| /* |
| * Name server resolution |
| * |
| * Copyright 2014 Baptiste Assmann <bedis9@gmail.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| |
| #include <sys/types.h> |
| |
| #include <common/time.h> |
| #include <common/ticks.h> |
| |
| #include <types/applet.h> |
| #include <types/cli.h> |
| #include <types/global.h> |
| #include <types/dns.h> |
| #include <types/proto_udp.h> |
| #include <types/stats.h> |
| |
| #include <proto/channel.h> |
| #include <proto/cli.h> |
| #include <proto/checks.h> |
| #include <proto/dns.h> |
| #include <proto/fd.h> |
| #include <proto/log.h> |
| #include <proto/server.h> |
| #include <proto/task.h> |
| #include <proto/proto_udp.h> |
| #include <proto/stream_interface.h> |
| |
| struct list dns_resolvers = LIST_HEAD_INIT(dns_resolvers); |
| struct dns_resolution *resolution = NULL; |
| |
| /* |
| * pre-allocated memory for maximum record names in a DNS response |
| * Each name is DNS_MAX_NAME_SIZE, we add 1 for the NULL character |
| * |
| * WARNING: this is not thread safe... |
| */ |
| struct dns_response_packet dns_response; |
| struct chunk dns_trash = { }; |
| struct dns_query_item dns_query_records[DNS_MAX_QUERY_RECORDS]; |
| struct dns_answer_item dns_answer_records[DNS_MAX_ANSWER_RECORDS]; |
| |
| static int64_t dns_query_id_seed; /* random seed */ |
| |
| /* proto_udp callback functions for a DNS resolution */ |
| struct dgram_data_cb resolve_dgram_cb = { |
| .recv = dns_resolve_recv, |
| .send = dns_resolve_send, |
| }; |
| |
| #if DEBUG |
| /* |
| * go through the resolutions associated to a resolvers section and print the ID and hostname in |
| * domain name format |
| * should be used for debug purpose only |
| */ |
| void dns_print_current_resolutions(struct dns_resolvers *resolvers) |
| { |
| list_for_each_entry(resolution, &resolvers->curr_resolution, list) { |
| printf(" resolution %d for %s\n", resolution->query_id, resolution->hostname_dn); |
| } |
| } |
| #endif |
| |
| /* |
| * check if there is more than 1 resolution in the resolver's resolution list |
| * return value: |
| * 0: empty list |
| * 1: exactly one entry in the list |
| * 2: more than one entry in the list |
| */ |
| int dns_check_resolution_queue(struct dns_resolvers *resolvers) |
| { |
| |
| if (LIST_ISEMPTY(&resolvers->curr_resolution)) |
| return 0; |
| |
| if ((resolvers->curr_resolution.n) && (resolvers->curr_resolution.n == resolvers->curr_resolution.p)) |
| return 1; |
| |
| if (! ((resolvers->curr_resolution.n == resolvers->curr_resolution.p) |
| && (&resolvers->curr_resolution != resolvers->curr_resolution.n))) |
| return 2; |
| |
| return 0; |
| } |
| |
| /* |
| * reset all parameters of a DNS resolution to 0 (or equivalent) |
| * and clean it up from all associated lists (resolution->qid and resolution->list) |
| */ |
| void dns_reset_resolution(struct dns_resolution *resolution) |
| { |
| /* update resolution status */ |
| resolution->step = RSLV_STEP_NONE; |
| |
| resolution->try = 0; |
| resolution->try_cname = 0; |
| resolution->last_resolution = now_ms; |
| resolution->nb_responses = 0; |
| |
| /* clean up query id */ |
| eb32_delete(&resolution->qid); |
| resolution->query_id = 0; |
| resolution->qid.key = 0; |
| |
| /* default values */ |
| if (resolution->opts->family_prio == AF_INET) { |
| resolution->query_type = DNS_RTYPE_A; |
| } else { |
| resolution->query_type = DNS_RTYPE_AAAA; |
| } |
| |
| /* the second resolution in the queue becomes the first one */ |
| LIST_DEL(&resolution->list); |
| } |
| |
| /* |
| * function called when a network IO is generated on a name server socket for an incoming packet |
| * It performs the following actions: |
| * - check if the packet requires processing (not outdated resolution) |
| * - ensure the DNS packet received is valid and call requester's callback |
| * - call requester's error callback if invalid response |
| * - check the dn_name in the packet against the one sent |
| */ |
| void dns_resolve_recv(struct dgram_conn *dgram) |
| { |
| struct dns_nameserver *nameserver; |
| struct dns_resolvers *resolvers; |
| struct dns_resolution *resolution; |
| struct dns_query_item *query; |
| unsigned char buf[DNS_MAX_UDP_MESSAGE + 1]; |
| unsigned char *bufend; |
| int fd, buflen, ret; |
| unsigned short query_id; |
| struct eb32_node *eb; |
| struct dns_response_packet *dns_p = &dns_response; |
| |
| fd = dgram->t.sock.fd; |
| |
| /* check if ready for reading */ |
| if (!fd_recv_ready(fd)) |
| return; |
| |
| /* no need to go further if we can't retrieve the nameserver */ |
| if ((nameserver = dgram->owner) == NULL) |
| return; |
| |
| resolvers = nameserver->resolvers; |
| |
| /* process all pending input messages */ |
| while (1) { |
| /* read message received */ |
| memset(buf, '\0', DNS_MAX_UDP_MESSAGE + 1); |
| if ((buflen = recv(fd, (char*)buf , DNS_MAX_UDP_MESSAGE, 0)) < 0) { |
| /* FIXME : for now we consider EAGAIN only */ |
| fd_cant_recv(fd); |
| break; |
| } |
| |
| /* message too big */ |
| if (buflen > DNS_MAX_UDP_MESSAGE) { |
| nameserver->counters.too_big += 1; |
| continue; |
| } |
| |
| /* initializing variables */ |
| bufend = buf + buflen; /* pointer to mark the end of the buffer */ |
