blob: 9cfade7c41cdf7e3f90d4b1f9601bc4f64bb7d24 [file] [log] [blame]
/*
* QUIC transport layer over SOCK_DGRAM sockets.
*
* Copyright 2020 HAProxy Technologies, Frédéric Lécaille <flecaille@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <netinet/tcp.h>
#include <haproxy/buf-t.h>
#include <haproxy/compat.h>
#include <haproxy/api.h>
#include <haproxy/debug.h>
#include <haproxy/tools.h>
#include <haproxy/ticks.h>
#include <haproxy/time.h>
#include <haproxy/connection.h>
#include <haproxy/fd.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/global.h>
#include <haproxy/h3.h>
#include <haproxy/log.h>
#include <haproxy/mux_quic.h>
#include <haproxy/pipe.h>
#include <haproxy/proxy.h>
#include <haproxy/quic_cc.h>
#include <haproxy/quic_frame.h>
#include <haproxy/quic_loss.h>
#include <haproxy/cbuf.h>
#include <haproxy/quic_tls.h>
#include <haproxy/ssl_sock.h>
#include <haproxy/stream_interface.h>
#include <haproxy/task.h>
#include <haproxy/trace.h>
#include <haproxy/xprt_quic.h>
struct quic_transport_params quic_dflt_transport_params = {
.max_udp_payload_size = QUIC_DFLT_MAX_UDP_PAYLOAD_SIZE,
.ack_delay_exponent = QUIC_DFLT_ACK_DELAY_COMPONENT,
.max_ack_delay = QUIC_DFLT_MAX_ACK_DELAY,
};
/* trace source and events */
static void quic_trace(enum trace_level level, uint64_t mask, \
const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4);
static const struct trace_event quic_trace_events[] = {
{ .mask = QUIC_EV_CONN_NEW, .name = "new_conn", .desc = "new QUIC connection" },
{ .mask = QUIC_EV_CONN_INIT, .name = "new_conn_init", .desc = "new QUIC connection initialization" },
{ .mask = QUIC_EV_CONN_ISEC, .name = "init_secs", .desc = "initial secrets derivation" },
{ .mask = QUIC_EV_CONN_RSEC, .name = "read_secs", .desc = "read secrets derivation" },
{ .mask = QUIC_EV_CONN_WSEC, .name = "write_secs", .desc = "write secrets derivation" },
{ .mask = QUIC_EV_CONN_LPKT, .name = "lstnr_packet", .desc = "new listener received packet" },
{ .mask = QUIC_EV_CONN_SPKT, .name = "srv_packet", .desc = "new server received packet" },
{ .mask = QUIC_EV_CONN_ENCPKT, .name = "enc_hdshk_pkt", .desc = "handhshake packet encryption" },
{ .mask = QUIC_EV_CONN_HPKT, .name = "hdshk_pkt", .desc = "handhshake packet building" },
{ .mask = QUIC_EV_CONN_PAPKT, .name = "phdshk_apkt", .desc = "post handhshake application packet preparation" },
{ .mask = QUIC_EV_CONN_PAPKTS, .name = "phdshk_apkts", .desc = "post handhshake application packets preparation" },
{ .mask = QUIC_EV_CONN_HDSHK, .name = "hdshk", .desc = "SSL handhshake processing" },
{ .mask = QUIC_EV_CONN_RMHP, .name = "rm_hp", .desc = "Remove header protection" },
{ .mask = QUIC_EV_CONN_PRSHPKT, .name = "parse_hpkt", .desc = "parse handshake packet" },
{ .mask = QUIC_EV_CONN_PRSAPKT, .name = "parse_apkt", .desc = "parse application packet" },
{ .mask = QUIC_EV_CONN_PRSFRM, .name = "parse_frm", .desc = "parse frame" },
{ .mask = QUIC_EV_CONN_PRSAFRM, .name = "parse_ack_frm", .desc = "parse ACK frame" },
{ .mask = QUIC_EV_CONN_BFRM, .name = "build_frm", .desc = "build frame" },
{ .mask = QUIC_EV_CONN_PHPKTS, .name = "phdshk_pkts", .desc = "handhshake packets preparation" },
{ .mask = QUIC_EV_CONN_TRMHP, .name = "rm_hp_try", .desc = "header protection removing try" },
{ .mask = QUIC_EV_CONN_ELRMHP, .name = "el_rm_hp", .desc = "handshake enc. level header protection removing" },
{ .mask = QUIC_EV_CONN_ELRXPKTS, .name = "el_treat_rx_pkts", .desc = "handshake enc. level rx packets treatment" },
{ .mask = QUIC_EV_CONN_SSLDATA, .name = "ssl_provide_data", .desc = "CRYPTO data provision to TLS stack" },
{ .mask = QUIC_EV_CONN_RXCDATA, .name = "el_treat_rx_cfrms",.desc = "enc. level RX CRYPTO frames processing"},
{ .mask = QUIC_EV_CONN_ADDDATA, .name = "add_hdshk_data", .desc = "TLS stack ->add_handshake_data() call"},
{ .mask = QUIC_EV_CONN_FFLIGHT, .name = "flush_flight", .desc = "TLS stack ->flush_flight() call"},
{ .mask = QUIC_EV_CONN_SSLALERT, .name = "send_alert", .desc = "TLS stack ->send_alert() call"},
{ .mask = QUIC_EV_CONN_RTTUPDT, .name = "rtt_updt", .desc = "RTT sampling" },
{ .mask = QUIC_EV_CONN_SPPKTS, .name = "sppkts", .desc = "send prepared packets" },
{ .mask = QUIC_EV_CONN_PKTLOSS, .name = "pktloss", .desc = "detect packet loss" },
{ .mask = QUIC_EV_CONN_STIMER, .name = "stimer", .desc = "set timer" },
{ .mask = QUIC_EV_CONN_PTIMER, .name = "ptimer", .desc = "process timer" },
{ .mask = QUIC_EV_CONN_SPTO, .name = "spto", .desc = "set PTO" },
{ .mask = QUIC_EV_CONN_BCFRMS, .name = "bcfrms", .desc = "build CRYPTO data frames" },
{ /* end */ }
};
static const struct name_desc quic_trace_lockon_args[4] = {
/* arg1 */ { /* already used by the connection */ },
/* arg2 */ { .name="quic", .desc="QUIC transport" },
/* arg3 */ { },
/* arg4 */ { }
};
static const struct name_desc quic_trace_decoding[] = {
#define QUIC_VERB_CLEAN 1
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
{ /* end */ }
};
struct trace_source trace_quic = {
.name = IST("quic"),
.desc = "QUIC xprt",
.arg_def = TRC_ARG1_CONN, /* TRACE()'s first argument is always a connection */
.default_cb = quic_trace,
.known_events = quic_trace_events,
.lockon_args = quic_trace_lockon_args,
.decoding = quic_trace_decoding,
.report_events = ~0, /* report everything by default */
};
#define TRACE_SOURCE &trace_quic
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
static BIO_METHOD *ha_quic_meth;
DECLARE_POOL(pool_head_quic_tx_ring, "quic_tx_ring_pool", QUIC_TX_RING_BUFSZ);
DECLARE_STATIC_POOL(pool_head_quic_conn_ctx,
"quic_conn_ctx_pool", sizeof(struct ssl_sock_ctx));
DECLARE_STATIC_POOL(pool_head_quic_conn, "quic_conn", sizeof(struct quic_conn));
DECLARE_POOL(pool_head_quic_connection_id,
"quic_connnection_id_pool", sizeof(struct quic_connection_id));
DECLARE_POOL(pool_head_quic_rx_packet, "quic_rx_packet_pool", sizeof(struct quic_rx_packet));
DECLARE_POOL(pool_head_quic_tx_packet, "quic_tx_packet_pool", sizeof(struct quic_tx_packet));
DECLARE_STATIC_POOL(pool_head_quic_rx_crypto_frm, "quic_rx_crypto_frm_pool", sizeof(struct quic_rx_crypto_frm));
DECLARE_POOL(pool_head_quic_rx_strm_frm, "quic_rx_strm_frm", sizeof(struct quic_rx_strm_frm));
DECLARE_STATIC_POOL(pool_head_quic_crypto_buf, "quic_crypto_buf_pool", sizeof(struct quic_crypto_buf));
DECLARE_POOL(pool_head_quic_frame, "quic_frame_pool", sizeof(struct quic_frame));
DECLARE_STATIC_POOL(pool_head_quic_arng, "quic_arng_pool", sizeof(struct quic_arng_node));
static struct quic_tx_packet *qc_build_pkt(unsigned char **pos, const unsigned char *buf_end,
struct quic_enc_level *qel,
struct quic_conn *qc, int pkt_type,
int ack, int nb_pto_dgrams, int *err);
/* Add traces to <buf> depending on <frm> TX frame type. */
static inline void chunk_tx_frm_appendf(struct buffer *buf,
const struct quic_frame *frm)
{
switch (frm->type) {
case QUIC_FT_CRYPTO:
chunk_appendf(buf, " cfoff=%llu cflen=%llu",
(unsigned long long)frm->crypto.offset,
(unsigned long long)frm->crypto.len);
break;
default:
chunk_appendf(buf, " %s", quic_frame_type_string(frm->type));
}
}
/* Only for debug purpose */
struct enc_debug_info {
unsigned char *payload;
size_t payload_len;
unsigned char *aad;
size_t aad_len;
uint64_t pn;
};
/* Initializes a enc_debug_info struct (only for debug purpose) */
static inline void enc_debug_info_init(struct enc_debug_info *edi,
unsigned char *payload, size_t payload_len,
unsigned char *aad, size_t aad_len, uint64_t pn)
{
edi->payload = payload;
edi->payload_len = payload_len;
edi->aad = aad;
edi->aad_len = aad_len;
edi->pn = pn;
}
/* Trace callback for QUIC.
* These traces always expect that arg1, if non-null, is of type connection.
*/
static void quic_trace(enum trace_level level, uint64_t mask, const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4)
{
const struct connection *conn = a1;
if (conn) {
struct quic_tls_secrets *secs;
struct quic_conn *qc;
qc = conn->qc;
chunk_appendf(&trace_buf, " : conn@%p", conn);
if ((mask & QUIC_EV_CONN_INIT) && qc) {
chunk_appendf(&trace_buf, "\n odcid");
quic_cid_dump(&trace_buf, &qc->odcid);
chunk_appendf(&trace_buf, "\n dcid");
quic_cid_dump(&trace_buf, &qc->dcid);
chunk_appendf(&trace_buf, "\n scid");
quic_cid_dump(&trace_buf, &qc->scid);
}
if (mask & QUIC_EV_CONN_ADDDATA) {
const enum ssl_encryption_level_t *level = a2;
const size_t *len = a3;
if (level) {
enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level);
chunk_appendf(&trace_buf, " el=%c(%d)", quic_enc_level_char(lvl), lvl);
}
if (len)
chunk_appendf(&trace_buf, " len=%llu", (unsigned long long)*len);
}
if ((mask & QUIC_EV_CONN_ISEC) && qc) {
/* Initial read & write secrets. */
enum quic_tls_enc_level level = QUIC_TLS_ENC_LEVEL_INITIAL;
const unsigned char *rx_sec = a2;
const unsigned char *tx_sec = a3;
secs = &qc->els[level].tls_ctx.rx;
if (secs->flags & QUIC_FL_TLS_SECRETS_SET) {
chunk_appendf(&trace_buf, "\n RX el=%c", quic_enc_level_char(level));
if (rx_sec)
quic_tls_secret_hexdump(&trace_buf, rx_sec, 32);
quic_tls_keys_hexdump(&trace_buf, secs);
}
secs = &qc->els[level].tls_ctx.tx;
if (secs->flags & QUIC_FL_TLS_SECRETS_SET) {
chunk_appendf(&trace_buf, "\n TX el=%c", quic_enc_level_char(level));
if (tx_sec)
quic_tls_secret_hexdump(&trace_buf, tx_sec, 32);
quic_tls_keys_hexdump(&trace_buf, secs);
}
}
if (mask & (QUIC_EV_CONN_RSEC|QUIC_EV_CONN_RWSEC)) {
const enum ssl_encryption_level_t *level = a2;
const unsigned char *secret = a3;
const size_t *secret_len = a4;
if (level) {
enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level);
chunk_appendf(&trace_buf, "\n RX el=%c", quic_enc_level_char(lvl));
if (secret && secret_len)
quic_tls_secret_hexdump(&trace_buf, secret, *secret_len);
secs = &qc->els[lvl].tls_ctx.rx;
if (secs->flags & QUIC_FL_TLS_SECRETS_SET)
quic_tls_keys_hexdump(&trace_buf, secs);
}
}
if (mask & (QUIC_EV_CONN_WSEC|QUIC_EV_CONN_RWSEC)) {
const enum ssl_encryption_level_t *level = a2;
const unsigned char *secret = a3;
const size_t *secret_len = a4;
if (level) {
enum quic_tls_enc_level lvl = ssl_to_quic_enc_level(*level);
chunk_appendf(&trace_buf, "\n TX el=%c", quic_enc_level_char(lvl));
if (secret && secret_len)
quic_tls_secret_hexdump(&trace_buf, secret, *secret_len);
secs = &qc->els[lvl].tls_ctx.tx;
if (secs->flags & QUIC_FL_TLS_SECRETS_SET)
quic_tls_keys_hexdump(&trace_buf, secs);
}
}
if (mask & (QUIC_EV_CONN_HPKT|QUIC_EV_CONN_PAPKT)) {
const struct quic_tx_packet *pkt = a2;
const struct quic_enc_level *qel = a3;
const ssize_t *room = a4;
if (qel) {
struct quic_pktns *pktns;
pktns = qc->pktns;
chunk_appendf(&trace_buf, " qel=%c cwnd=%llu ppif=%lld pif=%llu "
"if=%llu pp=%u pdg=%d",
quic_enc_level_char_from_qel(qel, qc),
(unsigned long long)qc->path->cwnd,
(unsigned long long)qc->path->prep_in_flight,
(unsigned long long)qc->path->in_flight,
(unsigned long long)pktns->tx.in_flight,
pktns->tx.pto_probe, qc->tx.nb_pto_dgrams);
}
if (pkt) {
const struct quic_frame *frm;
chunk_appendf(&trace_buf, " pn=%llu cdlen=%u",
(unsigned long long)pkt->pn_node.key, pkt->cdata_len);
list_for_each_entry(frm, &pkt->frms, list)
chunk_tx_frm_appendf(&trace_buf, frm);
chunk_appendf(&trace_buf, " tx.bytes=%llu", (unsigned long long)qc->tx.bytes);
}
if (room) {
chunk_appendf(&trace_buf, " room=%lld", (long long)*room);
chunk_appendf(&trace_buf, " dcid.len=%llu scid.len=%llu",
(unsigned long long)qc->dcid.len, (unsigned long long)qc->scid.len);
}
}
if (mask & QUIC_EV_CONN_HDSHK) {
const enum quic_handshake_state *state = a2;
const int *err = a3;
if (state)
chunk_appendf(&trace_buf, " state=%s", quic_hdshk_state_str(*state));
if (err)
chunk_appendf(&trace_buf, " err=%s", ssl_error_str(*err));
}
if (mask & (QUIC_EV_CONN_TRMHP|QUIC_EV_CONN_ELRMHP|QUIC_EV_CONN_SPKT)) {
const struct quic_rx_packet *pkt = a2;
const unsigned long *pktlen = a3;
const SSL *ssl = a4;
if (pkt) {
chunk_appendf(&trace_buf, " pkt@%p el=%c",
pkt, quic_packet_type_enc_level_char(pkt->type));
if (pkt->pnl)
chunk_appendf(&trace_buf, " pnl=%u pn=%llu", pkt->pnl,
(unsigned long long)pkt->pn);
if (pkt->token_len)
chunk_appendf(&trace_buf, " toklen=%llu",
(unsigned long long)pkt->token_len);
if (pkt->aad_len)
chunk_appendf(&trace_buf, " aadlen=%llu",
(unsigned long long)pkt->aad_len);
chunk_appendf(&trace_buf, " flags=0x%x len=%llu",
pkt->flags, (unsigned long long)pkt->len);
}
if (pktlen)
chunk_appendf(&trace_buf, " (%ld)", *pktlen);
if (ssl) {
enum ssl_encryption_level_t level = SSL_quic_read_level(ssl);
chunk_appendf(&trace_buf, " el=%c",
quic_enc_level_char(ssl_to_quic_enc_level(level)));
}
}
