| /* |
| * Name server resolution |
| * |
| * Copyright 2014 Baptiste Assmann <bedis9@gmail.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| |
| #include <sys/types.h> |
| |
| #include <common/cfgparse.h> |
| #include <common/errors.h> |
| #include <common/time.h> |
| #include <common/ticks.h> |
| #include <common/net_helper.h> |
| |
| #include <types/applet.h> |
| #include <types/cli.h> |
| #include <types/global.h> |
| #include <types/dns.h> |
| #include <types/stats.h> |
| |
| #include <proto/channel.h> |
| #include <proto/cli.h> |
| #include <proto/checks.h> |
| #include <proto/dns.h> |
| #include <proto/fd.h> |
| #include <proto/log.h> |
| #include <proto/server.h> |
| #include <proto/task.h> |
| #include <proto/proto_udp.h> |
| #include <proto/proxy.h> |
| #include <proto/stream_interface.h> |
| |
| struct list dns_resolvers = LIST_HEAD_INIT(dns_resolvers); |
| struct list dns_srvrq_list = LIST_HEAD_INIT(dns_srvrq_list); |
| |
| static THREAD_LOCAL int64_t dns_query_id_seed = 0; /* random seed */ |
| static struct pool_head *dns_answer_item_pool = NULL; |
| static struct pool_head *dns_resolution_pool = NULL; |
| static unsigned int resolution_uuid = 1; |
| |
| /* Returns a pointer to the resolvers matching the id <id>. NULL is returned if |
| * no match is found. |
| */ |
| struct dns_resolvers *find_resolvers_by_id(const char *id) |
| { |
| struct dns_resolvers *res; |
| |
| list_for_each_entry(res, &dns_resolvers, list) { |
| if (!strcmp(res->id, id)) |
| return res; |
| } |
| return NULL; |
| } |
| |
| /* Returns a pointer on the SRV request matching the name <name> for the proxy |
| * <px>. NULL is returned if no match is found. |
| */ |
| struct dns_srvrq *find_srvrq_by_name(const char *name, struct proxy *px) |
| { |
| struct dns_srvrq *srvrq; |
| |
| list_for_each_entry(srvrq, &dns_srvrq_list, list) { |
| if (srvrq->proxy == px && !strcmp(srvrq->name, name)) |
| return srvrq; |
| } |
| return NULL; |
| } |
| |
| /* Allocates a new SRVRQ for the given server with the name <fqdn>. It returns |
| * NULL if an error occurred. */ |
| struct dns_srvrq *new_dns_srvrq(struct server *srv, char *fqdn) |
| { |
| struct proxy *px = srv->proxy; |
| struct dns_srvrq *srvrq = NULL; |
| int fqdn_len, hostname_dn_len; |
| |
| fqdn_len = strlen(fqdn); |
| hostname_dn_len = dns_str_to_dn_label(fqdn, fqdn_len + 1, trash.area, |
| trash.size); |
| if (hostname_dn_len == -1) { |
| ha_alert("config : %s '%s', server '%s': failed to parse FQDN '%s'\n", |
| proxy_type_str(px), px->id, srv->id, fqdn); |
| goto err; |
| } |
| |
| if ((srvrq = calloc(1, sizeof(*srvrq))) == NULL) { |
| ha_alert("config : %s '%s', server '%s': out of memory\n", |
| proxy_type_str(px), px->id, srv->id); |
| goto err; |
| } |
| srvrq->obj_type = OBJ_TYPE_SRVRQ; |
| srvrq->proxy = px; |
| srvrq->name = strdup(fqdn); |
| srvrq->hostname_dn = strdup(trash.area); |
| srvrq->hostname_dn_len = hostname_dn_len; |
| if (!srvrq->name || !srvrq->hostname_dn) { |
| ha_alert("config : %s '%s', server '%s': out of memory\n", |
| proxy_type_str(px), px->id, srv->id); |
| goto err; |
| } |
| LIST_ADDQ(&dns_srvrq_list, &srvrq->list); |
| return srvrq; |
| |
| err: |
| if (srvrq) { |
| free(srvrq->name); |
| free(srvrq->hostname_dn); |
| free(srvrq); |
| } |
| return NULL; |
| } |
| |
| |
| /* 2 bytes random generator to generate DNS query ID */ |
| static inline uint16_t dns_rnd16(void) |
| { |
| if (!dns_query_id_seed) |
| dns_query_id_seed = now_ms; |
| dns_query_id_seed ^= dns_query_id_seed << 13; |
| dns_query_id_seed ^= dns_query_id_seed >> 7; |
| dns_query_id_seed ^= dns_query_id_seed << 17; |
| return dns_query_id_seed; |
| } |
| |
| |
| static inline int dns_resolution_timeout(struct dns_resolution *res) |
| { |
| switch (res->status) { |
| case RSLV_STATUS_VALID: return res->resolvers->hold.valid; |
| default: return res->resolvers->timeout.resolve; |
| } |
| } |
| |
| /* Updates a resolvers' task timeout for next wake up and queue it */ |
| static void dns_update_resolvers_timeout(struct dns_resolvers *resolvers) |
| { |
| struct dns_resolution *res; |
| int next; |
| |
| next = tick_add(now_ms, resolvers->timeout.resolve); |
| if (!LIST_ISEMPTY(&resolvers->resolutions.curr)) { |
| res = LIST_NEXT(&resolvers->resolutions.curr, struct dns_resolution *, list); |
| next = MIN(next, tick_add(res->last_query, resolvers->timeout.retry)); |
| } |
| |
| list_for_each_entry(res, &resolvers->resolutions.wait, list) |
| next = MIN(next, tick_add(res->last_resolution, dns_resolution_timeout(res))); |
| |
| resolvers->t->expire = next; |
| task_queue(resolvers->t); |
| } |
| |
| /* Opens an UDP socket on the namesaver's IP/Port, if required. Returns 0 on |
| * success, -1 otherwise. |
| */ |
| static int dns_connect_namesaver(struct dns_nameserver *ns) |
| { |
| struct dgram_conn *dgram = ns->dgram; |
| int fd; |
| |
| /* Already connected */ |
| if (dgram->t.sock.fd != -1) |
| return 0; |
| |
| /* Create an UDP socket and connect it on the nameserver's IP/Port */ |
| if ((fd = socket(ns->addr.ss_family, SOCK_DGRAM, IPPROTO_UDP)) == -1) { |
| send_log(NULL, LOG_WARNING, |
| "DNS : resolvers '%s': can't create socket for nameserver '%s'.\n", |
| ns->resolvers->id, ns->id); |
| return -1; |
| } |
| if (connect(fd, (struct sockaddr*)&ns->addr, get_addr_len(&ns->addr)) == -1) { |
| send_log(NULL, LOG_WARNING, |
| "DNS : resolvers '%s': can't connect socket for nameserver '%s'.\n", |
| ns->resolvers->id, ns->id); |
| close(fd); |
| return -1; |
| } |
| |
| /* Make the socket non blocking */ |
| fcntl(fd, F_SETFL, O_NONBLOCK); |
| |
| /* Add the fd in the fd list and update its parameters */ |
| dgram->t.sock.fd = fd; |
| fd_insert(fd, dgram, dgram_fd_handler, MAX_THREADS_MASK); |
| fd_want_recv(fd); |
| return 0; |
| } |
| |
| /* Forges a DNS query. It needs the following information from the caller: |
| * - <query_id> : the DNS query id corresponding to this query |
| * - <query_type> : DNS_RTYPE_* request DNS record type (A, AAAA, ANY...) |
| * - <hostname_dn> : hostname in domain name format |
| * - <hostname_dn_len> : length of <hostname_dn> |
| * |
| * To store the query, the caller must pass a buffer <buf> and its size |
| * <bufsize>. It returns the number of written bytes in success, -1 if <buf> is |
| * too short. |
| */ |
| static int dns_build_query(int query_id, int query_type, unsigned int accepted_payload_size, |
| char *hostname_dn, int hostname_dn_len, char *buf, int bufsize) |
| { |
| struct dns_header dns_hdr; |
| struct dns_question qinfo; |
| struct dns_additional_record edns; |
| char *p = buf; |
| |
| if (sizeof(dns_hdr) + sizeof(qinfo) + sizeof(edns) + hostname_dn_len >= bufsize) |
| return -1; |
| |
| memset(buf, 0, bufsize); |
| |
| /* Set dns query headers */ |
| dns_hdr.id = (unsigned short) htons(query_id); |
| dns_hdr.flags = htons(0x0100); /* qr=0, opcode=0, aa=0, tc=0, rd=1, ra=0, z=0, rcode=0 */ |
| dns_hdr.qdcount = htons(1); /* 1 question */ |
| dns_hdr.ancount = 0; |
| dns_hdr.nscount = 0; |
| dns_hdr.arcount = htons(1); |
| memcpy(p, &dns_hdr, sizeof(dns_hdr)); |
| p += sizeof(dns_hdr); |
| |
| /* Set up query hostname */ |
| memcpy(p, hostname_dn, hostname_dn_len); |
| p += hostname_dn_len; |
| *p++ = 0; |
| |
| /* Set up query info (type and class) */ |
| qinfo.qtype = htons(query_type); |
| qinfo.qclass = htons(DNS_RCLASS_IN); |
| memcpy(p, &qinfo, sizeof(qinfo)); |
| p += sizeof(qinfo); |
| |
| /* Set the DNS extension */ |
| edns.name = 0; |
| edns.type = htons(DNS_RTYPE_OPT); |
| edns.udp_payload_size = htons(accepted_payload_size); |
| edns.extension = 0; |
| edns.data_length = 0; |
| memcpy(p, &edns, sizeof(edns)); |
| p += sizeof(edns); |
| |
| return (p - buf); |
| } |
| |
| /* Sends a DNS query to resolvers associated to a resolution. It returns 0 on |