| |
| /* read the query id from the packet (16 bits) */ |
| if (buf + 2 > bufend) { |
| nameserver->counters.invalid += 1; |
| continue; |
| } |
| query_id = dns_response_get_query_id(buf); |
| |
| /* search the query_id in the pending resolution tree */ |
| eb = eb32_lookup(&resolvers->query_ids, query_id); |
| if (eb == NULL) { |
| /* unknown query id means an outdated response and can be safely ignored */ |
| nameserver->counters.outdated += 1; |
| continue; |
| } |
| |
| /* known query id means a resolution in prgress */ |
| resolution = eb32_entry(eb, struct dns_resolution, qid); |
| |
| if (!resolution) { |
| nameserver->counters.outdated += 1; |
| continue; |
| } |
| |
| /* number of responses received */ |
| resolution->nb_responses += 1; |
| |
| ret = dns_validate_dns_response(buf, bufend, dns_p); |
| |
| /* treat only errors */ |
| switch (ret) { |
| case DNS_RESP_QUERY_COUNT_ERROR: |
| case DNS_RESP_INVALID: |
| nameserver->counters.invalid += 1; |
| resolution->requester_error_cb(resolution, DNS_RESP_INVALID); |
| continue; |
| |
| case DNS_RESP_ERROR: |
| nameserver->counters.other += 1; |
| resolution->requester_error_cb(resolution, DNS_RESP_ERROR); |
| continue; |
| |
| case DNS_RESP_ANCOUNT_ZERO: |
| nameserver->counters.any_err += 1; |
| resolution->requester_error_cb(resolution, DNS_RESP_ANCOUNT_ZERO); |
| continue; |
| |
| case DNS_RESP_NX_DOMAIN: |
| nameserver->counters.nx += 1; |
| resolution->requester_error_cb(resolution, DNS_RESP_NX_DOMAIN); |
| continue; |
| |
| case DNS_RESP_REFUSED: |
| nameserver->counters.refused += 1; |
| resolution->requester_error_cb(resolution, DNS_RESP_REFUSED); |
| continue; |
| |
| case DNS_RESP_CNAME_ERROR: |
| nameserver->counters.cname_error += 1; |
| resolution->requester_error_cb(resolution, DNS_RESP_CNAME_ERROR); |
| continue; |
| |
| case DNS_RESP_TRUNCATED: |
| nameserver->counters.truncated += 1; |
| resolution->requester_error_cb(resolution, DNS_RESP_TRUNCATED); |
| continue; |
| |
| case DNS_RESP_NO_EXPECTED_RECORD: |
| nameserver->counters.other += 1; |
| resolution->requester_error_cb(resolution, DNS_RESP_NO_EXPECTED_RECORD); |
| continue; |
| } |
| |
| /* Now let's check the query's dname corresponds to the one we sent. |
| * We can check only the first query of the list. We send one query at a time |
| * so we get one query in the response */ |
| query = LIST_NEXT(&dns_p->query_list, struct dns_query_item *, list); |
| if (query && memcmp(query->name, resolution->hostname_dn, resolution->hostname_dn_len) != 0) { |
| nameserver->counters.other += 1; |
| resolution->requester_error_cb(resolution, DNS_RESP_WRONG_NAME); |
| continue; |
| } |
| |
| nameserver->counters.valid += 1; |
| resolution->requester_cb(resolution, nameserver, dns_p); |
| } |
| } |
| |
| /* |
| * function called when a resolvers network socket is ready to send data |
| * It performs the following actions: |
| */ |
| void dns_resolve_send(struct dgram_conn *dgram) |
| { |
| int fd; |
| struct dns_nameserver *nameserver; |
| struct dns_resolvers *resolvers; |
| struct dns_resolution *resolution; |
| |
| fd = dgram->t.sock.fd; |
| |
| /* check if ready for sending */ |
| if (!fd_send_ready(fd)) |
| return; |
| |
| /* we don't want/need to be waked up any more for sending */ |
| fd_stop_send(fd); |
| |
| /* no need to go further if we can't retrieve the nameserver */ |
| if ((nameserver = dgram->owner) == NULL) |
| return; |
| |
| resolvers = nameserver->resolvers; |
| resolution = LIST_NEXT(&resolvers->curr_resolution, struct dns_resolution *, list); |
| |
| dns_send_query(resolution); |
| dns_update_resolvers_timeout(resolvers); |
| } |
| |
| /* |
| * forge and send a DNS query to resolvers associated to a resolution |
| * It performs the following actions: |
| * returns: |
| * 0 in case of error or safe ignorance |
| * 1 if no error |
| */ |
| int dns_send_query(struct dns_resolution *resolution) |
| { |
| struct dns_resolvers *resolvers; |
| struct dns_nameserver *nameserver; |
| int ret, bufsize, fd; |
| |
| resolvers = resolution->resolvers; |
| |
| bufsize = dns_build_query(resolution->query_id, resolution->query_type, resolution->hostname_dn, |
| resolution->hostname_dn_len, trash.str, trash.size); |
| |
| if (bufsize == -1) |
| return 0; |
| |
| list_for_each_entry(nameserver, &resolvers->nameserver_list, list) { |
| fd = nameserver->dgram->t.sock.fd; |
| errno = 0; |
| |
| ret = send(fd, trash.str, bufsize, 0); |
| |
| if (ret > 0) |
| nameserver->counters.sent += 1; |
| |
| if (ret == 0 || errno == EAGAIN) { |
| /* nothing written, let's update the poller that we wanted to send |
| * but we were not able to */ |
| fd_want_send(fd); |
| fd_cant_send(fd); |
| } |
| } |
| |
| /* update resolution */ |
| resolution->nb_responses = 0; |
| resolution->last_sent_packet = now_ms; |
| |
| return 1; |
| } |
| |
| /* |
| * update a resolvers' task timeout for next wake up |
| */ |
| void dns_update_resolvers_timeout(struct dns_resolvers *resolvers) |
| { |
| struct dns_resolution *resolution; |
| |
| if (LIST_ISEMPTY(&resolvers->curr_resolution)) { |
| /* no more resolution pending, so no wakeup anymore */ |
| resolvers->t->expire = TICK_ETERNITY; |