if (mask & (QUIC_EV_CONN_ELRXPKTS|QUIC_EV_CONN_PRSHPKT|QUIC_EV_CONN_SSLDATA)) {
const struct quic_rx_packet *pkt = a2;
const struct quic_rx_crypto_frm *cf = a3;
const SSL *ssl = a4;
if (pkt)
chunk_appendf(&trace_buf, " pkt@%p el=%c pn=%llu", pkt,
quic_packet_type_enc_level_char(pkt->type),
(unsigned long long)pkt->pn);
if (cf)
chunk_appendf(&trace_buf, " cfoff=%llu cflen=%llu",
(unsigned long long)cf->offset_node.key,
(unsigned long long)cf->len);
if (ssl) {
enum ssl_encryption_level_t level = SSL_quic_read_level(ssl);
chunk_appendf(&trace_buf, " el=%c",
quic_enc_level_char(ssl_to_quic_enc_level(level)));
}
}
if (mask & (QUIC_EV_CONN_PRSFRM|QUIC_EV_CONN_BFRM)) {
const struct quic_frame *frm = a2;
if (frm)
chunk_appendf(&trace_buf, " %s", quic_frame_type_string(frm->type));
}
if (mask & QUIC_EV_CONN_PHPKTS) {
const struct quic_enc_level *qel = a2;
if (qel) {
struct quic_pktns *pktns;
pktns = qc->pktns;
chunk_appendf(&trace_buf,
" qel=%c state=%s ack?%d cwnd=%llu ppif=%lld pif=%llu if=%llu pp=%u pdg=%llu",
quic_enc_level_char_from_qel(qel, qc),
quic_hdshk_state_str(HA_ATOMIC_LOAD(&qc->state)),
!!(HA_ATOMIC_LOAD(&pktns->flags) & QUIC_FL_PKTNS_ACK_REQUIRED),
(unsigned long long)qc->path->cwnd,
(unsigned long long)qc->path->prep_in_flight,
(unsigned long long)qc->path->in_flight,
(unsigned long long)pktns->tx.in_flight, pktns->tx.pto_probe,
(unsigned long long)qc->tx.nb_pto_dgrams);
}
}
if (mask & QUIC_EV_CONN_ENCPKT) {
const struct enc_debug_info *edi = a2;
if (edi)
chunk_appendf(&trace_buf,
" payload=@%p payload_len=%llu"
" aad=@%p aad_len=%llu pn=%llu",
edi->payload, (unsigned long long)edi->payload_len,
edi->aad, (unsigned long long)edi->aad_len,
(unsigned long long)edi->pn);
}
if (mask & QUIC_EV_CONN_RMHP) {
const struct quic_rx_packet *pkt = a2;
if (pkt) {
const int *ret = a3;
chunk_appendf(&trace_buf, " pkt@%p", pkt);
if (ret && *ret)
chunk_appendf(&trace_buf, " pnl=%u pn=%llu",
pkt->pnl, (unsigned long long)pkt->pn);
}
}
if (mask & QUIC_EV_CONN_PRSAFRM) {
const struct quic_frame *frm = a2;
const unsigned long *val1 = a3;
const unsigned long *val2 = a4;
if (frm)
chunk_tx_frm_appendf(&trace_buf, frm);
if (val1)
chunk_appendf(&trace_buf, " %lu", *val1);
if (val2)
chunk_appendf(&trace_buf, "..%lu", *val2);
}
if (mask & QUIC_EV_CONN_RTTUPDT) {
const unsigned int *rtt_sample = a2;
const unsigned int *ack_delay = a3;
const struct quic_loss *ql = a4;
if (rtt_sample)
chunk_appendf(&trace_buf, " rtt_sample=%ums", *rtt_sample);
if (ack_delay)
chunk_appendf(&trace_buf, " ack_delay=%ums", *ack_delay);
if (ql)
chunk_appendf(&trace_buf,
" srtt=%ums rttvar=%ums min_rtt=%ums",
ql->srtt >> 3, ql->rtt_var >> 2, ql->rtt_min);
}
if (mask & QUIC_EV_CONN_CC) {
const struct quic_cc_event *ev = a2;
const struct quic_cc *cc = a3;
if (a2)
quic_cc_event_trace(&trace_buf, ev);
if (a3)
quic_cc_state_trace(&trace_buf, cc);
}
if (mask & QUIC_EV_CONN_PKTLOSS) {
const struct quic_pktns *pktns = a2;
const struct list *lost_pkts = a3;
struct quic_conn *qc = conn->qc;
if (pktns) {
chunk_appendf(&trace_buf, " pktns=%s",
pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" :
pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H");
if (pktns->tx.loss_time)
chunk_appendf(&trace_buf, " loss_time=%dms",
TICKS_TO_MS(tick_remain(now_ms, pktns->tx.loss_time)));
}
if (lost_pkts && !LIST_ISEMPTY(lost_pkts)) {
struct quic_tx_packet *pkt;
chunk_appendf(&trace_buf, " lost_pkts:");
list_for_each_entry(pkt, lost_pkts, list)
chunk_appendf(&trace_buf, " %lu", (unsigned long)pkt->pn_node.key);
}
}
if (mask & (QUIC_EV_CONN_STIMER|QUIC_EV_CONN_PTIMER|QUIC_EV_CONN_SPTO)) {
struct quic_conn *qc = conn->qc;
const struct quic_pktns *pktns = a2;
const int *duration = a3;
const uint64_t *ifae_pkts = a4;
if (ifae_pkts)
chunk_appendf(&trace_buf, " ifae_pkts=%llu",
(unsigned long long)*ifae_pkts);
if (pktns) {
chunk_appendf(&trace_buf, " pktns=%s pp=%d",
pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" :
pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H",
pktns->tx.pto_probe);
if (mask & QUIC_EV_CONN_STIMER) {
if (pktns->tx.loss_time)
chunk_appendf(&trace_buf, " loss_time=%dms",
TICKS_TO_MS(pktns->tx.loss_time - now_ms));
}
if (mask & QUIC_EV_CONN_SPTO) {
if (pktns->tx.time_of_last_eliciting)
chunk_appendf(&trace_buf, " tole=%dms",
TICKS_TO_MS(pktns->tx.time_of_last_eliciting - now_ms));
if (duration)
chunk_appendf(&trace_buf, " dur=%dms", TICKS_TO_MS(*duration));
}
}
if (!(mask & QUIC_EV_CONN_SPTO) && qc->timer_task) {
chunk_appendf(&trace_buf,
" expire=%dms", TICKS_TO_MS(qc->timer - now_ms));
}
}
if (mask & QUIC_EV_CONN_SPPKTS) {
const struct quic_tx_packet *pkt = a2;
chunk_appendf(&trace_buf, " cwnd=%llu ppif=%llu pif=%llu",
(unsigned long long)qc->path->cwnd,
(unsigned long long)qc->path->prep_in_flight,
(unsigned long long)qc->path->in_flight);
if (pkt) {
chunk_appendf(&trace_buf, " pn=%lu(%s) iflen=%llu cdlen=%llu",
(unsigned long)pkt->pn_node.key,
pkt->pktns == &qc->pktns[QUIC_TLS_PKTNS_INITIAL] ? "I" :
pkt->pktns == &qc->pktns[QUIC_TLS_PKTNS_01RTT] ? "01RTT": "H",
(unsigned long long)pkt->in_flight_len,
(unsigned long long)pkt->cdata_len);
}
}
if (mask & QUIC_EV_CONN_SSLALERT) {
const uint8_t *alert = a2;
const enum ssl_encryption_level_t *level = a3;
if (alert)
chunk_appendf(&trace_buf, " alert=0x%02x", *alert);
if (level)
chunk_appendf(&trace_buf, " el=%c",
quic_enc_level_char(ssl_to_quic_enc_level(*level)));
}
if (mask & QUIC_EV_CONN_BCFRMS) {
const size_t *sz1 = a2;
const size_t *sz2 = a3;
const size_t *sz3 = a4;
if (sz1)
chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz1);
if (sz2)
chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz2);
if (sz3)
chunk_appendf(&trace_buf, " %llu", (unsigned long long)*sz3);
}
if (mask & QUIC_EV_CONN_PSTRM) {
const struct quic_frame *frm = a2;
if (a2) {
const struct quic_stream *s = &frm->stream;
chunk_appendf(&trace_buf, " uni=%d fin=%d id=%llu off=%llu len=%llu",
!!(s->id & QUIC_STREAM_FRAME_ID_DIR_BIT),
!!(frm->type & QUIC_STREAM_FRAME_TYPE_FIN_BIT),
(unsigned long long)s->id,
(unsigned long long)s->offset,
(unsigned long long)s->len);
}
}
}
if (mask & QUIC_EV_CONN_LPKT) {
const struct quic_rx_packet *pkt = a2;
if (conn)
chunk_appendf(&trace_buf, " xprt_ctx@%p qc@%p", conn->xprt_ctx, conn->qc);
if (pkt)
chunk_appendf(&trace_buf, " pkt@%p type=0x%02x %s pkt->qc@%p",
pkt, pkt->type, qc_pkt_long(pkt) ? "long" : "short", pkt->qc);
}
}
/* Returns 1 if the peer has validated <qc> QUIC connection address, 0 if not. */
static inline int quic_peer_validated_addr(struct ssl_sock_ctx *ctx)
{
struct quic_conn *qc;
struct quic_pktns *hdshk_pktns, *app_pktns;
qc = ctx->conn->qc;
if (objt_server(qc->conn->target))
return 1;
hdshk_pktns = qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns;
app_pktns = qc->els[QUIC_TLS_ENC_LEVEL_APP].pktns;
if ((HA_ATOMIC_LOAD(&hdshk_pktns->flags) & QUIC_FL_PKTNS_ACK_RECEIVED) ||
(HA_ATOMIC_LOAD(&app_pktns->flags) & QUIC_FL_PKTNS_ACK_RECEIVED) ||
HA_ATOMIC_LOAD(&qc->state) >= QUIC_HS_ST_COMPLETE)
return 1;
return 0;
}
/* Set the timer attached to the QUIC connection with <ctx> as I/O handler and used for
* both loss detection and PTO and schedule the task assiated to this timer if needed.
*/
static inline void qc_set_timer(struct ssl_sock_ctx *ctx)
{
struct quic_conn *qc;
struct quic_pktns *pktns;
unsigned int pto;
int handshake_complete;
TRACE_ENTER(QUIC_EV_CONN_STIMER, ctx->conn,
NULL, NULL, &ctx->conn->qc->path->ifae_pkts);
qc = ctx->conn->qc;
pktns = quic_loss_pktns(qc);
if (tick_isset(pktns->tx.loss_time)) {
qc->timer = pktns->tx.loss_time;
goto out;
}
/* XXX TODO: anti-amplification: the timer must be
* cancelled for a server which reached the anti-amplification limit.
*/
if (!qc->path->ifae_pkts && quic_peer_validated_addr(ctx)) {
TRACE_PROTO("timer cancellation", QUIC_EV_CONN_STIMER, ctx->conn);
/* Timer cancellation. */
qc->timer = TICK_ETERNITY;
goto out;
}
handshake_complete = HA_ATOMIC_LOAD(&qc->state) >= QUIC_HS_ST_COMPLETE;
pktns = quic_pto_pktns(qc, handshake_complete, &pto);
if (tick_isset(pto))
qc->timer = pto;
out:
task_schedule(qc->timer_task, qc->timer);
TRACE_LEAVE(QUIC_EV_CONN_STIMER, ctx->conn, pktns);
}
#ifndef OPENSSL_IS_BORINGSSL
int ha_quic_set_encryption_secrets(SSL *ssl, enum ssl_encryption_level_t level,
const uint8_t *read_secret,
const uint8_t *write_secret, size_t secret_len)
{
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
struct quic_tls_ctx *tls_ctx =
&conn->qc->els[ssl_to_quic_enc_level(level)].tls_ctx;
const SSL_CIPHER *cipher = SSL_get_current_cipher(ssl);
TRACE_ENTER(QUIC_EV_CONN_RWSEC, conn);
tls_ctx->rx.aead = tls_ctx->tx.aead = tls_aead(cipher);
tls_ctx->rx.md = tls_ctx->tx.md = tls_md(cipher);
tls_ctx->rx.hp = tls_ctx->tx.hp = tls_hp(cipher);
if (!quic_tls_derive_keys(tls_ctx->rx.aead, tls_ctx->rx.hp, tls_ctx->rx.md,
tls_ctx->rx.key, sizeof tls_ctx->rx.key,
tls_ctx->rx.iv, sizeof tls_ctx->rx.iv,
tls_ctx->rx.hp_key, sizeof tls_ctx->rx.hp_key,
read_secret, secret_len)) {
TRACE_DEVEL("RX key derivation failed", QUIC_EV_CONN_RWSEC, conn);
return 0;
}
tls_ctx->rx.flags |= QUIC_FL_TLS_SECRETS_SET;
if (!quic_tls_derive_keys(tls_ctx->tx.aead, tls_ctx->tx.hp, tls_ctx->tx.md,
tls_ctx->tx.key, sizeof tls_ctx->tx.key,
tls_ctx->tx.iv, sizeof tls_ctx->tx.iv,
tls_ctx->tx.hp_key, sizeof tls_ctx->tx.hp_key,
write_secret, secret_len)) {
TRACE_DEVEL("TX key derivation failed", QUIC_EV_CONN_RWSEC, conn);
return 0;
}
tls_ctx->tx.flags |= QUIC_FL_TLS_SECRETS_SET;
if (objt_server(conn->target) && level == ssl_encryption_application) {
const unsigned char *buf;
size_t buflen;
SSL_get_peer_quic_transport_params(ssl, &buf, &buflen);
if (!buflen)
return 0;
if (!quic_transport_params_store(conn->qc, 1, buf, buf + buflen))
return 0;
}
TRACE_LEAVE(QUIC_EV_CONN_RWSEC, conn, &level);
return 1;
}
#else
/* ->set_read_secret callback to derive the RX secrets at <level> encryption
* level.
* Returns 1 if succeeded, 0 if not.
*/
int ha_set_rsec(SSL *ssl, enum ssl_encryption_level_t level,
const SSL_CIPHER *cipher,
const uint8_t *secret, size_t secret_len)
{
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
struct quic_tls_ctx *tls_ctx =
&conn->qc->els[ssl_to_quic_enc_level(level)].tls_ctx;
TRACE_ENTER(QUIC_EV_CONN_RSEC, conn);
tls_ctx->rx.aead = tls_aead(cipher);
tls_ctx->rx.md = tls_md(cipher);
tls_ctx->rx.hp = tls_hp(cipher);
if (!quic_tls_derive_keys(tls_ctx->rx.aead, tls_ctx->rx.hp, tls_ctx->rx.md,
tls_ctx->rx.key, sizeof tls_ctx->rx.key,
tls_ctx->rx.iv, sizeof tls_ctx->rx.iv,
tls_ctx->rx.hp_key, sizeof tls_ctx->rx.hp_key,
secret, secret_len)) {
TRACE_DEVEL("RX key derivation failed", QUIC_EV_CONN_RSEC, conn);
goto err;
}
if (objt_server(conn->target) && level == ssl_encryption_application) {
const unsigned char *buf;
size_t buflen;
SSL_get_peer_quic_transport_params(ssl, &buf, &buflen);
if (!buflen)
goto err;
if (!quic_transport_params_store(conn->qc, 1, buf, buf + buflen))
goto err;
}
tls_ctx->rx.flags |= QUIC_FL_TLS_SECRETS_SET;
TRACE_LEAVE(QUIC_EV_CONN_RSEC, conn, &level, secret, &secret_len);
return 1;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_RSEC, conn);
return 0;
}
/* ->set_write_secret callback to derive the TX secrets at <level>
* encryption level.
* Returns 1 if succeeded, 0 if not.
*/
int ha_set_wsec(SSL *ssl, enum ssl_encryption_level_t level,
const SSL_CIPHER *cipher,
const uint8_t *secret, size_t secret_len)
{
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
struct quic_tls_ctx *tls_ctx =
&conn->qc->els[ssl_to_quic_enc_level(level)].tls_ctx;
TRACE_ENTER(QUIC_EV_CONN_WSEC, conn);
tls_ctx->tx.aead = tls_aead(cipher);
tls_ctx->tx.md = tls_md(cipher);
tls_ctx->tx.hp = tls_hp(cipher);
if (!quic_tls_derive_keys(tls_ctx->tx.aead, tls_ctx->tx.hp, tls_ctx->tx.md,
tls_ctx->tx.key, sizeof tls_ctx->tx.key,
tls_ctx->tx.iv, sizeof tls_ctx->tx.iv,
tls_ctx->tx.hp_key, sizeof tls_ctx->tx.hp_key,
secret, secret_len)) {
TRACE_DEVEL("TX key derivation failed", QUIC_EV_CONN_WSEC, conn);
goto err;
}
tls_ctx->tx.flags |= QUIC_FL_TLS_SECRETS_SET;
TRACE_LEAVE(QUIC_EV_CONN_WSEC, conn, &level, secret, &secret_len);
return 1;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_WSEC, conn);
return 0;
}
#endif
/* This function copies the CRYPTO data provided by the TLS stack found at <data>
* with <len> as size in CRYPTO buffers dedicated to store the information about
* outgoing CRYPTO frames so that to be able to replay the CRYPTO data streams.
* It fails only if it could not managed to allocate enough CRYPTO buffers to
* store all the data.
* Note that CRYPTO data may exist at any encryption level except at 0-RTT.