| * success, -1 otherwise. |
| */ |
| static int dns_send_query(struct dns_resolution *resolution) |
| { |
| struct dns_resolvers *resolvers = resolution->resolvers; |
| struct dns_nameserver *ns; |
| |
| list_for_each_entry(ns, &resolvers->nameservers, list) { |
| int fd = ns->dgram->t.sock.fd; |
| if (fd == -1) { |
| if (dns_connect_namesaver(ns) == -1) |
| continue; |
| fd = ns->dgram->t.sock.fd; |
| resolvers->nb_nameservers++; |
| } |
| fd_want_send(fd); |
| } |
| |
| /* Update resolution */ |
| resolution->nb_queries = 0; |
| resolution->nb_responses = 0; |
| resolution->last_query = now_ms; |
| |
| /* Push the resolution at the end of the active list */ |
| LIST_DEL(&resolution->list); |
| LIST_ADDQ(&resolvers->resolutions.curr, &resolution->list); |
| return 0; |
| } |
| |
| /* Prepares and sends a DNS resolution. It returns 1 if the query was sent, 0 if |
| * skipped and -1 if an error occurred. |
| */ |
| static int |
| dns_run_resolution(struct dns_resolution *resolution) |
| { |
| struct dns_resolvers *resolvers = resolution->resolvers; |
| int query_id, i; |
| |
| /* Avoid sending requests for resolutions that don't yet have an |
| * hostname, ie resolutions linked to servers that do not yet have an |
| * fqdn */ |
| if (!resolution->hostname_dn) |
| return 0; |
| |
| /* Check if a resolution has already been started for this server return |
| * directly to avoid resolution pill up. */ |
| if (resolution->step != RSLV_STEP_NONE) |
| return 0; |
| |
| /* Generates a new query id. We try at most 100 times to find a free |
| * query id */ |
| for (i = 0; i < 100; ++i) { |
| query_id = dns_rnd16(); |
| if (!eb32_lookup(&resolvers->query_ids, query_id)) |
| break; |
| query_id = -1; |
| } |
| if (query_id == -1) { |
| send_log(NULL, LOG_NOTICE, |
| "could not generate a query id for %s, in resolvers %s.\n", |
| resolution->hostname_dn, resolvers->id); |
| return -1; |
| } |
| |
| /* Update resolution parameters */ |
| resolution->query_id = query_id; |
| resolution->qid.key = query_id; |
| resolution->step = RSLV_STEP_RUNNING; |
| resolution->query_type = resolution->prefered_query_type; |
| resolution->try = resolvers->resolve_retries; |
| eb32_insert(&resolvers->query_ids, &resolution->qid); |
| |
| /* Send the DNS query */ |
| resolution->try -= 1; |
| dns_send_query(resolution); |
| return 1; |
| } |
| |
| /* Performs a name resolution for the requester <req> */ |
| void dns_trigger_resolution(struct dns_requester *req) |
| { |
| struct dns_resolvers *resolvers; |
| struct dns_resolution *res; |
| int exp; |
| |
| if (!req || !req->resolution) |
| return; |
| res = req->resolution; |
| resolvers = res->resolvers; |
| |
| /* The resolution must not be triggered yet. Use the cached response, if |
| * valid */ |
| exp = tick_add(res->last_resolution, resolvers->hold.valid); |
| if (resolvers->t && (res->status != RSLV_STATUS_VALID || |
| !tick_isset(res->last_resolution) || tick_is_expired(exp, now_ms))) |
| task_wakeup(resolvers->t, TASK_WOKEN_OTHER); |
| } |
| |
| |
| /* Resets some resolution parameters to initial values and also delete the query |
| * ID from the resolver's tree. |
| */ |
| static void dns_reset_resolution(struct dns_resolution *resolution) |
| { |
| /* update resolution status */ |
| resolution->step = RSLV_STEP_NONE; |
| resolution->try = 0; |
| resolution->last_resolution = now_ms; |
| resolution->nb_queries = 0; |
| resolution->nb_responses = 0; |
| resolution->query_type = resolution->prefered_query_type; |
| |
| /* clean up query id */ |
| eb32_delete(&resolution->qid); |
| resolution->query_id = 0; |
| resolution->qid.key = 0; |
| } |
| |
| /* Returns the query id contained in a DNS response */ |
| static inline unsigned short dns_response_get_query_id(unsigned char *resp) |
| { |
| return resp[0] * 256 + resp[1]; |
| } |
| |
| |
| /* Analyses, re-builds and copies the name <name> from the DNS response packet |
| * <buffer>. <name> must point to the 'data_len' information or pointer 'c0' |
| * for compressed data. The result is copied into <dest>, ensuring we don't |
| * overflow using <dest_len> Returns the number of bytes the caller can move |
| * forward. If 0 it means an error occurred while parsing the name. <offset> is |
| * the number of bytes the caller could move forward. |
| */ |
| int dns_read_name(unsigned char *buffer, unsigned char *bufend, |
| unsigned char *name, char *destination, int dest_len, |
| int *offset) |
| { |
| int nb_bytes = 0, n = 0; |
| int label_len; |
| unsigned char *reader = name; |
| char *dest = destination; |
| |
| while (1) { |
| /* Name compression is in use */ |
| if ((*reader & 0xc0) == 0xc0) { |
| /* Must point BEFORE current position */ |
| if ((buffer + reader[1]) > reader) |
| goto err; |
| |
| n = dns_read_name(buffer, bufend, buffer + reader[1], |
| dest, dest_len - nb_bytes, offset); |
| if (n == 0) |
| goto err; |
| |
| dest += n; |
| nb_bytes += n; |
| goto out; |
| } |
| |
| label_len = *reader; |
| if (label_len == 0) |
| goto out; |
| |
| /* Check if: |
| * - we won't read outside the buffer |
| * - there is enough place in the destination |
| */ |
| if ((reader + label_len >= bufend) || (nb_bytes + label_len >= dest_len)) |
| goto err; |
| |
| /* +1 to take label len + label string */ |
| label_len++; |
| |
| memcpy(dest, reader, label_len); |
| |
| dest += label_len; |
| nb_bytes += label_len; |
| reader += label_len; |
| } |
| |
| out: |
| /* offset computation: |
| * parse from <name> until finding either NULL or a pointer "c0xx" |
| */ |
| reader = name; |
| *offset = 0; |
| while (reader < bufend) { |
| if ((reader[0] & 0xc0) == 0xc0) { |
| *offset += 2; |
| break; |
| } |
| else if (*reader == 0) { |
| *offset += 1; |
| break; |
| } |
| *offset += 1; |
| ++reader; |
| } |
| return nb_bytes; |
| |
| err: |
| return 0; |
| } |
| |
| /* Checks for any obsolete record, also identify any SRV request, and try to |
| * find a corresponding server. |
| */ |
| static void dns_check_dns_response(struct dns_resolution *res) |
| { |
| struct dns_resolvers *resolvers = res->resolvers; |
| struct dns_requester *req, *reqback; |
| struct dns_answer_item *item, *itemback; |
| struct server *srv; |
| struct dns_srvrq *srvrq; |
| |
| list_for_each_entry_safe(item, itemback, &res->response.answer_list, list) { |
| |
| /* Remove obsolete items */ |
| if ((item->last_seen + resolvers->hold.obsolete / 1000) < now.tv_sec) { |
| if (item->type != DNS_RTYPE_SRV) |
| goto rm_obselete_item; |
| |
| list_for_each_entry_safe(req, reqback, &res->requesters, list) { |
| if ((srvrq = objt_dns_srvrq(req->owner)) == NULL) |
| continue; |
| |
| /* Remove any associated server */ |
| for (srv = srvrq->proxy->srv; srv != NULL; srv = srv->next) { |
| HA_SPIN_LOCK(SERVER_LOCK, &srv->lock); |
| if (srv->srvrq == srvrq && srv->svc_port == item->port && |
| item->data_len == srv->hostname_dn_len && |
| !memcmp(srv->hostname_dn, item->target, item->data_len)) { |
| snr_update_srv_status(srv, 1); |
| free(srv->hostname); |
| free(srv->hostname_dn); |
| srv->hostname = NULL; |
| srv->hostname_dn = NULL; |
| srv->hostname_dn_len = 0; |
| dns_unlink_resolution(srv->dns_requester); |
| } |
| HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); |
| } |
| } |
| |
| rm_obselete_item: |
| LIST_DEL(&item->list); |
| pool_free(dns_answer_item_pool, item); |
| continue; |
| } |
| |
| if (item->type != DNS_RTYPE_SRV) |
| continue; |
| |
| /* Now process SRV records */ |
| list_for_each_entry_safe(req, reqback, &res->requesters, list) { |
| if ((srvrq = objt_dns_srvrq(req->owner)) == NULL) |
| continue; |
| |
| /* Check if a server already uses that hostname */ |
| for (srv = srvrq->proxy->srv; srv != NULL; srv = srv->next) { |
| HA_SPIN_LOCK(SERVER_LOCK, &srv->lock); |
