blob: b8337b313512fbc7f02b9f0198cbd2ca7dbe0c65 [file] [log] [blame]
/*
* HA-Proxy : High Availability-enabled HTTP/TCP proxy
* Copyright 2000-2018 Willy Tarreau <willy@haproxy.org>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Please refer to RFC7230 - RFC7235 informations about HTTP protocol, and
* RFC6265 for informations about cookies usage. More generally, the IETF HTTP
* Working Group's web site should be consulted for protocol related changes :
*
* http://ftp.ics.uci.edu/pub/ietf/http/
*
* Pending bugs (may be not fixed because never reproduced) :
* - solaris only : sometimes, an HTTP proxy with only a dispatch address causes
* the proxy to terminate (no core) if the client breaks the connection during
* the response. Seen on 1.1.8pre4, but never reproduced. May not be related to
* the snprintf() bug since requests were simple (GET / HTTP/1.0), but may be
* related to missing setsid() (fixed in 1.1.15)
* - a proxy with an invalid config will prevent the startup even if disabled.
*
* ChangeLog has moved to the CHANGELOG file.
*
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <ctype.h>
#include <dirent.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/tcp.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <net/if.h>
#include <netdb.h>
#include <fcntl.h>
#include <errno.h>
#include <signal.h>
#include <stdarg.h>
#include <sys/resource.h>
#include <sys/wait.h>
#include <time.h>
#include <syslog.h>
#include <grp.h>
#ifdef USE_CPU_AFFINITY
#include <sched.h>
#if defined(__FreeBSD__) || defined(__DragonFly__)
#include <sys/param.h>
#ifdef __FreeBSD__
#include <sys/cpuset.h>
#endif
#include <pthread_np.h>
#endif
#endif
#ifdef DEBUG_FULL
#include <assert.h>
#endif
#if defined(USE_SYSTEMD)
#include <systemd/sd-daemon.h>
#endif
#include <common/base64.h>
#include <common/cfgparse.h>
#include <common/chunk.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/defaults.h>
#include <common/errors.h>
#include <common/memory.h>
#include <common/mini-clist.h>
#include <common/namespace.h>
#include <common/regex.h>
#include <common/standard.h>
#include <common/time.h>
#include <common/uri_auth.h>
#include <common/version.h>
#include <common/hathreads.h>
#include <types/capture.h>
#include <types/cli.h>
#include <types/filters.h>
#include <types/global.h>
#include <types/acl.h>
#include <types/peers.h>
#include <proto/acl.h>
#include <proto/activity.h>
#include <proto/arg.h>
#include <proto/auth.h>
#include <proto/backend.h>
#include <proto/channel.h>
#include <proto/cli.h>
#include <proto/connection.h>
#include <proto/fd.h>
#include <proto/filters.h>
#include <proto/hdr_idx.h>
#include <proto/hlua.h>
#include <proto/http_rules.h>
#include <proto/listener.h>
#include <proto/log.h>
#include <proto/pattern.h>
#include <proto/protocol.h>
#include <proto/proto_http.h>
#include <proto/proxy.h>
#include <proto/queue.h>
#include <proto/server.h>
#include <proto/session.h>
#include <proto/stream.h>
#include <proto/signal.h>
#include <proto/task.h>
#include <proto/dns.h>
#include <proto/vars.h>
#ifdef USE_OPENSSL
#include <proto/ssl_sock.h>
#endif
/* list of config files */
static struct list cfg_cfgfiles = LIST_HEAD_INIT(cfg_cfgfiles);
int pid; /* current process id */
int relative_pid = 1; /* process id starting at 1 */
unsigned long pid_bit = 1; /* bit corresponding to the process id */
volatile unsigned long sleeping_thread_mask; /* Threads that are about to sleep in poll() */
/* global options */
struct global global = {
.hard_stop_after = TICK_ETERNITY,
.nbproc = 1,
.nbthread = 1,
.req_count = 0,
.logsrvs = LIST_HEAD_INIT(global.logsrvs),
.maxzlibmem = 0,
.comp_rate_lim = 0,
.ssl_server_verify = SSL_SERVER_VERIFY_REQUIRED,
.unix_bind = {
.ux = {
.uid = -1,
.gid = -1,
.mode = 0,
}
},
.tune = {
.bufsize = BUFSIZE,
.maxrewrite = -1,
.chksize = BUFSIZE,
.reserved_bufs = RESERVED_BUFS,
.pattern_cache = DEFAULT_PAT_LRU_SIZE,
#ifdef USE_OPENSSL
.sslcachesize = SSLCACHESIZE,
#endif
.comp_maxlevel = 1,
#ifdef DEFAULT_IDLE_TIMER
.idle_timer = DEFAULT_IDLE_TIMER,
#else
.idle_timer = 1000, /* 1 second */
#endif
},
#ifdef USE_OPENSSL
#ifdef DEFAULT_MAXSSLCONN
.maxsslconn = DEFAULT_MAXSSLCONN,
#endif
#endif
/* others NULL OK */
};
/*********************************************************************/
int stopping; /* non zero means stopping in progress */
int killed; /* non zero means a hard-stop is triggered */
int jobs = 0; /* number of active jobs (conns, listeners, active tasks, ...) */
int unstoppable_jobs = 0; /* number of active jobs that can't be stopped during a soft stop */
int active_peers = 0; /* number of active peers (connection attempts and connected) */
int connected_peers = 0; /* number of connected peers (verified ones) */
/* Here we store informations about the pids of the processes we may pause
* or kill. We will send them a signal every 10 ms until we can bind to all
* our ports. With 200 retries, that's about 2 seconds.
*/
#define MAX_START_RETRIES 200
static int *oldpids = NULL;
static int oldpids_sig; /* use USR1 or TERM */
/* Path to the unix socket we use to retrieve listener sockets from the old process */
static const char *old_unixsocket;
static char *cur_unixsocket = NULL;
int atexit_flag = 0;
static int exitcode = -1;
int nb_oldpids = 0;
const int zero = 0;
const int one = 1;
const struct linger nolinger = { .l_onoff = 1, .l_linger = 0 };
char hostname[MAX_HOSTNAME_LEN];
char localpeer[MAX_HOSTNAME_LEN];
/* used from everywhere just to drain results we don't want to read and which
* recent versions of gcc increasingly and annoyingly complain about.
*/
int shut_your_big_mouth_gcc_int = 0;
int *children = NULL; /* store PIDs of children in master workers mode */
static char **next_argv = NULL;
struct list proc_list = LIST_HEAD_INIT(proc_list);
int master = 0; /* 1 if in master, 0 if in child */
struct mworker_proc *proc_self = NULL;
/* list of the temporarily limited listeners because of lack of resource */
struct list global_listener_queue = LIST_HEAD_INIT(global_listener_queue);
struct task *global_listener_queue_task;
static struct task *manage_global_listener_queue(struct task *t, void *context, unsigned short state);
static void *run_thread_poll_loop(void *data);
/* bitfield of a few warnings to emit just once (WARN_*) */
unsigned int warned = 0;
/* master CLI configuration (-S flag) */
struct list mworker_cli_conf = LIST_HEAD_INIT(mworker_cli_conf);
/* These are strings to be reported in the output of "haproxy -vv". They may
* either be constants (in which case must_free must be zero) or dynamically
* allocated strings to pass to free() on exit, and in this case must_free
* must be non-zero.
*/
struct list build_opts_list = LIST_HEAD_INIT(build_opts_list);
struct build_opts_str {
struct list list;
const char *str;
int must_free;
};
/* These functions are called just after the point where the program exits
* after a config validity check, so they are generally suited for resource
* allocation and slow initializations that should be skipped during basic
* config checks. The functions must return 0 on success, or a combination
* of ERR_* flags (ERR_WARN, ERR_ABORT, ERR_FATAL, ...). The 2 latter cause
* and immediate exit, so the function must have emitted any useful error.
*/
struct list post_check_list = LIST_HEAD_INIT(post_check_list);
struct post_check_fct {
struct list list;
int (*fct)();
};
/* These functions are called when freeing the global sections at the end
* of deinit, after everything is stopped. They don't return anything, and
* they work in best effort mode as their sole goal is to make valgrind
* mostly happy.
*/
struct list post_deinit_list = LIST_HEAD_INIT(post_deinit_list);
struct post_deinit_fct {
struct list list;
void (*fct)();
};
/* These functions are called for each thread just after the thread creation
* and before running the scheduler. They should be used to do per-thread
* initializations. They must return 0 if an error occurred. */
struct list per_thread_init_list = LIST_HEAD_INIT(per_thread_init_list);
struct per_thread_init_fct {
struct list list;
int (*fct)();
};
/* These functions are called for each thread just after the scheduler loop and
* before exiting the thread. They don't return anything and, as for post-deinit
* functions, they work in best effort mode as their sole goal is to make
* valgrind mostly happy. */
struct list per_thread_deinit_list = LIST_HEAD_INIT(per_thread_deinit_list);
struct per_thread_deinit_fct {
struct list list;
void (*fct)();
};
/*********************************************************************/
/* general purpose functions ***************************************/
/*********************************************************************/
/* used to register some build option strings at boot. Set must_free to
* non-zero if the string must be freed upon exit.
*/
void hap_register_build_opts(const char *str, int must_free)
{
struct build_opts_str *b;
b = calloc(1, sizeof(*b));
if (!b) {
fprintf(stderr, "out of memory\n");
exit(1);
}
b->str = str;
b->must_free = must_free;
LIST_ADDQ(&build_opts_list, &b->list);
}
/* used to register some initialization functions to call after the checks. */
void hap_register_post_check(int (*fct)())
{
struct post_check_fct *b;
b = calloc(1, sizeof(*b));
if (!b) {
fprintf(stderr, "out of memory\n");
exit(1);
}
b->fct = fct;
LIST_ADDQ(&post_check_list, &b->list);
}
/* used to register some de-initialization functions to call after everything
* has stopped.
*/
void hap_register_post_deinit(void (*fct)())
{
struct post_deinit_fct *b;
b = calloc(1, sizeof(*b));
if (!b) {
fprintf(stderr, "out of memory\n");
exit(1);
}
b->fct = fct;
LIST_ADDQ(&post_deinit_list, &b->list);
}
/* used to register some initialization functions to call for each thread. */
void hap_register_per_thread_init(int (*fct)())
{
struct per_thread_init_fct *b;
b = calloc(1, sizeof(*b));
if (!b) {
fprintf(stderr, "out of memory\n");
exit(1);
}
b->fct = fct;
LIST_ADDQ(&per_thread_init_list, &b->list);
}
/* used to register some de-initialization functions to call for each thread. */
void hap_register_per_thread_deinit(void (*fct)())
{
struct per_thread_deinit_fct *b;
b = calloc(1, sizeof(*b));
if (!b) {
fprintf(stderr, "out of memory\n");
exit(1);
}
b->fct = fct;
LIST_ADDQ(&per_thread_deinit_list, &b->list);
}
static void display_version()
{
printf("HA-Proxy version " HAPROXY_VERSION " " HAPROXY_DATE"\n");
printf("Copyright 2000-2018 Willy Tarreau <willy@haproxy.org>\n\n");
}
static void display_build_opts()
{
struct build_opts_str *item;
printf("Build options :"
#ifdef BUILD_TARGET
"\n TARGET = " BUILD_TARGET
#endif
#ifdef BUILD_CPU
"\n CPU = " BUILD_CPU
#endif
#ifdef BUILD_CC
"\n CC = " BUILD_CC
#endif
#ifdef BUILD_CFLAGS
"\n CFLAGS = " BUILD_CFLAGS
#endif
#ifdef BUILD_OPTIONS
"\n OPTIONS = " BUILD_OPTIONS
#endif
"\n\nDefault settings :"
"\n maxconn = %d, bufsize = %d, maxrewrite = %d, maxpollevents = %d"
"\n\n",
DEFAULT_MAXCONN, BUFSIZE, MAXREWRITE, MAX_POLL_EVENTS);
list_for_each_entry(item, &build_opts_list, list) {
puts(item->str);
}
putchar('\n');
list_pollers(stdout);
putchar('\n');
list_mux_proto(stdout);
putchar('\n');
list_filters(stdout);
putchar('\n');
}
/*
* This function prints the command line usage and exits
*/
static void usage(char *name)
{
display_version();
fprintf(stderr,
"Usage : %s [-f <cfgfile|cfgdir>]* [ -vdV"
"D ] [ -n <maxconn> ] [ -N <maxpconn> ]\n"
" [ -p <pidfile> ] [ -m <max megs> ] [ -C <dir> ] [-- <cfgfile>*]\n"
" -v displays version ; -vv shows known build options.\n"
" -d enters debug mode ; -db only disables background mode.\n"
" -dM[<byte>] poisons memory with <byte> (defaults to 0x50)\n"
" -V enters verbose mode (disables quiet mode)\n"
" -D goes daemon ; -C changes to <dir> before loading files.\n"
" -W master-worker mode.\n"
#if defined(USE_SYSTEMD)
" -Ws master-worker mode with systemd notify support.\n"
#endif
" -q quiet mode : don't display messages\n"
" -c check mode : only check config files and exit\n"
" -n sets the maximum total # of connections (%d)\n"
" -m limits the usable amount of memory (in MB)\n"
" -N sets the default, per-proxy maximum # of connections (%d)\n"
" -L set local peer name (default to hostname)\n"
" -p writes pids of all children to this file\n"
#if defined(ENABLE_EPOLL)
" -de disables epoll() usage even when available\n"
#endif
#if defined(ENABLE_KQUEUE)
" -dk disables kqueue() usage even when available\n"
#endif
#if defined(ENABLE_POLL)
" -dp disables poll() usage even when available\n"
#endif
#if defined(CONFIG_HAP_LINUX_SPLICE)
" -dS disables splice usage (broken on old kernels)\n"
#endif
#if defined(USE_GETADDRINFO)
" -dG disables getaddrinfo() usage\n"
#endif
#if defined(SO_REUSEPORT)
" -dR disables SO_REUSEPORT usage\n"
#endif
" -dr ignores server address resolution failures\n"
" -dV disables SSL verify on servers side\n"
" -sf/-st [pid ]* finishes/terminates old pids.\n"
" -x <unix_socket> get listening sockets from a unix socket\n"
" -S <unix_socket>[,<bind options>...] new stats socket for the master\n"
"\n",
name, DEFAULT_MAXCONN, cfg_maxpconn);
exit(1);
}
/*********************************************************************/
/* more specific functions ***************************************/
/*********************************************************************/
/* sends the signal <sig> to all pids found in <oldpids>. Returns the number of
* pids the signal was correctly delivered to.