*/
static int quic_crypto_data_cpy(struct quic_enc_level *qel,
const unsigned char *data, size_t len)
{
struct quic_crypto_buf **qcb;
/* The remaining byte to store in CRYPTO buffers. */
size_t cf_offset, cf_len, *nb_buf;
unsigned char *pos;
nb_buf = &qel->tx.crypto.nb_buf;
qcb = &qel->tx.crypto.bufs[*nb_buf - 1];
cf_offset = (*nb_buf - 1) * QUIC_CRYPTO_BUF_SZ + (*qcb)->sz;
cf_len = len;
while (len) {
size_t to_copy, room;
pos = (*qcb)->data + (*qcb)->sz;
room = QUIC_CRYPTO_BUF_SZ - (*qcb)->sz;
to_copy = len > room ? room : len;
if (to_copy) {
memcpy(pos, data, to_copy);
/* Increment the total size of this CRYPTO buffers by <to_copy>. */
qel->tx.crypto.sz += to_copy;
(*qcb)->sz += to_copy;
pos += to_copy;
len -= to_copy;
data += to_copy;
}
else {
struct quic_crypto_buf **tmp;
tmp = realloc(qel->tx.crypto.bufs,
(*nb_buf + 1) * sizeof *qel->tx.crypto.bufs);
if (tmp) {
qel->tx.crypto.bufs = tmp;
qcb = &qel->tx.crypto.bufs[*nb_buf];
*qcb = pool_alloc(pool_head_quic_crypto_buf);
if (!*qcb)
return 0;
(*qcb)->sz = 0;
++*nb_buf;
}
else {
break;
}
}
}
/* Allocate a TX CRYPTO frame only if all the CRYPTO data
* have been buffered.
*/
if (!len) {
struct quic_frame *frm;
frm = pool_alloc(pool_head_quic_frame);
if (!frm)
return 0;
frm->type = QUIC_FT_CRYPTO;
frm->crypto.offset = cf_offset;
frm->crypto.len = cf_len;
frm->crypto.qel = qel;
MT_LIST_APPEND(&qel->pktns->tx.frms, &frm->mt_list);
}
return len == 0;
}
/* ->add_handshake_data QUIC TLS callback used by the QUIC TLS stack when it
* wants to provide the QUIC layer with CRYPTO data.
* Returns 1 if succeeded, 0 if not.
*/
int ha_quic_add_handshake_data(SSL *ssl, enum ssl_encryption_level_t level,
const uint8_t *data, size_t len)
{
struct connection *conn;
enum quic_tls_enc_level tel;
struct quic_enc_level *qel;
conn = SSL_get_ex_data(ssl, ssl_app_data_index);
TRACE_ENTER(QUIC_EV_CONN_ADDDATA, conn);
tel = ssl_to_quic_enc_level(level);
qel = &conn->qc->els[tel];
if (tel == -1) {
TRACE_PROTO("Wrong encryption level", QUIC_EV_CONN_ADDDATA, conn);
goto err;
}
if (!quic_crypto_data_cpy(qel, data, len)) {
TRACE_PROTO("Could not bufferize", QUIC_EV_CONN_ADDDATA, conn);
goto err;
}
TRACE_PROTO("CRYPTO data buffered", QUIC_EV_CONN_ADDDATA,
conn, &level, &len);
TRACE_LEAVE(QUIC_EV_CONN_ADDDATA, conn);
return 1;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_ADDDATA, conn);
return 0;
}
int ha_quic_flush_flight(SSL *ssl)
{
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
TRACE_ENTER(QUIC_EV_CONN_FFLIGHT, conn);
TRACE_LEAVE(QUIC_EV_CONN_FFLIGHT, conn);
return 1;
}
int ha_quic_send_alert(SSL *ssl, enum ssl_encryption_level_t level, uint8_t alert)
{
struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index);
TRACE_DEVEL("SSL alert", QUIC_EV_CONN_SSLALERT, conn, &alert, &level);
return 1;
}
/* QUIC TLS methods */
static SSL_QUIC_METHOD ha_quic_method = {
#ifdef OPENSSL_IS_BORINGSSL
.set_read_secret = ha_set_rsec,
.set_write_secret = ha_set_wsec,
#else
.set_encryption_secrets = ha_quic_set_encryption_secrets,
#endif
.add_handshake_data = ha_quic_add_handshake_data,
.flush_flight = ha_quic_flush_flight,
.send_alert = ha_quic_send_alert,
};
/* Initialize the TLS context of a listener with <bind_conf> as configuration.
* Returns an error count.
*/
int ssl_quic_initial_ctx(struct bind_conf *bind_conf)
{
struct proxy *curproxy = bind_conf->frontend;
struct ssl_bind_conf __maybe_unused *ssl_conf_cur;
int cfgerr = 0;
#if 0
/* XXX Did not manage to use this. */
const char *ciphers =
"TLS_AES_128_GCM_SHA256:"
"TLS_AES_256_GCM_SHA384:"
"TLS_CHACHA20_POLY1305_SHA256:"
"TLS_AES_128_CCM_SHA256";
#endif
const char *groups = "X25519:P-256:P-384:P-521";
long options =
(SSL_OP_ALL & ~SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS) |
SSL_OP_SINGLE_ECDH_USE |
SSL_OP_CIPHER_SERVER_PREFERENCE;
SSL_CTX *ctx;
ctx = SSL_CTX_new(TLS_server_method());
bind_conf->initial_ctx = ctx;
SSL_CTX_set_options(ctx, options);
#if 0
if (SSL_CTX_set_cipher_list(ctx, ciphers) != 1) {
ha_alert("Proxy '%s': unable to set TLS 1.3 cipher list to '%s' "
"for bind '%s' at [%s:%d].\n",
curproxy->id, ciphers,
bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr++;
}
#endif
if (SSL_CTX_set1_curves_list(ctx, groups) != 1) {
ha_alert("Proxy '%s': unable to set TLS 1.3 curves list to '%s' "
"for bind '%s' at [%s:%d].\n",
curproxy->id, groups,
bind_conf->arg, bind_conf->file, bind_conf->line);
cfgerr++;
}
SSL_CTX_set_mode(ctx, SSL_MODE_RELEASE_BUFFERS);
SSL_CTX_set_min_proto_version(ctx, TLS1_3_VERSION);
SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION);
SSL_CTX_set_default_verify_paths(ctx);
#ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME
#ifdef OPENSSL_IS_BORINGSSL
SSL_CTX_set_select_certificate_cb(ctx, ssl_sock_switchctx_cbk);
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk);
#elif (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L)
if (bind_conf->ssl_conf.early_data) {
SSL_CTX_set_options(ctx, SSL_OP_NO_ANTI_REPLAY);
SSL_CTX_set_max_early_data(ctx, global.tune.bufsize - global.tune.maxrewrite);
}
SSL_CTX_set_client_hello_cb(ctx, ssl_sock_switchctx_cbk, NULL);
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk);
#else
SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_cbk);
#endif
SSL_CTX_set_tlsext_servername_arg(ctx, bind_conf);
#endif
SSL_CTX_set_quic_method(ctx, &ha_quic_method);
return cfgerr;
}
/* Decode an expected packet number from <truncated_on> its truncated value,
* depending on <largest_pn> the largest received packet number, and <pn_nbits>
* the number of bits used to encode this packet number (its length in bytes * 8).
* See https://quicwg.org/base-drafts/draft-ietf-quic-transport.html#packet-encoding
*/
static uint64_t decode_packet_number(uint64_t largest_pn,
uint32_t truncated_pn, unsigned int pn_nbits)
{
uint64_t expected_pn = largest_pn + 1;
uint64_t pn_win = (uint64_t)1 << pn_nbits;
uint64_t pn_hwin = pn_win / 2;
uint64_t pn_mask = pn_win - 1;
uint64_t candidate_pn;
candidate_pn = (expected_pn & ~pn_mask) | truncated_pn;
/* Note that <pn_win> > <pn_hwin>. */
if (candidate_pn < QUIC_MAX_PACKET_NUM - pn_win &&
candidate_pn + pn_hwin <= expected_pn)
return candidate_pn + pn_win;
if (candidate_pn > expected_pn + pn_hwin && candidate_pn >= pn_win)
return candidate_pn - pn_win;
return candidate_pn;
}
/* Remove the header protection of <pkt> QUIC packet using <tls_ctx> as QUIC TLS
* cryptographic context.
* <largest_pn> is the largest received packet number and <pn> the address of
* the packet number field for this packet with <byte0> address of its first byte.
* <end> points to one byte past the end of this packet.
* Returns 1 if succeeded, 0 if not.
*/
static int qc_do_rm_hp(struct quic_rx_packet *pkt, struct quic_tls_ctx *tls_ctx,
int64_t largest_pn, unsigned char *pn,
unsigned char *byte0, const unsigned char *end,
struct ssl_sock_ctx *ctx)
{
int ret, outlen, i, pnlen;
uint64_t packet_number;
uint32_t truncated_pn = 0;
unsigned char mask[5] = {0};
unsigned char *sample;
EVP_CIPHER_CTX *cctx;
unsigned char *hp_key;
/* Check there is enough data in this packet. */
if (end - pn < QUIC_PACKET_PN_MAXLEN + sizeof mask) {
TRACE_DEVEL("too short packet", QUIC_EV_CONN_RMHP, ctx->conn, pkt);
return 0;
}
cctx = EVP_CIPHER_CTX_new();
if (!cctx) {
TRACE_DEVEL("memory allocation failed", QUIC_EV_CONN_RMHP, ctx->conn, pkt);
return 0;
}
ret = 0;
sample = pn + QUIC_PACKET_PN_MAXLEN;
hp_key = tls_ctx->rx.hp_key;
if (!EVP_DecryptInit_ex(cctx, tls_ctx->rx.hp, NULL, hp_key, sample) ||
!EVP_DecryptUpdate(cctx, mask, &outlen, mask, sizeof mask) ||
!EVP_DecryptFinal_ex(cctx, mask, &outlen)) {
TRACE_DEVEL("decryption failed", QUIC_EV_CONN_RMHP, ctx->conn, pkt);
goto out;
}
*byte0 ^= mask[0] & (*byte0 & QUIC_PACKET_LONG_HEADER_BIT ? 0xf : 0x1f);
pnlen = (*byte0 & QUIC_PACKET_PNL_BITMASK) + 1;
for (i = 0; i < pnlen; i++) {
pn[i] ^= mask[i + 1];
truncated_pn = (truncated_pn << 8) | pn[i];
}
packet_number = decode_packet_number(largest_pn, truncated_pn, pnlen * 8);
/* Store remaining information for this unprotected header */
pkt->pn = packet_number;
pkt->pnl = pnlen;
ret = 1;
out:
EVP_CIPHER_CTX_free(cctx);
return ret;
}
/* Encrypt the payload of a QUIC packet with <pn> as number found at <payload>
* address, with <payload_len> as payload length, <aad> as address of
* the ADD and <aad_len> as AAD length depending on the <tls_ctx> QUIC TLS
* context.
* Returns 1 if succeeded, 0 if not.
*/
static int quic_packet_encrypt(unsigned char *payload, size_t payload_len,
unsigned char *aad, size_t aad_len, uint64_t pn,
struct quic_tls_ctx *tls_ctx, struct connection *conn)
{
unsigned char iv[12];
unsigned char *tx_iv = tls_ctx->tx.iv;
size_t tx_iv_sz = sizeof tls_ctx->tx.iv;
struct enc_debug_info edi;
if (!quic_aead_iv_build(iv, sizeof iv, tx_iv, tx_iv_sz, pn)) {
TRACE_DEVEL("AEAD IV building for encryption failed", QUIC_EV_CONN_HPKT, conn);
goto err;
}
if (!quic_tls_encrypt(payload, payload_len, aad, aad_len,
tls_ctx->tx.aead, tls_ctx->tx.key, iv)) {
TRACE_DEVEL("QUIC packet encryption failed", QUIC_EV_CONN_HPKT, conn);
goto err;
}
return 1;
err:
enc_debug_info_init(&edi, payload, payload_len, aad, aad_len, pn);
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_ENCPKT, conn, &edi);
return 0;
}
/* Decrypt <pkt> QUIC packet with <tls_ctx> as QUIC TLS cryptographic context.
* Returns 1 if succeeded, 0 if not.
*/
static int qc_pkt_decrypt(struct quic_rx_packet *pkt, struct quic_tls_ctx *tls_ctx)
{
int ret;
unsigned char iv[12];
unsigned char *rx_iv = tls_ctx->rx.iv;
size_t rx_iv_sz = sizeof tls_ctx->rx.iv;
if (!quic_aead_iv_build(iv, sizeof iv, rx_iv, rx_iv_sz, pkt->pn))
return 0;
ret = quic_tls_decrypt(pkt->data + pkt->aad_len, pkt->len - pkt->aad_len,
pkt->data, pkt->aad_len,
tls_ctx->rx.aead, tls_ctx->rx.key, iv);
if (!ret)
return 0;
/* Update the packet length (required to parse the frames). */
pkt->len = pkt->aad_len + ret;
return 1;
}
/* Treat <frm> frame whose packet it is attached to has just been acknowledged. */
static inline void qc_treat_acked_tx_frm(struct quic_frame *frm,
struct ssl_sock_ctx *ctx)
{
TRACE_PROTO("Removing frame", QUIC_EV_CONN_PRSAFRM, ctx->conn, frm);
LIST_DELETE(&frm->list);
pool_free(pool_head_quic_frame, frm);
}
/* Remove <largest> down to <smallest> node entries from <pkts> tree of TX packet,
* deallocating them, and their TX frames.
* Returns the last node reached to be used for the next range.
* May be NULL if <largest> node could not be found.
*/
static inline struct eb64_node *qc_ackrng_pkts(struct eb_root *pkts, unsigned int *pkt_flags,
struct list *newly_acked_pkts,
struct eb64_node *largest_node,
uint64_t largest, uint64_t smallest,
struct ssl_sock_ctx *ctx)
{
struct eb64_node *node;
struct quic_tx_packet *pkt;
if (largest_node)
node = largest_node;
else {
node = eb64_lookup(pkts, largest);
while (!node && largest > smallest) {
node = eb64_lookup(pkts, --largest);
}
}
while (node && node->key >= smallest) {
struct quic_frame *frm, *frmbak;
pkt = eb64_entry(&node->node, struct quic_tx_packet, pn_node);
*pkt_flags |= pkt->flags;
LIST_INSERT(newly_acked_pkts, &pkt->list);
TRACE_PROTO("Removing packet #", QUIC_EV_CONN_PRSAFRM, ctx->conn,, &pkt->pn_node.key);
list_for_each_entry_safe(frm, frmbak, &pkt->frms, list)
qc_treat_acked_tx_frm(frm, ctx);
node = eb64_prev(node);
eb64_delete(&pkt->pn_node);
}
return node;
}
/* Treat <frm> frame whose packet it is attached to has just been detected as non
* acknowledged.
*/
static inline void qc_treat_nacked_tx_frm(struct quic_frame *frm,
struct quic_pktns *pktns,
struct ssl_sock_ctx *ctx)
{
TRACE_PROTO("to resend frame", QUIC_EV_CONN_PRSAFRM, ctx->conn, frm);
LIST_DELETE(&frm->list);
MT_LIST_INSERT(&pktns->tx.frms, &frm->mt_list);
}
/* Free the TX packets of <pkts> list */
static inline void free_quic_tx_pkts(struct list *pkts)
{
struct quic_tx_packet *pkt, *tmp;
list_for_each_entry_safe(pkt, tmp, pkts, list) {
LIST_DELETE(&pkt->list);
eb64_delete(&pkt->pn_node);
quic_tx_packet_refdec(pkt);
}
}
/* Send a packet loss event nofification to the congestion controller
* attached to <qc> connection with <lost_bytes> the number of lost bytes,
* <oldest_lost>, <newest_lost> the oldest lost packet and newest lost packet
* at <now_us> current time.
* Always succeeds.
*/
static inline void qc_cc_loss_event(struct quic_conn *qc,
unsigned int lost_bytes,
unsigned int newest_time_sent,
unsigned int period,
unsigned int now_us)
{
struct quic_cc_event ev = {
.type = QUIC_CC_EVT_LOSS,
.loss.now_ms = now_ms,
.loss.max_ack_delay = qc->max_ack_delay,
.loss.lost_bytes = lost_bytes,
.loss.newest_time_sent = newest_time_sent,
.loss.period = period,
};
quic_cc_event(&qc->path->cc, &ev);
}
/* Send a packet ack event nofication for each newly acked packet of
* <newly_acked_pkts> list and free them.
* Always succeeds.
*/
static inline void qc_treat_newly_acked_pkts(struct ssl_sock_ctx *ctx,
struct list *newly_acked_pkts)
{
struct quic_conn *qc = ctx->conn->qc;
struct quic_tx_packet *pkt, *tmp;
struct quic_cc_event ev = { .type = QUIC_CC_EVT_ACK, };
list_for_each_entry_safe(pkt, tmp, newly_acked_pkts, list) {
pkt->pktns->tx.in_flight -= pkt->in_flight_len;
qc->path->prep_in_flight -= pkt->in_flight_len;
if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING)
qc->path->ifae_pkts--;
ev.ack.acked = pkt->in_flight_len;
ev.ack.time_sent = pkt->time_sent;
quic_cc_event(&qc->path->cc, &ev);
LIST_DELETE(&pkt->list);
eb64_delete(&pkt->pn_node);
quic_tx_packet_refdec(pkt);
}
}
/* Handle <pkts> list of lost packets detected at <now_us> handling
* their TX frames.
* Send a packet loss event to the congestion controller if
* in flight packet have been lost.
* Also frees the packet in <pkts> list.
* Never fails.