| } |
| else { |
| resolution = LIST_NEXT(&resolvers->curr_resolution, struct dns_resolution *, list); |
| resolvers->t->expire = tick_add(resolution->last_sent_packet, resolvers->timeout.retry); |
| } |
| } |
| |
| /* |
| * Analyse, re-build and copy the name <name> from the DNS response packet <buffer>. |
| * <name> must point to the 'data_len' information or pointer 'c0' for compressed data. |
| * The result is copied into <dest>, ensuring we don't overflow using <dest_len> |
| * Returns the number of bytes the caller can move forward. If 0 it means an error occured |
| * while parsing the name. |
| * <offset> is the number of bytes the caller could move forward. |
| */ |
| int dns_read_name(unsigned char *buffer, unsigned char *bufend, unsigned char *name, char *destination, int dest_len, int *offset) |
| { |
| int nb_bytes = 0, n = 0; |
| int label_len; |
| unsigned char *reader = name; |
| char *dest = destination; |
| |
| while (1) { |
| /* name compression is in use */ |
| if ((*reader & 0xc0) == 0xc0) { |
| /* a pointer must point BEFORE current position */ |
| if ((buffer + reader[1]) > reader) { |
| goto out_error; |
| } |
| |
| n = dns_read_name(buffer, bufend, buffer + reader[1], dest, dest_len - nb_bytes, offset); |
| if (n == 0) |
| goto out_error; |
| |
| dest += n; |
| nb_bytes += n; |
| goto out; |
| } |
| |
| label_len = *reader; |
| if (label_len == 0) |
| goto out; |
| /* Check if: |
| * - we won't read outside the buffer |
| * - there is enough place in the destination |
| */ |
| if ((reader + label_len >= bufend) || (nb_bytes + label_len >= dest_len)) |
| goto out_error; |
| |
| /* +1 to take label len + label string */ |
| label_len += 1; |
| |
| memcpy(dest, reader, label_len); |
| |
| dest += label_len; |
| nb_bytes += label_len; |
| reader += label_len; |
| } |
| |
| out: |
| /* offset computation: |
| * parse from <name> until finding either NULL or a pointer "c0xx" |
| */ |
| reader = name; |
| *offset = 0; |
| while (reader < bufend) { |
| if ((reader[0] & 0xc0) == 0xc0) { |
| *offset += 2; |
| break; |
| } |
| else if (*reader == 0) { |
| *offset += 1; |
| break; |
| } |
| *offset += 1; |
| ++reader; |
| } |
| |
| return nb_bytes; |
| |
| out_error: |
| return 0; |
| } |
| |
| /* |
| * Function to validate that the buffer DNS response provided in <resp> and |
| * finishing before <bufend> is valid from a DNS protocol point of view. |
| * |
| * The result is stored in the structured pointed by <dns_p>. |
| * It's up to the caller to allocate memory for <dns_p>. |
| * |
| * This function returns one of the DNS_RESP_* code to indicate the type of |
| * error found. |
| */ |
| int dns_validate_dns_response(unsigned char *resp, unsigned char *bufend, struct dns_response_packet *dns_p) |
| { |
| unsigned char *reader; |
| char *previous_dname, tmpname[DNS_MAX_NAME_SIZE]; |
| int len, flags, offset, ret; |
| int dns_query_record_id, dns_answer_record_id; |
| struct dns_query_item *dns_query; |
| struct dns_answer_item *dns_answer_record; |
| |
| reader = resp; |
| len = 0; |
| previous_dname = NULL; |
| |
| /* initialization of local buffer */ |
| memset(dns_p, '\0', sizeof(struct dns_response_packet)); |
| chunk_reset(&dns_trash); |
| |
| /* query id */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.id = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* |
| * flags and rcode are stored over 2 bytes |
| * First byte contains: |
| * - response flag (1 bit) |
| * - opcode (4 bits) |
| * - authoritative (1 bit) |
| * - truncated (1 bit) |
| * - recursion desired (1 bit) |
| */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| |
| flags = reader[0] * 256 + reader[1]; |
| |
| if (flags & DNS_FLAG_TRUNCATED) |
| return DNS_RESP_TRUNCATED; |
| |
| if ((flags & DNS_FLAG_REPLYCODE) != DNS_RCODE_NO_ERROR) { |
| if ((flags & DNS_FLAG_REPLYCODE) == DNS_RCODE_NX_DOMAIN) |
| return DNS_RESP_NX_DOMAIN; |
| else if ((flags & DNS_FLAG_REPLYCODE) == DNS_RCODE_REFUSED) |
| return DNS_RESP_REFUSED; |
| |
| return DNS_RESP_ERROR; |
| } |
| |
| /* move forward 2 bytes for flags */ |
| reader += 2; |
| |
| /* 2 bytes for question count */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.qdcount = reader[0] * 256 + reader[1]; |
| /* (for now) we send one query only, so we expect only one in the response too */ |
| if (dns_p->header.qdcount != 1) |
| return DNS_RESP_QUERY_COUNT_ERROR; |
| if (dns_p->header.qdcount > DNS_MAX_QUERY_RECORDS) |
| return DNS_RESP_INVALID; |
| reader += 2; |
| |
| /* 2 bytes for answer count */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.ancount = reader[0] * 256 + reader[1]; |
| if (dns_p->header.ancount == 0) |
| return DNS_RESP_ANCOUNT_ZERO; |
| /* check if too many records are announced */ |
| if (dns_p->header.ancount > DNS_MAX_ANSWER_RECORDS) |
| return DNS_RESP_INVALID; |
| reader += 2; |
| |
| /* 2 bytes authority count */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.nscount = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* 2 bytes additional count */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_p->header.arcount = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* parsing dns queries */ |