| if (srv->srvrq == srvrq && srv->svc_port == item->port && |
| item->data_len == srv->hostname_dn_len && |
| !memcmp(srv->hostname_dn, item->target, item->data_len)) { |
| int ha_weight; |
| |
| /* Make sure weight is at least 1, so |
| * that the server will be used. |
| */ |
| ha_weight = item->weight / 256 + 1; |
| if (srv->uweight != ha_weight) { |
| char weight[9]; |
| |
| snprintf(weight, sizeof(weight), "%d", ha_weight); |
| server_parse_weight_change_request(srv, weight); |
| } |
| HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); |
| break; |
| } |
| HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); |
| } |
| if (srv) |
| continue; |
| |
| /* If not, try to find a server with undefined hostname */ |
| for (srv = srvrq->proxy->srv; srv != NULL; srv = srv->next) { |
| HA_SPIN_LOCK(SERVER_LOCK, &srv->lock); |
| if (srv->srvrq == srvrq && !srv->hostname_dn) |
| break; |
| HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); |
| } |
| /* And update this server, if found */ |
| if (srv) { |
| const char *msg = NULL; |
| char weight[9]; |
| int ha_weight; |
| char hostname[DNS_MAX_NAME_SIZE]; |
| |
| if (dns_dn_label_to_str(item->target, item->data_len+1, |
| hostname, DNS_MAX_NAME_SIZE) == -1) { |
| HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); |
| continue; |
| } |
| msg = update_server_fqdn(srv, hostname, "SRV record", 1); |
| if (msg) |
| send_log(srv->proxy, LOG_NOTICE, "%s", msg); |
| |
| srv->svc_port = item->port; |
| srv->flags &= ~SRV_F_MAPPORTS; |
| if ((srv->check.state & CHK_ST_CONFIGURED) && |
| !(srv->flags & SRV_F_CHECKPORT)) |
| srv->check.port = item->port; |
| |
| /* Make sure weight is at least 1, so |
| * that the server will be used. |
| */ |
| ha_weight = item->weight / 256 + 1; |
| |
| snprintf(weight, sizeof(weight), "%d", ha_weight); |
| server_parse_weight_change_request(srv, weight); |
| HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); |
| } |
| } |
| } |
| } |
| |
| /* Validates that the buffer DNS response provided in <resp> and finishing |
| * before <bufend> is valid from a DNS protocol point of view. |
| * |
| * The result is stored in <resolution>' response, buf_response, |
| * response_query_records and response_answer_records members. |
| * |
| * This function returns one of the DNS_RESP_* code to indicate the type of |
| * error found. |
| */ |
| static int dns_validate_dns_response(unsigned char *resp, unsigned char *bufend, |
| struct dns_resolution *resolution, int max_answer_records) |
| { |
| unsigned char *reader; |
| char *previous_dname, tmpname[DNS_MAX_NAME_SIZE]; |
| int len, flags, offset; |
| int dns_query_record_id; |
| int nb_saved_records; |
| struct dns_query_item *dns_query; |
| struct dns_answer_item *dns_answer_record, *tmp_record; |
| struct dns_response_packet *dns_p; |
| int i, found = 0; |
| |
| reader = resp; |
| len = 0; |
| previous_dname = NULL; |
| dns_query = NULL; |
| |
| /* Initialization of response buffer and structure */ |
| dns_p = &resolution->response; |
| |
| /* query id */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.id = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* Flags and rcode are stored over 2 bytes |
| * First byte contains: |
| * - response flag (1 bit) |
| * - opcode (4 bits) |
| * - authoritative (1 bit) |
| * - truncated (1 bit) |
| * - recursion desired (1 bit) |
| */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| |
| flags = reader[0] * 256 + reader[1]; |
| |
| if ((flags & DNS_FLAG_REPLYCODE) != DNS_RCODE_NO_ERROR) { |
| if ((flags & DNS_FLAG_REPLYCODE) == DNS_RCODE_NX_DOMAIN) |
| return DNS_RESP_NX_DOMAIN; |
| else if ((flags & DNS_FLAG_REPLYCODE) == DNS_RCODE_REFUSED) |
| return DNS_RESP_REFUSED; |
| return DNS_RESP_ERROR; |
| } |
| |
| /* Move forward 2 bytes for flags */ |
| reader += 2; |
| |
| /* 2 bytes for question count */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.qdcount = reader[0] * 256 + reader[1]; |
| /* (for now) we send one query only, so we expect only one in the |
| * response too */ |
| if (dns_p->header.qdcount != 1) |
| return DNS_RESP_QUERY_COUNT_ERROR; |
| if (dns_p->header.qdcount > DNS_MAX_QUERY_RECORDS) |
| return DNS_RESP_INVALID; |
| reader += 2; |
| |
| /* 2 bytes for answer count */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.ancount = reader[0] * 256 + reader[1]; |
| if (dns_p->header.ancount == 0) |
| return DNS_RESP_ANCOUNT_ZERO; |
| /* Check if too many records are announced */ |
| if (dns_p->header.ancount > max_answer_records) |
| return DNS_RESP_INVALID; |
| reader += 2; |
| |
| /* 2 bytes authority count */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.nscount = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* 2 bytes additional count */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.arcount = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* Parsing dns queries */ |
| LIST_INIT(&dns_p->query_list); |
| for (dns_query_record_id = 0; dns_query_record_id < dns_p->header.qdcount; dns_query_record_id++) { |
| /* Use next pre-allocated dns_query_item after ensuring there is |
| * still one available. |
| * It's then added to our packet query list. */ |
| if (dns_query_record_id > DNS_MAX_QUERY_RECORDS) |
| return DNS_RESP_INVALID; |
| dns_query = &resolution->response_query_records[dns_query_record_id]; |
| LIST_ADDQ(&dns_p->query_list, &dns_query->list); |
| |
| /* Name is a NULL terminated string in our case, since we have |
| * one query per response and the first one can't be compressed |
| * (using the 0x0c format) */ |
| offset = 0; |
| len = dns_read_name(resp, bufend, reader, dns_query->name, DNS_MAX_NAME_SIZE, &offset); |
| |
| if (len == 0) |
| return DNS_RESP_INVALID; |
| |
| reader += offset; |
| previous_dname = dns_query->name; |
| |
| /* move forward 2 bytes for question type */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_query->type = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* move forward 2 bytes for question class */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_query->class = reader[0] * 256 + reader[1]; |
| reader += 2; |
| } |
| |
| /* TRUNCATED flag must be checked after we could read the query type |
| * because a TRUNCATED SRV query type response can still be exploited */ |
| if (dns_query->type != DNS_RTYPE_SRV && flags & DNS_FLAG_TRUNCATED) |
| return DNS_RESP_TRUNCATED; |
| |
| /* now parsing response records */ |
| nb_saved_records = 0; |
| for (i = 0; i < dns_p->header.ancount; i++) { |
| if (reader >= bufend) |
| return DNS_RESP_INVALID; |
| |
| dns_answer_record = pool_alloc(dns_answer_item_pool); |
| if (dns_answer_record == NULL) |
| return (DNS_RESP_INVALID); |
| |
| offset = 0; |
| len = dns_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset); |
| |
| if (len == 0) { |
| pool_free(dns_answer_item_pool, dns_answer_record); |
| return DNS_RESP_INVALID; |
| } |
| |
| /* Check if the current record dname is valid. previous_dname |
| * points either to queried dname or last CNAME target */ |
| if (dns_query->type != DNS_RTYPE_SRV && memcmp(previous_dname, tmpname, len) != 0) { |
| pool_free(dns_answer_item_pool, dns_answer_record); |
| if (i == 0) { |
| /* First record, means a mismatch issue between |
| * queried dname and dname found in the first |
| * record */ |
| return DNS_RESP_INVALID; |
| } |
| else { |
| /* If not the first record, this means we have a |
| * CNAME resolution error */ |
| return DNS_RESP_CNAME_ERROR; |
| } |
| |
| } |
| |
| memcpy(dns_answer_record->name, tmpname, len); |
| dns_answer_record->name[len] = 0; |
| |
| reader += offset; |
| if (reader >= bufend) { |
| pool_free(dns_answer_item_pool, dns_answer_record); |
| return DNS_RESP_INVALID; |
| } |
| |
| /* 2 bytes for record type (A, AAAA, CNAME, etc...) */ |
| if (reader + 2 > bufend) { |