*/
static int tell_old_pids(int sig)
{
int p;
int ret = 0;
for (p = 0; p < nb_oldpids; p++)
if (kill(oldpids[p], sig) == 0)
ret++;
return ret;
}
/* return 1 if a pid is a current child otherwise 0 */
int current_child(int pid)
{
int i;
for (i = 0; i < global.nbproc; i++) {
if (children[i] == pid)
return 1;
}
return 0;
}
static void mworker_block_signals()
{
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGUSR1);
sigaddset(&set, SIGUSR2);
sigaddset(&set, SIGHUP);
sigaddset(&set, SIGCHLD);
ha_sigmask(SIG_SETMASK, &set, NULL);
}
static void mworker_unblock_signals()
{
haproxy_unblock_signals();
}
/*
* Send signal to every known children.
*/
static void mworker_kill(int sig)
{
int i;
tell_old_pids(sig);
if (children) {
for (i = 0; i < global.nbproc; i++)
kill(children[i], sig);
}
}
/*
* serialize the proc list and put it in the environment
*/
static void mworker_proc_list_to_env()
{
char *msg = NULL;
struct mworker_proc *child;
list_for_each_entry(child, &proc_list, list) {
memprintf(&msg, "%s|type=%c;fd=%d;pid=%d;rpid=%d;reloads=%d;timestamp=%d", msg ? msg : "", child->type, child->ipc_fd[0], child->pid, child->relative_pid, child->reloads, child->timestamp);
}
if (msg)
setenv("HAPROXY_PROCESSES", msg, 1);
}
/*
* unserialize the proc list from the environment
*/
static void mworker_env_to_proc_list()
{
char *msg, *token = NULL, *s1;
msg = getenv("HAPROXY_PROCESSES");
if (!msg)
return;
while ((token = strtok_r(msg, "|", &s1))) {
struct mworker_proc *child;
char *subtoken = NULL;
char *s2;
msg = NULL;
child = calloc(1, sizeof(*child));
while ((subtoken = strtok_r(token, ";", &s2))) {
token = NULL;
if (strncmp(subtoken, "type=", 5) == 0) {
child->type = *(subtoken+5);
if (child->type == 'm') /* we are in the master, assign it */
proc_self = child;
} else if (strncmp(subtoken, "fd=", 3) == 0) {
child->ipc_fd[0] = atoi(subtoken+3);
} else if (strncmp(subtoken, "pid=", 4) == 0) {
child->pid = atoi(subtoken+4);
} else if (strncmp(subtoken, "rpid=", 5) == 0) {
child->relative_pid = atoi(subtoken+5);
} else if (strncmp(subtoken, "reloads=", 8) == 0) {
/* we reloaded this process once more */
child->reloads = atoi(subtoken+8) + 1;
} else if (strncmp(subtoken, "timestamp=", 10) == 0) {
child->timestamp = atoi(subtoken+10);
}
}
if (child->pid)
LIST_ADDQ(&proc_list, &child->list);
else
free(child);
}
unsetenv("HAPROXY_PROCESSES");
}
/*
* Upon a reload, the master worker needs to close all listeners FDs but the mworker_pipe
* fd, and the FD provided by fd@
*/
static void mworker_cleanlisteners()
{
struct listener *l, *l_next;
struct proxy *curproxy;
struct peers *curpeers;
/* we might have to unbind some peers sections from some processes */
for (curpeers = cfg_peers; curpeers; curpeers = curpeers->next) {
if (!curpeers->peers_fe)
continue;
stop_proxy(curpeers->peers_fe);
/* disable this peer section so that it kills itself */
signal_unregister_handler(curpeers->sighandler);
task_delete(curpeers->sync_task);
task_free(curpeers->sync_task);
curpeers->sync_task = NULL;
task_free(curpeers->peers_fe->task);
curpeers->peers_fe->task = NULL;
curpeers->peers_fe = NULL;
}
for (curproxy = proxies_list; curproxy; curproxy = curproxy->next) {
list_for_each_entry_safe(l, l_next, &curproxy->conf.listeners, by_fe) {
/* remove the listener, but not those we need in the master... */
if (!(l->options & LI_O_MWORKER)) {
/* unbind the listener but does not close if
the FD is inherited with fd@ from the parent
process */
if (l->options & LI_O_INHERITED)
unbind_listener_no_close(l);
else
unbind_listener(l);
delete_listener(l);
}
}
}
}
/*
* remove a pid forom the olpid array and decrease nb_oldpids
* return 1 pid was found otherwise return 0
*/
int delete_oldpid(int pid)
{
int i;
for (i = 0; i < nb_oldpids; i++) {
if (oldpids[i] == pid) {
oldpids[i] = oldpids[nb_oldpids - 1];
oldpids[nb_oldpids - 1] = 0;
nb_oldpids--;
return 1;
}
}
return 0;
}
static void get_cur_unixsocket()
{
/* if -x was used, try to update the stat socket if not available anymore */
if (global.stats_fe) {
struct bind_conf *bind_conf;
/* pass through all stats socket */
list_for_each_entry(bind_conf, &global.stats_fe->conf.bind, by_fe) {
struct listener *l;
list_for_each_entry(l, &bind_conf->listeners, by_bind) {
if (l->addr.ss_family == AF_UNIX &&
(bind_conf->level & ACCESS_FD_LISTENERS)) {
const struct sockaddr_un *un;
un = (struct sockaddr_un *)&l->addr;
/* priority to old_unixsocket */
if (!cur_unixsocket) {
cur_unixsocket = strdup(un->sun_path);
} else {
if (old_unixsocket && !strcmp(un->sun_path, old_unixsocket)) {
free(cur_unixsocket);
cur_unixsocket = strdup(old_unixsocket);
return;
}
}
}
}
}
}
if (!cur_unixsocket && old_unixsocket)
cur_unixsocket = strdup(old_unixsocket);
}
/*
* When called, this function reexec haproxy with -sf followed by current
* children PIDs and possibly old children PIDs if they didn't leave yet.
*/
static void mworker_reload()
{
int next_argc = 0;
int j;
char *msg = NULL;
mworker_block_signals();
#if defined(USE_SYSTEMD)
if (global.tune.options & GTUNE_USE_SYSTEMD)
sd_notify(0, "RELOADING=1");
#endif
setenv("HAPROXY_MWORKER_REEXEC", "1", 1);
mworker_proc_list_to_env(); /* put the children description in the env */
/* compute length */
while (next_argv[next_argc])
next_argc++;
/* 1 for haproxy -sf, 2 for -x /socket */
next_argv = realloc(next_argv, (next_argc + 1 + 2 + global.nbproc + nb_oldpids + 1) * sizeof(char *));
if (next_argv == NULL)
goto alloc_error;
/* add -sf <PID>* to argv */
if (children || nb_oldpids > 0)
next_argv[next_argc++] = "-sf";
if (children) {
for (j = 0; j < global.nbproc; next_argc++,j++) {
next_argv[next_argc] = memprintf(&msg, "%d", children[j]);
if (next_argv[next_argc] == NULL)
goto alloc_error;
msg = NULL;
}
}
/* copy old process PIDs */
for (j = 0; j < nb_oldpids; next_argc++,j++) {
next_argv[next_argc] = memprintf(&msg, "%d", oldpids[j]);
if (next_argv[next_argc] == NULL)
goto alloc_error;
msg = NULL;
}
next_argv[next_argc] = NULL;
/* add the -x option with the stat socket */
if (cur_unixsocket) {
next_argv[next_argc++] = "-x";
next_argv[next_argc++] = (char *)cur_unixsocket;
next_argv[next_argc++] = NULL;
}
ha_warning("Reexecuting Master process\n");
execvp(next_argv[0], next_argv);
ha_warning("Failed to reexecute the master process [%d]: %s\n", pid, strerror(errno));
return;
alloc_error:
ha_warning("Failed to reexecute the master process [%d]: Cannot allocate memory\n", pid);
return;
}
/*
* When called, this function reexec haproxy with -sf followed by current
* children PIDs and possibly old children PIDs if they didn't leave yet.
*/
static void mworker_catch_sighup(struct sig_handler *sh)
{
mworker_reload();
}
static void mworker_catch_sigterm(struct sig_handler *sh)
{
int sig = sh->arg;
#if defined(USE_SYSTEMD)
if (global.tune.options & GTUNE_USE_SYSTEMD) {
sd_notify(0, "STOPPING=1");
}
#endif
ha_warning("Exiting Master process...\n");
mworker_kill(sig);
}
/*
* Wait for every children to exit
*/
static void mworker_catch_sigchld(struct sig_handler *sh)
{
int exitpid = -1;
int status = 0;
struct mworker_proc *child, *it;
restart_wait:
exitpid = waitpid(-1, &status, WNOHANG);
if (exitpid > 0) {
if (WIFEXITED(status))
status = WEXITSTATUS(status);
else if (WIFSIGNALED(status))
status = 128 + WTERMSIG(status);
else if (WIFSTOPPED(status))
status = 128 + WSTOPSIG(status);
else
status = 255;
list_for_each_entry_safe(child, it, &proc_list, list) {
if (child->pid != exitpid)
continue;
LIST_DEL(&child->list);
close(child->ipc_fd[0]);
break;
}
if (!children) {
ha_warning("Worker %d exited with code %d (%s)\n", exitpid, status, (status >= 128) ? strsignal(status - 128) : "Exit");
} else {
/* check if exited child was in the current children list */
if (current_child(exitpid)) {
ha_alert("Current worker #%d (%d) exited with code %d (%s)\n", child->relative_pid, exitpid, status, (status >= 128) ? strsignal(status - 128) : "Exit");
if (status != 0 && status != 130 && status != 143
&& !(global.tune.options & GTUNE_NOEXIT_ONFAILURE)) {
ha_alert("exit-on-failure: killing every workers with SIGTERM\n");
if (exitcode < 0)
exitcode = status;
mworker_kill(SIGTERM);
}
} else {
ha_warning("Former worker #%d (%d) exited with code %d (%s)\n", child->relative_pid, exitpid, status, (status >= 128) ? strsignal(status - 128) : "Exit");
delete_oldpid(exitpid);
}
}
free(child);
/* do it again to check if it was the last worker */
goto restart_wait;
}
/* Better rely on the system than on a list of process to check if it was the last one */
else if (exitpid == -1 && errno == ECHILD) {
ha_warning("All workers exited. Exiting... (%d)\n", (exitcode > 0) ? exitcode : status);
atexit_flag = 0;
if (exitcode > 0)
exit(exitcode);
exit(status); /* parent must leave using the latest status code known */
}
}
static void mworker_loop()
{
#if defined(USE_SYSTEMD)
if (global.tune.options & GTUNE_USE_SYSTEMD)
sd_notifyf(0, "READY=1\nMAINPID=%lu", (unsigned long)getpid());
#endif
master = 1;
signal_unregister(SIGUSR1);
signal_unregister(SIGHUP);
signal_unregister(SIGQUIT);
signal_register_fct(SIGTERM, mworker_catch_sigterm, SIGTERM);
signal_register_fct(SIGUSR1, mworker_catch_sigterm, SIGUSR1);
signal_register_fct(SIGINT, mworker_catch_sigterm, SIGINT);
signal_register_fct(SIGHUP, mworker_catch_sighup, SIGHUP);
signal_register_fct(SIGUSR2, mworker_catch_sighup, SIGUSR2);
signal_register_fct(SIGCHLD, mworker_catch_sigchld, SIGCHLD);
mworker_unblock_signals();
mworker_cleanlisteners();
mworker_catch_sigchld(NULL); /* ensure we clean the children in case
some SIGCHLD were lost */
global.nbthread = 1;
relative_pid = 1;
pid_bit = 1;
jobs++; /* this is the "master" job, we want to take care of the
signals even if there is no listener so the poll loop don't
leave */
fork_poller();
run_thread_poll_loop((int []){0});
}
/*
* Reexec the process in failure mode, instead of exiting
*/
void reexec_on_failure()
{
if (!atexit_flag)
return;
setenv("HAPROXY_MWORKER_WAIT_ONLY", "1", 1);
ha_warning("Reexecuting Master process in waitpid mode\n");
mworker_reload();
}
/*
* upon SIGUSR1, let's have a soft stop. Note that soft_stop() broadcasts
* a signal zero to all subscribers. This means that it's as easy as
* subscribing to signal 0 to get informed about an imminent shutdown.