*/
static inline void qc_release_lost_pkts(struct quic_pktns *pktns,
struct ssl_sock_ctx *ctx,
struct list *pkts,
uint64_t now_us)
{
struct quic_conn *qc = ctx->conn->qc;
struct quic_tx_packet *pkt, *tmp, *oldest_lost, *newest_lost;
struct quic_frame *frm, *frmbak;
uint64_t lost_bytes;
lost_bytes = 0;
oldest_lost = newest_lost = NULL;
list_for_each_entry_safe(pkt, tmp, pkts, list) {
lost_bytes += pkt->in_flight_len;
pkt->pktns->tx.in_flight -= pkt->in_flight_len;
qc->path->prep_in_flight -= pkt->in_flight_len;
if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING)
qc->path->ifae_pkts--;
/* Treat the frames of this lost packet. */
list_for_each_entry_safe(frm, frmbak, &pkt->frms, list)
qc_treat_nacked_tx_frm(frm, pktns, ctx);
LIST_DELETE(&pkt->list);
if (!oldest_lost) {
oldest_lost = newest_lost = pkt;
}
else {
if (newest_lost != oldest_lost)
quic_tx_packet_refdec(newest_lost);
newest_lost = pkt;
}
}
if (lost_bytes) {
/* Sent a packet loss event to the congestion controller. */
qc_cc_loss_event(ctx->conn->qc, lost_bytes, newest_lost->time_sent,
newest_lost->time_sent - oldest_lost->time_sent, now_us);
quic_tx_packet_refdec(oldest_lost);
if (newest_lost != oldest_lost)
quic_tx_packet_refdec(newest_lost);
}
}
/* Look for packet loss from sent packets for <qel> encryption level of a
* connection with <ctx> as I/O handler context. If remove is true, remove them from
* their tree if deemed as lost or set the <loss_time> value the packet number
* space if any not deemed lost.
* Should be called after having received an ACK frame with newly acknowledged
* packets or when the the loss detection timer has expired.
* Always succeeds.
*/
static void qc_packet_loss_lookup(struct quic_pktns *pktns,
struct quic_conn *qc,
struct list *lost_pkts)
{
struct eb_root *pkts;
struct eb64_node *node;
struct quic_loss *ql;
unsigned int loss_delay;
TRACE_ENTER(QUIC_EV_CONN_PKTLOSS, qc->conn, pktns);
pkts = &pktns->tx.pkts;
pktns->tx.loss_time = TICK_ETERNITY;
if (eb_is_empty(pkts))
goto out;
ql = &qc->path->loss;
loss_delay = QUIC_MAX(ql->latest_rtt, ql->srtt >> 3);
loss_delay += loss_delay >> 3;
loss_delay = QUIC_MAX(loss_delay, MS_TO_TICKS(QUIC_TIMER_GRANULARITY));
node = eb64_first(pkts);
while (node) {
struct quic_tx_packet *pkt;
int64_t largest_acked_pn;
unsigned int loss_time_limit, time_sent;
pkt = eb64_entry(&node->node, struct quic_tx_packet, pn_node);
largest_acked_pn = HA_ATOMIC_LOAD(&pktns->tx.largest_acked_pn);
node = eb64_next(node);
if ((int64_t)pkt->pn_node.key > largest_acked_pn)
break;
time_sent = pkt->time_sent;
loss_time_limit = tick_add(time_sent, loss_delay);
if (tick_is_le(time_sent, now_ms) ||
(int64_t)largest_acked_pn >= pkt->pn_node.key + QUIC_LOSS_PACKET_THRESHOLD) {
eb64_delete(&pkt->pn_node);
LIST_APPEND(lost_pkts, &pkt->list);
}
else {
pktns->tx.loss_time = tick_first(pktns->tx.loss_time, loss_time_limit);
}
}
out:
TRACE_LEAVE(QUIC_EV_CONN_PKTLOSS, qc->conn, pktns, lost_pkts);
}
/* Parse ACK frame into <frm> from a buffer at <buf> address with <end> being at
* one byte past the end of this buffer. Also update <rtt_sample> if needed, i.e.
* if the largest acked packet was newly acked and if there was at least one newly
* acked ack-eliciting packet.
* Return 1, if succeeded, 0 if not.
*/
static inline int qc_parse_ack_frm(struct quic_frame *frm, struct ssl_sock_ctx *ctx,
struct quic_enc_level *qel,
unsigned int *rtt_sample,
const unsigned char **pos, const unsigned char *end)
{
struct quic_ack *ack = &frm->ack;
uint64_t smallest, largest;
struct eb_root *pkts;
struct eb64_node *largest_node;
unsigned int time_sent, pkt_flags;
struct list newly_acked_pkts = LIST_HEAD_INIT(newly_acked_pkts);
struct list lost_pkts = LIST_HEAD_INIT(lost_pkts);
if (ack->largest_ack > qel->pktns->tx.next_pn) {
TRACE_DEVEL("ACK for not sent packet", QUIC_EV_CONN_PRSAFRM,
ctx->conn,, &ack->largest_ack);
goto err;
}
if (ack->first_ack_range > ack->largest_ack) {
TRACE_DEVEL("too big first ACK range", QUIC_EV_CONN_PRSAFRM,
ctx->conn,, &ack->first_ack_range);
goto err;
}
largest = ack->largest_ack;
smallest = largest - ack->first_ack_range;
pkts = &qel->pktns->tx.pkts;
pkt_flags = 0;
largest_node = NULL;
time_sent = 0;
if ((int64_t)ack->largest_ack > HA_ATOMIC_LOAD(&qel->pktns->tx.largest_acked_pn)) {
largest_node = eb64_lookup(pkts, largest);
if (!largest_node) {
TRACE_DEVEL("Largest acked packet not found",
QUIC_EV_CONN_PRSAFRM, ctx->conn);
goto err;
}
time_sent = eb64_entry(&largest_node->node,
struct quic_tx_packet, pn_node)->time_sent;
}
TRACE_PROTO("ack range", QUIC_EV_CONN_PRSAFRM,
ctx->conn,, &largest, &smallest);
do {
uint64_t gap, ack_range;
qc_ackrng_pkts(pkts, &pkt_flags, &newly_acked_pkts,
largest_node, largest, smallest, ctx);
if (!ack->ack_range_num--)
break;
if (!quic_dec_int(&gap, pos, end))
goto err;
if (smallest < gap + 2) {
TRACE_DEVEL("wrong gap value", QUIC_EV_CONN_PRSAFRM,
ctx->conn,, &gap, &smallest);
goto err;
}
largest = smallest - gap - 2;
if (!quic_dec_int(&ack_range, pos, end))
goto err;
if (largest < ack_range) {
TRACE_DEVEL("wrong ack range value", QUIC_EV_CONN_PRSAFRM,
ctx->conn,, &largest, &ack_range);
goto err;
}
/* Do not use this node anymore. */
largest_node = NULL;
/* Next range */
smallest = largest - ack_range;
TRACE_PROTO("ack range", QUIC_EV_CONN_PRSAFRM,
ctx->conn,, &largest, &smallest);
} while (1);
/* Flag this packet number space as having received an ACK. */
HA_ATOMIC_OR(&qel->pktns->flags, QUIC_FL_PKTNS_ACK_RECEIVED);
if (time_sent && (pkt_flags & QUIC_FL_TX_PACKET_ACK_ELICITING)) {
*rtt_sample = tick_remain(time_sent, now_ms);
HA_ATOMIC_STORE(&qel->pktns->tx.largest_acked_pn, ack->largest_ack);
}
if (!LIST_ISEMPTY(&newly_acked_pkts)) {
if (!eb_is_empty(&qel->pktns->tx.pkts)) {
qc_packet_loss_lookup(qel->pktns, ctx->conn->qc, &lost_pkts);
if (!LIST_ISEMPTY(&lost_pkts))
qc_release_lost_pkts(qel->pktns, ctx, &lost_pkts, now_ms);
}
qc_treat_newly_acked_pkts(ctx, &newly_acked_pkts);
if (quic_peer_validated_addr(ctx))
ctx->conn->qc->path->loss.pto_count = 0;
qc_set_timer(ctx);
}
return 1;
err:
free_quic_tx_pkts(&newly_acked_pkts);
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PRSAFRM, ctx->conn);
return 0;
}
/* Provide CRYPTO data to the TLS stack found at <data> with <len> as length
* from <qel> encryption level with <ctx> as QUIC connection context.
* Remaining parameter are there for debugging purposes.
* Return 1 if succeeded, 0 if not.
*/
static inline int qc_provide_cdata(struct quic_enc_level *el,
struct ssl_sock_ctx *ctx,
const unsigned char *data, size_t len,
struct quic_rx_packet *pkt,
struct quic_rx_crypto_frm *cf)
{
int ssl_err, state;
struct quic_conn *qc;
TRACE_ENTER(QUIC_EV_CONN_SSLDATA, ctx->conn);
ssl_err = SSL_ERROR_NONE;
qc = ctx->conn->qc;
if (SSL_provide_quic_data(ctx->ssl, el->level, data, len) != 1) {
TRACE_PROTO("SSL_provide_quic_data() error",
QUIC_EV_CONN_SSLDATA, ctx->conn, pkt, cf, ctx->ssl);
goto err;
}
el->rx.crypto.offset += len;
TRACE_PROTO("in order CRYPTO data",
QUIC_EV_CONN_SSLDATA, ctx->conn,, cf, ctx->ssl);
state = HA_ATOMIC_LOAD(&qc->state);
if (state < QUIC_HS_ST_COMPLETE) {
ssl_err = SSL_do_handshake(ctx->ssl);
if (ssl_err != 1) {
ssl_err = SSL_get_error(ctx->ssl, ssl_err);
if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) {
TRACE_PROTO("SSL handshake",
QUIC_EV_CONN_HDSHK, ctx->conn, &state, &ssl_err);
goto out;
}
TRACE_DEVEL("SSL handshake error",
QUIC_EV_CONN_HDSHK, ctx->conn, &state, &ssl_err);
goto err;
}
TRACE_PROTO("SSL handshake OK", QUIC_EV_CONN_HDSHK, ctx->conn, &state);
if (objt_listener(ctx->conn->target))
HA_ATOMIC_STORE(&qc->state, QUIC_HS_ST_CONFIRMED);
else
HA_ATOMIC_STORE(&qc->state, QUIC_HS_ST_COMPLETE);
} else {
ssl_err = SSL_process_quic_post_handshake(ctx->ssl);
if (ssl_err != 1) {
ssl_err = SSL_get_error(ctx->ssl, ssl_err);
if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) {
TRACE_DEVEL("SSL post handshake",
QUIC_EV_CONN_HDSHK, ctx->conn, &state, &ssl_err);
goto out;
}
TRACE_DEVEL("SSL post handshake error",
QUIC_EV_CONN_HDSHK, ctx->conn, &state, &ssl_err);
goto err;
}
TRACE_PROTO("SSL post handshake succeeded",
QUIC_EV_CONN_HDSHK, ctx->conn, &state);
}
out:
TRACE_LEAVE(QUIC_EV_CONN_SSLDATA, ctx->conn);
return 1;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_SSLDATA, ctx->conn);
return 0;
}
/* Allocate a new STREAM RX frame from <stream_fm> STREAM frame attached to
* <pkt> RX packet.
* Return it if succeeded, NULL if not.
*/
static inline
struct quic_rx_strm_frm *new_quic_rx_strm_frm(struct quic_stream *stream_frm,
struct quic_rx_packet *pkt)
{
struct quic_rx_strm_frm *frm;
frm = pool_alloc(pool_head_quic_rx_strm_frm);
if (frm) {
frm->offset_node.key = stream_frm->offset;
frm->len = stream_frm->len;
frm->data = stream_frm->data;
frm->pkt = pkt;
}
return frm;
}
/* Retrieve as an ebtree node the stream with <id> as ID, possibly allocates
* several streams, depending on the already open onces.
* Return this node if succeeded, NULL if not.
*/
static struct eb64_node *qcc_get_qcs(struct qcc *qcc, uint64_t id)
{
unsigned int strm_type;
int64_t sub_id;
struct eb64_node *strm_node;
TRACE_ENTER(QUIC_EV_CONN_PSTRM, qcc->conn);
strm_type = id & QCS_ID_TYPE_MASK;
sub_id = id >> QCS_ID_TYPE_SHIFT;
strm_node = NULL;
if (qc_local_stream_id(qcc, id)) {
/* Local streams: this stream must be already opened. */
strm_node = eb64_lookup(&qcc->streams_by_id, id);
if (!strm_node) {
TRACE_PROTO("Unknown stream ID", QUIC_EV_CONN_PSTRM, qcc->conn);
goto out;
}
}
else {
/* Remote streams. */
struct eb_root *strms;
uint64_t largest_id;
enum qcs_type qcs_type;
strms = &qcc->streams_by_id;
qcs_type = qcs_id_type(id);
if (sub_id + 1 > qcc->strms[qcs_type].max_streams) {
TRACE_PROTO("Streams limit reached", QUIC_EV_CONN_PSTRM, qcc->conn);
goto out;
}
/* Note: ->largest_id was initialized with (uint64_t)-1 as value, 0 being a
* correct value.
*/
largest_id = qcc->strms[qcs_type].largest_id;
if (sub_id > (int64_t)largest_id) {
/* RFC: "A stream ID that is used out of order results in all streams
* of that type with lower-numbered stream IDs also being opened".
* So, let's "open" these streams.
*/
int64_t i;
struct qcs *qcs;
qcs = NULL;
for (i = largest_id + 1; i <= sub_id; i++) {
qcs = qcs_new(qcc, (i << QCS_ID_TYPE_SHIFT) | strm_type);
if (!qcs) {
TRACE_PROTO("Could not allocate a new stream",
QUIC_EV_CONN_PSTRM, qcc->conn);
goto out;
}
qcc->strms[qcs_type].largest_id = i;
}
if (qcs)
strm_node = &qcs->by_id;
}
else {
strm_node = eb64_lookup(strms, id);
}
}
TRACE_LEAVE(QUIC_EV_CONN_PSTRM, qcc->conn);
return strm_node;
out:
TRACE_LEAVE(QUIC_EV_CONN_PSTRM, qcc->conn);
return NULL;
}
/* Copy as most as possible STREAM data from <strm_frm> into <strm> stream.
* Returns the number of bytes copied or -1 if failed. Also update <strm_frm> frame
* to reflect the data which have been consumed.
*/
static size_t qc_strm_cpy(struct buffer *buf, struct quic_stream *strm_frm)
{
size_t ret;
ret = 0;
while (strm_frm->len) {
size_t try;
try = b_contig_space(buf);
if (!try)
break;
if (try > strm_frm->len)
try = strm_frm->len;
memcpy(b_tail(buf), strm_frm->data, try);
strm_frm->len -= try;
strm_frm->offset += try;
b_add(buf, try);
ret += try;
}
return ret;
}
/* Handle <strm_frm> bidirectional STREAM frame. Depending on its ID, several
* streams may be open. The data are copied to the stream RX buffer if possible.
* If not, the STREAM frame is stored to be treated again later.
* We rely on the flow control so that not to store too much STREAM frames.
* Return 1 if succeeded, 0 if not.
*/
static int qc_handle_bidi_strm_frm(struct quic_rx_packet *pkt,
struct quic_stream *strm_frm,
struct quic_conn *qc)
{
struct qcs *strm;
struct eb64_node *strm_node, *frm_node;
struct quic_rx_strm_frm *frm;
strm_node = qcc_get_qcs(qc->qcc, strm_frm->id);
if (!strm_node) {
TRACE_PROTO("Stream not found", QUIC_EV_CONN_PSTRM, qc->conn);
return 0;
}
strm = eb64_entry(&strm_node->node, struct qcs, by_id);
frm_node = eb64_lookup(&strm->frms, strm_frm->offset);
/* FIXME: handle the case where this frame overlap others */
if (frm_node) {
TRACE_PROTO("Already existing stream data",
QUIC_EV_CONN_PSTRM, qc->conn);
goto out;
}
if (strm_frm->offset == strm->rx.offset) {
int ret;
if (!qc_get_buf(qc->qcc, &strm->rx.buf))
goto store_frm;
ret = qc_strm_cpy(&strm->rx.buf, strm_frm);
if (ret && qc->qcc->app_ops->decode_qcs(strm, qc->qcc->ctx) == -1) {
TRACE_PROTO("Decoding error", QUIC_EV_CONN_PSTRM);
return 0;
}
strm->rx.offset += ret;
}
if (!strm_frm->len)
goto out;
store_frm:
frm = new_quic_rx_strm_frm(strm_frm, pkt);
if (!frm) {
TRACE_PROTO("Could not alloc RX STREAM frame",
QUIC_EV_CONN_PSTRM, qc->conn);
return 0;
}
eb64_insert(&strm->frms, &frm->offset_node);
quic_rx_packet_refinc(pkt);
out:
return 1;
}
/* Handle <strm_frm> unidirectional STREAM frame. Depending on its ID, several
* streams may be open. The data are copied to the stream RX buffer if possible.
* If not, the STREAM frame is stored to be treated again later.
* We rely on the flow control so that not to store too much STREAM frames.
* Return 1 if succeeded, 0 if not.
*/
static int qc_handle_uni_strm_frm(struct quic_rx_packet *pkt,
struct quic_stream *strm_frm,
struct quic_conn *qc)
{
struct qcs *strm;
struct eb64_node *strm_node, *frm_node;
struct quic_rx_strm_frm *frm;
size_t strm_frm_len;
strm_node = qcc_get_qcs(qc->qcc, strm_frm->id);
if (!strm_node) {
TRACE_PROTO("Stream not found", QUIC_EV_CONN_PSTRM, qc->conn);
return 0;
}
strm = eb64_entry(&strm_node->node, struct qcs, by_id);
frm_node = eb64_lookup(&strm->frms, strm_frm->offset);
/* FIXME: handle the case where this frame overlap others */
if (frm_node) {
TRACE_PROTO("Already existing stream data",
QUIC_EV_CONN_PSTRM, qc->conn);
goto out;
}
strm_frm_len = strm_frm->len;
if (strm_frm->offset == strm->rx.offset) {
int ret;
if (!qc_get_buf(qc->qcc, &strm->rx.buf))
goto store_frm;
/* qc_strm_cpy() will modify the offset, depending on the number
* of bytes copied.