| pool_free(dns_answer_item_pool, dns_answer_record); |
| return DNS_RESP_INVALID; |
| } |
| dns_answer_record->type = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* 2 bytes for class (2) */ |
| if (reader + 2 > bufend) { |
| pool_free(dns_answer_item_pool, dns_answer_record); |
| return DNS_RESP_INVALID; |
| } |
| dns_answer_record->class = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* 4 bytes for ttl (4) */ |
| if (reader + 4 > bufend) { |
| pool_free(dns_answer_item_pool, dns_answer_record); |
| return DNS_RESP_INVALID; |
| } |
| dns_answer_record->ttl = reader[0] * 16777216 + reader[1] * 65536 |
| + reader[2] * 256 + reader[3]; |
| reader += 4; |
| |
| /* Now reading data len */ |
| if (reader + 2 > bufend) { |
| pool_free(dns_answer_item_pool, dns_answer_record); |
| return DNS_RESP_INVALID; |
| } |
| dns_answer_record->data_len = reader[0] * 256 + reader[1]; |
| |
| /* Move forward 2 bytes for data len */ |
| reader += 2; |
| |
| /* Analyzing record content */ |
| switch (dns_answer_record->type) { |
| case DNS_RTYPE_A: |
| /* ipv4 is stored on 4 bytes */ |
| if (dns_answer_record->data_len != 4) { |
| pool_free(dns_answer_item_pool, dns_answer_record); |
| return DNS_RESP_INVALID; |
| } |
| dns_answer_record->address.sa_family = AF_INET; |
| memcpy(&(((struct sockaddr_in *)&dns_answer_record->address)->sin_addr), |
| reader, dns_answer_record->data_len); |
| break; |
| |
| case DNS_RTYPE_CNAME: |
| /* Check if this is the last record and update the caller about the status: |
| * no IP could be found and last record was a CNAME. Could be triggered |
| * by a wrong query type |
| * |
| * + 1 because dns_answer_record_id starts at 0 |
| * while number of answers is an integer and |
| * starts at 1. |
| */ |
| if (i + 1 == dns_p->header.ancount) { |
| pool_free(dns_answer_item_pool, dns_answer_record); |
| return DNS_RESP_CNAME_ERROR; |
| } |
| |
| offset = 0; |
| len = dns_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset); |
| if (len == 0) { |
| pool_free(dns_answer_item_pool, dns_answer_record); |
| return DNS_RESP_INVALID; |
| } |
| |
| memcpy(dns_answer_record->target, tmpname, len); |
| dns_answer_record->target[len] = 0; |
| previous_dname = dns_answer_record->target; |
| break; |
| |
| |
| case DNS_RTYPE_SRV: |
| /* Answer must contain : |
| * - 2 bytes for the priority |
| * - 2 bytes for the weight |
| * - 2 bytes for the port |
| * - the target hostname |
| */ |
| if (dns_answer_record->data_len <= 6) { |
| pool_free(dns_answer_item_pool, dns_answer_record); |
| return DNS_RESP_INVALID; |
| } |
| dns_answer_record->priority = read_n16(reader); |
| reader += sizeof(uint16_t); |
| dns_answer_record->weight = read_n16(reader); |
| reader += sizeof(uint16_t); |
| dns_answer_record->port = read_n16(reader); |
| reader += sizeof(uint16_t); |
| offset = 0; |
| len = dns_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset); |
| if (len == 0) { |
| pool_free(dns_answer_item_pool, dns_answer_record); |
| return DNS_RESP_INVALID; |
| } |
| dns_answer_record->data_len = len; |
| memcpy(dns_answer_record->target, tmpname, len); |
| dns_answer_record->target[len] = 0; |
| break; |
| |
| case DNS_RTYPE_AAAA: |
| /* ipv6 is stored on 16 bytes */ |
| if (dns_answer_record->data_len != 16) { |
| pool_free(dns_answer_item_pool, dns_answer_record); |
| return DNS_RESP_INVALID; |
| } |
| dns_answer_record->address.sa_family = AF_INET6; |
| memcpy(&(((struct sockaddr_in6 *)&dns_answer_record->address)->sin6_addr), |
| reader, dns_answer_record->data_len); |
| break; |
| |
| } /* switch (record type) */ |
| |
| /* Increment the counter for number of records saved into our |
| * local response */ |
| nb_saved_records++; |
| |
| /* Move forward dns_answer_record->data_len for analyzing next |
| * record in the response */ |
| reader += ((dns_answer_record->type == DNS_RTYPE_SRV) |
| ? offset |
| : dns_answer_record->data_len); |
| |
| /* Lookup to see if we already had this entry */ |
| found = 0; |
| list_for_each_entry(tmp_record, &dns_p->answer_list, list) { |
| if (tmp_record->type != dns_answer_record->type) |
| continue; |
| |
| switch(tmp_record->type) { |
| case DNS_RTYPE_A: |
| if (!memcmp(&((struct sockaddr_in *)&dns_answer_record->address)->sin_addr, |
| &((struct sockaddr_in *)&tmp_record->address)->sin_addr, |
| sizeof(in_addr_t))) |
| found = 1; |
| break; |
| |
| case DNS_RTYPE_AAAA: |
| if (!memcmp(&((struct sockaddr_in6 *)&dns_answer_record->address)->sin6_addr, |
| &((struct sockaddr_in6 *)&tmp_record->address)->sin6_addr, |
| sizeof(struct in6_addr))) |
| found = 1; |
| break; |
| |
| case DNS_RTYPE_SRV: |
| if (dns_answer_record->data_len == tmp_record->data_len && |
| !memcmp(dns_answer_record->target, tmp_record->target, dns_answer_record->data_len) && |
| dns_answer_record->port == tmp_record->port) { |
| tmp_record->weight = dns_answer_record->weight; |
| found = 1; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (found == 1) |
| break; |
| } |
| |
| if (found == 1) { |
| tmp_record->last_seen = now.tv_sec; |
| pool_free(dns_answer_item_pool, dns_answer_record); |
| } |
| else { |
| dns_answer_record->last_seen = now.tv_sec; |
| LIST_ADDQ(&dns_p->answer_list, &dns_answer_record->list); |
| } |
| } /* for i 0 to ancount */ |
| |
| /* Save the number of records we really own */ |
| dns_p->header.ancount = nb_saved_records; |
| dns_check_dns_response(resolution); |
| return DNS_RESP_VALID; |
| } |
| |
| /* Searches dn_name resolution in resp. |
| * If existing IP not found, return the first IP matching family_priority, |
| * otherwise, first ip found |
| * The following tasks are the responsibility of the caller: |
| * - <dns_p> contains an error free DNS response |
| * For both cases above, dns_validate_dns_response is required |
| * returns one of the DNS_UPD_* code |
| */ |
| int dns_get_ip_from_response(struct dns_response_packet *dns_p, |
| struct dns_options *dns_opts, void *currentip, |
| short currentip_sin_family, |
| void **newip, short *newip_sin_family, |
| void *owner) |
| { |
| struct dns_answer_item *record; |
| int family_priority; |
| int currentip_found; |
| unsigned char *newip4, *newip6; |
| int currentip_sel; |
| int j; |
| int score, max_score; |
| int allowed_duplicated_ip; |
| |
| family_priority = dns_opts->family_prio; |
| allowed_duplicated_ip = dns_opts->accept_duplicate_ip; |
| *newip = newip4 = newip6 = NULL; |
| currentip_found = 0; |
| *newip_sin_family = AF_UNSPEC; |
| max_score = -1; |
| |
| /* Select an IP regarding configuration preference. |
| * Top priority is the preferred network ip version, |
| * second priority is the preferred network. |
| * the last priority is the currently used IP, |
| * |
| * For these three priorities, a score is calculated. The |
| * weight are: |
| * 8 - preferred ip version. |
| * 4 - preferred network. |
| * 2 - if the ip in the record is not affected to any other server in the same backend (duplication) |
| * 1 - current ip. |
| * The result with the biggest score is returned. |
| */ |
| |
| list_for_each_entry(record, &dns_p->answer_list, list) { |
| void *ip; |
| unsigned char ip_type; |
| |
| if (record->type == DNS_RTYPE_A) { |
| ip = &(((struct sockaddr_in *)&record->address)->sin_addr); |
| ip_type = AF_INET; |
| } |
| else if (record->type == DNS_RTYPE_AAAA) { |
| ip_type = AF_INET6; |
| ip = &(((struct sockaddr_in6 *)&record->address)->sin6_addr); |
| } |
| else |
| continue; |
| score = 0; |
| |
| /* Check for preferred ip protocol. */ |
| if (ip_type == family_priority) |
| score += 8; |
| |
| /* Check for preferred network. */ |
| for (j = 0; j < dns_opts->pref_net_nb; j++) { |
| |
| /* Compare only the same adresses class. */ |
| if (dns_opts->pref_net[j].family != ip_type) |
| continue; |
| |
| if ((ip_type == AF_INET && |