*/
static void sig_soft_stop(struct sig_handler *sh)
{
soft_stop();
signal_unregister_handler(sh);
pool_gc(NULL);
}
/*
* upon SIGTTOU, we pause everything
*/
static void sig_pause(struct sig_handler *sh)
{
pause_proxies();
pool_gc(NULL);
}
/*
* upon SIGTTIN, let's have a soft stop.
*/
static void sig_listen(struct sig_handler *sh)
{
resume_proxies();
}
/*
* this function dumps every server's state when the process receives SIGHUP.
*/
static void sig_dump_state(struct sig_handler *sh)
{
struct proxy *p = proxies_list;
ha_warning("SIGHUP received, dumping servers states.\n");
while (p) {
struct server *s = p->srv;
send_log(p, LOG_NOTICE, "SIGHUP received, dumping servers states for proxy %s.\n", p->id);
while (s) {
chunk_printf(&trash,
"SIGHUP: Server %s/%s is %s. Conn: %d act, %d pend, %lld tot.",
p->id, s->id,
(s->cur_state != SRV_ST_STOPPED) ? "UP" : "DOWN",
s->cur_sess, s->nbpend, s->counters.cum_sess);
ha_warning("%s\n", trash.area);
send_log(p, LOG_NOTICE, "%s\n", trash.area);
s = s->next;
}
/* FIXME: those info are a bit outdated. We should be able to distinguish between FE and BE. */
if (!p->srv) {
chunk_printf(&trash,
"SIGHUP: Proxy %s has no servers. Conn: act(FE+BE): %d+%d, %d pend (%d unass), tot(FE+BE): %lld+%lld.",
p->id,
p->feconn, p->beconn, p->totpend, p->nbpend, p->fe_counters.cum_conn, p->be_counters.cum_conn);
} else if (p->srv_act == 0) {
chunk_printf(&trash,
"SIGHUP: Proxy %s %s ! Conn: act(FE+BE): %d+%d, %d pend (%d unass), tot(FE+BE): %lld+%lld.",
p->id,
(p->srv_bck) ? "is running on backup servers" : "has no server available",
p->feconn, p->beconn, p->totpend, p->nbpend, p->fe_counters.cum_conn, p->be_counters.cum_conn);
} else {
chunk_printf(&trash,
"SIGHUP: Proxy %s has %d active servers and %d backup servers available."
" Conn: act(FE+BE): %d+%d, %d pend (%d unass), tot(FE+BE): %lld+%lld.",
p->id, p->srv_act, p->srv_bck,
p->feconn, p->beconn, p->totpend, p->nbpend, p->fe_counters.cum_conn, p->be_counters.cum_conn);
}
ha_warning("%s\n", trash.area);
send_log(p, LOG_NOTICE, "%s\n", trash.area);
p = p->next;
}
}
static void dump(struct sig_handler *sh)
{
/* dump memory usage then free everything possible */
dump_pools();
pool_gc(NULL);
}
/*
* This function dup2 the stdio FDs (0,1,2) with <fd>, then closes <fd>
* If <fd> < 0, it opens /dev/null and use it to dup
*
* In the case of chrooting, you have to open /dev/null before the chroot, and
* pass the <fd> to this function
*/
static void stdio_quiet(int fd)
{
if (fd < 0)
fd = open("/dev/null", O_RDWR, 0);
if (fd > -1) {
fclose(stdin);
fclose(stdout);
fclose(stderr);
dup2(fd, 0);
dup2(fd, 1);
dup2(fd, 2);
if (fd > 2)
close(fd);
return;
}
ha_alert("Cannot open /dev/null\n");
exit(EXIT_FAILURE);
}
/* This function checks if cfg_cfgfiles contains directories.
* If it finds one, it adds all the files (and only files) it contains
* in cfg_cfgfiles in place of the directory (and removes the directory).
* It adds the files in lexical order.
* It adds only files with .cfg extension.
* It doesn't add files with name starting with '.'
*/
static void cfgfiles_expand_directories(void)
{
struct wordlist *wl, *wlb;
char *err = NULL;
list_for_each_entry_safe(wl, wlb, &cfg_cfgfiles, list) {
struct stat file_stat;
struct dirent **dir_entries = NULL;
int dir_entries_nb;
int dir_entries_it;
if (stat(wl->s, &file_stat)) {
ha_alert("Cannot open configuration file/directory %s : %s\n",
wl->s,
strerror(errno));
exit(1);
}
if (!S_ISDIR(file_stat.st_mode))
continue;
/* from this point wl->s is a directory */
dir_entries_nb = scandir(wl->s, &dir_entries, NULL, alphasort);
if (dir_entries_nb < 0) {
ha_alert("Cannot open configuration directory %s : %s\n",
wl->s,
strerror(errno));
exit(1);
}
/* for each element in the directory wl->s */
for (dir_entries_it = 0; dir_entries_it < dir_entries_nb; dir_entries_it++) {
struct dirent *dir_entry = dir_entries[dir_entries_it];
char *filename = NULL;
char *d_name_cfgext = strstr(dir_entry->d_name, ".cfg");
/* don't add filename that begin with .
* only add filename with .cfg extension
*/
if (dir_entry->d_name[0] == '.' ||
!(d_name_cfgext && d_name_cfgext[4] == '\0'))
goto next_dir_entry;
if (!memprintf(&filename, "%s/%s", wl->s, dir_entry->d_name)) {
ha_alert("Cannot load configuration files %s : out of memory.\n",
filename);
exit(1);
}
if (stat(filename, &file_stat)) {
ha_alert("Cannot open configuration file %s : %s\n",
wl->s,
strerror(errno));
exit(1);
}
/* don't add anything else than regular file in cfg_cfgfiles
* this way we avoid loops
*/
if (!S_ISREG(file_stat.st_mode))
goto next_dir_entry;
if (!list_append_word(&wl->list, filename, &err)) {
ha_alert("Cannot load configuration files %s : %s\n",
filename,
err);
exit(1);
}
next_dir_entry:
free(filename);
free(dir_entry);
}
free(dir_entries);
/* remove the current directory (wl) from cfg_cfgfiles */
free(wl->s);
LIST_DEL(&wl->list);
free(wl);
}
free(err);
}
static int get_old_sockets(const char *unixsocket)
{
char *cmsgbuf = NULL, *tmpbuf = NULL;
int *tmpfd = NULL;
struct sockaddr_un addr;
struct cmsghdr *cmsg;
struct msghdr msghdr;
struct iovec iov;
struct xfer_sock_list *xfer_sock = NULL;
struct timeval tv = { .tv_sec = 1, .tv_usec = 0 };
int sock = -1;
int ret = -1;
int ret2 = -1;
int fd_nb;
int got_fd = 0;
int i = 0;
size_t maxoff = 0, curoff = 0;
memset(&msghdr, 0, sizeof(msghdr));
cmsgbuf = malloc(CMSG_SPACE(sizeof(int)) * MAX_SEND_FD);
if (!cmsgbuf) {
ha_warning("Failed to allocate memory to send sockets\n");
goto out;
}
sock = socket(PF_UNIX, SOCK_STREAM, 0);
if (sock < 0) {
ha_warning("Failed to connect to the old process socket '%s'\n",
unixsocket);
goto out;
}
strncpy(addr.sun_path, unixsocket, sizeof(addr.sun_path));
addr.sun_path[sizeof(addr.sun_path) - 1] = 0;
addr.sun_family = PF_UNIX;
ret = connect(sock, (struct sockaddr *)&addr, sizeof(addr));
if (ret < 0) {
ha_warning("Failed to connect to the old process socket '%s'\n",
unixsocket);
goto out;
}
setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, (void *)&tv, sizeof(tv));
iov.iov_base = &fd_nb;
iov.iov_len = sizeof(fd_nb);
msghdr.msg_iov = &iov;
msghdr.msg_iovlen = 1;
send(sock, "_getsocks\n", strlen("_getsocks\n"), 0);
/* First, get the number of file descriptors to be received */
if (recvmsg(sock, &msghdr, MSG_WAITALL) != sizeof(fd_nb)) {
ha_warning("Failed to get the number of sockets to be transferred !\n");
goto out;
}
if (fd_nb == 0) {
ret = 0;
goto out;
}
tmpbuf = malloc(fd_nb * (1 + MAXPATHLEN + 1 + IFNAMSIZ + sizeof(int)));
if (tmpbuf == NULL) {
ha_warning("Failed to allocate memory while receiving sockets\n");
goto out;
}
tmpfd = malloc(fd_nb * sizeof(int));
if (tmpfd == NULL) {
ha_warning("Failed to allocate memory while receiving sockets\n");
goto out;
}
msghdr.msg_control = cmsgbuf;
msghdr.msg_controllen = CMSG_SPACE(sizeof(int)) * MAX_SEND_FD;
iov.iov_len = MAX_SEND_FD * (1 + MAXPATHLEN + 1 + IFNAMSIZ + sizeof(int));
do {
int ret3;
iov.iov_base = tmpbuf + curoff;
ret = recvmsg(sock, &msghdr, 0);
if (ret == -1 && errno == EINTR)
continue;
if (ret <= 0)
break;
/* Send an ack to let the sender know we got the sockets
* and it can send some more
*/
do {
ret3 = send(sock, &got_fd, sizeof(got_fd), 0);
} while (ret3 == -1 && errno == EINTR);
for (cmsg = CMSG_FIRSTHDR(&msghdr); cmsg != NULL;
cmsg = CMSG_NXTHDR(&msghdr, cmsg)) {
if (cmsg->cmsg_level == SOL_SOCKET &&
cmsg->cmsg_type == SCM_RIGHTS) {
size_t totlen = cmsg->cmsg_len -
CMSG_LEN(0);
if (totlen / sizeof(int) + got_fd > fd_nb) {
ha_warning("Got to many sockets !\n");
goto out;
}
/*
* Be paranoid and use memcpy() to avoid any
* potential alignement issue.
*/
memcpy(&tmpfd[got_fd], CMSG_DATA(cmsg), totlen);
got_fd += totlen / sizeof(int);
}
}
curoff += ret;
} while (got_fd < fd_nb);
if (got_fd != fd_nb) {
ha_warning("We didn't get the expected number of sockets (expecting %d got %d)\n",
fd_nb, got_fd);
goto out;
}
maxoff = curoff;
curoff = 0;
for (i = 0; i < got_fd; i++) {
int fd = tmpfd[i];
socklen_t socklen;
int len;
xfer_sock = calloc(1, sizeof(*xfer_sock));
if (!xfer_sock) {
ha_warning("Failed to allocate memory in get_old_sockets() !\n");
break;
}
xfer_sock->fd = -1;
socklen = sizeof(xfer_sock->addr);
if (getsockname(fd, (struct sockaddr *)&xfer_sock->addr, &socklen) != 0) {
ha_warning("Failed to get socket address\n");
free(xfer_sock);
xfer_sock = NULL;
continue;
}
if (curoff >= maxoff) {
ha_warning("Inconsistency while transferring sockets\n");
goto out;
}
len = tmpbuf[curoff++];
if (len > 0) {
/* We have a namespace */
if (curoff + len > maxoff) {
ha_warning("Inconsistency while transferring sockets\n");
goto out;
}
xfer_sock->namespace = malloc(len + 1);
if (!xfer_sock->namespace) {
ha_warning("Failed to allocate memory while transferring sockets\n");
goto out;
}
memcpy(xfer_sock->namespace, &tmpbuf[curoff], len);
xfer_sock->namespace[len] = 0;
curoff += len;
}
if (curoff >= maxoff) {
ha_warning("Inconsistency while transferring sockets\n");
goto out;
}
len = tmpbuf[curoff++];
if (len > 0) {
/* We have an interface */
if (curoff + len > maxoff) {
ha_warning("Inconsistency while transferring sockets\n");
goto out;
}
xfer_sock->iface = malloc(len + 1);
if (!xfer_sock->iface) {
ha_warning("Failed to allocate memory while transferring sockets\n");
goto out;
}
memcpy(xfer_sock->iface, &tmpbuf[curoff], len);
xfer_sock->iface[len] = 0;
curoff += len;
}
if (curoff + sizeof(int) > maxoff) {
ha_warning("Inconsistency while transferring sockets\n");
goto out;
}
memcpy(&xfer_sock->options, &tmpbuf[curoff],
sizeof(xfer_sock->options));
curoff += sizeof(xfer_sock->options);
xfer_sock->fd = fd;
if (xfer_sock_list)
xfer_sock_list->prev = xfer_sock;
xfer_sock->next = xfer_sock_list;
xfer_sock->prev = NULL;
xfer_sock_list = xfer_sock;
xfer_sock = NULL;
}
ret2 = 0;
out:
/* If we failed midway make sure to close the remaining
* file descriptors
*/
if (tmpfd != NULL && i < got_fd) {
for (; i < got_fd; i++) {
close(tmpfd[i]);
}
}
free(tmpbuf);
free(tmpfd);
free(cmsgbuf);
if (sock != -1)
close(sock);
if (xfer_sock) {
free(xfer_sock->namespace);
free(xfer_sock->iface);
if (xfer_sock->fd != -1)
close(xfer_sock->fd);
free(xfer_sock);
}
return (ret2);
}
/*
* copy and cleanup the current argv
* Remove the -sf /-st parameters
* Return an allocated copy of argv
*/
static char **copy_argv(int argc, char **argv)
{
char **newargv;
int i = 0, j = 0;
newargv = calloc(argc + 2, sizeof(char *));
if (newargv == NULL) {
ha_warning("Cannot allocate memory\n");
return NULL;
}
while (i < argc) {
/* -sf or -st or -x */
if (i > 0 && argv[i][0] == '-' &&
((argv[i][1] == 's' && (argv[i][2] == 'f' || argv[i][2] == 't')) || argv[i][1] == 'x' )) {
/* list of pids to finish ('f') or terminate ('t') or unix socket (-x) */
i++;
while (i < argc && argv[i][0] != '-') {
i++;
}
continue;
}
newargv[j++] = argv[i++];
}
return newargv;
}
/*
* This function initializes all the necessary variables. It only returns
* if everything is OK. If something fails, it exits.