| LIST_INIT(&dns_p->query_list); |
| for (dns_query_record_id = 0; dns_query_record_id < dns_p->header.qdcount; dns_query_record_id++) { |
| /* use next pre-allocated dns_query_item after ensuring there is |
| * still one available. |
| * It's then added to our packet query list. |
| */ |
| if (dns_query_record_id > DNS_MAX_QUERY_RECORDS) |
| return DNS_RESP_INVALID; |
| dns_query = &dns_query_records[dns_query_record_id]; |
| LIST_ADDQ(&dns_p->query_list, &dns_query->list); |
| |
| /* name is a NULL terminated string in our case, since we have |
| * one query per response and the first one can't be compressed |
| * (using the 0x0c format) |
| */ |
| offset = 0; |
| len = dns_read_name(resp, bufend, reader, dns_query->name, DNS_MAX_NAME_SIZE, &offset); |
| |
| if (len == 0) |
| return DNS_RESP_INVALID; |
| |
| reader += offset; |
| previous_dname = dns_query->name; |
| |
| /* move forward 2 bytes for question type */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_query->type = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* move forward 2 bytes for question class */ |
| if (reader + 2 >= bufend) |
| return DNS_RESP_INVALID; |
| dns_query->class = reader[0] * 256 + reader[1]; |
| reader += 2; |
| } |
| |
| /* now parsing response records */ |
| LIST_INIT(&dns_p->answer_list); |
| for (dns_answer_record_id = 0; dns_answer_record_id < dns_p->header.ancount; dns_answer_record_id++) { |
| if (reader >= bufend) |
| return DNS_RESP_INVALID; |
| |
| /* pull next response record from the list, if still one available, then add it |
| * to the record list */ |
| if (dns_answer_record_id > DNS_MAX_ANSWER_RECORDS) |
| return DNS_RESP_INVALID; |
| dns_answer_record = &dns_answer_records[dns_answer_record_id]; |
| LIST_ADDQ(&dns_p->answer_list, &dns_answer_record->list); |
| |
| offset = 0; |
| len = dns_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset); |
| |
| if (len == 0) |
| return DNS_RESP_INVALID; |
| |
| /* check if the current record dname is valid. |
| * previous_dname points either to queried dname or last CNAME target |
| */ |
| if (memcmp(previous_dname, tmpname, len) != 0) { |
| if (dns_answer_record_id == 0) { |
| /* first record, means a mismatch issue between queried dname |
| * and dname found in the first record */ |
| return DNS_RESP_INVALID; |
| } else { |
| /* if not the first record, this means we have a CNAME resolution |
| * error */ |
| return DNS_RESP_CNAME_ERROR; |
| } |
| |
| } |
| |
| dns_answer_record->name = chunk_newstr(&dns_trash); |
| if (dns_answer_record->name == NULL) |
| return DNS_RESP_INVALID; |
| |
| ret = chunk_strncat(&dns_trash, tmpname, len); |
| if (ret == 0) |
| return DNS_RESP_INVALID; |
| |
| reader += offset; |
| if (reader >= bufend) |
| return DNS_RESP_INVALID; |
| |
| if (reader >= bufend) |
| return DNS_RESP_INVALID; |
| |
| /* 2 bytes for record type (A, AAAA, CNAME, etc...) */ |
| if (reader + 2 > bufend) |
| return DNS_RESP_INVALID; |
| dns_answer_record->type = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* 2 bytes for class (2) */ |
| if (reader + 2 > bufend) |
| return DNS_RESP_INVALID; |
| dns_answer_record->class = reader[0] * 256 + reader[1]; |
| reader += 2; |
| |
| /* 4 bytes for ttl (4) */ |
| if (reader + 4 > bufend) |
| return DNS_RESP_INVALID; |
| dns_answer_record->ttl = reader[0] * 16777216 + reader[1] * 65536 |
| + reader[2] * 256 + reader[3]; |
| reader += 4; |
| |
| /* now reading data len */ |
| if (reader + 2 > bufend) |
| return DNS_RESP_INVALID; |
| dns_answer_record->data_len = reader[0] * 256 + reader[1]; |
| |
| /* move forward 2 bytes for data len */ |
| reader += 2; |
| |
| /* analyzing record content */ |
| switch (dns_answer_record->type) { |
| case DNS_RTYPE_A: |
| /* ipv4 is stored on 4 bytes */ |
| if (dns_answer_record->data_len != 4) |
| return DNS_RESP_INVALID; |
| dns_answer_record->address.sa_family = AF_INET; |
| memcpy(&(((struct sockaddr_in *)&dns_answer_record->address)->sin_addr), |
| reader, dns_answer_record->data_len); |
| break; |
| |
| case DNS_RTYPE_CNAME: |
| /* check if this is the last record and update the caller about the status: |
| * no IP could be found and last record was a CNAME. Could be triggered |
| * by a wrong query type |
| * |
| * + 1 because dns_answer_record_id starts at 0 while number of answers |
| * is an integer and starts at 1. |
| */ |
| if (dns_answer_record_id + 1 == dns_p->header.ancount) |
| return DNS_RESP_CNAME_ERROR; |
| |
| offset = 0; |
| len = dns_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset); |
| |
| if (len == 0) |
| return DNS_RESP_INVALID; |
| |
| dns_answer_record->target = chunk_newstr(&dns_trash); |
| if (dns_answer_record->target == NULL) |
| return DNS_RESP_INVALID; |
| |
| ret = chunk_strncat(&dns_trash, tmpname, len); |
| if (ret == 0) |
| return DNS_RESP_INVALID; |
| |
| previous_dname = dns_answer_record->target; |
| |
| break; |
| |
| case DNS_RTYPE_AAAA: |
| /* ipv6 is stored on 16 bytes */ |
| if (dns_answer_record->data_len != 16) |
| return DNS_RESP_INVALID; |
| dns_answer_record->address.sa_family = AF_INET6; |
| memcpy(&(((struct sockaddr_in6 *)&dns_answer_record->address)->sin6_addr), |
| reader, dns_answer_record->data_len); |