| in_net_ipv4(ip, |
| &dns_opts->pref_net[j].mask.in4, |
| &dns_opts->pref_net[j].addr.in4)) || |
| (ip_type == AF_INET6 && |
| in_net_ipv6(ip, |
| &dns_opts->pref_net[j].mask.in6, |
| &dns_opts->pref_net[j].addr.in6))) { |
| score += 4; |
| break; |
| } |
| } |
| |
| /* Check if the IP found in the record is already affected to a |
| * member of a group. If not, the score should be incremented |
| * by 2. */ |
| if (owner && snr_check_ip_callback(owner, ip, &ip_type)) { |
| if (!allowed_duplicated_ip) { |
| continue; |
| } |
| } else { |
| score += 2; |
| } |
| |
| /* Check for current ip matching. */ |
| if (ip_type == currentip_sin_family && |
| ((currentip_sin_family == AF_INET && |
| !memcmp(ip, currentip, 4)) || |
| (currentip_sin_family == AF_INET6 && |
| !memcmp(ip, currentip, 16)))) { |
| score++; |
| currentip_sel = 1; |
| } |
| else |
| currentip_sel = 0; |
| |
| /* Keep the address if the score is better than the previous |
| * score. The maximum score is 15, if this value is reached, we |
| * break the parsing. Implicitly, this score is reached the ip |
| * selected is the current ip. */ |
| if (score > max_score) { |
| if (ip_type == AF_INET) |
| newip4 = ip; |
| else |
| newip6 = ip; |
| currentip_found = currentip_sel; |
| if (score == 15) |
| return DNS_UPD_NO; |
| max_score = score; |
| } |
| } /* list for each record entries */ |
| |
| /* No IP found in the response */ |
| if (!newip4 && !newip6) |
| return DNS_UPD_NO_IP_FOUND; |
| |
| /* Case when the caller looks first for an IPv4 address */ |
| if (family_priority == AF_INET) { |
| if (newip4) { |
| *newip = newip4; |
| *newip_sin_family = AF_INET; |
| } |
| else if (newip6) { |
| *newip = newip6; |
| *newip_sin_family = AF_INET6; |
| } |
| if (!currentip_found) |
| goto not_found; |
| } |
| /* Case when the caller looks first for an IPv6 address */ |
| else if (family_priority == AF_INET6) { |
| if (newip6) { |
| *newip = newip6; |
| *newip_sin_family = AF_INET6; |
| } |
| else if (newip4) { |
| *newip = newip4; |
| *newip_sin_family = AF_INET; |
| } |
| if (!currentip_found) |
| goto not_found; |
| } |
| /* Case when the caller have no preference (we prefer IPv6) */ |
| else if (family_priority == AF_UNSPEC) { |
| if (newip6) { |
| *newip = newip6; |
| *newip_sin_family = AF_INET6; |
| } |
| else if (newip4) { |
| *newip = newip4; |
| *newip_sin_family = AF_INET; |
| } |
| if (!currentip_found) |
| goto not_found; |
| } |
| |
| /* No reason why we should change the server's IP address */ |
| return DNS_UPD_NO; |
| |
| not_found: |
| list_for_each_entry(record, &dns_p->answer_list, list) { |
| /* Move the first record to the end of the list, for internal |
| * round robin */ |
| LIST_DEL(&record->list); |
| LIST_ADDQ(&dns_p->answer_list, &record->list); |
| break; |
| } |
| return DNS_UPD_SRVIP_NOT_FOUND; |
| } |
| |
| /* Turns a domain name label into a string. |
| * |
| * <dn> must be a null-terminated string. <dn_len> must include the terminating |
| * null byte. <str> must be allocated and its size must be passed in <str_len>. |
| * |
| * In case of error, -1 is returned, otherwise, the number of bytes copied in |
| * <str> (including the terminating null byte). |
| */ |
| int dns_dn_label_to_str(const char *dn, int dn_len, char *str, int str_len) |
| { |
| char *ptr; |
| int i, sz; |
| |
| if (str_len < dn_len - 1) |
| return -1; |
| |
| ptr = str; |
| for (i = 0; i < dn_len-1; ++i) { |
| sz = dn[i]; |
| if (i) |
| *ptr++ = '.'; |
| memcpy(ptr, dn+i+1, sz); |
| ptr += sz; |
| i += sz; |
| } |
| *ptr++ = '\0'; |
| return (ptr - str); |
| } |
| |
| /* Turns a string into domain name label: www.haproxy.org into 3www7haproxy3org |
| * |
| * <str> must be a null-terminated string. <str_len> must include the |
| * terminating null byte. <dn> buffer must be allocated and its size must be |
| * passed in <dn_len>. |
| * |
| * In case of error, -1 is returned, otherwise, the number of bytes copied in |
| * <dn> (excluding the terminating null byte). |
| */ |
| int dns_str_to_dn_label(const char *str, int str_len, char *dn, int dn_len) |
| { |
| int i, offset; |
| |
| if (dn_len < str_len + 1) |
| return -1; |
| |
| /* First byte of dn will be used to store the length of the first |
| * label */ |
| offset = 0; |
| for (i = 0; i < str_len; ++i) { |
| if (str[i] == '.') { |
| /* 2 or more consecutive dots is invalid */ |
| if (i == offset) |
| return -1; |
| |
| dn[offset] = (i - offset); |
| offset = i+1; |
| continue; |
| } |
| dn[i+1] = str[i]; |
| } |
| dn[offset] = (i - offset - 1); |
| dn[i] = '\0'; |
| return i; |
| } |
| |
| /* Validates host name: |
| * - total size |
| * - each label size individually |
| * returns: |
| * 0 in case of error. If <err> is not NULL, an error message is stored there. |
| * 1 when no error. <err> is left unaffected. |
| */ |
| int dns_hostname_validation(const char *string, char **err) |
| { |
| const char *c, *d; |
| int i; |
| |
| if (strlen(string) > DNS_MAX_NAME_SIZE) { |
| if (err) |
| *err = DNS_TOO_LONG_FQDN; |
| return 0; |
| } |
| |
| c = string; |
| while (*c) { |
| d = c; |
| |
| i = 0; |
| while (*d != '.' && *d && i <= DNS_MAX_LABEL_SIZE) { |
| i++; |
| if (!((*d == '-') || (*d == '_') || |
| ((*d >= 'a') && (*d <= 'z')) || |
| ((*d >= 'A') && (*d <= 'Z')) || |
| ((*d >= '0') && (*d <= '9')))) { |
| if (err) |
| *err = DNS_INVALID_CHARACTER; |
| return 0; |
| } |
| d++; |
| } |
| |
| if ((i >= DNS_MAX_LABEL_SIZE) && (d[i] != '.')) { |
| if (err) |
| *err = DNS_LABEL_TOO_LONG; |
| return 0; |
| } |
| |
| if (*d == '\0') |
| goto out; |
| |
| c = ++d; |
| } |
| out: |
| return 1; |
| } |
| |
| /* Picks up an available resolution from the different resolution list |
| * associated to a resolvers section, in this order: |
| * 1. check in resolutions.curr for the same hostname and query_type |
| * 2. check in resolutions.wait for the same hostname and query_type |
| * 3. Get a new resolution from resolution pool |
| * |
| * Returns an available resolution, NULL if none found. |
| */ |
| static struct dns_resolution *dns_pick_resolution(struct dns_resolvers *resolvers, |
| char **hostname_dn, int hostname_dn_len, |
| int query_type) |
| { |
| struct dns_resolution *res; |
| |
| if (!*hostname_dn) |
| goto from_pool; |
| |
| /* Search for same hostname and query type in resolutions.curr */ |
| list_for_each_entry(res, &resolvers->resolutions.curr, list) { |
| if (!res->hostname_dn) |
| continue; |
| if ((query_type == res->prefered_query_type) && |
| hostname_dn_len == res->hostname_dn_len && |
| !memcmp(*hostname_dn, res->hostname_dn, hostname_dn_len)) |
| return res; |
| } |
| |
| /* Search for same hostname and query type in resolutions.wait */ |
| list_for_each_entry(res, &resolvers->resolutions.wait, list) { |
| if (!res->hostname_dn) |
| continue; |
| if ((query_type == res->prefered_query_type) && |
| hostname_dn_len == res->hostname_dn_len && |
| !memcmp(*hostname_dn, res->hostname_dn, hostname_dn_len)) |
| return res; |
| } |
| |
| from_pool: |
| /* No resolution could be found, so let's allocate a new one */ |
| res = pool_alloc(dns_resolution_pool); |
| if (res) { |
| memset(res, 0, sizeof(*res)); |
| res->resolvers = resolvers; |
| res->uuid = resolution_uuid; |
| res->status = RSLV_STATUS_NONE; |
| res->step = RSLV_STEP_NONE; |
| res->last_valid = now_ms; |
| |
| LIST_INIT(&res->requesters); |
| LIST_INIT(&res->response.answer_list); |
| |
| res->prefered_query_type = query_type; |
| res->query_type = query_type; |
| res->hostname_dn = *hostname_dn; |
| res->hostname_dn_len = hostname_dn_len; |
| |
| ++resolution_uuid; |
| |
| /* Move the resolution to the resolvers wait queue */ |
| LIST_ADDQ(&resolvers->resolutions.wait, &res->list); |
| } |
| return res; |
| } |
| |
| /* Releases a resolution from its requester(s) and move it back to the pool */ |