*/
static void init(int argc, char **argv)
{
int arg_mode = 0; /* MODE_DEBUG, ... */
char *tmp;
char *cfg_pidfile = NULL;
int err_code = 0;
char *err_msg = NULL;
struct wordlist *wl;
char *progname;
char *change_dir = NULL;
struct proxy *px;
struct post_check_fct *pcf;
global.mode = MODE_STARTING;
next_argv = copy_argv(argc, argv);
if (!init_trash_buffers(1)) {
ha_alert("failed to initialize trash buffers.\n");
exit(1);
}
/* NB: POSIX does not make it mandatory for gethostname() to NULL-terminate
* the string in case of truncation, and at least FreeBSD appears not to do
* it.
*/
memset(hostname, 0, sizeof(hostname));
gethostname(hostname, sizeof(hostname) - 1);
memset(localpeer, 0, sizeof(localpeer));
memcpy(localpeer, hostname, (sizeof(hostname) > sizeof(localpeer) ? sizeof(localpeer) : sizeof(hostname)) - 1);
setenv("HAPROXY_LOCALPEER", localpeer, 1);
/*
* Initialize the previously static variables.
*/
totalconn = actconn = listeners = stopping = 0;
killed = 0;
#ifdef HAPROXY_MEMMAX
global.rlimit_memmax_all = HAPROXY_MEMMAX;
#endif
tzset();
tv_update_date(-1,-1);
start_date = now;
srandom(now_ms - getpid());
init_log();
signal_init();
if (init_acl() != 0)
exit(1);
init_task();
init_stream();
init_session();
init_connection();
/* warning, we init buffers later */
init_pendconn();
if (!init_http(&err_msg)) {
ha_alert("%s. Aborting.\n", err_msg);
free(err_msg);
abort();
}
init_proto_http();
/* Initialise lua. */
hlua_init();
/* Initialize process vars */
vars_init(&global.vars, SCOPE_PROC);
global.tune.options |= GTUNE_USE_SELECT; /* select() is always available */
#if defined(ENABLE_POLL)
global.tune.options |= GTUNE_USE_POLL;
#endif
#if defined(ENABLE_EPOLL)
global.tune.options |= GTUNE_USE_EPOLL;
#endif
#if defined(ENABLE_KQUEUE)
global.tune.options |= GTUNE_USE_KQUEUE;
#endif
#if defined(CONFIG_HAP_LINUX_SPLICE)
global.tune.options |= GTUNE_USE_SPLICE;
#endif
#if defined(USE_GETADDRINFO)
global.tune.options |= GTUNE_USE_GAI;
#endif
#if defined(SO_REUSEPORT)
global.tune.options |= GTUNE_USE_REUSEPORT;
#endif
pid = getpid();
progname = *argv;
while ((tmp = strchr(progname, '/')) != NULL)
progname = tmp + 1;
/* the process name is used for the logs only */
chunk_initstr(&global.log_tag, strdup(progname));
argc--; argv++;
while (argc > 0) {
char *flag;
if (**argv == '-') {
flag = *argv+1;
/* 1 arg */
if (*flag == 'v') {
display_version();
if (flag[1] == 'v') /* -vv */
display_build_opts();
exit(0);
}
#if defined(ENABLE_EPOLL)
else if (*flag == 'd' && flag[1] == 'e')
global.tune.options &= ~GTUNE_USE_EPOLL;
#endif
#if defined(ENABLE_POLL)
else if (*flag == 'd' && flag[1] == 'p')
global.tune.options &= ~GTUNE_USE_POLL;
#endif
#if defined(ENABLE_KQUEUE)
else if (*flag == 'd' && flag[1] == 'k')
global.tune.options &= ~GTUNE_USE_KQUEUE;
#endif
#if defined(CONFIG_HAP_LINUX_SPLICE)
else if (*flag == 'd' && flag[1] == 'S')
global.tune.options &= ~GTUNE_USE_SPLICE;
#endif
#if defined(USE_GETADDRINFO)
else if (*flag == 'd' && flag[1] == 'G')
global.tune.options &= ~GTUNE_USE_GAI;
#endif
#if defined(SO_REUSEPORT)
else if (*flag == 'd' && flag[1] == 'R')
global.tune.options &= ~GTUNE_USE_REUSEPORT;
#endif
else if (*flag == 'd' && flag[1] == 'V')
global.ssl_server_verify = SSL_SERVER_VERIFY_NONE;
else if (*flag == 'V')
arg_mode |= MODE_VERBOSE;
else if (*flag == 'd' && flag[1] == 'b')
arg_mode |= MODE_FOREGROUND;
else if (*flag == 'd' && flag[1] == 'M')
mem_poison_byte = flag[2] ? strtol(flag + 2, NULL, 0) : 'P';
else if (*flag == 'd' && flag[1] == 'r')
global.tune.options |= GTUNE_RESOLVE_DONTFAIL;
else if (*flag == 'd')
arg_mode |= MODE_DEBUG;
else if (*flag == 'c')
arg_mode |= MODE_CHECK;
else if (*flag == 'D')
arg_mode |= MODE_DAEMON;
else if (*flag == 'W' && flag[1] == 's') {
arg_mode |= MODE_MWORKER | MODE_FOREGROUND;
#if defined(USE_SYSTEMD)
global.tune.options |= GTUNE_USE_SYSTEMD;
#else
ha_alert("master-worker mode with systemd support (-Ws) requested, but not compiled. Use master-worker mode (-W) if you are not using Type=notify in your unit file or recompile with USE_SYSTEMD=1.\n\n");
usage(progname);
#endif
}
else if (*flag == 'W')
arg_mode |= MODE_MWORKER;
else if (*flag == 'q')
arg_mode |= MODE_QUIET;
else if (*flag == 'x') {
if (argc <= 1 || argv[1][0] == '-') {
ha_alert("Unix socket path expected with the -x flag\n\n");
usage(progname);
}
if (old_unixsocket)
ha_warning("-x option already set, overwriting the value\n");
old_unixsocket = argv[1];
argv++;
argc--;
}
else if (*flag == 'S') {
struct wordlist *c;
if (argc <= 1 || argv[1][0] == '-') {
ha_alert("Socket and optional bind parameters expected with the -S flag\n");
usage(progname);
}
if ((c = malloc(sizeof(*c))) == NULL || (c->s = strdup(argv[1])) == NULL) {
ha_alert("Cannot allocate memory\n");
exit(EXIT_FAILURE);
}
LIST_ADD(&mworker_cli_conf, &c->list);
argv++;
argc--;
}
else if (*flag == 's' && (flag[1] == 'f' || flag[1] == 't')) {
/* list of pids to finish ('f') or terminate ('t') */
if (flag[1] == 'f')
oldpids_sig = SIGUSR1; /* finish then exit */
else
oldpids_sig = SIGTERM; /* terminate immediately */
while (argc > 1 && argv[1][0] != '-') {
char * endptr = NULL;
oldpids = realloc(oldpids, (nb_oldpids + 1) * sizeof(int));
if (!oldpids) {
ha_alert("Cannot allocate old pid : out of memory.\n");
exit(1);
}
argc--; argv++;
errno = 0;
oldpids[nb_oldpids] = strtol(*argv, &endptr, 10);
if (errno) {
ha_alert("-%2s option: failed to parse {%s}: %s\n",
flag,
*argv, strerror(errno));
exit(1);
} else if (endptr && strlen(endptr)) {
while (isspace(*endptr)) endptr++;
if (*endptr != 0) {
ha_alert("-%2s option: some bytes unconsumed in PID list {%s}\n",
flag, endptr);
exit(1);
}
}
if (oldpids[nb_oldpids] <= 0)
usage(progname);
nb_oldpids++;
}
}
else if (flag[0] == '-' && flag[1] == 0) { /* "--" */
/* now that's a cfgfile list */
argv++; argc--;
while (argc > 0) {
if (!list_append_word(&cfg_cfgfiles, *argv, &err_msg)) {
ha_alert("Cannot load configuration file/directory %s : %s\n",
*argv,
err_msg);
exit(1);
}
argv++; argc--;
}
break;
}
else { /* >=2 args */
argv++; argc--;
if (argc == 0)
usage(progname);
switch (*flag) {
case 'C' : change_dir = *argv; break;
case 'n' : cfg_maxconn = atol(*argv); break;
case 'm' : global.rlimit_memmax_all = atol(*argv); break;
case 'N' : cfg_maxpconn = atol(*argv); break;
case 'L' :
strncpy(localpeer, *argv, sizeof(localpeer) - 1);
setenv("HAPROXY_LOCALPEER", localpeer, 1);
break;
case 'f' :
if (!list_append_word(&cfg_cfgfiles, *argv, &err_msg)) {
ha_alert("Cannot load configuration file/directory %s : %s\n",
*argv,
err_msg);
exit(1);
}
break;
case 'p' : cfg_pidfile = *argv; break;
default: usage(progname);
}
}
}
else
usage(progname);
argv++; argc--;
}
global.mode |= (arg_mode & (MODE_DAEMON | MODE_MWORKER | MODE_FOREGROUND | MODE_VERBOSE
| MODE_QUIET | MODE_CHECK | MODE_DEBUG));
if (getenv("HAPROXY_MWORKER_WAIT_ONLY")) {
unsetenv("HAPROXY_MWORKER_WAIT_ONLY");
global.mode |= MODE_MWORKER_WAIT;
global.mode &= ~MODE_MWORKER;
}
if ((global.mode & MODE_MWORKER) && (getenv("HAPROXY_MWORKER_REEXEC") != NULL)) {
atexit_flag = 1;
atexit(reexec_on_failure);
}
if (change_dir && chdir(change_dir) < 0) {
ha_alert("Could not change to directory %s : %s\n", change_dir, strerror(errno));
exit(1);
}
global.maxsock = 10; /* reserve 10 fds ; will be incremented by socket eaters */
init_default_instance();
/* in wait mode, we don't try to read the configuration files */
if (!(global.mode & MODE_MWORKER_WAIT)) {
/* handle cfgfiles that are actually directories */
cfgfiles_expand_directories();
if (LIST_ISEMPTY(&cfg_cfgfiles))
usage(progname);
list_for_each_entry(wl, &cfg_cfgfiles, list) {
int ret;
ret = readcfgfile(wl->s);
if (ret == -1) {
ha_alert("Could not open configuration file %s : %s\n",
wl->s, strerror(errno));
exit(1);
}
if (ret & (ERR_ABORT|ERR_FATAL))
ha_alert("Error(s) found in configuration file : %s\n", wl->s);
err_code |= ret;
if (err_code & ERR_ABORT)
exit(1);
}
/* do not try to resolve arguments nor to spot inconsistencies when
* the configuration contains fatal errors caused by files not found
* or failed memory allocations.