| break; |
| |
| } /* switch (record type) */ |
| |
| /* move forward dns_answer_record->data_len for analyzing next record in the response */ |
| reader += dns_answer_record->data_len; |
| } /* for i 0 to ancount */ |
| |
| /* let's add a last \0 to close our last string */ |
| ret = chunk_strncat(&dns_trash, "\0", 1); |
| if (ret == 0) |
| return DNS_RESP_INVALID; |
| |
| return DNS_RESP_VALID; |
| } |
| |
| /* |
| * search dn_name resolution in resp. |
| * If existing IP not found, return the first IP matching family_priority, |
| * otherwise, first ip found |
| * The following tasks are the responsibility of the caller: |
| * - <dns_p> contains an error free DNS response |
| * For both cases above, dns_validate_dns_response is required |
| * returns one of the DNS_UPD_* code |
| */ |
| #define DNS_MAX_IP_REC 20 |
| int dns_get_ip_from_response(struct dns_response_packet *dns_p, |
| struct dns_resolution *resol, void *currentip, |
| short currentip_sin_family, |
| void **newip, short *newip_sin_family) |
| { |
| struct dns_answer_item *record; |
| int family_priority; |
| int i, currentip_found; |
| unsigned char *newip4, *newip6; |
| struct { |
| void *ip; |
| unsigned char type; |
| } rec[DNS_MAX_IP_REC]; |
| int currentip_sel; |
| int j; |
| int rec_nb = 0; |
| int score, max_score; |
| |
| family_priority = resol->opts->family_prio; |
| *newip = newip4 = newip6 = NULL; |
| currentip_found = 0; |
| *newip_sin_family = AF_UNSPEC; |
| |
| /* now parsing response records */ |
| list_for_each_entry(record, &dns_response.answer_list, list) { |
| /* analyzing record content */ |
| switch (record->type) { |
| case DNS_RTYPE_A: |
| /* Store IPv4, only if some room is avalaible. */ |
| if (rec_nb < DNS_MAX_IP_REC) { |
| rec[rec_nb].ip = &(((struct sockaddr_in *)&record->address)->sin_addr); |
| rec[rec_nb].type = AF_INET; |
| rec_nb++; |
| } |
| break; |
| |
| /* we're looking for IPs only. CNAME validation is done when |
| * parsing the response buffer for the first time */ |
| case DNS_RTYPE_CNAME: |
| break; |
| |
| case DNS_RTYPE_AAAA: |
| /* Store IPv6, only if some room is avalaible. */ |
| if (rec_nb < DNS_MAX_IP_REC) { |
| rec[rec_nb].ip = &(((struct sockaddr_in6 *)&record->address)->sin6_addr); |
| rec[rec_nb].type = AF_INET6; |
| rec_nb++; |
| } |
| break; |
| |
| } /* switch (record type) */ |
| } /* list for each record entries */ |
| |
| /* Select an IP regarding configuration preference. |
| * Top priority is the prefered network ip version, |
| * second priority is the prefered network. |
| * the last priority is the currently used IP, |
| * |
| * For these three priorities, a score is calculated. The |
| * weight are: |
| * 4 - prefered netwok ip version. |
| * 2 - prefered network. |
| * 1 - current ip. |
| * The result with the biggest score is returned. |
| */ |
| max_score = -1; |
| for (i = 0; i < rec_nb; i++) { |
| |
| score = 0; |
| |
| /* Check for prefered ip protocol. */ |
| if (rec[i].type == family_priority) |
| score += 4; |
| |
| /* Check for prefered network. */ |
| for (j = 0; j < resol->opts->pref_net_nb; j++) { |
| |
| /* Compare only the same adresses class. */ |
| if (resol->opts->pref_net[j].family != rec[i].type) |
| continue; |
| |
| if ((rec[i].type == AF_INET && |
| in_net_ipv4(rec[i].ip, |
| &resol->opts->pref_net[j].mask.in4, |
| &resol->opts->pref_net[j].addr.in4)) || |
| (rec[i].type == AF_INET6 && |
| in_net_ipv6(rec[i].ip, |
| &resol->opts->pref_net[j].mask.in6, |
| &resol->opts->pref_net[j].addr.in6))) { |
| score += 2; |
| break; |
| } |
| } |
| |
| /* Check for current ip matching. */ |
| if (rec[i].type == currentip_sin_family && |
| ((currentip_sin_family == AF_INET && |
| memcmp(rec[i].ip, currentip, 4) == 0) || |
| (currentip_sin_family == AF_INET6 && |
| memcmp(rec[i].ip, currentip, 16) == 0))) { |
| score += 1; |
| currentip_sel = 1; |
| } else |
| currentip_sel = 0; |
| |
| /* Keep the address if the score is better than the previous |
| * score. The maximum score is 7, if this value is reached, |
| * we break the parsing. Implicitly, this score is reached |
| * the ip selected is the current ip. |
| */ |
| if (score > max_score) { |
| if (rec[i].type == AF_INET) |
| newip4 = rec[i].ip; |
| else |
| newip6 = rec[i].ip; |
| currentip_found = currentip_sel; |
| if (score == 7) |
| return DNS_UPD_NO; |
| max_score = score; |
| } |
| } |
| |
| /* no IP found in the response */ |
| if (!newip4 && !newip6) { |
| return DNS_UPD_NO_IP_FOUND; |
| } |
| |
| /* case when the caller looks first for an IPv4 address */ |
| if (family_priority == AF_INET) { |
| if (newip4) { |
| *newip = newip4; |
| *newip_sin_family = AF_INET; |
| if (currentip_found == 1) |
| return DNS_UPD_NO; |
| return DNS_UPD_SRVIP_NOT_FOUND; |
| } |
| else if (newip6) { |
| *newip = newip6; |
| *newip_sin_family = AF_INET6; |
| if (currentip_found == 1) |
| return DNS_UPD_NO; |
| return DNS_UPD_SRVIP_NOT_FOUND; |
| } |
| } |
| /* case when the caller looks first for an IPv6 address */ |
| else if (family_priority == AF_INET6) { |
| if (newip6) { |
| *newip = newip6; |
| *newip_sin_family = AF_INET6; |
| if (currentip_found == 1) |
| return DNS_UPD_NO; |