*/
ret = qc_strm_cpy(&strm->rx.buf, strm_frm);
/* Inform the application of the arrival of this new stream */
if (!strm->rx.offset && !qc->qcc->app_ops->attach_ruqs(strm, qc->qcc->ctx)) {
TRACE_PROTO("Could not set an uni-stream", QUIC_EV_CONN_PSTRM, qc->conn);
return 0;
}
if (ret)
ruqs_notify_recv(strm);
strm_frm->offset += ret;
}
/* Take this frame into an account for the stream flow control */
strm->rx.offset += strm_frm_len;
/* It all the data were provided to the application, there is no need to
* store any more inforamtion for it.
*/
if (!strm_frm->len)
goto out;
store_frm:
frm = new_quic_rx_strm_frm(strm_frm, pkt);
if (!frm) {
TRACE_PROTO("Could not alloc RX STREAM frame",
QUIC_EV_CONN_PSTRM, qc->conn);
return 0;
}
eb64_insert(&strm->frms, &frm->offset_node);
quic_rx_packet_refinc(pkt);
out:
return 1;
}
static inline int qc_handle_strm_frm(struct quic_rx_packet *pkt,
struct quic_stream *strm_frm,
struct quic_conn *qc)
{
if (strm_frm->id & QCS_ID_DIR_BIT)
return qc_handle_uni_strm_frm(pkt, strm_frm, qc);
else
return qc_handle_bidi_strm_frm(pkt, strm_frm, qc);
}
/* Parse all the frames of <pkt> QUIC packet for QUIC connection with <ctx>
* as I/O handler context and <qel> as encryption level.
* Returns 1 if succeeded, 0 if failed.
*/
static int qc_parse_pkt_frms(struct quic_rx_packet *pkt, struct ssl_sock_ctx *ctx,
struct quic_enc_level *qel)
{
struct quic_frame frm;
const unsigned char *pos, *end;
struct quic_conn *conn = ctx->conn->qc;
TRACE_ENTER(QUIC_EV_CONN_PRSHPKT, ctx->conn);
/* Skip the AAD */
pos = pkt->data + pkt->aad_len;
end = pkt->data + pkt->len;
while (pos < end) {
if (!qc_parse_frm(&frm, pkt, &pos, end, conn))
goto err;
switch (frm.type) {
case QUIC_FT_PADDING:
if (pos != end) {
TRACE_DEVEL("wrong frame", QUIC_EV_CONN_PRSHPKT, ctx->conn, pkt);
goto err;
}
break;
case QUIC_FT_PING:
break;
case QUIC_FT_ACK:
{
unsigned int rtt_sample;
rtt_sample = 0;
if (!qc_parse_ack_frm(&frm, ctx, qel, &rtt_sample, &pos, end))
goto err;
if (rtt_sample) {
unsigned int ack_delay;
ack_delay = !quic_application_pktns(qel->pktns, conn) ? 0 :
MS_TO_TICKS(QUIC_MIN(quic_ack_delay_ms(&frm.ack, conn), conn->max_ack_delay));
quic_loss_srtt_update(&conn->path->loss, rtt_sample, ack_delay, conn);
}
break;
}
case QUIC_FT_CRYPTO:
if (frm.crypto.offset != qel->rx.crypto.offset) {
struct quic_rx_crypto_frm *cf;
cf = pool_alloc(pool_head_quic_rx_crypto_frm);
if (!cf) {
TRACE_DEVEL("CRYPTO frame allocation failed",
QUIC_EV_CONN_PRSHPKT, ctx->conn);
goto err;
}
cf->offset_node.key = frm.crypto.offset;
cf->len = frm.crypto.len;
cf->data = frm.crypto.data;
cf->pkt = pkt;
eb64_insert(&qel->rx.crypto.frms, &cf->offset_node);
quic_rx_packet_refinc(pkt);
}
else {
/* XXX TO DO: <cf> is used only for the traces. */
struct quic_rx_crypto_frm cf = { };
cf.offset_node.key = frm.crypto.offset;
cf.len = frm.crypto.len;
if (!qc_provide_cdata(qel, ctx,
frm.crypto.data, frm.crypto.len,
pkt, &cf))
goto err;
}
break;
case QUIC_FT_STREAM_8:
case QUIC_FT_STREAM_9:
case QUIC_FT_STREAM_A:
case QUIC_FT_STREAM_B:
case QUIC_FT_STREAM_C:
case QUIC_FT_STREAM_D:
case QUIC_FT_STREAM_E:
case QUIC_FT_STREAM_F:
{
struct quic_stream *stream = &frm.stream;
TRACE_PROTO("STREAM frame", QUIC_EV_CONN_PSTRM, ctx->conn, &frm);
if (objt_listener(ctx->conn->target)) {
if (stream->id & QUIC_STREAM_FRAME_ID_INITIATOR_BIT)
goto err;
} else if (!(stream->id & QUIC_STREAM_FRAME_ID_INITIATOR_BIT))
goto err;
if (!qc_handle_strm_frm(pkt, stream, ctx->conn->qc))
goto err;
break;
}
case QUIC_FT_NEW_CONNECTION_ID:
break;
case QUIC_FT_CONNECTION_CLOSE:
case QUIC_FT_CONNECTION_CLOSE_APP:
break;
case QUIC_FT_HANDSHAKE_DONE:
if (objt_listener(ctx->conn->target))
goto err;
HA_ATOMIC_STORE(&conn->state, QUIC_HS_ST_CONFIRMED);
break;
default:
goto err;
}
}
/* The server must switch from INITIAL to HANDSHAKE handshake state when it
* has successfully parse a Handshake packet. The Initial encryption must also
* be discarded.
*/
if (HA_ATOMIC_LOAD(&conn->state) == QUIC_HS_ST_SERVER_INITIAL &&
pkt->type == QUIC_PACKET_TYPE_HANDSHAKE) {
quic_tls_discard_keys(&conn->els[QUIC_TLS_ENC_LEVEL_INITIAL]);
quic_pktns_discard(conn->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns, conn);
qc_set_timer(ctx);
HA_ATOMIC_STORE(&conn->state, QUIC_HS_ST_SERVER_HANDSHAKE);
}
TRACE_LEAVE(QUIC_EV_CONN_PRSHPKT, ctx->conn);
return 1;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PRSHPKT, ctx->conn);
return 0;
}
/* Write <dglen> datagram length and <pkt> first packet address into <cbuf> ring
* buffer. This is the responsability of the caller to check there is enough
* room in <cbuf>. Also increase the <cbuf> write index consequently.
* This function must be called only after having built a correct datagram.
* Always succeeds.
*/
static inline void qc_set_dg(struct cbuf *cbuf,
uint16_t dglen, struct quic_tx_packet *pkt)
{
write_u16(cb_wr(cbuf), dglen);
write_ptr(cb_wr(cbuf) + sizeof dglen, pkt);
cb_add(cbuf, dglen + sizeof dglen + sizeof pkt);
}
/* Prepare as much as possible handshake packets into <qr> ring buffer for
* the QUIC connection with <ctx> as I/O handler context, possibly concatenating
* several packets in the same datagram. A header made of two fields is added
* to each datagram: the datagram length followed by the address of the first
* packet in this datagram.
* Returns 1 if succeeded, or 0 if something wrong happened.
*/
static int qc_prep_hdshk_pkts(struct qring *qr, struct ssl_sock_ctx *ctx)
{
struct quic_conn *qc;
enum quic_tls_enc_level tel, next_tel;
struct quic_enc_level *qel;
struct cbuf *cbuf;
unsigned char *end_buf, *end, *pos, *spos;
struct quic_tx_packet *first_pkt, *cur_pkt, *prv_pkt;
/* length of datagrams */
uint16_t dglen;
size_t total;
/* Each datagram is prepended with its length followed by the
* address of the first packet in the datagram.
*/
size_t dg_headlen = sizeof dglen + sizeof first_pkt;
TRACE_ENTER(QUIC_EV_CONN_PHPKTS, ctx->conn);
qc = ctx->conn->qc;
if (!quic_get_tls_enc_levels(&tel, &next_tel, HA_ATOMIC_LOAD(&qc->state))) {
TRACE_DEVEL("unknown enc. levels", QUIC_EV_CONN_PHPKTS, ctx->conn);
goto err;
}
start:
total = 0;
dglen = 0;
qel = &qc->els[tel];
cbuf = qr->cbuf;
spos = pos = cb_wr(cbuf);
/* Leave at least <dglen> bytes at the end of this buffer
* to ensure there is enough room to mark the end of prepared
* contiguous data with a zero length.
*/
end_buf = pos + cb_contig_space(cbuf) - sizeof dglen;
first_pkt = prv_pkt = NULL;
while (end_buf - pos >= (int)qc->path->mtu + dg_headlen || prv_pkt) {
int err, nb_ptos, ack;
enum quic_pkt_type pkt_type;
TRACE_POINT(QUIC_EV_CONN_PHPKTS, ctx->conn, qel);
nb_ptos = 0;
if (!prv_pkt) {
/* Consume a PTO dgram only if building a new dgrams (!prv_pkt) */
do {
nb_ptos = HA_ATOMIC_LOAD(&qc->tx.nb_pto_dgrams);
} while (nb_ptos && !HA_ATOMIC_CAS(&qc->tx.nb_pto_dgrams, &nb_ptos, nb_ptos - 1));
}
ack = HA_ATOMIC_BTR(&qel->pktns->flags, QUIC_FL_PKTNS_ACK_REQUIRED_BIT);
/* Do not build any more packet if the TX secrets are not available or
* if there is nothing to send, i.e. if no ACK are required
* and if there is no more packets to send upon PTO expiration
* and if there is no more CRYPTO data available or in flight
* congestion control limit is reached for prepared data
*/
if (!(qel->tls_ctx.tx.flags & QUIC_FL_TLS_SECRETS_SET) ||
(!ack && !nb_ptos &&
(MT_LIST_ISEMPTY(&qel->pktns->tx.frms) ||
qc->path->prep_in_flight >= qc->path->cwnd))) {
TRACE_DEVEL("nothing more to do", QUIC_EV_CONN_PHPKTS, ctx->conn);
/* Set the current datagram as prepared into <cbuf> if
* the was already a correct packet which was previously written.
*/
if (prv_pkt)
qc_set_dg(cbuf, dglen, first_pkt);
break;
}
pkt_type = quic_tls_level_pkt_type(tel);
if (!prv_pkt) {
/* Leave room for the datagram header */
pos += dg_headlen;
end = pos + qc->path->mtu;
}
cur_pkt = qc_build_pkt(&pos, end, qel, qc, pkt_type, ack, nb_ptos, &err);
/* Restore the PTO dgrams counter if a packet could not be built */
if (err < 0) {
if (!prv_pkt && nb_ptos)
HA_ATOMIC_ADD(&qc->tx.nb_pto_dgrams, 1);
HA_ATOMIC_BTS(&qel->pktns->flags, QUIC_FL_PKTNS_ACK_REQUIRED_BIT);
}
switch (err) {
case -2:
goto err;
case -1:
/* If there was already a correct packet present, set the
* current datagram as prepared into <cbuf>.
*/
if (prv_pkt) {
qc_set_dg(cbuf, dglen, first_pkt);
goto stop_build;
}
goto out;
default:
/* This is to please to GCC. We cannot have (err >= 0 && !cur_pkt) */
if (!cur_pkt)
goto err;
total += cur_pkt->len;
/* keep trace of the first packet in the datagram */
if (!first_pkt)
first_pkt = cur_pkt;
/* Attach the current one to the previous one */
if (prv_pkt)
prv_pkt->next = cur_pkt;
/* Let's say we have to build a new dgram */
prv_pkt = NULL;
dglen += cur_pkt->len;
/* Discard the Initial encryption keys as soon as
* a handshake packet could be built.
*/
if (HA_ATOMIC_LOAD(&qc->state) == QUIC_HS_ST_CLIENT_INITIAL &&
pkt_type == QUIC_PACKET_TYPE_HANDSHAKE) {
quic_tls_discard_keys(&qc->els[QUIC_TLS_ENC_LEVEL_INITIAL]);
quic_pktns_discard(qc->els[QUIC_TLS_ENC_LEVEL_INITIAL].pktns, qc);
qc_set_timer(ctx);
HA_ATOMIC_STORE(&qc->state, QUIC_HS_ST_CLIENT_HANDSHAKE);
}
/* Special case for Initial packets: when they have all
* been sent, select the next level.
*/
if ((tel == QUIC_TLS_ENC_LEVEL_INITIAL || tel == QUIC_TLS_ENC_LEVEL_HANDSHAKE) &&
(MT_LIST_ISEMPTY(&qel->pktns->tx.frms) || qc->els[next_tel].pktns->tx.in_flight)) {
tel = next_tel;
qel = &qc->els[tel];
if (!MT_LIST_ISEMPTY(&qel->pktns->tx.frms)) {
/* If there is data for the next level, do not
* consume a datagram. This is the case for a client
* which sends only one Initial packet, then wait
* for additional CRYPTO data from the server to enter the
* next level.
*/
prv_pkt = cur_pkt;
}
}
}
/* If we have to build a new datagram, set the current datagram as
* prepared into <cbuf>.
*/
if (!prv_pkt) {
qc_set_dg(cbuf, dglen, first_pkt);
first_pkt = NULL;
dglen = 0;
}
}
stop_build:
/* Reset <wr> writer index if in front of <rd> index */
if (end_buf - pos < (int)qc->path->mtu + dg_headlen) {
int rd = HA_ATOMIC_LOAD(&cbuf->rd);
TRACE_DEVEL("buffer full", QUIC_EV_CONN_PHPKTS, ctx->conn);
if (cb_contig_space(cbuf) >= sizeof(uint16_t)) {
if ((pos != spos && cbuf->wr > rd) || (pos == spos && rd <= cbuf->wr)) {
/* Mark the end of contiguous data for the reader */
write_u16(cb_wr(cbuf), 0);
cb_add(cbuf, sizeof(uint16_t));
}
}
if (rd && rd <= cbuf->wr) {
cb_wr_reset(cbuf);
if (pos == spos) {
/* Reuse the same buffer if nothing was built. */
goto start;
}
}
}
out:
TRACE_LEAVE(QUIC_EV_CONN_PHPKTS, ctx->conn);
return total;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_PHPKTS, ctx->conn);
return -1;
}
/* Send the QUIC packets which have been prepared for QUIC connections
* from <qr> ring buffer with <ctx> as I/O handler context.
*/
int qc_send_ppkts(struct qring *qr, struct ssl_sock_ctx *ctx)
{
struct quic_conn *qc;
struct cbuf *cbuf;
qc = ctx->conn->qc;
cbuf = qr->cbuf;
while (cb_contig_data(cbuf)) {
unsigned char *pos;
struct buffer tmpbuf = { };
struct quic_tx_packet *first_pkt, *pkt, *next_pkt;
uint16_t dglen;
size_t headlen = sizeof dglen + sizeof first_pkt;
unsigned int time_sent;
pos = cb_rd(cbuf);
dglen = read_u16(pos);
/* End of prepared datagrams.
* Reset the reader index only if in front of the writer index.
*/
if (!dglen) {
int wr = HA_ATOMIC_LOAD(&cbuf->wr);
if (wr && wr < cbuf->rd) {
cb_rd_reset(cbuf);
continue;
}
break;
}
pos += sizeof dglen;
first_pkt = read_ptr(pos);
pos += sizeof first_pkt;
tmpbuf.area = (char *)pos;
tmpbuf.size = tmpbuf.data = dglen;
TRACE_PROTO("to send", QUIC_EV_CONN_SPPKTS, ctx->conn);
for (pkt = first_pkt; pkt; pkt = pkt->next)
quic_tx_packet_refinc(pkt);
if (ctx->xprt->snd_buf(qc->conn, qc->conn->xprt_ctx,
&tmpbuf, tmpbuf.data, 0) <= 0) {
for (pkt = first_pkt; pkt; pkt = pkt->next)
quic_tx_packet_refdec(pkt);
break;
}
cb_del(cbuf, dglen + headlen);
qc->tx.bytes += tmpbuf.data;
time_sent = now_ms;
for (pkt = first_pkt; pkt; pkt = next_pkt) {
pkt->time_sent = time_sent;
if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING) {
pkt->pktns->tx.time_of_last_eliciting = time_sent;
qc->path->ifae_pkts++;
}
qc->path->in_flight += pkt->in_flight_len;
pkt->pktns->tx.in_flight += pkt->in_flight_len;
if (pkt->in_flight_len)
qc_set_timer(ctx);
TRACE_PROTO("sent pkt", QUIC_EV_CONN_SPPKTS, ctx->conn, pkt);
next_pkt = pkt->next;
eb64_insert(&pkt->pktns->tx.pkts, &pkt->pn_node);
quic_tx_packet_refdec(pkt);
}
}
return 1;
}
/* Build all the frames which must be sent just after the handshake have succeeded.