*/
if (err_code & (ERR_ABORT|ERR_FATAL)) {
ha_alert("Fatal errors found in configuration.\n");
exit(1);
}
}
if (global.mode & MODE_MWORKER) {
int proc;
struct mworker_proc *tmproc;
if (getenv("HAPROXY_MWORKER_REEXEC") == NULL) {
tmproc = malloc(sizeof(*tmproc));
if (!tmproc) {
ha_alert("Cannot allocate process structures.\n");
exit(EXIT_FAILURE);
}
tmproc->type = 'm'; /* master */
tmproc->reloads = 0;
tmproc->relative_pid = 0;
tmproc->pid = pid;
tmproc->timestamp = start_date.tv_sec;
tmproc->ipc_fd[0] = -1;
tmproc->ipc_fd[1] = -1;
proc_self = tmproc;
LIST_ADDQ(&proc_list, &tmproc->list);
}
for (proc = 0; proc < global.nbproc; proc++) {
tmproc = malloc(sizeof(*tmproc));
if (!tmproc) {
ha_alert("Cannot allocate process structures.\n");
exit(EXIT_FAILURE);
}
tmproc->type = 'w'; /* worker */
tmproc->pid = -1;
tmproc->reloads = 0;
tmproc->timestamp = -1;
tmproc->relative_pid = 1 + proc;
tmproc->ipc_fd[0] = -1;
tmproc->ipc_fd[1] = -1;
if (mworker_cli_sockpair_new(tmproc, proc) < 0) {
exit(EXIT_FAILURE);
}
LIST_ADDQ(&proc_list, &tmproc->list);
}
}
if (global.mode & (MODE_MWORKER|MODE_MWORKER_WAIT)) {
struct wordlist *it, *c;
mworker_env_to_proc_list(); /* get the info of the children in the env */
if (!LIST_ISEMPTY(&mworker_cli_conf)) {
if (mworker_cli_proxy_create() < 0) {
ha_alert("Can't create the master's CLI.\n");
exit(EXIT_FAILURE);
}
list_for_each_entry_safe(c, it, &mworker_cli_conf, list) {
if (mworker_cli_proxy_new_listener(c->s) < 0) {
ha_alert("Can't create the master's CLI.\n");
exit(EXIT_FAILURE);
}
LIST_DEL(&c->list);
free(c->s);
free(c);
}
}
}
pattern_finalize_config();
err_code |= check_config_validity();
if (err_code & (ERR_ABORT|ERR_FATAL)) {
ha_alert("Fatal errors found in configuration.\n");
exit(1);
}
/* recompute the amount of per-process memory depending on nbproc and
* the shared SSL cache size (allowed to exist in all processes).
*/
if (global.rlimit_memmax_all) {
#if defined (USE_OPENSSL) && !defined(USE_PRIVATE_CACHE)
int64_t ssl_cache_bytes = global.tune.sslcachesize * 200LL;
global.rlimit_memmax =
((((int64_t)global.rlimit_memmax_all * 1048576LL) -
ssl_cache_bytes) / global.nbproc +
ssl_cache_bytes + 1048575LL) / 1048576LL;
#else
global.rlimit_memmax = global.rlimit_memmax_all / global.nbproc;
#endif
}
#ifdef CONFIG_HAP_NS
err_code |= netns_init();
if (err_code & (ERR_ABORT|ERR_FATAL)) {
ha_alert("Failed to initialize namespace support.\n");
exit(1);
}
#endif
/* Apply server states */
apply_server_state();
for (px = proxies_list; px; px = px->next)
srv_compute_all_admin_states(px);
/* Apply servers' configured address */
err_code |= srv_init_addr();
if (err_code & (ERR_ABORT|ERR_FATAL)) {
ha_alert("Failed to initialize server(s) addr.\n");
exit(1);
}
if (global.mode & MODE_CHECK) {
struct peers *pr;
struct proxy *px;
for (pr = cfg_peers; pr; pr = pr->next)
if (pr->peers_fe)
break;
for (px = proxies_list; px; px = px->next)
if (px->state == PR_STNEW && !LIST_ISEMPTY(&px->conf.listeners))
break;
if (pr || px) {
/* At least one peer or one listener has been found */
qfprintf(stdout, "Configuration file is valid\n");
exit(0);
}
qfprintf(stdout, "Configuration file has no error but will not start (no listener) => exit(2).\n");
exit(2);
}
global_listener_queue_task = task_new(MAX_THREADS_MASK);
if (!global_listener_queue_task) {
ha_alert("Out of memory when initializing global task\n");
exit(1);
}
/* very simple initialization, users will queue the task if needed */
global_listener_queue_task->context = NULL; /* not even a context! */
global_listener_queue_task->process = manage_global_listener_queue;
/* now we know the buffer size, we can initialize the channels and buffers */
init_buffer();
list_for_each_entry(pcf, &post_check_list, list) {
err_code |= pcf->fct();
if (err_code & (ERR_ABORT|ERR_FATAL))
exit(1);
}
if (cfg_maxconn > 0)
global.maxconn = cfg_maxconn;
if (cfg_pidfile) {
free(global.pidfile);
global.pidfile = strdup(cfg_pidfile);
}
/* Now we want to compute the maxconn and possibly maxsslconn values.
* It's a bit tricky. If memmax is not set, maxconn defaults to
* DEFAULT_MAXCONN and maxsslconn defaults to DEFAULT_MAXSSLCONN.
*
* If memmax is set, then it depends on which values are set. If
* maxsslconn is set, we use memmax to determine how many cleartext
* connections may be added, and set maxconn to the sum of the two.
* If maxconn is set and not maxsslconn, maxsslconn is computed from
* the remaining amount of memory between memmax and the cleartext
* connections. If neither are set, then it is considered that all
* connections are SSL-capable, and maxconn is computed based on this,
* then maxsslconn accordingly. We need to know if SSL is used on the
* frontends, backends, or both, because when it's used on both sides,
* we need twice the value for maxsslconn, but we only count the
* handshake once since it is not performed on the two sides at the
* same time (frontend-side is terminated before backend-side begins).
* The SSL stack is supposed to have filled ssl_session_cost and
* ssl_handshake_cost during its initialization. In any case, if
* SYSTEM_MAXCONN is set, we still enforce it as an upper limit for
* maxconn in order to protect the system.
*/
if (!global.rlimit_memmax) {
if (global.maxconn == 0) {
global.maxconn = DEFAULT_MAXCONN;
if (global.mode & (MODE_VERBOSE|MODE_DEBUG))
fprintf(stderr, "Note: setting global.maxconn to %d.\n", global.maxconn);
}
}
#ifdef USE_OPENSSL
else if (!global.maxconn && !global.maxsslconn &&
(global.ssl_used_frontend || global.ssl_used_backend)) {
/* memmax is set, compute everything automatically. Here we want
* to ensure that all SSL connections will be served. We take
* care of the number of sides where SSL is used, and consider
* the worst case : SSL used on both sides and doing a handshake
* simultaneously. Note that we can't have more than maxconn
* handshakes at a time by definition, so for the worst case of
* two SSL conns per connection, we count a single handshake.
*/
int sides = !!global.ssl_used_frontend + !!global.ssl_used_backend;
int64_t mem = global.rlimit_memmax * 1048576ULL;
mem -= global.tune.sslcachesize * 200; // about 200 bytes per SSL cache entry
mem -= global.maxzlibmem;
mem = mem * MEM_USABLE_RATIO;
global.maxconn = mem /
((STREAM_MAX_COST + 2 * global.tune.bufsize) + // stream + 2 buffers per stream
sides * global.ssl_session_max_cost + // SSL buffers, one per side
global.ssl_handshake_max_cost); // 1 handshake per connection max
global.maxconn = round_2dig(global.maxconn);
#ifdef SYSTEM_MAXCONN
if (global.maxconn > DEFAULT_MAXCONN)
global.maxconn = DEFAULT_MAXCONN;
#endif /* SYSTEM_MAXCONN */
global.maxsslconn = sides * global.maxconn;
if (global.mode & (MODE_VERBOSE|MODE_DEBUG))
fprintf(stderr, "Note: setting global.maxconn to %d and global.maxsslconn to %d.\n",
global.maxconn, global.maxsslconn);
}
else if (!global.maxsslconn &&
(global.ssl_used_frontend || global.ssl_used_backend)) {
/* memmax and maxconn are known, compute maxsslconn automatically.
* maxsslconn being forced, we don't know how many of it will be
* on each side if both sides are being used. The worst case is
* when all connections use only one SSL instance because
* handshakes may be on two sides at the same time.
*/
int sides = !!global.ssl_used_frontend + !!global.ssl_used_backend;
int64_t mem = global.rlimit_memmax * 1048576ULL;
int64_t sslmem;
mem -= global.tune.sslcachesize * 200; // about 200 bytes per SSL cache entry
mem -= global.maxzlibmem;
mem = mem * MEM_USABLE_RATIO;
sslmem = mem - global.maxconn * (int64_t)(STREAM_MAX_COST + 2 * global.tune.bufsize);
global.maxsslconn = sslmem / (global.ssl_session_max_cost + global.ssl_handshake_max_cost);
global.maxsslconn = round_2dig(global.maxsslconn);
if (sslmem <= 0 || global.maxsslconn < sides) {
ha_alert("Cannot compute the automatic maxsslconn because global.maxconn is already too "
"high for the global.memmax value (%d MB). The absolute maximum possible value "
"without SSL is %d, but %d was found and SSL is in use.\n",
global.rlimit_memmax,
(int)(mem / (STREAM_MAX_COST + 2 * global.tune.bufsize)),
global.maxconn);
exit(1);
}
if (global.maxsslconn > sides * global.maxconn)
global.maxsslconn = sides * global.maxconn;
if (global.mode & (MODE_VERBOSE|MODE_DEBUG))
fprintf(stderr, "Note: setting global.maxsslconn to %d\n", global.maxsslconn);
}
#endif
else if (!global.maxconn) {
/* memmax and maxsslconn are known/unused, compute maxconn automatically */
int sides = !!global.ssl_used_frontend + !!global.ssl_used_backend;
int64_t mem = global.rlimit_memmax * 1048576ULL;
int64_t clearmem;
if (global.ssl_used_frontend || global.ssl_used_backend)
mem -= global.tune.sslcachesize * 200; // about 200 bytes per SSL cache entry
mem -= global.maxzlibmem;
mem = mem * MEM_USABLE_RATIO;
clearmem = mem;
if (sides)
clearmem -= (global.ssl_session_max_cost + global.ssl_handshake_max_cost) * (int64_t)global.maxsslconn;
global.maxconn = clearmem / (STREAM_MAX_COST + 2 * global.tune.bufsize);
global.maxconn = round_2dig(global.maxconn);
#ifdef SYSTEM_MAXCONN
if (global.maxconn > DEFAULT_MAXCONN)
global.maxconn = DEFAULT_MAXCONN;
#endif /* SYSTEM_MAXCONN */
if (clearmem <= 0 || !global.maxconn) {
ha_alert("Cannot compute the automatic maxconn because global.maxsslconn is already too "
"high for the global.memmax value (%d MB). The absolute maximum possible value "
"is %d, but %d was found.\n",
global.rlimit_memmax,
(int)(mem / (global.ssl_session_max_cost + global.ssl_handshake_max_cost)),
global.maxsslconn);
exit(1);
}
if (global.mode & (MODE_VERBOSE|MODE_DEBUG)) {
if (sides && global.maxsslconn > sides * global.maxconn) {
fprintf(stderr, "Note: global.maxsslconn is forced to %d which causes global.maxconn "
"to be limited to %d. Better reduce global.maxsslconn to get more "
"room for extra connections.\n", global.maxsslconn, global.maxconn);
}
fprintf(stderr, "Note: setting global.maxconn to %d\n", global.maxconn);
}
}
if (!global.maxpipes) {
/* maxpipes not specified. Count how many frontends and backends
* may be using splicing, and bound that to maxconn.