| static void dns_free_resolution(struct dns_resolution *resolution) |
| { |
| struct dns_requester *req, *reqback; |
| |
| /* clean up configuration */ |
| dns_reset_resolution(resolution); |
| resolution->hostname_dn = NULL; |
| resolution->hostname_dn_len = 0; |
| |
| list_for_each_entry_safe(req, reqback, &resolution->requesters, list) { |
| LIST_DEL(&req->list); |
| req->resolution = NULL; |
| } |
| |
| LIST_DEL(&resolution->list); |
| pool_free(dns_resolution_pool, resolution); |
| } |
| |
| /* Links a requester (a server or a dns_srvrq) with a resolution. It returns 0 |
| * on success, -1 otherwise. |
| */ |
| int dns_link_resolution(void *requester, int requester_type, int requester_locked) |
| { |
| struct dns_resolution *res = NULL; |
| struct dns_requester *req; |
| struct dns_resolvers *resolvers; |
| struct server *srv = NULL; |
| struct dns_srvrq *srvrq = NULL; |
| char **hostname_dn; |
| int hostname_dn_len, query_type; |
| |
| switch (requester_type) { |
| case OBJ_TYPE_SERVER: |
| srv = (struct server *)requester; |
| hostname_dn = &srv->hostname_dn; |
| hostname_dn_len = srv->hostname_dn_len; |
| resolvers = srv->resolvers; |
| query_type = ((srv->dns_opts.family_prio == AF_INET) |
| ? DNS_RTYPE_A |
| : DNS_RTYPE_AAAA); |
| break; |
| |
| case OBJ_TYPE_SRVRQ: |
| srvrq = (struct dns_srvrq *)requester; |
| hostname_dn = &srvrq->hostname_dn; |
| hostname_dn_len = srvrq->hostname_dn_len; |
| resolvers = srvrq->resolvers; |
| query_type = DNS_RTYPE_SRV; |
| break; |
| |
| default: |
| goto err; |
| } |
| |
| /* Get a resolution from the resolvers' wait queue or pool */ |
| if ((res = dns_pick_resolution(resolvers, hostname_dn, hostname_dn_len, query_type)) == NULL) |
| goto err; |
| |
| if (srv) { |
| if (!requester_locked) |
| HA_SPIN_LOCK(SERVER_LOCK, &srv->lock); |
| if (srv->dns_requester == NULL) { |
| if ((req = calloc(1, sizeof(*req))) == NULL) { |
| if (!requester_locked) |
| HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); |
| goto err; |
| } |
| req->owner = &srv->obj_type; |
| srv->dns_requester = req; |
| } |
| else |
| req = srv->dns_requester; |
| if (!requester_locked) |
| HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); |
| } |
| else if (srvrq) { |
| if (srvrq->dns_requester == NULL) { |
| if ((req = calloc(1, sizeof(*req))) == NULL) |
| goto err; |
| req->owner = &srvrq->obj_type; |
| srvrq->dns_requester = req; |
| } |
| else |
| req = srvrq->dns_requester; |
| } |
| else |
| goto err; |
| |
| req->resolution = res; |
| req->requester_cb = snr_resolution_cb; |
| req->requester_error_cb = snr_resolution_error_cb; |
| |
| LIST_ADDQ(&res->requesters, &req->list); |
| return 0; |
| |
| err: |
| if (res && LIST_ISEMPTY(&res->requesters)) |
| dns_free_resolution(res); |
| return -1; |
| } |
| |
| /* Removes a requester from a DNS resoltion. It takes takes care of all the |
| * consequences. It also cleans up some parameters from the requester. |
| */ |
| void dns_unlink_resolution(struct dns_requester *requester) |
| { |
| struct dns_resolution *res; |
| struct dns_requester *req; |
| |
| /* Nothing to do */ |
| if (!requester || !requester->resolution) |
| return; |
| res = requester->resolution; |
| |
| /* Clean up the requester */ |
| LIST_DEL(&requester->list); |
| requester->resolution = NULL; |
| |
| /* We need to find another requester linked on this resolution */ |
| if (!LIST_ISEMPTY(&res->requesters)) |
| req = LIST_NEXT(&res->requesters, struct dns_requester *, list); |
| else { |
| dns_free_resolution(res); |
| return; |
| } |
| |
| /* Move hostname_dn related pointers to the next requester */ |
| switch (obj_type(req->owner)) { |
| case OBJ_TYPE_SERVER: |
| res->hostname_dn = __objt_server(req->owner)->hostname_dn; |
| res->hostname_dn_len = __objt_server(req->owner)->hostname_dn_len; |
| break; |
| case OBJ_TYPE_SRVRQ: |
| res->hostname_dn = __objt_dns_srvrq(req->owner)->hostname_dn; |
| res->hostname_dn_len = __objt_dns_srvrq(req->owner)->hostname_dn_len; |
| break; |
| default: |
| res->hostname_dn = NULL; |
| res->hostname_dn_len = 0; |
| break; |
| } |
| } |
| |
| /* Called when a network IO is generated on a name server socket for an incoming |
| * packet. It performs the following actions: |
| * - check if the packet requires processing (not outdated resolution) |
| * - ensure the DNS packet received is valid and call requester's callback |
| * - call requester's error callback if invalid response |
| * - check the dn_name in the packet against the one sent |
| */ |
| static void dns_resolve_recv(struct dgram_conn *dgram) |
| { |
| struct dns_nameserver *ns, *tmpns; |
| struct dns_resolvers *resolvers; |
| struct dns_resolution *res; |
| struct dns_query_item *query; |
| unsigned char buf[DNS_MAX_UDP_MESSAGE + 1]; |
| unsigned char *bufend; |
| int fd, buflen, dns_resp; |
| int max_answer_records; |
| unsigned short query_id; |
| struct eb32_node *eb; |
| struct dns_requester *req; |
| |
| fd = dgram->t.sock.fd; |
| |
| /* check if ready for reading */ |
| if (!fd_recv_ready(fd)) |
| return; |
| |
| /* no need to go further if we can't retrieve the nameserver */ |
| if ((ns = dgram->owner) == NULL) |
| return; |
| |
| resolvers = ns->resolvers; |
| HA_SPIN_LOCK(DNS_LOCK, &resolvers->lock); |
| |
| /* process all pending input messages */ |
| while (1) { |
| /* read message received */ |
| memset(buf, '\0', resolvers->accepted_payload_size + 1); |
| if ((buflen = recv(fd, (char*)buf , resolvers->accepted_payload_size + 1, 0)) < 0) { |
| /* FIXME : for now we consider EAGAIN only */ |
| fd_cant_recv(fd); |
| break; |
| } |
| |
| /* message too big */ |
| if (buflen > resolvers->accepted_payload_size) { |
| ns->counters.too_big++; |
| continue; |
| } |
| |
| /* initializing variables */ |
| bufend = buf + buflen; /* pointer to mark the end of the buffer */ |
| |
| /* read the query id from the packet (16 bits) */ |
| if (buf + 2 > bufend) { |
| ns->counters.invalid++; |
| continue; |
| } |
| query_id = dns_response_get_query_id(buf); |
| |
| /* search the query_id in the pending resolution tree */ |
| eb = eb32_lookup(&resolvers->query_ids, query_id); |
| if (eb == NULL) { |
| /* unknown query id means an outdated response and can be safely ignored */ |
| ns->counters.outdated++; |
| continue; |
| } |
| |
| /* known query id means a resolution in prgress */ |
| res = eb32_entry(eb, struct dns_resolution, qid); |
| if (!res) { |
| ns->counters.outdated++; |
| continue; |
| } |
| |
| /* number of responses received */ |
| res->nb_responses++; |
| |
| max_answer_records = (resolvers->accepted_payload_size - DNS_HEADER_SIZE) / DNS_MIN_RECORD_SIZE; |
| dns_resp = dns_validate_dns_response(buf, bufend, res, max_answer_records); |
| |
| switch (dns_resp) { |
| case DNS_RESP_VALID: |
| break; |
| |
| case DNS_RESP_INVALID: |
| case DNS_RESP_QUERY_COUNT_ERROR: |
| case DNS_RESP_WRONG_NAME: |
| res->status = RSLV_STATUS_INVALID; |
| ns->counters.invalid++; |
| break; |
| |
| case DNS_RESP_NX_DOMAIN: |
| res->status = RSLV_STATUS_NX; |
| ns->counters.nx++; |
| break; |
| |
| case DNS_RESP_REFUSED: |
| res->status = RSLV_STATUS_REFUSED; |
| ns->counters.refused++; |
| break; |
| |
| case DNS_RESP_ANCOUNT_ZERO: |
| res->status = RSLV_STATUS_OTHER; |
| ns->counters.any_err++; |
| break; |
| |
| case DNS_RESP_CNAME_ERROR: |
| res->status = RSLV_STATUS_OTHER; |
| ns->counters.cname_error++; |
| break; |
| |
| case DNS_RESP_TRUNCATED: |
| res->status = RSLV_STATUS_OTHER; |
| ns->counters.truncated++; |
| break; |
| |
| case DNS_RESP_NO_EXPECTED_RECORD: |
| case DNS_RESP_ERROR: |
| case DNS_RESP_INTERNAL: |
| res->status = RSLV_STATUS_OTHER; |
| ns->counters.other++; |
| break; |
| } |
| |
| /* Wait all nameservers response to handle errors */ |