| return DNS_UPD_SRVIP_NOT_FOUND; |
| } |
| else if (newip4) { |
| *newip = newip4; |
| *newip_sin_family = AF_INET; |
| if (currentip_found == 1) |
| return DNS_UPD_NO; |
| return DNS_UPD_SRVIP_NOT_FOUND; |
| } |
| } |
| /* case when the caller have no preference (we prefer IPv6) */ |
| else if (family_priority == AF_UNSPEC) { |
| if (newip6) { |
| *newip = newip6; |
| *newip_sin_family = AF_INET6; |
| if (currentip_found == 1) |
| return DNS_UPD_NO; |
| return DNS_UPD_SRVIP_NOT_FOUND; |
| } |
| else if (newip4) { |
| *newip = newip4; |
| *newip_sin_family = AF_INET; |
| if (currentip_found == 1) |
| return DNS_UPD_NO; |
| return DNS_UPD_SRVIP_NOT_FOUND; |
| } |
| } |
| |
| /* no reason why we should change the server's IP address */ |
| return DNS_UPD_NO; |
| } |
| |
| /* |
| * returns the query id contained in a DNS response |
| */ |
| unsigned short dns_response_get_query_id(unsigned char *resp) |
| { |
| /* read the query id from the response */ |
| return resp[0] * 256 + resp[1]; |
| } |
| |
| /* |
| * used during haproxy's init phase |
| * parses resolvers sections and initializes: |
| * - task (time events) for each resolvers section |
| * - the datagram layer (network IO events) for each nameserver |
| * It takes one argument: |
| * - close_first takes 2 values: 0 or 1. If 1, the connection is closed first. |
| * returns: |
| * 0 in case of error |
| * 1 when no error |
| */ |
| int dns_init_resolvers(int close_socket) |
| { |
| struct dns_resolvers *curr_resolvers; |
| struct dns_nameserver *curnameserver; |
| struct dgram_conn *dgram; |
| struct task *t; |
| char *dns_trash_str; |
| int fd; |
| |
| dns_trash_str = malloc(global.tune.bufsize); |
| if (dns_trash_str == NULL) { |
| Alert("Starting resolvers: out of memory.\n"); |
| return 0; |
| } |
| |
| /* allocate memory for the dns_trash buffer used to temporarily store |
| * the records of the received response */ |
| chunk_init(&dns_trash, dns_trash_str, global.tune.bufsize); |
| |
| /* give a first random value to our dns query_id seed */ |
| dns_query_id_seed = random(); |
| |
| /* run through the resolvers section list */ |
| list_for_each_entry(curr_resolvers, &dns_resolvers, list) { |
| /* create the task associated to the resolvers section */ |
| if ((t = task_new()) == NULL) { |
| Alert("Starting [%s] resolvers: out of memory.\n", curr_resolvers->id); |
| return 0; |
| } |
| |
| /* update task's parameters */ |
| t->process = dns_process_resolve; |
| t->context = curr_resolvers; |
| t->expire = TICK_ETERNITY; |
| |
| curr_resolvers->t = t; |
| |
| list_for_each_entry(curnameserver, &curr_resolvers->nameserver_list, list) { |
| dgram = NULL; |
| |
| if (close_socket == 1) { |
| if (curnameserver->dgram) { |
| close(curnameserver->dgram->t.sock.fd); |
| memset(curnameserver->dgram, '\0', sizeof(*dgram)); |
| dgram = curnameserver->dgram; |
| } |
| } |
| |
| /* allocate memory only if it has not already been allocated |
| * by a previous call to this function */ |
| if (!dgram && (dgram = calloc(1, sizeof(*dgram))) == NULL) { |
| Alert("Starting [%s/%s] nameserver: out of memory.\n", curr_resolvers->id, |
| curnameserver->id); |
| return 0; |
| } |
| /* update datagram's parameters */ |
| dgram->owner = (void *)curnameserver; |
| dgram->data = &resolve_dgram_cb; |
| |
| /* create network UDP socket for this nameserver */ |
| if ((fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1) { |
| Alert("Starting [%s/%s] nameserver: can't create socket.\n", curr_resolvers->id, |
| curnameserver->id); |
| free(dgram); |
| dgram = NULL; |
| return 0; |
| } |
| |
| /* "connect" the UDP socket to the name server IP */ |
| if (connect(fd, (struct sockaddr*)&curnameserver->addr, get_addr_len(&curnameserver->addr)) == -1) { |
| Alert("Starting [%s/%s] nameserver: can't connect socket.\n", curr_resolvers->id, |
| curnameserver->id); |
| close(fd); |
| free(dgram); |
| dgram = NULL; |
| return 0; |
| } |
| |
| /* make the socket non blocking */ |
| fcntl(fd, F_SETFL, O_NONBLOCK); |
| |
| /* add the fd in the fd list and update its parameters */ |
| fd_insert(fd); |
| fdtab[fd].owner = dgram; |
| fdtab[fd].iocb = dgram_fd_handler; |
| fd_want_recv(fd); |
| dgram->t.sock.fd = fd; |
| |
| /* update nameserver's datagram property */ |
| curnameserver->dgram = dgram; |
| |
| continue; |
| } |
| |
| /* task can be queued */ |
| task_queue(t); |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Forge a DNS query. It needs the following information from the caller: |
| * - <query_id>: the DNS query id corresponding to this query |
| * - <query_type>: DNS_RTYPE_* request DNS record type (A, AAAA, ANY, etc...) |
| * - <hostname_dn>: hostname in domain name format |
| * - <hostname_dn_len>: length of <hostname_dn> |
| * To store the query, the caller must pass a buffer <buf> and its size <bufsize> |
| * |
| * the DNS query is stored in <buf> |
| * returns: |
| * -1 if <buf> is too short |
| */ |
| int dns_build_query(int query_id, int query_type, char *hostname_dn, int hostname_dn_len, char *buf, int bufsize) |
| { |
| struct dns_header *dns; |
| struct dns_question qinfo; |
| char *ptr, *bufend; |
| |
| memset(buf, '\0', bufsize); |