*/
struct proxy *cur;
int nbfe = 0, nbbe = 0;
for (cur = proxies_list; cur; cur = cur->next) {
if (cur->options2 & (PR_O2_SPLIC_ANY)) {
if (cur->cap & PR_CAP_FE)
nbfe += cur->maxconn;
if (cur->cap & PR_CAP_BE)
nbbe += cur->fullconn ? cur->fullconn : global.maxconn;
}
}
global.maxpipes = MAX(nbfe, nbbe);
if (global.maxpipes > global.maxconn)
global.maxpipes = global.maxconn;
global.maxpipes /= 4;
}
global.hardmaxconn = global.maxconn; /* keep this max value */
global.maxsock += global.maxconn * 2; /* each connection needs two sockets */
global.maxsock += global.maxpipes * 2; /* each pipe needs two FDs */
/* compute fd used by async engines */
if (global.ssl_used_async_engines) {
int sides = !!global.ssl_used_frontend + !!global.ssl_used_backend;
global.maxsock += global.maxconn * sides * global.ssl_used_async_engines;
}
if (global.stats_fe)
global.maxsock += global.stats_fe->maxconn;
if (cfg_peers) {
/* peers also need to bypass global maxconn */
struct peers *p = cfg_peers;
for (p = cfg_peers; p; p = p->next)
if (p->peers_fe)
global.maxsock += p->peers_fe->maxconn;
}
if (global.tune.maxpollevents <= 0)
global.tune.maxpollevents = MAX_POLL_EVENTS;
if (global.tune.runqueue_depth <= 0)
global.tune.runqueue_depth = RUNQUEUE_DEPTH;
if (global.tune.recv_enough == 0)
global.tune.recv_enough = MIN_RECV_AT_ONCE_ENOUGH;
if (global.tune.maxrewrite < 0)
global.tune.maxrewrite = MAXREWRITE;
if (global.tune.maxrewrite >= global.tune.bufsize / 2)
global.tune.maxrewrite = global.tune.bufsize / 2;
if (arg_mode & (MODE_DEBUG | MODE_FOREGROUND)) {
/* command line debug mode inhibits configuration mode */
global.mode &= ~(MODE_DAEMON | MODE_QUIET);
global.mode |= (arg_mode & (MODE_DEBUG | MODE_FOREGROUND));
}
if (arg_mode & MODE_DAEMON) {
/* command line daemon mode inhibits foreground and debug modes mode */
global.mode &= ~(MODE_DEBUG | MODE_FOREGROUND);
global.mode |= arg_mode & MODE_DAEMON;
}
global.mode |= (arg_mode & (MODE_QUIET | MODE_VERBOSE));
if ((global.mode & MODE_DEBUG) && (global.mode & (MODE_DAEMON | MODE_QUIET))) {
ha_warning("<debug> mode incompatible with <quiet> and <daemon>. Keeping <debug> only.\n");
global.mode &= ~(MODE_DAEMON | MODE_QUIET);
}
if ((global.nbproc > 1) && !(global.mode & (MODE_DAEMON | MODE_MWORKER))) {
if (!(global.mode & (MODE_FOREGROUND | MODE_DEBUG)))
ha_warning("<nbproc> is only meaningful in daemon mode or master-worker mode. Setting limit to 1 process.\n");
global.nbproc = 1;
}
if (global.nbproc < 1)
global.nbproc = 1;
if (global.nbthread < 1)
global.nbthread = 1;
/* Realloc trash buffers because global.tune.bufsize may have changed */
if (!init_trash_buffers(0)) {
ha_alert("failed to initialize trash buffers.\n");
exit(1);
}
if (!init_log_buffers()) {
ha_alert("failed to initialize log buffers.\n");
exit(1);
}
/*
* Note: we could register external pollers here.
* Built-in pollers have been registered before main().
*/
if (!(global.tune.options & GTUNE_USE_KQUEUE))
disable_poller("kqueue");
if (!(global.tune.options & GTUNE_USE_EPOLL))
disable_poller("epoll");
if (!(global.tune.options & GTUNE_USE_POLL))
disable_poller("poll");
if (!(global.tune.options & GTUNE_USE_SELECT))
disable_poller("select");
/* Note: we could disable any poller by name here */
if (global.mode & (MODE_VERBOSE|MODE_DEBUG)) {
list_pollers(stderr);
fprintf(stderr, "\n");
list_filters(stderr);
}
if (!init_pollers()) {
ha_alert("No polling mechanism available.\n"
" It is likely that haproxy was built with TARGET=generic and that FD_SETSIZE\n"
" is too low on this platform to support maxconn and the number of listeners\n"
" and servers. You should rebuild haproxy specifying your system using TARGET=\n"
" in order to support other polling systems (poll, epoll, kqueue) or reduce the\n"
" global maxconn setting to accommodate the system's limitation. For reference,\n"
" FD_SETSIZE=%d on this system, global.maxconn=%d resulting in a maximum of\n"
" %d file descriptors. You should thus reduce global.maxconn by %d. Also,\n"
" check build settings using 'haproxy -vv'.\n\n",
FD_SETSIZE, global.maxconn, global.maxsock, (global.maxsock + 1 - FD_SETSIZE) / 2);
exit(1);
}
if (global.mode & (MODE_VERBOSE|MODE_DEBUG)) {
printf("Using %s() as the polling mechanism.\n", cur_poller.name);
}
if (!global.node)
global.node = strdup(hostname);
if (!hlua_post_init())
exit(1);
free(err_msg);
}
static void deinit_acl_cond(struct acl_cond *cond)
{
struct acl_term_suite *suite, *suiteb;
struct acl_term *term, *termb;
if (!cond)
return;
list_for_each_entry_safe(suite, suiteb, &cond->suites, list) {
list_for_each_entry_safe(term, termb, &suite->terms, list) {
LIST_DEL(&term->list);
free(term);
}
LIST_DEL(&suite->list);
free(suite);
}
free(cond);
}
static void deinit_tcp_rules(struct list *rules)
{
struct act_rule *trule, *truleb;
list_for_each_entry_safe(trule, truleb, rules, list) {
LIST_DEL(&trule->list);
deinit_acl_cond(trule->cond);
free(trule);
}
}
static void deinit_stick_rules(struct list *rules)
{
struct sticking_rule *rule, *ruleb;
list_for_each_entry_safe(rule, ruleb, rules, list) {
LIST_DEL(&rule->list);
deinit_acl_cond(rule->cond);
release_sample_expr(rule->expr);
free(rule);
}
}
void deinit(void)
{
struct proxy *p = proxies_list, *p0;
struct cap_hdr *h,*h_next;
struct server *s,*s_next;
struct listener *l,*l_next;
struct acl_cond *cond, *condb;
struct hdr_exp *exp, *expb;
struct acl *acl, *aclb;
struct switching_rule *rule, *ruleb;
struct server_rule *srule, *sruleb;
struct redirect_rule *rdr, *rdrb;
struct wordlist *wl, *wlb;
struct cond_wordlist *cwl, *cwlb;
struct uri_auth *uap, *ua = NULL;
struct logsrv *log, *logb;
struct logformat_node *lf, *lfb;
struct bind_conf *bind_conf, *bind_back;
struct build_opts_str *bol, *bolb;
struct post_deinit_fct *pdf;
int i;
deinit_signals();
while (p) {
free(p->conf.file);
free(p->id);
free(p->check_req);
free(p->cookie_name);
free(p->cookie_domain);
free(p->url_param_name);
free(p->capture_name);
free(p->monitor_uri);
free(p->rdp_cookie_name);
if (p->conf.logformat_string != default_http_log_format &&
p->conf.logformat_string != default_tcp_log_format &&
p->conf.logformat_string != clf_http_log_format)
free(p->conf.logformat_string);
free(p->conf.lfs_file);
free(p->conf.uniqueid_format_string);
free(p->conf.uif_file);
free(p->lbprm.map.srv);
if (p->conf.logformat_sd_string != default_rfc5424_sd_log_format)
free(p->conf.logformat_sd_string);
free(p->conf.lfsd_file);
for (i = 0; i < HTTP_ERR_SIZE; i++)
chunk_destroy(&p->errmsg[i]);
list_for_each_entry_safe(cwl, cwlb, &p->req_add, list) {
LIST_DEL(&cwl->list);
free(cwl->s);
free(cwl);
}
list_for_each_entry_safe(cwl, cwlb, &p->rsp_add, list) {
LIST_DEL(&cwl->list);
free(cwl->s);
free(cwl);
}
list_for_each_entry_safe(cond, condb, &p->mon_fail_cond, list) {
LIST_DEL(&cond->list);
prune_acl_cond(cond);
free(cond);
}
for (exp = p->req_exp; exp != NULL; ) {
if (exp->preg) {
regex_free(exp->preg);
free(exp->preg);
}
free((char *)exp->replace);
expb = exp;
exp = exp->next;
free(expb);
}
for (exp = p->rsp_exp; exp != NULL; ) {
if (exp->preg) {
regex_free(exp->preg);
free(exp->preg);
}
free((char *)exp->replace);
expb = exp;
exp = exp->next;
free(expb);
}
/* build a list of unique uri_auths */
if (!ua)
ua = p->uri_auth;
else {
/* check if p->uri_auth is unique */
for (uap = ua; uap; uap=uap->next)
if (uap == p->uri_auth)
break;
if (!uap && p->uri_auth) {
/* add it, if it is */
p->uri_auth->next = ua;
ua = p->uri_auth;
}
}
list_for_each_entry_safe(acl, aclb, &p->acl, list) {
LIST_DEL(&acl->list);
prune_acl(acl);
free(acl);
}
list_for_each_entry_safe(srule, sruleb, &p->server_rules, list) {
LIST_DEL(&srule->list);
prune_acl_cond(srule->cond);
free(srule->cond);
free(srule);
}
list_for_each_entry_safe(rule, ruleb, &p->switching_rules, list) {
LIST_DEL(&rule->list);
if (rule->cond) {
prune_acl_cond(rule->cond);
free(rule->cond);
free(rule->file);
}
free(rule);
}
list_for_each_entry_safe(rdr, rdrb, &p->redirect_rules, list) {
LIST_DEL(&rdr->list);
if (rdr->cond) {
prune_acl_cond(rdr->cond);
free(rdr->cond);
}
free(rdr->rdr_str);
list_for_each_entry_safe(lf, lfb, &rdr->rdr_fmt, list) {
LIST_DEL(&lf->list);
free(lf);
}
free(rdr);
}
list_for_each_entry_safe(log, logb, &p->logsrvs, list) {
LIST_DEL(&log->list);
free(log);
}
list_for_each_entry_safe(lf, lfb, &p->logformat, list) {
LIST_DEL(&lf->list);
free(lf);
}
list_for_each_entry_safe(lf, lfb, &p->logformat_sd, list) {
LIST_DEL(&lf->list);
free(lf);
}
deinit_tcp_rules(&p->tcp_req.inspect_rules);
deinit_tcp_rules(&p->tcp_req.l4_rules);
deinit_stick_rules(&p->storersp_rules);
deinit_stick_rules(&p->sticking_rules);
h = p->req_cap;
while (h) {
h_next = h->next;
free(h->name);
pool_destroy(h->pool);
free(h);
h = h_next;
}/* end while(h) */
h = p->rsp_cap;
while (h) {
h_next = h->next;
free(h->name);
pool_destroy(h->pool);
free(h);
h = h_next;
}/* end while(h) */
s = p->srv;
while (s) {
s_next = s->next;
if (s->check.task) {
task_delete(s->check.task);
task_free(s->check.task);
}
if (s->agent.task) {
task_delete(s->agent.task);
task_free(s->agent.task);
}
if (s->warmup) {
task_delete(s->warmup);
task_free(s->warmup);
}
free(s->id);
free(s->cookie);
free(s->check.bi.area);
free(s->check.bo.area);
free(s->agent.bi.area);
free(s->agent.bo.area);
free(s->agent.send_string);
free(s->hostname_dn);
free((char*)s->conf.file);
if (s->use_ssl || s->check.use_ssl) {
if (xprt_get(XPRT_SSL) && xprt_get(XPRT_SSL)->destroy_srv)
xprt_get(XPRT_SSL)->destroy_srv(s);
}
HA_SPIN_DESTROY(&s->lock);
free(s);
s = s_next;
}/* end while(s) */
list_for_each_entry_safe(l, l_next, &p->conf.listeners, by_fe) {
/*
* Zombie proxy, the listener just pretend to be up
* because they still hold an opened fd.
* Close it and give the listener its real state.
*/
if (p->state == PR_STSTOPPED && l->state >= LI_ZOMBIE) {
close(l->fd);
l->state = LI_INIT;
}
unbind_listener(l);
delete_listener(l);
LIST_DEL(&l->by_fe);
LIST_DEL(&l->by_bind);
free(l->name);
free(l->counters);
free(l);
}
/* Release unused SSL configs. */
list_for_each_entry_safe(bind_conf, bind_back, &p->conf.bind, by_fe) {
if (bind_conf->xprt->destroy_bind_conf)
bind_conf->xprt->destroy_bind_conf(bind_conf);
free(bind_conf->file);
free(bind_conf->arg);
LIST_DEL(&bind_conf->by_fe);
free(bind_conf);
}
flt_deinit(p);
free(p->desc);
free(p->fwdfor_hdr_name);
free_http_req_rules(&p->http_req_rules);
free_http_res_rules(&p->http_res_rules);
task_free(p->task);
pool_destroy(p->req_cap_pool);
pool_destroy(p->rsp_cap_pool);
pool_destroy(p->table.pool);
p0 = p;
p = p->next;
HA_SPIN_DESTROY(&p0->lbprm.lock);
HA_SPIN_DESTROY(&p0->lock);
free(p0);
}/* end while(p) */
while (ua) {
uap = ua;
ua = ua->next;
free(uap->uri_prefix);
free(uap->auth_realm);
free(uap->node);
free(uap->desc);
userlist_free(uap->userlist);
free_http_req_rules(&uap->http_req_rules);
free(uap);
}
userlist_free(userlist);
cfg_unregister_sections();
deinit_log_buffers();
deinit_trash_buffers();
protocol_unbind_all();
list_for_each_entry(pdf, &post_deinit_list, list)
pdf->fct();
free(global.log_send_hostname); global.log_send_hostname = NULL;
chunk_destroy(&global.log_tag);
free(global.chroot); global.chroot = NULL;
free(global.pidfile); global.pidfile = NULL;
free(global.node); global.node = NULL;
free(global.desc); global.desc = NULL;
free(oldpids); oldpids = NULL;
task_free(global_listener_queue_task); global_listener_queue_task = NULL;
list_for_each_entry_safe(log, logb, &global.logsrvs, list) {
LIST_DEL(&log->list);
free(log);
}
list_for_each_entry_safe(wl, wlb, &cfg_cfgfiles, list) {
free(wl->s);
LIST_DEL(&wl->list);
free(wl);
}
list_for_each_entry_safe(bol, bolb, &build_opts_list, list) {
if (bol->must_free)
free((void *)bol->str);
LIST_DEL(&bol->list);
free(bol);
}
vars_prune(&global.vars, NULL, NULL);
deinit_buffer();
pool_destroy(pool_head_stream);
pool_destroy(pool_head_session);
pool_destroy(pool_head_connection);
pool_destroy(pool_head_connstream);
pool_destroy(pool_head_requri);
pool_destroy(pool_head_task);
pool_destroy(pool_head_capture);
pool_destroy(pool_head_pendconn);
pool_destroy(pool_head_sig_handlers);
pool_destroy(pool_head_hdr_idx);
pool_destroy(pool_head_http_txn);
deinit_pollers();
} /* end deinit() */
/* This is a wrapper for the sockpair FD, It tests if the socket received an
* EOF, if not, it calls listener_accept */
void mworker_accept_wrapper(int fd)
{
char c;
int ret;
while (1) {
ret = recv(fd, &c, 1, MSG_PEEK);
if (ret == -1) {
if (errno == EINTR)
continue;
if (errno == EAGAIN) {
fd_cant_recv(fd);
return;
}
break;
} else if (ret > 0) {
listener_accept(fd);
return;
} else if (ret == 0) {
/* At this step the master is down before
* this worker perform a 'normal' exit.