| if (dns_resp != DNS_RESP_VALID && res->nb_responses < resolvers->nb_nameservers) |
| continue; |
| |
| /* Process error codes */ |
| if (dns_resp != DNS_RESP_VALID) { |
| if (res->prefered_query_type != res->query_type) { |
| /* The fallback on the query type was already performed, |
| * so check the try counter. If it falls to 0, we can |
| * report an error. Else, wait the next attempt. */ |
| if (!res->try) |
| goto report_res_error; |
| } |
| else { |
| /* Fallback from A to AAAA or the opposite and re-send |
| * the resolution immediately. try counter is not |
| * decremented. */ |
| if (res->prefered_query_type == DNS_RTYPE_A) { |
| res->query_type = DNS_RTYPE_AAAA; |
| dns_send_query(res); |
| } |
| else if (res->prefered_query_type == DNS_RTYPE_AAAA) { |
| res->query_type = DNS_RTYPE_A; |
| dns_send_query(res); |
| } |
| } |
| continue; |
| } |
| |
| /* Now let's check the query's dname corresponds to the one we |
| * sent. We can check only the first query of the list. We send |
| * one query at a time so we get one query in the response */ |
| query = LIST_NEXT(&res->response.query_list, struct dns_query_item *, list); |
| if (query && memcmp(query->name, res->hostname_dn, res->hostname_dn_len) != 0) { |
| dns_resp = DNS_RESP_WRONG_NAME; |
| ns->counters.other++; |
| goto report_res_error; |
| } |
| |
| /* So the resolution succeeded */ |
| res->status = RSLV_STATUS_VALID; |
| res->last_valid = now_ms; |
| ns->counters.valid++; |
| goto report_res_success; |
| |
| report_res_error: |
| list_for_each_entry(req, &res->requesters, list) |
| req->requester_error_cb(req, dns_resp); |
| dns_reset_resolution(res); |
| LIST_DEL(&res->list); |
| LIST_ADDQ(&resolvers->resolutions.wait, &res->list); |
| continue; |
| |
| report_res_success: |
| /* Only the 1rst requester s managed by the server, others are |
| * from the cache */ |
| tmpns = ns; |
| list_for_each_entry(req, &res->requesters, list) { |
| struct server *s = objt_server(req->owner); |
| |
| if (s) |
| HA_SPIN_LOCK(SERVER_LOCK, &s->lock); |
| req->requester_cb(req, tmpns); |
| if (s) |
| HA_SPIN_UNLOCK(SERVER_LOCK, &s->lock); |
| tmpns = NULL; |
| } |
| |
| dns_reset_resolution(res); |
| LIST_DEL(&res->list); |
| LIST_ADDQ(&resolvers->resolutions.wait, &res->list); |
| continue; |
| } |
| dns_update_resolvers_timeout(resolvers); |
| HA_SPIN_UNLOCK(DNS_LOCK, &resolvers->lock); |
| } |
| |
| /* Called when a resolvers network socket is ready to send data */ |
| static void dns_resolve_send(struct dgram_conn *dgram) |
| { |
| struct dns_resolvers *resolvers; |
| struct dns_nameserver *ns; |
| struct dns_resolution *res; |
| int fd; |
| |
| fd = dgram->t.sock.fd; |
| |
| /* check if ready for sending */ |
| if (!fd_send_ready(fd)) |
| return; |
| |
| /* we don't want/need to be waked up any more for sending */ |
| fd_stop_send(fd); |
| |
| /* no need to go further if we can't retrieve the nameserver */ |
| if ((ns = dgram->owner) == NULL) |
| return; |
| |
| resolvers = ns->resolvers; |
| HA_SPIN_LOCK(DNS_LOCK, &resolvers->lock); |
| |
| list_for_each_entry(res, &resolvers->resolutions.curr, list) { |
| int ret, len; |
| |
| if (res->nb_queries == resolvers->nb_nameservers) |
| continue; |
| |
| len = dns_build_query(res->query_id, res->query_type, |
| resolvers->accepted_payload_size, |
| res->hostname_dn, res->hostname_dn_len, |
| trash.area, trash.size); |
| if (len == -1) |
| goto snd_error; |
| |
| ret = send(fd, trash.area, len, 0); |
| if (ret != len) |
| goto snd_error; |
| |
| ns->counters.sent++; |
| res->nb_queries++; |
| continue; |
| |
| snd_error: |
| ns->counters.snd_error++; |
| res->nb_queries++; |
| } |
| HA_SPIN_UNLOCK(DNS_LOCK, &resolvers->lock); |
| } |
| |
| /* Processes DNS resolution. First, it checks the active list to detect expired |
| * resolutions and retry them if possible. Else a timeout is reported. Then, it |
| * checks the wait list to trigger new resolutions. |
| */ |
| static struct task *dns_process_resolvers(struct task *t, void *context, unsigned short state) |
| { |
| struct dns_resolvers *resolvers = context; |
| struct dns_resolution *res, *resback; |
| int exp; |
| |
| HA_SPIN_LOCK(DNS_LOCK, &resolvers->lock); |
| |
| /* Handle all expired resolutions from the active list */ |
| list_for_each_entry_safe(res, resback, &resolvers->resolutions.curr, list) { |
| /* When we find the first resolution in the future, then we can |
| * stop here */ |
| exp = tick_add(res->last_query, resolvers->timeout.retry); |
| if (!tick_is_expired(exp, now_ms)) |
| break; |
| |
| /* If current resolution has been tried too many times and |
| * finishes in timeout we update its status and remove it from |
| * the list */ |
| if (!res->try) { |
| struct dns_requester *req; |
| |
| /* Notify the result to the requesters */ |
| if (!res->nb_responses) |
| res->status = RSLV_STATUS_TIMEOUT; |
| list_for_each_entry(req, &res->requesters, list) |
| req->requester_error_cb(req, res->status); |
| |
| /* Clean up resolution info and remove it from the |
| * current list */ |
| dns_reset_resolution(res); |
| LIST_DEL(&res->list); |
| LIST_ADDQ(&resolvers->resolutions.wait, &res->list); |
| } |
| else { |
| /* Otherwise resend the DNS query and requeue the resolution */ |
| if (!res->nb_responses || res->prefered_query_type != res->query_type) { |
| /* No response received (a real timeout) or fallback already done */ |
| res->query_type = res->prefered_query_type; |
| res->try--; |
| } |
| else { |
| /* Fallback from A to AAAA or the opposite and re-send |
| * the resolution immediately. try counter is not |
| * decremented. */ |
| if (res->prefered_query_type == DNS_RTYPE_A) |
| res->query_type = DNS_RTYPE_AAAA; |
| else if (res->prefered_query_type == DNS_RTYPE_AAAA) |
| res->query_type = DNS_RTYPE_A; |
| else |
| res->try--; |
| } |
| dns_send_query(res); |
| } |
| } |
| |
| /* Handle all resolutions in the wait list */ |
| list_for_each_entry_safe(res, resback, &resolvers->resolutions.wait, list) { |
| exp = tick_add(res->last_resolution, dns_resolution_timeout(res)); |
| if (tick_isset(res->last_resolution) && !tick_is_expired(exp, now_ms)) |
| continue; |
| |
| if (dns_run_resolution(res) != 1) { |
| res->last_resolution = now_ms; |
| LIST_DEL(&res->list); |
| LIST_ADDQ(&resolvers->resolutions.wait, &res->list); |
| } |
| } |
| |
| dns_update_resolvers_timeout(resolvers); |
| HA_SPIN_UNLOCK(DNS_LOCK, &resolvers->lock); |
| return t; |
| } |
| |
| /* proto_udp callback functions for a DNS resolution */ |
| struct dgram_data_cb resolve_dgram_cb = { |
| .recv = dns_resolve_recv, |
| .send = dns_resolve_send, |
| }; |
| |
| /* Release memory allocated by DNS */ |
| static void dns_deinit(void) |
| { |
| struct dns_resolvers *resolvers, *resolversback; |
| struct dns_nameserver *ns, *nsback; |
| struct dns_resolution *res, *resback; |
| struct dns_requester *req, *reqback; |
| struct dns_srvrq *srvrq, *srvrqback; |
| |
| list_for_each_entry_safe(resolvers, resolversback, &dns_resolvers, list) { |
| list_for_each_entry_safe(ns, nsback, &resolvers->nameservers, list) { |
| free(ns->id); |
| free((char *)ns->conf.file); |
| if (ns->dgram && ns->dgram->t.sock.fd != -1) |
| fd_delete(ns->dgram->t.sock.fd); |
| free(ns->dgram); |
| LIST_DEL(&ns->list); |
| free(ns); |
| } |
| |
| list_for_each_entry_safe(res, resback, &resolvers->resolutions.curr, list) { |
| list_for_each_entry_safe(req, reqback, &res->requesters, list) { |
| LIST_DEL(&req->list); |
| free(req); |
| } |
| dns_free_resolution(res); |
| } |
| |
| list_for_each_entry_safe(res, resback, &resolvers->resolutions.wait, list) { |
| list_for_each_entry_safe(req, reqback, &res->requesters, list) { |
| LIST_DEL(&req->list); |
| free(req); |
| } |
| dns_free_resolution(res); |
| } |
| |
| free(resolvers->id); |
| free((char *)resolvers->conf.file); |