| ptr = buf; |
| bufend = buf + bufsize; |
| |
| /* check if there is enough room for DNS headers */ |
| if (ptr + sizeof(struct dns_header) >= bufend) |
| return -1; |
| |
| /* set dns query headers */ |
| dns = (struct dns_header *)ptr; |
| dns->id = (unsigned short) htons(query_id); |
| dns->flags = htons(0x0100); /* qr=0, opcode=0, aa=0, tc=0, rd=1, ra=0, z=0, rcode=0 */ |
| dns->qdcount = htons(1); /* 1 question */ |
| dns->ancount = 0; |
| dns->nscount = 0; |
| dns->arcount = 0; |
| |
| /* move forward ptr */ |
| ptr += sizeof(struct dns_header); |
| |
| /* check if there is enough room for query hostname */ |
| if ((ptr + hostname_dn_len) >= bufend) |
| return -1; |
| |
| /* set up query hostname */ |
| memcpy(ptr, hostname_dn, hostname_dn_len); |
| ptr[hostname_dn_len + 1] = '\0'; |
| |
| /* move forward ptr */ |
| ptr += (hostname_dn_len + 1); |
| |
| /* check if there is enough room for query hostname*/ |
| if (ptr + sizeof(struct dns_question) >= bufend) |
| return -1; |
| |
| /* set up query info (type and class) */ |
| qinfo.qtype = htons(query_type); |
| qinfo.qclass = htons(DNS_RCLASS_IN); |
| memcpy(ptr, &qinfo, sizeof(qinfo)); |
| |
| ptr += sizeof(struct dns_question); |
| |
| return ptr - buf; |
| } |
| |
| /* |
| * turn a string into domain name label: |
| * www.haproxy.org into 3www7haproxy3org |
| * if dn memory is pre-allocated, you must provide its size in dn_len |
| * if dn memory isn't allocated, dn_len must be set to 0. |
| * In the second case, memory will be allocated. |
| * in case of error, -1 is returned, otherwise, number of bytes copied in dn |
| */ |
| char *dns_str_to_dn_label(const char *string, char *dn, int dn_len) |
| { |
| char *c, *d; |
| int i, offset; |
| |
| /* offset between string size and theorical dn size */ |
| offset = 1; |
| |
| /* |
| * first, get the size of the string turned into its domain name version |
| * This function also validates the string respect the RFC |
| */ |
| if ((i = dns_str_to_dn_label_len(string)) == -1) |
| return NULL; |
| |
| /* yes, so let's check there is enough memory */ |
| if (dn_len < i + offset) |
| return NULL; |
| |
| i = strlen(string); |
| memcpy(dn + offset, string, i); |
| dn[i + offset] = '\0'; |
| /* avoid a '\0' at the beginning of dn string which may prevent the for loop |
| * below from working. |
| * Actually, this is the reason of the offset. */ |
| dn[0] = '0'; |
| |
| for (c = dn; *c ; ++c) { |
| /* c points to the first '0' char or a dot, which we don't want to read */ |
| d = c + offset; |
| i = 0; |
| while (*d != '.' && *d) { |
| i++; |
| d++; |
| } |
| *c = i; |
| |
| c = d - 1; /* because of c++ of the for loop */ |
| } |
| |
| return dn; |
| } |
| |
| /* |
| * compute and return the length of <string> it it were translated into domain name |
| * label: |
| * www.haproxy.org into 3www7haproxy3org would return 16 |
| * NOTE: add +1 for '\0' when allocating memory ;) |
| */ |
| int dns_str_to_dn_label_len(const char *string) |
| { |
| return strlen(string) + 1; |
| } |
| |
| /* |
| * validates host name: |
| * - total size |
| * - each label size individually |
| * returns: |
| * 0 in case of error. If <err> is not NULL, an error message is stored there. |
| * 1 when no error. <err> is left unaffected. |
| */ |
| int dns_hostname_validation(const char *string, char **err) |
| { |
| const char *c, *d; |
| int i; |
| |
| if (strlen(string) > DNS_MAX_NAME_SIZE) { |
| if (err) |
| *err = DNS_TOO_LONG_FQDN; |
| return 0; |
| } |
| |
| c = string; |
| while (*c) { |
| d = c; |
| |
| i = 0; |
| while (*d != '.' && *d && i <= DNS_MAX_LABEL_SIZE) { |
| i++; |
| if (!((*d == '-') || (*d == '_') || |
| ((*d >= 'a') && (*d <= 'z')) || |
| ((*d >= 'A') && (*d <= 'Z')) || |
| ((*d >= '0') && (*d <= '9')))) { |
| if (err) |
| *err = DNS_INVALID_CHARACTER; |
| return 0; |
| } |
| d++; |
| } |
| |
| if ((i >= DNS_MAX_LABEL_SIZE) && (d[i] != '.')) { |
| if (err) |
| *err = DNS_LABEL_TOO_LONG; |
| return 0; |
| } |
| |
| if (*d == '\0') |
| goto out; |
| |
| c = ++d; |
| } |
| out: |
| return 1; |
| } |
| |
| /* |
| * 2 bytes random generator to generate DNS query ID |
| */ |
| uint16_t dns_rnd16(void) |
| { |
| dns_query_id_seed ^= dns_query_id_seed << 13; |
| dns_query_id_seed ^= dns_query_id_seed >> 7; |
| dns_query_id_seed ^= dns_query_id_seed << 17; |
| return dns_query_id_seed; |
| } |
| |
| |
| /* |
| * function called when a timeout occurs during name resolution process |
| * if max number of tries is reached, then stop, otherwise, retry. |
| */ |
| struct task *dns_process_resolve(struct task *t) |
| { |
| struct dns_resolvers *resolvers = t->context; |
| struct dns_resolution *resolution, *res_back; |
| int res_preferred_afinet, res_preferred_afinet6; |
| |
| /* timeout occurs inevitably for the first element of the FIFO queue */ |
| if (LIST_ISEMPTY(&resolvers->curr_resolution)) { |
| /* no first entry, so wake up was useless */ |
| t->expire = TICK_ETERNITY; |
| return t; |
| } |
| |
| /* look for the first resolution which is not expired */ |
| list_for_each_entry_safe(resolution, res_back, &resolvers->curr_resolution, list) { |
| /* when we find the first resolution in the future, then we can stop here */ |