* So we want to exit with an error but
* other threads could currently process
* some stuff so we can't perform a clean
* deinit().
*/
exit(EXIT_FAILURE);
}
}
return;
}
/*
* This function register the accept wrapper for the sockpair of the master worker
*/
void mworker_pipe_register()
{
/* The iocb should be already initialized with listener_accept */
if (fdtab[proc_self->ipc_fd[1]].iocb == mworker_accept_wrapper)
return;
fcntl(proc_self->ipc_fd[1], F_SETFL, O_NONBLOCK);
/* In multi-tread, we need only one thread to process
* events on the pipe with master
*/
fd_insert(proc_self->ipc_fd[1], fdtab[proc_self->ipc_fd[1]].owner, mworker_accept_wrapper, 1);
fd_want_recv(proc_self->ipc_fd[1]);
}
/* Runs the polling loop */
static void run_poll_loop()
{
int next, exp;
tv_update_date(0,1);
while (1) {
/* Process a few tasks */
process_runnable_tasks();
/* check if we caught some signals and process them in the
first thread */
if (tid == 0)
signal_process_queue();
/* Check if we can expire some tasks */
next = wake_expired_tasks();
/* stop when there's nothing left to do */
if ((jobs - unstoppable_jobs) == 0)
break;
/* expire immediately if events are pending */
exp = now_ms;
if (fd_cache_mask & tid_bit)
activity[tid].wake_cache++;
else if (active_tasks_mask & tid_bit)
activity[tid].wake_tasks++;
else if (signal_queue_len && tid == 0)
activity[tid].wake_signal++;
else {
HA_ATOMIC_OR(&sleeping_thread_mask, tid_bit);
__ha_barrier_store();
if (active_tasks_mask & tid_bit) {
activity[tid].wake_tasks++;
HA_ATOMIC_AND(&sleeping_thread_mask, ~tid_bit);
} else
exp = next;
}
/* The poller will ensure it returns around <next> */
cur_poller.poll(&cur_poller, exp);
if (sleeping_thread_mask & tid_bit)
HA_ATOMIC_AND(&sleeping_thread_mask, ~tid_bit);
fd_process_cached_events();
activity[tid].loops++;
}
}
static void *run_thread_poll_loop(void *data)
{
struct per_thread_init_fct *ptif;
struct per_thread_deinit_fct *ptdf;
__decl_hathreads(static HA_SPINLOCK_T start_lock);
ha_set_tid(*((unsigned int *)data));
tv_update_date(-1,-1);
list_for_each_entry(ptif, &per_thread_init_list, list) {
if (!ptif->fct()) {
ha_alert("failed to initialize thread %u.\n", tid);
exit(1);
}
}
if ((global.mode & MODE_MWORKER) && master == 0) {
HA_SPIN_LOCK(START_LOCK, &start_lock);
mworker_pipe_register();
HA_SPIN_UNLOCK(START_LOCK, &start_lock);
}
protocol_enable_all();
run_poll_loop();
list_for_each_entry(ptdf, &per_thread_deinit_list, list)
ptdf->fct();
#ifdef USE_THREAD
HA_ATOMIC_AND(&all_threads_mask, ~tid_bit);
if (tid > 0)
pthread_exit(NULL);
#endif
return NULL;
}
/* This is the global management task for listeners. It enables listeners waiting
* for global resources when there are enough free resource, or at least once in
* a while. It is designed to be called as a task.
*/
static struct task *manage_global_listener_queue(struct task *t, void *context, unsigned short state)
{
int next = TICK_ETERNITY;
/* queue is empty, nothing to do */
if (LIST_ISEMPTY(&global_listener_queue))
goto out;
/* If there are still too many concurrent connections, let's wait for
* some of them to go away. We don't need to re-arm the timer because
* each of them will scan the queue anyway.
*/
if (unlikely(actconn >= global.maxconn))
goto out;
/* We should periodically try to enable listeners waiting for a global
* resource here, because it is possible, though very unlikely, that
* they have been blocked by a temporary lack of global resource such
* as a file descriptor or memory and that the temporary condition has
* disappeared.
*/
dequeue_all_listeners(&global_listener_queue);
out:
t->expire = next;
task_queue(t);
return t;
}
int main(int argc, char **argv)
{
int err, retry;
struct rlimit limit;
char errmsg[100];
int pidfd = -1;
setvbuf(stdout, NULL, _IONBF, 0);
init(argc, argv);
signal_register_fct(SIGQUIT, dump, SIGQUIT);
signal_register_fct(SIGUSR1, sig_soft_stop, SIGUSR1);
signal_register_fct(SIGHUP, sig_dump_state, SIGHUP);
signal_register_fct(SIGUSR2, NULL, 0);
/* Always catch SIGPIPE even on platforms which define MSG_NOSIGNAL.
* Some recent FreeBSD setups report broken pipes, and MSG_NOSIGNAL
* was defined there, so let's stay on the safe side.
*/
signal_register_fct(SIGPIPE, NULL, 0);
/* ulimits */
if (!global.rlimit_nofile)
global.rlimit_nofile = global.maxsock;
if (global.rlimit_nofile) {
limit.rlim_cur = limit.rlim_max = global.rlimit_nofile;
if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
/* try to set it to the max possible at least */
getrlimit(RLIMIT_NOFILE, &limit);
limit.rlim_cur = limit.rlim_max;
if (setrlimit(RLIMIT_NOFILE, &limit) != -1)
getrlimit(RLIMIT_NOFILE, &limit);
ha_warning("[%s.main()] Cannot raise FD limit to %d, limit is %d.\n", argv[0], global.rlimit_nofile, (int)limit.rlim_cur);
global.rlimit_nofile = limit.rlim_cur;
}
}
if (global.rlimit_memmax) {
limit.rlim_cur = limit.rlim_max =
global.rlimit_memmax * 1048576ULL;
#ifdef RLIMIT_AS
if (setrlimit(RLIMIT_AS, &limit) == -1) {
ha_warning("[%s.main()] Cannot fix MEM limit to %d megs.\n",
argv[0], global.rlimit_memmax);
}
#else
if (setrlimit(RLIMIT_DATA, &limit) == -1) {
ha_warning("[%s.main()] Cannot fix MEM limit to %d megs.\n",
argv[0], global.rlimit_memmax);
}
#endif
}
if (old_unixsocket) {
if (strcmp("/dev/null", old_unixsocket) != 0) {
if (get_old_sockets(old_unixsocket) != 0) {
ha_alert("Failed to get the sockets from the old process!\n");
if (!(global.mode & MODE_MWORKER))
exit(1);
}
}
}
get_cur_unixsocket();
/* We will loop at most 100 times with 10 ms delay each time.
* That's at most 1 second. We only send a signal to old pids
* if we cannot grab at least one port.
*/
retry = MAX_START_RETRIES;
err = ERR_NONE;
while (retry >= 0) {
struct timeval w;
err = start_proxies(retry == 0 || nb_oldpids == 0);
/* exit the loop on no error or fatal error */
if ((err & (ERR_RETRYABLE|ERR_FATAL)) != ERR_RETRYABLE)
break;
if (nb_oldpids == 0 || retry == 0)
break;
/* FIXME-20060514: Solaris and OpenBSD do not support shutdown() on
* listening sockets. So on those platforms, it would be wiser to
* simply send SIGUSR1, which will not be undoable.
*/
if (tell_old_pids(SIGTTOU) == 0) {
/* no need to wait if we can't contact old pids */
retry = 0;
continue;
}
/* give some time to old processes to stop listening */
w.tv_sec = 0;
w.tv_usec = 10*1000;
select(0, NULL, NULL, NULL, &w);
retry--;
}
/* Note: start_proxies() sends an alert when it fails. */
if ((err & ~ERR_WARN) != ERR_NONE) {
if (retry != MAX_START_RETRIES && nb_oldpids) {
protocol_unbind_all(); /* cleanup everything we can */
tell_old_pids(SIGTTIN);
}
exit(1);
}
if (!(global.mode & MODE_MWORKER_WAIT) && listeners == 0) {
ha_alert("[%s.main()] No enabled listener found (check for 'bind' directives) ! Exiting.\n", argv[0]);
/* Note: we don't have to send anything to the old pids because we
* never stopped them. */
exit(1);
}
err = protocol_bind_all(errmsg, sizeof(errmsg));
if ((err & ~ERR_WARN) != ERR_NONE) {
if ((err & ERR_ALERT) || (err & ERR_WARN))
ha_alert("[%s.main()] %s.\n", argv[0], errmsg);
ha_alert("[%s.main()] Some protocols failed to start their listeners! Exiting.\n", argv[0]);
protocol_unbind_all(); /* cleanup everything we can */
if (nb_oldpids)
tell_old_pids(SIGTTIN);
exit(1);
} else if (err & ERR_WARN) {
ha_alert("[%s.main()] %s.\n", argv[0], errmsg);
}
/* Ok, all listener should now be bound, close any leftover sockets
* the previous process gave us, we don't need them anymore
*/
while (xfer_sock_list != NULL) {
struct xfer_sock_list *tmpxfer = xfer_sock_list->next;
close(xfer_sock_list->fd);
free(xfer_sock_list->iface);
free(xfer_sock_list->namespace);
free(xfer_sock_list);
xfer_sock_list = tmpxfer;
}
/* prepare pause/play signals */
signal_register_fct(SIGTTOU, sig_pause, SIGTTOU);
signal_register_fct(SIGTTIN, sig_listen, SIGTTIN);
/* MODE_QUIET can inhibit alerts and warnings below this line */
if (getenv("HAPROXY_MWORKER_REEXEC") != NULL) {
/* either stdin/out/err are already closed or should stay as they are. */
if ((global.mode & MODE_DAEMON)) {
/* daemon mode re-executing, stdin/stdout/stderr are already closed so keep quiet */
global.mode &= ~MODE_VERBOSE;
global.mode |= MODE_QUIET; /* ensure that we won't say anything from now */
}
} else {
if ((global.mode & MODE_QUIET) && !(global.mode & MODE_VERBOSE)) {
/* detach from the tty */
stdio_quiet(-1);
}
}
/* open log & pid files before the chroot */
if ((global.mode & MODE_DAEMON || global.mode & MODE_MWORKER) && global.pidfile != NULL) {
unlink(global.pidfile);
pidfd = open(global.pidfile, O_CREAT | O_WRONLY | O_TRUNC, 0644);
if (pidfd < 0) {
ha_alert("[%s.main()] Cannot create pidfile %s\n", argv[0], global.pidfile);
if (nb_oldpids)
tell_old_pids(SIGTTIN);
protocol_unbind_all();
exit(1);
}
}
if ((global.last_checks & LSTCHK_NETADM) && global.uid) {
ha_alert("[%s.main()] Some configuration options require full privileges, so global.uid cannot be changed.\n"
"", argv[0]);
protocol_unbind_all();
exit(1);
}
/* If the user is not root, we'll still let him try the configuration
* but we inform him that unexpected behaviour may occur.
*/
if ((global.last_checks & LSTCHK_NETADM) && getuid())
ha_warning("[%s.main()] Some options which require full privileges"
" might not work well.\n"
"", argv[0]);
if ((global.mode & (MODE_MWORKER|MODE_DAEMON)) == 0) {
/* chroot if needed */
if (global.chroot != NULL) {
if (chroot(global.chroot) == -1 || chdir("/") == -1) {
ha_alert("[%s.main()] Cannot chroot(%s).\n", argv[0], global.chroot);
if (nb_oldpids)
tell_old_pids(SIGTTIN);
protocol_unbind_all();
exit(1);
}
}
}
if (nb_oldpids && !(global.mode & MODE_MWORKER_WAIT))
nb_oldpids = tell_old_pids(oldpids_sig);
if ((getenv("HAPROXY_MWORKER_REEXEC") == NULL)) {
nb_oldpids = 0;
free(oldpids);
oldpids = NULL;
}
/* Note that any error at this stage will be fatal because we will not
* be able to restart the old pids.