* This is essentially NEW_CONNECTION_ID frames. A QUIC server must also send
* a HANDSHAKE_DONE frame.
* Return 1 if succeeded, 0 if not.
*/
static int quic_build_post_handshake_frames(struct quic_conn *qc)
{
int i;
struct quic_enc_level *qel;
struct quic_frame *frm;
qel = &qc->els[QUIC_TLS_ENC_LEVEL_APP];
/* Only servers must send a HANDSHAKE_DONE frame. */
if (!objt_server(qc->conn->target)) {
frm = pool_alloc(pool_head_quic_frame);
if (!frm)
return 0;
frm->type = QUIC_FT_HANDSHAKE_DONE;
MT_LIST_APPEND(&qel->pktns->tx.frms, &frm->mt_list);
}
for (i = 1; i < qc->tx.params.active_connection_id_limit; i++) {
struct quic_connection_id *cid;
frm = pool_alloc(pool_head_quic_frame);
cid = new_quic_cid(&qc->cids, i);
if (!frm || !cid)
goto err;
quic_connection_id_to_frm_cpy(frm, cid);
MT_LIST_APPEND(&qel->pktns->tx.frms, &frm->mt_list);
}
return 1;
err:
free_quic_conn_cids(qc);
return 0;
}
/* Deallocate <l> list of ACK ranges. */
void free_quic_arngs(struct quic_arngs *arngs)
{
struct eb64_node *n;
struct quic_arng_node *ar;
n = eb64_first(&arngs->root);
while (n) {
struct eb64_node *next;
ar = eb64_entry(&n->node, struct quic_arng_node, first);
next = eb64_next(n);
eb64_delete(n);
free(ar);
n = next;
}
}
/* Return the gap value between <p> and <q> ACK ranges where <q> follows <p> in
* descending order.
*/
static inline size_t sack_gap(struct quic_arng_node *p,
struct quic_arng_node *q)
{
return p->first.key - q->last - 2;
}
/* Remove the last elements of <ack_ranges> list of ack range updating its
* encoded size until it goes below <limit>.
* Returns 1 if succeeded, 0 if not (no more element to remove).
*/
static int quic_rm_last_ack_ranges(struct quic_arngs *arngs, size_t limit)
{
struct eb64_node *last, *prev;
last = eb64_last(&arngs->root);
while (last && arngs->enc_sz > limit) {
struct quic_arng_node *last_node, *prev_node;
prev = eb64_prev(last);
if (!prev)
return 0;
last_node = eb64_entry(&last->node, struct quic_arng_node, first);
prev_node = eb64_entry(&prev->node, struct quic_arng_node, first);
arngs->enc_sz -= quic_int_getsize(last_node->last - last_node->first.key);
arngs->enc_sz -= quic_int_getsize(sack_gap(prev_node, last_node));
arngs->enc_sz -= quic_decint_size_diff(arngs->sz);
--arngs->sz;
eb64_delete(last);
pool_free(pool_head_quic_arng, last);
last = prev;
}
return 1;
}
/* Set the encoded size of <arngs> QUIC ack ranges. */
static void quic_arngs_set_enc_sz(struct quic_arngs *arngs)
{
struct eb64_node *node, *next;
struct quic_arng_node *ar, *ar_next;
node = eb64_last(&arngs->root);
if (!node)
return;
ar = eb64_entry(&node->node, struct quic_arng_node, first);
arngs->enc_sz = quic_int_getsize(ar->last) +
quic_int_getsize(ar->last - ar->first.key) + quic_int_getsize(arngs->sz - 1);
while ((next = eb64_prev(node))) {
ar_next = eb64_entry(&next->node, struct quic_arng_node, first);
arngs->enc_sz += quic_int_getsize(sack_gap(ar, ar_next)) +
quic_int_getsize(ar_next->last - ar_next->first.key);
node = next;
ar = eb64_entry(&node->node, struct quic_arng_node, first);
}
}
/* Insert <ar> ack range into <argns> tree of ack ranges.
* Returns the ack range node which has been inserted if succeeded, NULL if not.
*/
static inline
struct quic_arng_node *quic_insert_new_range(struct quic_arngs *arngs,
struct quic_arng *ar)
{
struct quic_arng_node *new_ar;
new_ar = pool_alloc(pool_head_quic_arng);
if (new_ar) {
new_ar->first.key = ar->first;
new_ar->last = ar->last;
eb64_insert(&arngs->root, &new_ar->first);
arngs->sz++;
}
return new_ar;
}
/* Update <arngs> tree of ACK ranges with <ar> as new ACK range value.
* Note that this function computes the number of bytes required to encode
* this tree of ACK ranges in descending order.
*
* Descending order
* ------------->
* range1 range2
* ..........|--------|..............|--------|
* ^ ^ ^ ^
* | | | |
* last1 first1 last2 first2
* ..........+--------+--------------+--------+......
* diff1 gap12 diff2
*
* To encode the previous list of ranges we must encode integers as follows in
* descending order:
* enc(last2),enc(diff2),enc(gap12),enc(diff1)
* with diff1 = last1 - first1
* diff2 = last2 - first2
* gap12 = first1 - last2 - 2 (>= 0)
*
*/
int quic_update_ack_ranges_list(struct quic_arngs *arngs,
struct quic_arng *ar)
{
struct eb64_node *le;
struct quic_arng_node *new_node;
struct eb64_node *new;
new = NULL;
if (eb_is_empty(&arngs->root)) {
new_node = quic_insert_new_range(arngs, ar);
if (!new_node)
return 0;
goto out;
}
le = eb64_lookup_le(&arngs->root, ar->first);
if (!le) {
new_node = quic_insert_new_range(arngs, ar);
if (!new_node)
return 0;
}
else {
struct quic_arng_node *le_ar =
eb64_entry(&le->node, struct quic_arng_node, first);
/* Already existing range */
if (le_ar->last >= ar->last)
return 1;
if (le_ar->last + 1 >= ar->first) {
le_ar->last = ar->last;
new = le;
new_node = le_ar;
}
else {
new_node = quic_insert_new_range(arngs, ar);
if (!new_node)
return 0;
new = &new_node->first;
}
}
/* Verify that the new inserted node does not overlap the nodes
* which follow it.
*/
if (new) {
struct eb64_node *next;
struct quic_arng_node *next_node;
while ((next = eb64_next(new))) {
next_node =
eb64_entry(&next->node, struct quic_arng_node, first);
if (new_node->last + 1 < next_node->first.key)
break;
if (next_node->last > new_node->last)
new_node->last = next_node->last;
eb64_delete(next);
pool_free(pool_head_quic_arng, next_node);
/* Decrement the size of these ranges. */
arngs->sz--;
}
}
out:
quic_arngs_set_enc_sz(arngs);
return 1;
}
/* Remove the header protection of packets at <el> encryption level.
* Always succeeds.
*/
static inline void qc_rm_hp_pkts(struct quic_enc_level *el, struct ssl_sock_ctx *ctx)
{
struct quic_tls_ctx *tls_ctx;
struct quic_rx_packet *pqpkt;
struct mt_list *pkttmp1, pkttmp2;
struct quic_enc_level *app_qel;
TRACE_ENTER(QUIC_EV_CONN_ELRMHP, ctx->conn);
app_qel = &ctx->conn->qc->els[QUIC_TLS_ENC_LEVEL_APP];
/* A server must not process incoming 1-RTT packets before the handshake is complete. */
if (el == app_qel && objt_listener(ctx->conn->target) &&
HA_ATOMIC_LOAD(&ctx->conn->qc->state) < QUIC_HS_ST_COMPLETE) {
TRACE_PROTO("hp not removed (handshake not completed)",
QUIC_EV_CONN_ELRMHP, ctx->conn);
goto out;
}
tls_ctx = &el->tls_ctx;
mt_list_for_each_entry_safe(pqpkt, &el->rx.pqpkts, list, pkttmp1, pkttmp2) {
if (!qc_do_rm_hp(pqpkt, tls_ctx, el->pktns->rx.largest_pn,
pqpkt->data + pqpkt->pn_offset,
pqpkt->data, pqpkt->data + pqpkt->len, ctx)) {
TRACE_PROTO("hp removing error", QUIC_EV_CONN_ELRMHP, ctx->conn);
/* XXX TO DO XXX */
}
else {
/* The AAD includes the packet number field */
pqpkt->aad_len = pqpkt->pn_offset + pqpkt->pnl;
/* Store the packet into the tree of packets to decrypt. */
pqpkt->pn_node.key = pqpkt->pn;
HA_RWLOCK_WRLOCK(QUIC_LOCK, &el->rx.pkts_rwlock);
quic_rx_packet_eb64_insert(&el->rx.pkts, &pqpkt->pn_node);
HA_RWLOCK_WRUNLOCK(QUIC_LOCK, &el->rx.pkts_rwlock);
TRACE_PROTO("hp removed", QUIC_EV_CONN_ELRMHP, ctx->conn, pqpkt);
}
MT_LIST_DELETE_SAFE(pkttmp1);
quic_rx_packet_refdec(pqpkt);
}
out:
TRACE_LEAVE(QUIC_EV_CONN_ELRMHP, ctx->conn);
}
/* Process all the CRYPTO frame at <el> encryption level.
* Return 1 if succeeded, 0 if not.
*/
static inline int qc_treat_rx_crypto_frms(struct quic_enc_level *el,
struct ssl_sock_ctx *ctx)
{
struct eb64_node *node;
TRACE_ENTER(QUIC_EV_CONN_RXCDATA, ctx->conn);
HA_RWLOCK_WRLOCK(QUIC_LOCK, &el->rx.crypto.frms_rwlock);
node = eb64_first(&el->rx.crypto.frms);
while (node) {
struct quic_rx_crypto_frm *cf;
cf = eb64_entry(&node->node, struct quic_rx_crypto_frm, offset_node);
if (cf->offset_node.key != el->rx.crypto.offset)
break;
if (!qc_provide_cdata(el, ctx, cf->data, cf->len, cf->pkt, cf))
goto err;
node = eb64_next(node);
quic_rx_packet_refdec(cf->pkt);
eb64_delete(&cf->offset_node);
pool_free(pool_head_quic_rx_crypto_frm, cf);
}
HA_RWLOCK_WRUNLOCK(QUIC_LOCK, &el->rx.crypto.frms_rwlock);
TRACE_LEAVE(QUIC_EV_CONN_RXCDATA, ctx->conn);
return 1;
err:
HA_RWLOCK_WRUNLOCK(QUIC_LOCK, &el->rx.crypto.frms_rwlock);
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_RXCDATA, ctx->conn);
return 0;
}
/* Process all the packets at <el> encryption level.
* Return 1 if succeeded, 0 if not.
*/
int qc_treat_rx_pkts(struct quic_enc_level *el, struct ssl_sock_ctx *ctx)
{
struct quic_tls_ctx *tls_ctx;
struct eb64_node *node;
int64_t largest_pn = -1;
TRACE_ENTER(QUIC_EV_CONN_ELRXPKTS, ctx->conn);
tls_ctx = &el->tls_ctx;
HA_RWLOCK_WRLOCK(QUIC_LOCK, &el->rx.pkts_rwlock);
node = eb64_first(&el->rx.pkts);
while (node) {
struct quic_rx_packet *pkt;
pkt = eb64_entry(&node->node, struct quic_rx_packet, pn_node);
if (!qc_pkt_decrypt(pkt, tls_ctx)) {
/* Drop the packet */
TRACE_PROTO("packet decryption failed -> dropped",
QUIC_EV_CONN_ELRXPKTS, ctx->conn, pkt);
}
else {
if (!qc_parse_pkt_frms(pkt, ctx, el)) {
/* Drop the packet */
TRACE_PROTO("packet parsing failed -> dropped",
QUIC_EV_CONN_ELRXPKTS, ctx->conn, pkt);
}
else {
struct quic_arng ar = { .first = pkt->pn, .last = pkt->pn };
if (pkt->flags & QUIC_FL_RX_PACKET_ACK_ELICITING &&
!(HA_ATOMIC_ADD_FETCH(&el->pktns->rx.nb_ack_eliciting, 1) & 1))
HA_ATOMIC_BTS(&el->pktns->flags, QUIC_FL_PKTNS_ACK_REQUIRED_BIT);
if (pkt->pn > largest_pn)
largest_pn = pkt->pn;
/* Update the list of ranges to acknowledge. */
if (!quic_update_ack_ranges_list(&el->pktns->rx.arngs, &ar))
TRACE_DEVEL("Could not update ack range list",
QUIC_EV_CONN_ELRXPKTS, ctx->conn);
}
}
node = eb64_next(node);
quic_rx_packet_eb64_delete(&pkt->pn_node);
}
HA_RWLOCK_WRUNLOCK(QUIC_LOCK, &el->rx.pkts_rwlock);
/* Update the largest packet number. */
if (largest_pn != -1)
HA_ATOMIC_UPDATE_MAX(&el->pktns->rx.largest_pn, largest_pn);
if (!qc_treat_rx_crypto_frms(el, ctx))
goto err;
TRACE_LEAVE(QUIC_EV_CONN_ELRXPKTS, ctx->conn);
return 1;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_ELRXPKTS, ctx->conn);
return 0;
}
/* QUIC connection packet handler task. */
struct task *quic_conn_io_cb(struct task *t, void *context, unsigned int state)
{
int ret, ssl_err;
struct ssl_sock_ctx *ctx;
struct quic_conn *qc;
enum quic_tls_enc_level tel, next_tel;
struct quic_enc_level *qel, *next_qel;
struct quic_tls_ctx *tls_ctx;
struct qring *qr; // Tx ring
int prev_st, st;
ctx = context;
qc = ctx->conn->qc;
qr = NULL;
st = HA_ATOMIC_LOAD(&qc->state);
TRACE_ENTER(QUIC_EV_CONN_HDSHK, ctx->conn, &st);
ssl_err = SSL_ERROR_NONE;
if (!quic_get_tls_enc_levels(&tel, &next_tel, st))
goto err;
qel = &qc->els[tel];
next_qel = &qc->els[next_tel];
next_level:
tls_ctx = &qel->tls_ctx;
/* If the header protection key for this level has been derived,
* remove the packet header protections.
*/
if (!MT_LIST_ISEMPTY(&qel->rx.pqpkts) &&
(tls_ctx->rx.flags & QUIC_FL_TLS_SECRETS_SET))
qc_rm_hp_pkts(qel, ctx);
prev_st = HA_ATOMIC_LOAD(&qc->state);
if (!qc_treat_rx_pkts(qel, ctx))
goto err;
st = HA_ATOMIC_LOAD(&qc->state);
if (prev_st == QUIC_HS_ST_SERVER_HANDSHAKE && st >= QUIC_HS_ST_COMPLETE) {
/* Discard the Handshake keys. */
quic_tls_discard_keys(&qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE]);
quic_pktns_discard(qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE].pktns, qc);
qc_set_timer(ctx);
if (!quic_build_post_handshake_frames(qc))
goto err;
}
if (!qr)
qr = MT_LIST_POP(qc->tx.qring_list, typeof(qr), mt_list);
ret = qc_prep_hdshk_pkts(qr, ctx);
if (ret == -1)
goto err;
else if (ret == 0)
goto skip_send;
if (!qc_send_ppkts(qr, ctx))
goto err;
skip_send:
/* Check if there is something to do for the next level.
*/
if ((next_qel->tls_ctx.rx.flags & QUIC_FL_TLS_SECRETS_SET) &&
(!MT_LIST_ISEMPTY(&next_qel->rx.pqpkts) || !eb_is_empty(&next_qel->rx.pkts))) {
qel = next_qel;
goto next_level;
}
MT_LIST_APPEND(qc->tx.qring_list, &qr->mt_list);
TRACE_LEAVE(QUIC_EV_CONN_HDSHK, ctx->conn, &st);
return t;
err:
if (qr)
MT_LIST_APPEND(qc->tx.qring_list, &qr->mt_list);
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_HDSHK, ctx->conn, &st, &ssl_err);
return t;
}
/* Uninitialize <qel> QUIC encryption level. Never fails. */
static void quic_conn_enc_level_uninit(struct quic_enc_level *qel)
{
int i;
for (i = 0; i < qel->tx.crypto.nb_buf; i++) {
if (qel->tx.crypto.bufs[i]) {
pool_free(pool_head_quic_crypto_buf, qel->tx.crypto.bufs[i]);
qel->tx.crypto.bufs[i] = NULL;
}
}
ha_free(&qel->tx.crypto.bufs);
}
/* Initialize QUIC TLS encryption level with <level<> as level for <qc> QUIC
* connection allocating everything needed.
* Returns 1 if succeeded, 0 if not.