| if (tick_is_le(now_ms, resolution->last_sent_packet)) |
| goto out; |
| |
| /* |
| * if current resolution has been tried too many times and finishes in timeout |
| * we update its status and remove it from the list |
| */ |
| if (resolution->try <= 0) { |
| /* clean up resolution information and remove from the list */ |
| dns_reset_resolution(resolution); |
| |
| /* notify the result to the requester */ |
| resolution->requester_error_cb(resolution, DNS_RESP_TIMEOUT); |
| goto out; |
| } |
| |
| resolution->try -= 1; |
| |
| res_preferred_afinet = resolution->opts->family_prio == AF_INET && resolution->query_type == DNS_RTYPE_A; |
| res_preferred_afinet6 = resolution->opts->family_prio == AF_INET6 && resolution->query_type == DNS_RTYPE_AAAA; |
| |
| /* let's change the query type if needed */ |
| if (res_preferred_afinet6) { |
| /* fallback from AAAA to A */ |
| resolution->query_type = DNS_RTYPE_A; |
| } |
| else if (res_preferred_afinet) { |
| /* fallback from A to AAAA */ |
| resolution->query_type = DNS_RTYPE_AAAA; |
| } |
| |
| /* resend the DNS query */ |
| dns_send_query(resolution); |
| |
| /* check if we have more than one resolution in the list */ |
| if (dns_check_resolution_queue(resolvers) > 1) { |
| /* move the rsolution to the end of the list */ |
| LIST_DEL(&resolution->list); |
| LIST_ADDQ(&resolvers->curr_resolution, &resolution->list); |
| } |
| } |
| |
| out: |
| dns_update_resolvers_timeout(resolvers); |
| return t; |
| } |
| |
| /* if an arg is found, it sets the resolvers section pointer into cli.p0 */ |
| static int cli_parse_stat_resolvers(char **args, struct appctx *appctx, void *private) |
| { |
| struct dns_resolvers *presolvers; |
| |
| if (*args[3]) { |
| list_for_each_entry(presolvers, &dns_resolvers, list) { |
| if (strcmp(presolvers->id, args[3]) == 0) { |
| appctx->ctx.cli.p0 = presolvers; |
| break; |
| } |
| } |
| if (appctx->ctx.cli.p0 == NULL) { |
| appctx->ctx.cli.msg = "Can't find that resolvers section\n"; |
| appctx->st0 = CLI_ST_PRINT; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* This function dumps counters from all resolvers section and associated name |
| * servers. It returns 0 if the output buffer is full and it needs to be called |
| * again, otherwise non-zero. It may limit itself to the resolver pointed to by |
| * <cli.p0> if it's not null. |
| */ |
| static int cli_io_handler_dump_resolvers_to_buffer(struct appctx *appctx) |
| { |
| struct stream_interface *si = appctx->owner; |
| struct dns_resolvers *presolvers; |
| struct dns_nameserver *pnameserver; |
| |
| chunk_reset(&trash); |
| |
| switch (appctx->st2) { |
| case STAT_ST_INIT: |
| appctx->st2 = STAT_ST_LIST; /* let's start producing data */ |
| /* fall through */ |
| |
| case STAT_ST_LIST: |
| if (LIST_ISEMPTY(&dns_resolvers)) { |
| chunk_appendf(&trash, "No resolvers found\n"); |
| } |
| else { |
| list_for_each_entry(presolvers, &dns_resolvers, list) { |
| if (appctx->ctx.cli.p0 != NULL && appctx->ctx.cli.p0 != presolvers) |
| continue; |
| |
| chunk_appendf(&trash, "Resolvers section %s\n", presolvers->id); |
| list_for_each_entry(pnameserver, &presolvers->nameserver_list, list) { |
| chunk_appendf(&trash, " nameserver %s:\n", pnameserver->id); |
| chunk_appendf(&trash, " sent: %ld\n", pnameserver->counters.sent); |
| chunk_appendf(&trash, " valid: %ld\n", pnameserver->counters.valid); |
| chunk_appendf(&trash, " update: %ld\n", pnameserver->counters.update); |
| chunk_appendf(&trash, " cname: %ld\n", pnameserver->counters.cname); |
| chunk_appendf(&trash, " cname_error: %ld\n", pnameserver->counters.cname_error); |
| chunk_appendf(&trash, " any_err: %ld\n", pnameserver->counters.any_err); |
| chunk_appendf(&trash, " nx: %ld\n", pnameserver->counters.nx); |
| chunk_appendf(&trash, " timeout: %ld\n", pnameserver->counters.timeout); |
| chunk_appendf(&trash, " refused: %ld\n", pnameserver->counters.refused); |
| chunk_appendf(&trash, " other: %ld\n", pnameserver->counters.other); |
| chunk_appendf(&trash, " invalid: %ld\n", pnameserver->counters.invalid); |
| chunk_appendf(&trash, " too_big: %ld\n", pnameserver->counters.too_big); |
| chunk_appendf(&trash, " truncated: %ld\n", pnameserver->counters.truncated); |
| chunk_appendf(&trash, " outdated: %ld\n", pnameserver->counters.outdated); |
| } |
| } |
| } |
| |
| /* display response */ |
| if (bi_putchk(si_ic(si), &trash) == -1) { |
| /* let's try again later from this session. We add ourselves into |
| * this session's users so that it can remove us upon termination. |
| */ |
| si->flags |= SI_FL_WAIT_ROOM; |
| return 0; |
| } |
| |
| appctx->st2 = STAT_ST_FIN; |
| /* fall through */ |
| |
| default: |
| appctx->st2 = STAT_ST_FIN; |
| return 1; |
| } |
| } |
| |
| /* register cli keywords */ |
| static struct cli_kw_list cli_kws = {{ },{ |
| { { "show", "stat", "resolvers", NULL }, "show stat resolvers [id]: dumps counters from all resolvers section and\n" |
| " associated name servers", |
| cli_parse_stat_resolvers, cli_io_handler_dump_resolvers_to_buffer }, |
| {{},} |
| }}; |
| |
| |
| __attribute__((constructor)) |
| static void __dns_init(void) |
| { |
| cli_register_kw(&cli_kws); |
| } |
| |