| task_delete(resolvers->t); |
| task_free(resolvers->t); |
| LIST_DEL(&resolvers->list); |
| free(resolvers); |
| } |
| |
| list_for_each_entry_safe(srvrq, srvrqback, &dns_srvrq_list, list) { |
| free(srvrq->name); |
| free(srvrq->hostname_dn); |
| LIST_DEL(&srvrq->list); |
| free(srvrq); |
| } |
| |
| pool_destroy(dns_answer_item_pool); |
| pool_destroy(dns_resolution_pool); |
| } |
| |
| /* Finalizes the DNS configuration by allocating required resources and checking |
| * live parameters. |
| * Returns 0 on success, ERR_* flags otherwise. |
| */ |
| static int dns_finalize_config(void) |
| { |
| struct dns_resolvers *resolvers; |
| struct proxy *px; |
| int err_code = 0; |
| |
| /* allocate pool of resolution per resolvers */ |
| list_for_each_entry(resolvers, &dns_resolvers, list) { |
| struct dns_nameserver *ns; |
| struct task *t; |
| |
| /* Check if we can create the socket with nameservers info */ |
| list_for_each_entry(ns, &resolvers->nameservers, list) { |
| struct dgram_conn *dgram = NULL; |
| int fd; |
| |
| /* Check nameserver info */ |
| if ((fd = socket(ns->addr.ss_family, SOCK_DGRAM, IPPROTO_UDP)) == -1) { |
| ha_alert("config : resolvers '%s': can't create socket for nameserver '%s'.\n", |
| resolvers->id, ns->id); |
| err_code |= (ERR_ALERT|ERR_ABORT); |
| continue; |
| } |
| if (connect(fd, (struct sockaddr*)&ns->addr, get_addr_len(&ns->addr)) == -1) { |
| ha_alert("config : resolvers '%s': can't connect socket for nameserver '%s'.\n", |
| resolvers->id, ns->id); |
| close(fd); |
| err_code |= (ERR_ALERT|ERR_ABORT); |
| continue; |
| } |
| close(fd); |
| |
| /* Create dgram structure that will hold the UPD socket |
| * and attach it on the current nameserver */ |
| if ((dgram = calloc(1, sizeof(*dgram))) == NULL) { |
| ha_alert("config: resolvers '%s' : out of memory.\n", |
| resolvers->id); |
| err_code |= (ERR_ALERT|ERR_ABORT); |
| goto err; |
| } |
| |
| /* Leave dgram partially initialized, no FD attached for |
| * now. */ |
| dgram->owner = ns; |
| dgram->data = &resolve_dgram_cb; |
| dgram->t.sock.fd = -1; |
| ns->dgram = dgram; |
| } |
| |
| /* Create the task associated to the resolvers section */ |
| if ((t = task_new(MAX_THREADS_MASK)) == NULL) { |
| ha_alert("config : resolvers '%s' : out of memory.\n", resolvers->id); |
| err_code |= (ERR_ALERT|ERR_ABORT); |
| goto err; |
| } |
| |
| /* Update task's parameters */ |
| t->process = dns_process_resolvers; |
| t->context = resolvers; |
| resolvers->t = t; |
| task_wakeup(t, TASK_WOKEN_INIT); |
| } |
| |
| for (px = proxies_list; px; px = px->next) { |
| struct server *srv; |
| |
| for (srv = px->srv; srv; srv = srv->next) { |
| struct dns_resolvers *resolvers; |
| |
| if (!srv->resolvers_id) |
| continue; |
| |
| if ((resolvers = find_resolvers_by_id(srv->resolvers_id)) == NULL) { |
| ha_alert("config : %s '%s', server '%s': unable to find required resolvers '%s'\n", |
| proxy_type_str(px), px->id, srv->id, srv->resolvers_id); |
| err_code |= (ERR_ALERT|ERR_ABORT); |
| continue; |
| } |
| srv->resolvers = resolvers; |
| |
| if (srv->srvrq && !srv->srvrq->resolvers) { |
| srv->srvrq->resolvers = srv->resolvers; |
| if (dns_link_resolution(srv->srvrq, OBJ_TYPE_SRVRQ, 0) == -1) { |
| ha_alert("config : %s '%s' : unable to set DNS resolution for server '%s'.\n", |
| proxy_type_str(px), px->id, srv->id); |
| err_code |= (ERR_ALERT|ERR_ABORT); |
| continue; |
| } |
| } |
| if (dns_link_resolution(srv, OBJ_TYPE_SERVER, 0) == -1) { |
| ha_alert("config : %s '%s', unable to set DNS resolution for server '%s'.\n", |
| proxy_type_str(px), px->id, srv->id); |
| err_code |= (ERR_ALERT|ERR_ABORT); |
| continue; |
| } |
| } |
| } |
| |
| if (err_code & (ERR_ALERT|ERR_ABORT)) |
| goto err; |
| |
| return err_code; |
| err: |
| dns_deinit(); |
| return err_code; |
| |
| } |
| |
| /* if an arg is found, it sets the resolvers section pointer into cli.p0 */ |
| static int cli_parse_stat_resolvers(char **args, char *payload, struct appctx *appctx, void *private) |
| { |
| struct dns_resolvers *presolvers; |
| |
| if (*args[2]) { |
| list_for_each_entry(presolvers, &dns_resolvers, list) { |
| if (strcmp(presolvers->id, args[2]) == 0) { |
| appctx->ctx.cli.p0 = presolvers; |
| break; |
| } |
| } |
| if (appctx->ctx.cli.p0 == NULL) { |
| appctx->ctx.cli.severity = LOG_ERR; |
| appctx->ctx.cli.msg = "Can't find that resolvers section\n"; |
| appctx->st0 = CLI_ST_PRINT; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* Dumps counters from all resolvers section and associated name servers. It |
| * returns 0 if the output buffer is full and it needs to be called again, |
| * otherwise non-zero. It may limit itself to the resolver pointed to by |
| * <cli.p0> if it's not null. |
| */ |
| static int cli_io_handler_dump_resolvers_to_buffer(struct appctx *appctx) |
| { |
| struct stream_interface *si = appctx->owner; |
| struct dns_resolvers *resolvers; |
| struct dns_nameserver *ns; |
| |
| chunk_reset(&trash); |
| |
| switch (appctx->st2) { |
| case STAT_ST_INIT: |
| appctx->st2 = STAT_ST_LIST; /* let's start producing data */ |
| /* fall through */ |
| |
| case STAT_ST_LIST: |
| if (LIST_ISEMPTY(&dns_resolvers)) { |
| chunk_appendf(&trash, "No resolvers found\n"); |
| } |
| else { |
| list_for_each_entry(resolvers, &dns_resolvers, list) { |
| if (appctx->ctx.cli.p0 != NULL && appctx->ctx.cli.p0 != resolvers) |
| continue; |
| |
| chunk_appendf(&trash, "Resolvers section %s\n", resolvers->id); |
| list_for_each_entry(ns, &resolvers->nameservers, list) { |
| chunk_appendf(&trash, " nameserver %s:\n", ns->id); |
| chunk_appendf(&trash, " sent: %lld\n", ns->counters.sent); |
| chunk_appendf(&trash, " snd_error: %lld\n", ns->counters.snd_error); |
| chunk_appendf(&trash, " valid: %lld\n", ns->counters.valid); |
| chunk_appendf(&trash, " update: %lld\n", ns->counters.update); |
| chunk_appendf(&trash, " cname: %lld\n", ns->counters.cname); |
| chunk_appendf(&trash, " cname_error: %lld\n", ns->counters.cname_error); |
| chunk_appendf(&trash, " any_err: %lld\n", ns->counters.any_err); |
| chunk_appendf(&trash, " nx: %lld\n", ns->counters.nx); |
| chunk_appendf(&trash, " timeout: %lld\n", ns->counters.timeout); |
| chunk_appendf(&trash, " refused: %lld\n", ns->counters.refused); |
| chunk_appendf(&trash, " other: %lld\n", ns->counters.other); |
| chunk_appendf(&trash, " invalid: %lld\n", ns->counters.invalid); |
| chunk_appendf(&trash, " too_big: %lld\n", ns->counters.too_big); |
| chunk_appendf(&trash, " truncated: %lld\n", ns->counters.truncated); |
| chunk_appendf(&trash, " outdated: %lld\n", ns->counters.outdated); |
| } |
| chunk_appendf(&trash, "\n"); |
| } |
| } |
| |
| /* display response */ |
| if (ci_putchk(si_ic(si), &trash) == -1) { |
| /* let's try again later from this session. We add ourselves into |
| * this session's users so that it can remove us upon termination. |
| */ |
| si_rx_room_blk(si); |
| return 0; |
| } |
| /* fall through */ |
| |
| default: |
| appctx->st2 = STAT_ST_FIN; |
| return 1; |
| } |
| } |
| |
| /* register cli keywords */ |
| static struct cli_kw_list cli_kws = {{ }, { |
| { { "show", "resolvers", NULL }, "show resolvers [id]: dumps counters from all resolvers section and\n" |
| " associated name servers", |
| cli_parse_stat_resolvers, cli_io_handler_dump_resolvers_to_buffer }, |
| {{},} |
| } |
| }; |
| |
| |
| __attribute__((constructor)) |
| static void __dns_init(void) |
| { |
| dns_answer_item_pool = create_pool("dns_answer_item", sizeof(struct dns_answer_item), MEM_F_SHARED); |
| dns_resolution_pool = create_pool("dns_resolution", sizeof(struct dns_resolution), MEM_F_SHARED); |
| |
| cfg_register_postparser("dns runtime resolver", dns_finalize_config); |
| hap_register_post_deinit(dns_deinit); |
| |
| cli_register_kw(&cli_kws); |
| } |