*/
static int quic_conn_enc_level_init(struct quic_conn *qc,
enum quic_tls_enc_level level)
{
struct quic_enc_level *qel;
qel = &qc->els[level];
qel->level = quic_to_ssl_enc_level(level);
qel->tls_ctx.rx.aead = qel->tls_ctx.tx.aead = NULL;
qel->tls_ctx.rx.md = qel->tls_ctx.tx.md = NULL;
qel->tls_ctx.rx.hp = qel->tls_ctx.tx.hp = NULL;
qel->tls_ctx.rx.flags = 0;
qel->tls_ctx.tx.flags = 0;
qel->rx.pkts = EB_ROOT;
HA_RWLOCK_INIT(&qel->rx.pkts_rwlock);
MT_LIST_INIT(&qel->rx.pqpkts);
qel->rx.crypto.offset = 0;
qel->rx.crypto.frms = EB_ROOT_UNIQUE;
HA_RWLOCK_INIT(&qel->rx.crypto.frms_rwlock);
/* Allocate only one buffer. */
qel->tx.crypto.bufs = malloc(sizeof *qel->tx.crypto.bufs);
if (!qel->tx.crypto.bufs)
goto err;
qel->tx.crypto.bufs[0] = pool_alloc(pool_head_quic_crypto_buf);
if (!qel->tx.crypto.bufs[0])
goto err;
qel->tx.crypto.bufs[0]->sz = 0;
qel->tx.crypto.nb_buf = 1;
qel->tx.crypto.sz = 0;
qel->tx.crypto.offset = 0;
return 1;
err:
ha_free(&qel->tx.crypto.bufs);
return 0;
}
/* Release all the memory allocated for <conn> QUIC connection. */
static void quic_conn_free(struct quic_conn *conn)
{
int i;
if (!conn)
return;
free_quic_conn_cids(conn);
for (i = 0; i < QUIC_TLS_ENC_LEVEL_MAX; i++)
quic_conn_enc_level_uninit(&conn->els[i]);
if (conn->timer_task)
task_destroy(conn->timer_task);
pool_free(pool_head_quic_conn, conn);
}
/* Callback called upon loss detection and PTO timer expirations. */
static struct task *process_timer(struct task *task, void *ctx, unsigned int state)
{
struct ssl_sock_ctx *conn_ctx;
struct quic_conn *qc;
struct quic_pktns *pktns;
int st;
conn_ctx = task->context;
qc = conn_ctx->conn->qc;
TRACE_ENTER(QUIC_EV_CONN_PTIMER, conn_ctx->conn,
NULL, NULL, &qc->path->ifae_pkts);
task->expire = TICK_ETERNITY;
pktns = quic_loss_pktns(qc);
if (tick_isset(pktns->tx.loss_time)) {
struct list lost_pkts = LIST_HEAD_INIT(lost_pkts);
qc_packet_loss_lookup(pktns, qc, &lost_pkts);
if (!LIST_ISEMPTY(&lost_pkts))
qc_release_lost_pkts(pktns, ctx, &lost_pkts, now_ms);
qc_set_timer(conn_ctx);
goto out;
}
st = HA_ATOMIC_LOAD(&qc->state);
if (qc->path->in_flight) {
pktns = quic_pto_pktns(qc, st >= QUIC_HS_ST_COMPLETE, NULL);
pktns->tx.pto_probe = 1;
}
else if (objt_server(qc->conn->target) && st <= QUIC_HS_ST_COMPLETE) {
struct quic_enc_level *iel = &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL];
struct quic_enc_level *hel = &qc->els[QUIC_TLS_ENC_LEVEL_HANDSHAKE];
if (hel->tls_ctx.rx.flags == QUIC_FL_TLS_SECRETS_SET)
hel->pktns->tx.pto_probe = 1;
if (iel->tls_ctx.rx.flags == QUIC_FL_TLS_SECRETS_SET)
iel->pktns->tx.pto_probe = 1;
}
HA_ATOMIC_STORE(&qc->tx.nb_pto_dgrams, QUIC_MAX_NB_PTO_DGRAMS);
tasklet_wakeup(conn_ctx->wait_event.tasklet);
qc->path->loss.pto_count++;
out:
TRACE_LEAVE(QUIC_EV_CONN_PTIMER, conn_ctx->conn, pktns);
return task;
}
/* Initialize <conn> QUIC connection with <quic_initial_clients> as root of QUIC
* connections used to identify the first Initial packets of client connecting
* to listeners. This parameter must be NULL for QUIC connections attached
* to listeners. <dcid> is the destination connection ID with <dcid_len> as length.
* <scid> is the source connection ID with <scid_len> as length.
* Returns 1 if succeeded, 0 if not.
*/
static struct quic_conn *qc_new_conn(unsigned int version, int ipv4,
unsigned char *dcid, size_t dcid_len,
unsigned char *scid, size_t scid_len, int server, void *owner)
{
int i;
struct quic_conn *qc;
/* Initial CID. */
struct quic_connection_id *icid;
TRACE_ENTER(QUIC_EV_CONN_INIT);
qc = pool_zalloc(pool_head_quic_conn);
if (!qc) {
TRACE_PROTO("Could not allocate a new connection", QUIC_EV_CONN_INIT);
goto err;
}
qc->cids = EB_ROOT;
/* QUIC Server (or listener). */
if (server) {
struct listener *l = owner;
HA_ATOMIC_STORE(&qc->state, QUIC_HS_ST_SERVER_INITIAL);
/* Copy the initial DCID. */
qc->odcid.len = dcid_len;
if (qc->odcid.len)
memcpy(qc->odcid.data, dcid, dcid_len);
/* Copy the SCID as our DCID for this connection. */
if (scid_len)
memcpy(qc->dcid.data, scid, scid_len);
qc->dcid.len = scid_len;
qc->tx.qring_list = &l->rx.tx_qrings;
}
/* QUIC Client (outgoing connection to servers) */
else {
HA_ATOMIC_STORE(&qc->state, QUIC_HS_ST_CLIENT_INITIAL);
if (dcid_len)
memcpy(qc->dcid.data, dcid, dcid_len);
qc->dcid.len = dcid_len;
}
/* Initialize the output buffer */
qc->obuf.pos = qc->obuf.data;
icid = new_quic_cid(&qc->cids, 0);
if (!icid) {
TRACE_PROTO("Could not allocate a new connection ID", QUIC_EV_CONN_INIT);
goto err;
}
/* Select our SCID which is the first CID with 0 as sequence number. */
qc->scid = icid->cid;
/* Packet number spaces initialization. */
for (i = 0; i < QUIC_TLS_PKTNS_MAX; i++)
quic_pktns_init(&qc->pktns[i]);
/* QUIC encryption level context initialization. */
for (i = 0; i < QUIC_TLS_ENC_LEVEL_MAX; i++) {
if (!quic_conn_enc_level_init(qc, i)) {
TRACE_PROTO("Could not initialize an encryption level", QUIC_EV_CONN_INIT);
goto err;
}
/* Initialize the packet number space. */
qc->els[i].pktns = &qc->pktns[quic_tls_pktns(i)];
}
qc->version = version;
/* TX part. */
LIST_INIT(&qc->tx.frms_to_send);
qc->tx.nb_buf = QUIC_CONN_TX_BUFS_NB;
qc->tx.wbuf = qc->tx.rbuf = 0;
qc->tx.bytes = 0;
qc->tx.nb_pto_dgrams = 0;
/* RX part. */
qc->rx.bytes = 0;
/* XXX TO DO: Only one path at this time. */
qc->path = &qc->paths[0];
quic_path_init(qc->path, ipv4, default_quic_cc_algo, qc);
TRACE_LEAVE(QUIC_EV_CONN_INIT);
return qc;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_INIT);
quic_conn_free(qc);
return NULL;
}
/* Initialize the timer task of <qc> QUIC connection.
* Returns 1 if succeeded, 0 if not.
*/
static int quic_conn_init_timer(struct quic_conn *qc)
{
qc->timer_task = task_new(MAX_THREADS_MASK);
if (!qc->timer_task)
return 0;
qc->timer = TICK_ETERNITY;
qc->timer_task->process = process_timer;
qc->timer_task->context = qc->conn->xprt_ctx;
return 1;
}
/* Parse into <pkt> a long header located at <*buf> buffer, <end> begin a pointer to the end
* past one byte of this buffer.
*/
static inline int quic_packet_read_long_header(unsigned char **buf, const unsigned char *end,
struct quic_rx_packet *pkt)
{
unsigned char dcid_len, scid_len;
/* Version */
if (!quic_read_uint32(&pkt->version, (const unsigned char **)buf, end))
return 0;
if (!pkt->version) { /* XXX TO DO XXX Version negotiation packet */ };
/* Destination Connection ID Length */
dcid_len = *(*buf)++;
/* We want to be sure we can read <dcid_len> bytes and one more for <scid_len> value */
if (dcid_len > QUIC_CID_MAXLEN || end - *buf < dcid_len + 1)
/* XXX MUST BE DROPPED */
return 0;
if (dcid_len) {
/* Check that the length of this received DCID matches the CID lengths
* of our implementation for non Initials packets only.
*/
if (pkt->type != QUIC_PACKET_TYPE_INITIAL && dcid_len != QUIC_CID_LEN)
return 0;
memcpy(pkt->dcid.data, *buf, dcid_len);
}
pkt->dcid.len = dcid_len;
*buf += dcid_len;
/* Source Connection ID Length */
scid_len = *(*buf)++;
if (scid_len > QUIC_CID_MAXLEN || end - *buf < scid_len)
/* XXX MUST BE DROPPED */
return 0;
if (scid_len)
memcpy(pkt->scid.data, *buf, scid_len);
pkt->scid.len = scid_len;
*buf += scid_len;
return 1;
}
/* If the header protection of <pkt> packet attached to <qc> connection with <ctx>
* as context may be removed, return 1, 0 if not. Also set <*qel> to the associated
* encryption level matching with the packet type. <*qel> may be null if not found.
* Note that <ctx> may be null (for Initial packets).
*/
static int qc_pkt_may_rm_hp(struct quic_rx_packet *pkt,
struct quic_conn *qc, struct ssl_sock_ctx *ctx,
struct quic_enc_level **qel)
{
enum quic_tls_enc_level tel;
/* Special case without connection context (firt Initial packets) */
if (!ctx) {
*qel = &qc->els[QUIC_TLS_ENC_LEVEL_INITIAL];
return 1;
}
tel = quic_packet_type_enc_level(pkt->type);
if (tel == QUIC_TLS_ENC_LEVEL_NONE) {
*qel = NULL;
return 0;
}
*qel = &qc->els[tel];
if ((*qel)->tls_ctx.rx.flags & QUIC_FL_TLS_SECRETS_DCD) {
TRACE_DEVEL("Discarded keys", QUIC_EV_CONN_TRMHP, ctx->conn);
return 0;
}
if (((*qel)->tls_ctx.rx.flags & QUIC_FL_TLS_SECRETS_SET) &&
(tel != QUIC_TLS_ENC_LEVEL_APP ||
HA_ATOMIC_LOAD(&ctx->conn->qc->state) >= QUIC_HS_ST_COMPLETE))
return 1;
return 0;
}
/* Try to remove the header protecttion of <pkt> QUIC packet attached to <conn>
* QUIC connection with <buf> as packet number field address, <end> a pointer to one
* byte past the end of the buffer containing this packet and <beg> the address of
* the packet first byte.
* If succeeded, this function updates <*buf> to point to the next packet in the buffer.
* Returns 1 if succeeded, 0 if not.
*/
static inline int qc_try_rm_hp(struct quic_rx_packet *pkt,
unsigned char **buf, unsigned char *beg,
const unsigned char *end,
struct quic_conn *qc, struct ssl_sock_ctx *ctx)
{
unsigned char *pn = NULL; /* Packet number field */
struct quic_enc_level *qel;
/* Only for traces. */
struct quic_rx_packet *qpkt_trace;
qpkt_trace = NULL;
TRACE_ENTER(QUIC_EV_CONN_TRMHP, ctx ? ctx->conn : NULL);
/* The packet number is here. This is also the start minus
* QUIC_PACKET_PN_MAXLEN of the sample used to add/remove the header
* protection.
*/
pn = *buf;
if (qc_pkt_may_rm_hp(pkt, qc, ctx, &qel)) {
/* Note that the following function enables us to unprotect the packet
* number and its length subsequently used to decrypt the entire
* packets.
*/
if (!qc_do_rm_hp(pkt, &qel->tls_ctx,
qel->pktns->rx.largest_pn, pn, beg, end, ctx)) {
TRACE_PROTO("hp error", QUIC_EV_CONN_TRMHP, ctx ? ctx->conn : NULL);
goto err;
}
/* The AAD includes the packet number field found at <pn>. */
pkt->aad_len = pn - beg + pkt->pnl;
qpkt_trace = pkt;
/* Store the packet */
pkt->pn_node.key = pkt->pn;
HA_RWLOCK_WRLOCK(QUIC_LOCK, &qel->rx.pkts_rwlock);
quic_rx_packet_eb64_insert(&qel->rx.pkts, &pkt->pn_node);
HA_RWLOCK_WRUNLOCK(QUIC_LOCK, &qel->rx.pkts_rwlock);
}
else if (qel) {
TRACE_PROTO("hp not removed", QUIC_EV_CONN_TRMHP, ctx ? ctx->conn : NULL, pkt);
pkt->pn_offset = pn - beg;
quic_rx_packet_list_addq(&qel->rx.pqpkts, pkt);
}
memcpy(pkt->data, beg, pkt->len);
/* Updtate the offset of <*buf> for the next QUIC packet. */
*buf = beg + pkt->len;
TRACE_LEAVE(QUIC_EV_CONN_TRMHP, ctx ? ctx->conn : NULL, qpkt_trace);
return 1;
err:
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_TRMHP, ctx ? ctx->conn : NULL, qpkt_trace);
return 0;
}
/* Parse the header form from <byte0> first byte of <pkt> pacekt to set type.
* Also set <*long_header> to 1 if this form is long, 0 if not.
*/
static inline void qc_parse_hd_form(struct quic_rx_packet *pkt,
unsigned char byte0, int *long_header)
{
if (byte0 & QUIC_PACKET_LONG_HEADER_BIT) {
pkt->type =
(byte0 >> QUIC_PACKET_TYPE_SHIFT) & QUIC_PACKET_TYPE_BITMASK;
*long_header = 1;
}
else {
pkt->type = QUIC_PACKET_TYPE_SHORT;
*long_header = 0;
}
}
static ssize_t qc_srv_pkt_rcv(unsigned char **buf, const unsigned char *end,
struct quic_rx_packet *pkt,
struct quic_dgram_ctx *dgram_ctx,
struct sockaddr_storage *saddr)
{
unsigned char *beg;
uint64_t len;
struct quic_conn *qc;
struct eb_root *cids;
struct ebmb_node *node;
struct connection *srv_conn;
struct ssl_sock_ctx *conn_ctx;
int long_header;
qc = NULL;
TRACE_ENTER(QUIC_EV_CONN_SPKT);
if (end <= *buf)
goto err;
/* Fixed bit */
if (!(**buf & QUIC_PACKET_FIXED_BIT))
/* XXX TO BE DISCARDED */
goto err;
srv_conn = dgram_ctx->owner;
beg = *buf;
/* Header form */
qc_parse_hd_form(pkt, *(*buf)++, &long_header);
if (long_header) {
size_t cid_lookup_len;
if (!quic_packet_read_long_header(buf, end, pkt))
goto err;
/* For Initial packets, and for servers (QUIC clients connections),
* there is no Initial connection IDs storage.
*/
if (pkt->type == QUIC_PACKET_TYPE_INITIAL) {
cids = &((struct server *)__objt_server(srv_conn->target))->cids;
cid_lookup_len = pkt->dcid.len;
}
else {
cids = &((struct server *)__objt_server(srv_conn->target))->cids;
cid_lookup_len = QUIC_CID_LEN;
}
node = ebmb_lookup(cids, pkt->dcid.data, cid_lookup_len);
if (!node)
goto err;
qc = ebmb_entry(node, struct quic_conn, scid_node);
if (pkt->type == QUIC_PACKET_TYPE_INITIAL) {
qc->dcid.len = pkt->scid.len;
if (pkt->scid.len)
memcpy(qc->dcid.data, pkt->scid.data, pkt->scid.len);
}
if (pkt->type == QUIC_PACKET_TYPE_INITIAL) {
uint64_t token_len;
if (!quic_dec_int(&token_len, (const unsigned char **)buf, end) || end - *buf < token_len)
goto err;
/* XXX TO DO XXX 0 value means "the token is not present".
* A server which sends an Initial packet must not set the token.
* So, a client which receives an Initial packet with a token
* MUST discard the packet or generate a connection error with
* PROTOCOL_VIOLATION as type.
* The token must be provided in a Retry packet or NEW_TOKEN frame.
*/
pkt->token_len = token_len;
}
}
else {
/* XXX TO DO: Short header XXX */
if (end - *buf < QUIC_CID_LEN)
goto err;
cids = &((struct server *)__objt_server(srv_conn->target))->cids;
node = ebmb_lookup(cids, *buf, QUIC_CID_LEN);
if (!node)
goto err;
qc = ebmb_entry(node, struct quic_conn, scid_node);
*buf += QUIC_CID_LEN;
}
/* Store the DCID used for this packet to check the packet which
* come in this UDP datagram match with it.
*/
if (!dgram_ctx->dcid_node)
dgram_ctx->dcid_node = node;
/* Only packets packets with long headers and not RETRY or VERSION as type
* have a length field.