*/
if ((global.mode & (MODE_MWORKER|MODE_DAEMON)) == 0) {
/* setgid / setuid */
if (global.gid) {
if (getgroups(0, NULL) > 0 && setgroups(0, NULL) == -1)
ha_warning("[%s.main()] Failed to drop supplementary groups. Using 'gid'/'group'"
" without 'uid'/'user' is generally useless.\n", argv[0]);
if (setgid(global.gid) == -1) {
ha_alert("[%s.main()] Cannot set gid %d.\n", argv[0], global.gid);
protocol_unbind_all();
exit(1);
}
}
if (global.uid && setuid(global.uid) == -1) {
ha_alert("[%s.main()] Cannot set uid %d.\n", argv[0], global.uid);
protocol_unbind_all();
exit(1);
}
}
/* check ulimits */
limit.rlim_cur = limit.rlim_max = 0;
getrlimit(RLIMIT_NOFILE, &limit);
if (limit.rlim_cur < global.maxsock) {
ha_warning("[%s.main()] FD limit (%d) too low for maxconn=%d/maxsock=%d. Please raise 'ulimit-n' to %d or more to avoid any trouble.\n",
argv[0], (int)limit.rlim_cur, global.maxconn, global.maxsock, global.maxsock);
}
if (global.mode & (MODE_DAEMON | MODE_MWORKER | MODE_MWORKER_WAIT)) {
struct proxy *px;
struct peers *curpeers;
int ret = 0;
int proc;
int devnullfd = -1;
/*
* if daemon + mworker: must fork here to let a master
* process live in background before forking children
*/
if ((getenv("HAPROXY_MWORKER_REEXEC") == NULL)
&& (global.mode & MODE_MWORKER)
&& (global.mode & MODE_DAEMON)) {
ret = fork();
if (ret < 0) {
ha_alert("[%s.main()] Cannot fork.\n", argv[0]);
protocol_unbind_all();
exit(1); /* there has been an error */
} else if (ret > 0) { /* parent leave to daemonize */
exit(0);
} else /* change the process group ID in the child (master process) */
setsid();
}
/* if in master-worker mode, write the PID of the father */
if (global.mode & MODE_MWORKER) {
char pidstr[100];
snprintf(pidstr, sizeof(pidstr), "%d\n", getpid());
if (pidfd >= 0)
shut_your_big_mouth_gcc(write(pidfd, pidstr, strlen(pidstr)));
}
/* the father launches the required number of processes */
if (!(global.mode & MODE_MWORKER_WAIT)) {
children = calloc(global.nbproc, sizeof(int));
for (proc = 0; proc < global.nbproc; proc++) {
ret = fork();
if (ret < 0) {
ha_alert("[%s.main()] Cannot fork.\n", argv[0]);
protocol_unbind_all();
exit(1); /* there has been an error */
}
else if (ret == 0) /* child breaks here */
break;
children[proc] = ret;
if (pidfd >= 0 && !(global.mode & MODE_MWORKER)) {
char pidstr[100];
snprintf(pidstr, sizeof(pidstr), "%d\n", ret);
shut_your_big_mouth_gcc(write(pidfd, pidstr, strlen(pidstr)));
}
if (global.mode & MODE_MWORKER) {
struct mworker_proc *child;
ha_notice("New worker #%d (%d) forked\n", relative_pid, ret);
/* find the right mworker_proc */
list_for_each_entry(child, &proc_list, list) {
if (child->relative_pid == relative_pid &&
child->reloads == 0) {
child->timestamp = now.tv_sec;
child->pid = ret;
break;
}
}
}
relative_pid++; /* each child will get a different one */
pid_bit <<= 1;
}
} else {
/* wait mode */
global.nbproc = 1;
proc = 1;
}
#ifdef USE_CPU_AFFINITY
if (proc < global.nbproc && /* child */
proc < LONGBITS && /* only the first 32/64 processes may be pinned */
global.cpu_map.proc[proc]) /* only do this if the process has a CPU map */
#ifdef __FreeBSD__
{
cpuset_t cpuset;
int i;
unsigned long cpu_map = global.cpu_map.proc[proc];
CPU_ZERO(&cpuset);
while ((i = ffsl(cpu_map)) > 0) {
CPU_SET(i - 1, &cpuset);
cpu_map &= ~(1UL << (i - 1));
}
ret = cpuset_setaffinity(CPU_LEVEL_WHICH, CPU_WHICH_PID, -1, sizeof(cpuset), &cpuset);
}
#else
sched_setaffinity(0, sizeof(unsigned long), (void *)&global.cpu_map.proc[proc]);
#endif
#endif
/* close the pidfile both in children and father */
if (pidfd >= 0) {
//lseek(pidfd, 0, SEEK_SET); /* debug: emulate eglibc bug */
close(pidfd);
}
/* We won't ever use this anymore */
free(global.pidfile); global.pidfile = NULL;
if (proc == global.nbproc) {
if (global.mode & (MODE_MWORKER|MODE_MWORKER_WAIT)) {
if ((!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) &&
(global.mode & MODE_DAEMON)) {
/* detach from the tty, this is required to properly daemonize. */
if ((getenv("HAPROXY_MWORKER_REEXEC") == NULL))
stdio_quiet(-1);
global.mode &= ~MODE_VERBOSE;
global.mode |= MODE_QUIET; /* ensure that we won't say anything from now */
}
mworker_loop();
/* should never get there */
exit(EXIT_FAILURE);
}
#if defined(USE_OPENSSL) && !defined(OPENSSL_NO_DH)
ssl_free_dh();
#endif
exit(0); /* parent must leave */
}
/* child must never use the atexit function */
atexit_flag = 0;
/* close useless master sockets */
if (global.mode & MODE_MWORKER) {
struct mworker_proc *child, *it;
master = 0;
mworker_cli_proxy_stop();
/* free proc struct of other processes */
list_for_each_entry_safe(child, it, &proc_list, list) {
/* close the FD of the master side for all
* workers, we don't need to close the worker
* side of other workers since it's done with
* the bind_proc */
close(child->ipc_fd[0]);
if (child->relative_pid == relative_pid &&
child->reloads == 0) {
/* keep this struct if this is our pid */
proc_self = child;
continue;
}
LIST_DEL(&child->list);
free(child);
}
}
if (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) {
devnullfd = open("/dev/null", O_RDWR, 0);
if (devnullfd < 0) {
ha_alert("Cannot open /dev/null\n");
exit(EXIT_FAILURE);
}
}
/* Must chroot and setgid/setuid in the children */
/* chroot if needed */
if (global.chroot != NULL) {
if (chroot(global.chroot) == -1 || chdir("/") == -1) {
ha_alert("[%s.main()] Cannot chroot1(%s).\n", argv[0], global.chroot);
if (nb_oldpids)
tell_old_pids(SIGTTIN);
protocol_unbind_all();
exit(1);
}
}
free(global.chroot);
global.chroot = NULL;
/* setgid / setuid */
if (global.gid) {
if (getgroups(0, NULL) > 0 && setgroups(0, NULL) == -1)
ha_warning("[%s.main()] Failed to drop supplementary groups. Using 'gid'/'group'"
" without 'uid'/'user' is generally useless.\n", argv[0]);
if (setgid(global.gid) == -1) {
ha_alert("[%s.main()] Cannot set gid %d.\n", argv[0], global.gid);
protocol_unbind_all();
exit(1);
}
}
if (global.uid && setuid(global.uid) == -1) {
ha_alert("[%s.main()] Cannot set uid %d.\n", argv[0], global.uid);
protocol_unbind_all();
exit(1);
}
/* pass through every cli socket, and check if it's bound to
* the current process and if it exposes listeners sockets.
* Caution: the GTUNE_SOCKET_TRANSFER is now set after the fork.
* */
if (global.stats_fe) {
struct bind_conf *bind_conf;
list_for_each_entry(bind_conf, &global.stats_fe->conf.bind, by_fe) {
if (bind_conf->level & ACCESS_FD_LISTENERS) {
if (!bind_conf->bind_proc || bind_conf->bind_proc & (1UL << proc)) {
global.tune.options |= GTUNE_SOCKET_TRANSFER;
break;
}
}
}
}
/* we might have to unbind some proxies from some processes */
px = proxies_list;
while (px != NULL) {
if (px->bind_proc && px->state != PR_STSTOPPED) {
if (!(px->bind_proc & (1UL << proc))) {
if (global.tune.options & GTUNE_SOCKET_TRANSFER)
zombify_proxy(px);
else
stop_proxy(px);
}
}
px = px->next;
}
/* we might have to unbind some peers sections from some processes */
for (curpeers = cfg_peers; curpeers; curpeers = curpeers->next) {
if (!curpeers->peers_fe)
continue;
if (curpeers->peers_fe->bind_proc & (1UL << proc))
continue;
stop_proxy(curpeers->peers_fe);
/* disable this peer section so that it kills itself */
signal_unregister_handler(curpeers->sighandler);
task_delete(curpeers->sync_task);
task_free(curpeers->sync_task);
curpeers->sync_task = NULL;
task_free(curpeers->peers_fe->task);
curpeers->peers_fe->task = NULL;
curpeers->peers_fe = NULL;
}
/*
* This is only done in daemon mode because we might want the
* logs on stdout in mworker mode. If we're NOT in QUIET mode,
* we should now close the 3 first FDs to ensure that we can
* detach from the TTY. We MUST NOT do it in other cases since
* it would have already be done, and 0-2 would have been
* affected to listening sockets
*/
if ((global.mode & MODE_DAEMON) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) {
/* detach from the tty */
stdio_quiet(devnullfd);
global.mode &= ~MODE_VERBOSE;
global.mode |= MODE_QUIET; /* ensure that we won't say anything from now */
}
pid = getpid(); /* update child's pid */
if (!(global.mode & MODE_MWORKER)) /* in mworker mode we don't want a new pgid for the children */
setsid();
fork_poller();
}
global.mode &= ~MODE_STARTING;
/*
* That's it : the central polling loop. Run until we stop.
*/
#ifdef USE_THREAD
{
unsigned int *tids = calloc(global.nbthread, sizeof(unsigned int));
pthread_t *threads = calloc(global.nbthread, sizeof(pthread_t));
int i;
sigset_t blocked_sig, old_sig;
/* Init tids array */
for (i = 0; i < global.nbthread; i++)
tids[i] = i;
/* ensure the signals will be blocked in every thread */
sigfillset(&blocked_sig);
sigdelset(&blocked_sig, SIGPROF);
sigdelset(&blocked_sig, SIGBUS);
sigdelset(&blocked_sig, SIGFPE);
sigdelset(&blocked_sig, SIGILL);
sigdelset(&blocked_sig, SIGSEGV);
pthread_sigmask(SIG_SETMASK, &blocked_sig, &old_sig);
/* Create nbthread-1 thread. The first thread is the current process */
threads[0] = pthread_self();
for (i = 1; i < global.nbthread; i++)
pthread_create(&threads[i], NULL, &run_thread_poll_loop, &tids[i]);
#ifdef USE_CPU_AFFINITY
/* Now the CPU affinity for all threads */
for (i = 0; i < global.nbthread; i++) {
if (global.cpu_map.proc[relative_pid-1])
global.cpu_map.thread[relative_pid-1][i] &= global.cpu_map.proc[relative_pid-1];
if (i < MAX_THREADS && /* only the first 32/64 threads may be pinned */
global.cpu_map.thread[relative_pid-1][i]) {/* only do this if the thread has a THREAD map */
#if defined(__FreeBSD__) || defined(__NetBSD__)
cpuset_t cpuset;
#else
cpu_set_t cpuset;
#endif
int j;
unsigned long cpu_map = global.cpu_map.thread[relative_pid-1][i];
CPU_ZERO(&cpuset);
while ((j = ffsl(cpu_map)) > 0) {
CPU_SET(j - 1, &cpuset);
cpu_map &= ~(1UL << (j - 1));
}
pthread_setaffinity_np(threads[i],
sizeof(cpuset), &cpuset);
}
}
#endif /* !USE_CPU_AFFINITY */
/* when multithreading we need to let only the thread 0 handle the signals */
haproxy_unblock_signals();
/* Finally, start the poll loop for the first thread */
run_thread_poll_loop(&tids[0]);
/* Wait the end of other threads */
for (i = 1; i < global.nbthread; i++)
pthread_join(threads[i], NULL);
free(tids);
free(threads);
#if defined(DEBUG_THREAD) || defined(DEBUG_FULL)
show_lock_stats();
#endif
}
#else /* ! USE_THREAD */
haproxy_unblock_signals();
run_thread_poll_loop((int []){0});
#endif
/* Do some cleanup */
deinit();
exit(0);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/