out_32bps, (retval + 16) / 32);
}
return retval;
out_read0:
conn_sock_read0(conn);
conn->flags &= ~CO_FL_WAIT_L4_CONN;
goto leave;
}
/* Send as many bytes as possible from the pipe to the connection's socket.
*/
int raw_sock_from_pipe(struct connection *conn, void *xprt_ctx, struct pipe *pipe)
{
int ret, done;
if (!conn_ctrl_ready(conn))
return 0;
BUG_ON(conn->flags & CO_FL_FDLESS);
if (!fd_send_ready(conn->handle.fd))
return 0;
if (conn->flags & CO_FL_SOCK_WR_SH) {
/* it's already closed */
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH;
errno = EPIPE;
return 0;
}
done = 0;
while (pipe->data) {
ret = splice(pipe->cons, NULL, conn->handle.fd, NULL, pipe->data,
SPLICE_F_MOVE|SPLICE_F_NONBLOCK);
if (ret <= 0) {
if (ret == 0 || errno == EAGAIN || errno == EWOULDBLOCK) {
fd_cant_send(conn->handle.fd);
break;
}
else if (errno == EINTR)
continue;
/* here we have another error */
conn->flags |= CO_FL_ERROR;
break;
}
done += ret;
pipe->data -= ret;
}
if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN) && done) {
conn->flags &= ~CO_FL_WAIT_L4_CONN;
}
return done;
}
#endif /* USE_LINUX_SPLICE */
/* Receive up to <count> bytes from connection <conn>'s socket and store them
* into buffer <buf>. Only one call to recv() is performed, unless the
* buffer wraps, in which case a second call may be performed. The connection's
* flags are updated with whatever special event is detected (error, read0,
* empty). The caller is responsible for taking care of those events and
* avoiding the call if inappropriate. The function does not call the
* connection's polling update function, so the caller is responsible for this.
* errno is cleared before starting so that the caller knows that if it spots an
* error without errno, it's pending and can be retrieved via getsockopt(SO_ERROR).
*/
static size_t raw_sock_to_buf(struct connection *conn, void *xprt_ctx, struct buffer *buf, size_t count, int flags)
{
ssize_t ret;
size_t try, done = 0;
if (!conn_ctrl_ready(conn))
return 0;
BUG_ON(conn->flags & CO_FL_FDLESS);
if (!fd_recv_ready(conn->handle.fd))
return 0;
conn->flags &= ~CO_FL_WAIT_ROOM;
errno = 0;
if (unlikely(!(fdtab[conn->handle.fd].state & FD_POLL_IN))) {
/* stop here if we reached the end of data */
if ((fdtab[conn->handle.fd].state & (FD_POLL_ERR|FD_POLL_HUP)) == FD_POLL_HUP)
goto read0;
/* report error on POLL_ERR before connection establishment */
if ((fdtab[conn->handle.fd].state & FD_POLL_ERR) && (conn->flags & CO_FL_WAIT_L4_CONN)) {
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
goto leave;
}
}
/* read the largest possible block. For this, we perform only one call
* to recv() unless the buffer wraps and we exactly fill the first hunk,
* in which case we accept to do it once again. A new attempt is made on
* EINTR too.
*/
while (count > 0) {
try = b_contig_space(buf);
if (!try)
break;
if (try > count)
try = count;
ret = recv(conn->handle.fd, b_tail(buf), try, 0);
if (ret > 0) {
b_add(buf, ret);
done += ret;
if (ret < try) {
/* socket buffer exhausted */
fd_cant_recv(conn->handle.fd);
/* unfortunately, on level-triggered events, POLL_HUP
* is generally delivered AFTER the system buffer is
* empty, unless the poller supports POLL_RDHUP. If
* we know this is the case, we don't try to read more
* as we know there's no more available. Similarly, if
* there's no problem with lingering we don't even try
* to read an unlikely close from the client since we'll
* close first anyway.
*/
if (fdtab[conn->handle.fd].state & FD_POLL_HUP)
goto read0;
if (!(fdtab[conn->handle.fd].state & FD_LINGER_RISK) ||
(cur_poller.flags & HAP_POLL_F_RDHUP)) {
break;
}
}
count -= ret;
if (flags & CO_RFL_READ_ONCE)
break;
}
else if (ret == 0) {
goto read0;
}
else if (errno == EAGAIN || errno == EWOULDBLOCK || errno == ENOTCONN) {
/* socket buffer exhausted */
fd_cant_recv(conn->handle.fd);
break;
}
else if (errno != EINTR) {
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
break;
}
}
if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN) && done)
conn->flags &= ~CO_FL_WAIT_L4_CONN;
leave:
return done;
read0:
conn_sock_read0(conn);
conn->flags &= ~CO_FL_WAIT_L4_CONN;
/* Now a final check for a possible asynchronous low-level error
* report. This can happen when a connection receives a reset
* after a shutdown, both POLL_HUP and POLL_ERR are queued, and
* we might have come from there by just checking POLL_HUP instead
* of recv()'s return value 0, so we have no way to tell there was
* an error without checking.
*/
if (unlikely(fdtab[conn->handle.fd].state & FD_POLL_ERR))
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
goto leave;
}
/* Send up to <count> pending bytes from buffer <buf> to connection <conn>'s
* socket. <flags> may contain some CO_SFL_* flags to hint the system about
* other pending data for example, but this flag is ignored at the moment.
* Only one call to send() is performed, unless the buffer wraps, in which case
* a second call may be performed. The connection's flags are updated with
* whatever special event is detected (error, empty). The caller is responsible
* for taking care of those events and avoiding the call if inappropriate. The
* function does not call the connection's polling update function, so the caller
* is responsible for this. It's up to the caller to update the buffer's contents
* based on the return value.
*/
static size_t raw_sock_from_buf(struct connection *conn, void *xprt_ctx, const struct buffer *buf, size_t count, int flags)
{
ssize_t ret;
size_t try, done;
int send_flag;
if (!conn_ctrl_ready(conn))
return 0;
BUG_ON(conn->flags & CO_FL_FDLESS);
if (!fd_send_ready(conn->handle.fd))
return 0;
if (unlikely(fdtab[conn->handle.fd].state & FD_POLL_ERR)) {
/* an error was reported on the FD, we can't send anymore */
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_WR_SH | CO_FL_SOCK_RD_SH;
errno = EPIPE;
return 0;
}
if (conn->flags & CO_FL_SOCK_WR_SH) {
/* it's already closed */
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH;
errno = EPIPE;
return 0;
}
done = 0;
/* send the largest possible block. For this we perform only one call
* to send() unless the buffer wraps and we exactly fill the first hunk,
* in which case we accept to do it once again.
*/
while (count) {
try = b_contig_data(buf, done);
if (try > count)
try = count;
send_flag = MSG_DONTWAIT | MSG_NOSIGNAL;
if (try < count || flags & CO_SFL_MSG_MORE)
send_flag |= MSG_MORE;
ret = send(conn->handle.fd, b_peek(buf, done), try, send_flag);
if (ret > 0) {
count -= ret;
done += ret;
/* if the system buffer is full, don't insist */
if (ret < try) {
fd_cant_send(conn->handle.fd);
break;
}
if (!count)
fd_stop_send(conn->handle.fd);
}
else if (ret == 0 || errno == EAGAIN || errno == EWOULDBLOCK || errno == ENOTCONN || errno == EINPROGRESS) {
/* nothing written, we need to poll for write first */
fd_cant_send(conn->handle.fd);
break;
}
else if (errno != EINTR) {
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
break;
}
}
if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN) && done) {
conn->flags &= ~CO_FL_WAIT_L4_CONN;
}
if (done > 0) {
/* we count the total bytes sent, and the send rate for 32-byte
* blocks. The reason for the latter is that freq_ctr are
* limited to 4GB and that it's not enough per second.
*/
_HA_ATOMIC_ADD(&global.out_bytes, done);
update_freq_ctr(&global.out_32bps, (done + 16) / 32);
}
return done;
}
/* Called from the upper layer, to subscribe <es> to events <event_type>. The
* event subscriber <es> is not allowed to change from a previous call as long
* as at least one event is still subscribed. The <event_type> must only be a
* combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0.
*/
static int raw_sock_subscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es)
{
return conn_subscribe(conn, xprt_ctx, event_type, es);
}
/* Called from the upper layer, to unsubscribe <es> from events <event_type>.
* The <es> pointer is not allowed to differ from the one passed to the
* subscribe() call. It always returns zero.
*/
static int raw_sock_unsubscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es)
{
return conn_unsubscribe(conn, xprt_ctx, event_type, es);
}
static void raw_sock_close(struct connection *conn, void *xprt_ctx)
{
if (conn->subs != NULL) {
conn_unsubscribe(conn, NULL, conn->subs->events, conn->subs);
}
}
/* We can't have an underlying XPRT, so just return -1 to signify failure */
static int raw_sock_remove_xprt(struct connection *conn, void *xprt_ctx, void *toremove_ctx, const struct xprt_ops *newops, void *newctx)
{
/* This is the lowest xprt we can have, so if we get there we didn't
* find the xprt we wanted to remove, that's a bug
*/
BUG_ON(1);
return -1;
}
/* transport-layer operations for RAW sockets */
static struct xprt_ops raw_sock = {
.snd_buf = raw_sock_from_buf,
.rcv_buf = raw_sock_to_buf,
.subscribe = raw_sock_subscribe,
.unsubscribe = raw_sock_unsubscribe,
.remove_xprt = raw_sock_remove_xprt,
#if defined(USE_LINUX_SPLICE)
.rcv_pipe = raw_sock_to_pipe,
.snd_pipe = raw_sock_from_pipe,
#endif
.shutr = NULL,
.shutw = NULL,
.close = raw_sock_close,
.name = "RAW",
};
static void __raw_sock_init(void)
{
xprt_register(XPRT_RAW, &raw_sock);
}
INITCALL0(STG_REGISTER, __raw_sock_init);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/