*/
if (long_header && pkt->type != QUIC_PACKET_TYPE_RETRY && pkt->version) {
if (!quic_dec_int(&len, (const unsigned char **)buf, end) || end - *buf < len)
goto err;
pkt->len = len;
}
else if (!long_header) {
/* A short packet is the last one of an UDP datagram. */
pkt->len = end - *buf;
}
conn_ctx = qc->conn->xprt_ctx;
/* Increase the total length of this packet by the header length. */
pkt->len += *buf - beg;
/* Do not check the DCID node before the length. */
if (dgram_ctx->dcid_node != node) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_SPKT, qc->conn);
goto err;
}
if (pkt->len > sizeof pkt->data) {
TRACE_PROTO("Too big packet", QUIC_EV_CONN_SPKT, qc->conn, pkt, &pkt->len);
goto err;
}
if (!qc_try_rm_hp(pkt, buf, beg, end, qc, conn_ctx))
goto err;
/* Wake the tasklet of the QUIC connection packet handler. */
if (conn_ctx)
tasklet_wakeup(conn_ctx->wait_event.tasklet);
TRACE_LEAVE(QUIC_EV_CONN_SPKT, qc->conn);
return pkt->len;
err:
TRACE_DEVEL("Leaing in error", QUIC_EV_CONN_SPKT, qc ? qc->conn : NULL);
return -1;
}
static ssize_t qc_lstnr_pkt_rcv(unsigned char **buf, const unsigned char *end,
struct quic_rx_packet *pkt,
struct quic_dgram_ctx *dgram_ctx,
struct sockaddr_storage *saddr)
{
unsigned char *beg;
struct quic_conn *qc;
struct eb_root *cids;
struct ebmb_node *node;
struct listener *l;
struct ssl_sock_ctx *conn_ctx;
int long_header = 0;
qc = NULL;
conn_ctx = NULL;
TRACE_ENTER(QUIC_EV_CONN_LPKT, NULL, pkt);
if (end <= *buf)
goto err;
/* Fixed bit */
if (!(**buf & QUIC_PACKET_FIXED_BIT)) {
/* XXX TO BE DISCARDED */
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
goto err;
}
l = dgram_ctx->owner;
beg = *buf;
/* Header form */
qc_parse_hd_form(pkt, *(*buf)++, &long_header);
if (long_header) {
unsigned char dcid_len;
if (!quic_packet_read_long_header(buf, end, pkt)) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
goto err;
}
dcid_len = pkt->dcid.len;
/* For Initial packets, and for servers (QUIC clients connections),
* there is no Initial connection IDs storage.
*/
if (pkt->type == QUIC_PACKET_TYPE_INITIAL) {
uint64_t token_len;
/* DCIDs of first packets coming from clients may have the same values.
* Let's distinguish them concatenating the socket addresses to the DCIDs.
*/
quic_cid_saddr_cat(&pkt->dcid, saddr);
cids = &l->rx.odcids;
if (!quic_dec_int(&token_len, (const unsigned char **)buf, end) ||
end - *buf < token_len) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
goto err;
}
/* XXX TO DO XXX 0 value means "the token is not present".
* A server which sends an Initial packet must not set the token.
* So, a client which receives an Initial packet with a token
* MUST discard the packet or generate a connection error with
* PROTOCOL_VIOLATION as type.
* The token must be provided in a Retry packet or NEW_TOKEN frame.
*/
pkt->token_len = token_len;
}
else {
if (pkt->dcid.len != QUIC_CID_LEN) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
goto err;
}
cids = &l->rx.cids;
}
/* Only packets packets with long headers and not RETRY or VERSION as type
* have a length field.
*/
if (pkt->type != QUIC_PACKET_TYPE_RETRY && pkt->version) {
uint64_t len;
if (!quic_dec_int(&len, (const unsigned char **)buf, end) ||
end - *buf < len) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
goto err;
}
pkt->len = len;
}
HA_RWLOCK_RDLOCK(OTHER_LOCK, &l->rx.cids_lock);
node = ebmb_lookup(cids, pkt->dcid.data, pkt->dcid.len);
if (!node && pkt->type == QUIC_PACKET_TYPE_INITIAL && dcid_len == QUIC_CID_LEN &&
cids == &l->rx.odcids) {
/* Switch to the definitive tree ->cids containing the final CIDs. */
node = ebmb_lookup(&l->rx.cids, pkt->dcid.data, dcid_len);
if (node) {
/* If found, signal this with NULL as special value for <cids>. */
pkt->dcid.len = dcid_len;
cids = NULL;
}
}
HA_RWLOCK_RDUNLOCK(OTHER_LOCK, &l->rx.cids_lock);
if (!node) {
int ipv4;
struct quic_cid *odcid;
struct ebmb_node *n = NULL;
if (pkt->type != QUIC_PACKET_TYPE_INITIAL) {
TRACE_PROTO("Non Initiial packet", QUIC_EV_CONN_LPKT);
goto err;
}
pkt->saddr = *saddr;
/* Note that here, odcid_len equals to pkt->dcid.len minus the length
* of <saddr>.
*/
pkt->odcid_len = dcid_len;
ipv4 = saddr->ss_family == AF_INET;
qc = qc_new_conn(pkt->version, ipv4, pkt->dcid.data, pkt->dcid.len,
pkt->scid.data, pkt->scid.len, 1, l);
if (qc == NULL)
goto err;
odcid = &qc->rx.params.original_destination_connection_id;
/* Copy the transport parameters. */
qc->rx.params = l->bind_conf->quic_params;
/* Copy original_destination_connection_id transport parameter. */
memcpy(odcid->data, &pkt->dcid, pkt->odcid_len);
odcid->len = pkt->odcid_len;
/* Copy the initial source connection ID. */
quic_cid_cpy(&qc->rx.params.initial_source_connection_id, &qc->scid);
qc->enc_params_len =
quic_transport_params_encode(qc->enc_params,
qc->enc_params + sizeof qc->enc_params,
&qc->rx.params, 1);
if (!qc->enc_params_len)
goto err;
/* NOTE: the socket address has been concatenated to the destination ID
* chosen by the client for Initial packets.
*/
if (!qc_new_isecs(qc, pkt->dcid.data, pkt->odcid_len, 1)) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc->conn);
goto err;
}
pkt->qc = qc;
/* This is the DCID node sent in this packet by the client. */
node = &qc->odcid_node;
/* Enqueue this packet. */
MT_LIST_APPEND(&l->rx.pkts, &pkt->rx_list);
/* Try to accept a new connection. */
listener_accept(l);
HA_RWLOCK_WRLOCK(OTHER_LOCK, &l->rx.cids_lock);
/* Insert the DCID the QUIC client has chosen (only for listeners) */
ebmb_insert(&l->rx.odcids, &qc->odcid_node, qc->odcid.len);
/* Insert our SCID, the connection ID for the QUIC client. */
n = ebmb_insert(&l->rx.cids, &qc->scid_node, qc->scid.len);
HA_RWLOCK_WRUNLOCK(OTHER_LOCK, &l->rx.cids_lock);
if (n != &qc->scid_node) {
quic_conn_free(qc);
qc = ebmb_entry(n, struct quic_conn, scid_node);
}
}
else {
if (pkt->type == QUIC_PACKET_TYPE_INITIAL && cids == &l->rx.odcids)
qc = ebmb_entry(node, struct quic_conn, odcid_node);
else
qc = ebmb_entry(node, struct quic_conn, scid_node);
conn_ctx = qc->conn->xprt_ctx;
}
}
else {
if (end - *buf < QUIC_CID_LEN) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
goto err;
}
cids = &l->rx.cids;
node = ebmb_lookup(cids, *buf, QUIC_CID_LEN);
if (!node) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
goto err;
}
qc = ebmb_entry(node, struct quic_conn, scid_node);
conn_ctx = qc->conn->xprt_ctx;
*buf += QUIC_CID_LEN;
/* A short packet is the last one of an UDP datagram. */
pkt->len = end - *buf;
}
/* Store the DCID used for this packet to check the packet which
* come in this UDP datagram match with it.
*/
if (!dgram_ctx->dcid_node) {
dgram_ctx->dcid_node = node;
dgram_ctx->qc = qc;
}
/* Increase the total length of this packet by the header length. */
pkt->len += *buf - beg;
/* Do not check the DCID node before the length. */
if (dgram_ctx->dcid_node != node) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc->conn);
goto err;
}
if (pkt->len > sizeof pkt->data) {
TRACE_PROTO("Too big packet", QUIC_EV_CONN_LPKT, qc->conn, pkt, &pkt->len);
goto err;
}
if (!qc_try_rm_hp(pkt, buf, beg, end, qc, conn_ctx)) {
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc->conn);
goto err;
}
TRACE_PROTO("New packet", QUIC_EV_CONN_LPKT, qc->conn, pkt);
/* Wake up the connection packet handler task from here only if all
* the contexts have been initialized, especially the mux context
* conn_ctx->conn->ctx. Note that this is ->start xprt callback which
* will start it if these contexts for the connection are not already
* initialized.
*/
if (conn_ctx && HA_ATOMIC_LOAD(&conn_ctx->conn->ctx))
tasklet_wakeup(conn_ctx->wait_event.tasklet);
TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc->conn, pkt);
return pkt->len;
err:
TRACE_DEVEL("Leaving in error", QUIC_EV_CONN_LPKT,
qc ? qc->conn : NULL, pkt);
return -1;
}
/* This function builds into <buf> buffer a QUIC long packet header whose size may be computed
* in advance. This is the reponsability of the caller to check there is enough room in this
* buffer to build a long header.
* Returns 0 if <type> QUIC packet type is not supported by long header, or 1 if succeeded.
*/
static int quic_build_packet_long_header(unsigned char **buf, const unsigned char *end,
int type, size_t pn_len, struct quic_conn *conn)
{
if (type > QUIC_PACKET_TYPE_RETRY)
return 0;
/* #0 byte flags */
*(*buf)++ = QUIC_PACKET_FIXED_BIT | QUIC_PACKET_LONG_HEADER_BIT |
(type << QUIC_PACKET_TYPE_SHIFT) | (pn_len - 1);
/* Version */
quic_write_uint32(buf, end, conn->version);
*(*buf)++ = conn->dcid.len;
/* Destination connection ID */
if (conn->dcid.len) {
memcpy(*buf, conn->dcid.data, conn->dcid.len);
*buf += conn->dcid.len;
}
/* Source connection ID */
*(*buf)++ = conn->scid.len;
if (conn->scid.len) {
memcpy(*buf, conn->scid.data, conn->scid.len);
*buf += conn->scid.len;
}
return 1;
}
/* This function builds into <buf> buffer a QUIC long packet header whose size may be computed
* in advance. This is the reponsability of the caller to check there is enough room in this
* buffer to build a long header.
* Returns 0 if <type> QUIC packet type is not supported by long header, or 1 if succeeded.
*/
static int quic_build_packet_short_header(unsigned char **buf, const unsigned char *end,
size_t pn_len, struct quic_conn *conn)
{
/* #0 byte flags */
*(*buf)++ = QUIC_PACKET_FIXED_BIT | (pn_len - 1);
/* Destination connection ID */
if (conn->dcid.len) {
memcpy(*buf, conn->dcid.data, conn->dcid.len);
*buf += conn->dcid.len;
}
return 1;
}
/* Apply QUIC header protection to the packet with <buf> as first byte address,
* <pn> as address of the Packet number field, <pnlen> being this field length
* with <aead> as AEAD cipher and <key> as secret key.
* Returns 1 if succeeded or 0 if failed.
*/
static int quic_apply_header_protection(unsigned char *buf, unsigned char *pn, size_t pnlen,
const EVP_CIPHER *aead, const unsigned char *key)
{
int i, ret, outlen;
EVP_CIPHER_CTX *ctx;
/* We need an IV of at least 5 bytes: one byte for bytes #0
* and at most 4 bytes for the packet number
*/
unsigned char mask[5] = {0};
ret = 0;
ctx = EVP_CIPHER_CTX_new();
if (!ctx)
return 0;
if (!EVP_EncryptInit_ex(ctx, aead, NULL, key, pn + QUIC_PACKET_PN_MAXLEN) ||
!EVP_EncryptUpdate(ctx, mask, &outlen, mask, sizeof mask) ||
!EVP_EncryptFinal_ex(ctx, mask, &outlen))
goto out;
*buf ^= mask[0] & (*buf & QUIC_PACKET_LONG_HEADER_BIT ? 0xf : 0x1f);
for (i = 0; i < pnlen; i++)
pn[i] ^= mask[i + 1];
ret = 1;
out:
EVP_CIPHER_CTX_free(ctx);
return ret;
}
/* Reduce the encoded size of <ack_frm> ACK frame removing the last
* ACK ranges if needed to a value below <limit> in bytes.
* Return 1 if succeeded, 0 if not.
*/
static int quic_ack_frm_reduce_sz(struct quic_frame *ack_frm, size_t limit)
{
size_t room, ack_delay_sz;
ack_delay_sz = quic_int_getsize(ack_frm->tx_ack.ack_delay);
/* A frame is made of 1 byte for the frame type. */
room = limit - ack_delay_sz - 1;
if (!quic_rm_last_ack_ranges(ack_frm->tx_ack.arngs, room))
return 0;
return 1 + ack_delay_sz + ack_frm->tx_ack.arngs->enc_sz;
}
/* Prepare as most as possible CRYPTO or STREAM frames from their prebuilt frames
* for <qel> encryption level to be encoded in a buffer with <room> as available room,
* and <*len> the packet Length field initialized with the number of bytes already present
* in this buffer which must be taken into an account for the Length packet field value.
* <headlen> is the number of bytes already present in this packet before building frames.
*
* Update consequently <*len> to reflect the size of these frames built
* by this function. Also attach these frames to <pkt> QUIC packet.
* Return 1 if succeeded, 0 if not.
*/
static inline int qc_build_frms(struct quic_tx_packet *pkt,
size_t room, size_t *len, size_t headlen,
struct quic_enc_level *qel,
struct quic_conn *conn)
{
int ret;
struct quic_frame *cf;
struct mt_list *tmp1, tmp2;
size_t remain = quic_path_prep_data(conn->path);
ret = 0;
if (*len > room || headlen > remain)
return 0;
/* If we are not probing we must take into an account the congestion
* control window.
*/
if (!conn->tx.nb_pto_dgrams)
room = QUIC_MIN(room, quic_path_prep_data(conn->path) - headlen);
TRACE_PROTO("************** frames build (headlen)",
QUIC_EV_CONN_BCFRMS, conn->conn, &headlen);
mt_list_for_each_entry_safe(cf, &qel->pktns->tx.frms, mt_list, tmp1, tmp2) {
/* header length, data length, frame length. */
size_t hlen, dlen, flen;
if (!room)
break;
switch (cf->type) {
case QUIC_FT_CRYPTO:
TRACE_PROTO(" New CRYPTO frame build (room, len)",
QUIC_EV_CONN_BCFRMS, conn->conn, &room, len);
/* Compute the length of this CRYPTO frame header */
hlen = 1 + quic_int_getsize(cf->crypto.offset);
/* Compute the data length of this CRyPTO frame. */
dlen = max_stream_data_size(room, *len + hlen, cf->crypto.len);
TRACE_PROTO(" CRYPTO data length (hlen, crypto.len, dlen)",
QUIC_EV_CONN_BCFRMS, conn->conn, &hlen, &cf->crypto.len, &dlen);
if (!dlen)
break;
pkt->cdata_len += dlen;
/* CRYPTO frame length. */
flen = hlen + quic_int_getsize(dlen) + dlen;
TRACE_PROTO(" CRYPTO frame length (flen)",
QUIC_EV_CONN_BCFRMS, conn->conn, &flen);
/* Add the CRYPTO data length and its encoded length to the packet
* length and the length of this length.
*/
*len += flen;
room -= flen;
if (dlen == cf->crypto.len) {
/* <cf> CRYPTO data have been consumed. */
MT_LIST_DELETE_SAFE(tmp1);
LIST_APPEND(&pkt->frms, &cf->list);
}
else {
struct quic_frame *new_cf;
new_cf = pool_alloc(pool_head_quic_frame);
if (!new_cf) {
TRACE_PROTO("No memory for new crypto frame", QUIC_EV_CONN_BCFRMS, conn->conn);
return 0;
}
new_cf->type = QUIC_FT_CRYPTO;
new_cf->crypto.len = dlen;
new_cf->crypto.offset = cf->crypto.offset;
new_cf->crypto.qel = qel;
LIST_APPEND(&pkt->frms, &new_cf->list);
/* Consume <dlen> bytes of the current frame. */
cf->crypto.len -= dlen;
cf->crypto.offset += dlen;
}
break;
case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F:
break;
default:
flen = qc_frm_len(cf);
BUG_ON(!flen);
if (flen > room)
continue;
*len += flen;
room -= flen;
MT_LIST_DELETE_SAFE(tmp1);
LIST_APPEND(&pkt->frms, &cf->list);
break;
}
ret = 1;
}
return ret;
}
/* This function evaluates if <pkt> packet may be built into a buffer with
* <room> as available room. A valid packet should at least contain a valid
* header and at least a frame.
* To estimate the minimal space to build a packet, we consider the worst case:
- there is not enough space to build ack-eliciting frames from
qel->pktns->tx.frms. This is safe to consider this because when we build
a packet we first build the ACK frames, then the ack-eliciting frames
from qel->pktns->tx.frms only if there is enough space for these
ack-eliciting frames, finally PING and PADDING frames if needed,
- we have to ensure there is enough space to build an ACK frame if required,
and a PING frame, even if we do not have to probe,
- we also have to verify there is enough space to build a PADDING frame
if needed, especially if there is no need to send an ACK frame.
* Returns 1 if the <pkt> may be built, 0 if not (not enough room to build
* a valid packet).
*/
static int qc_eval_pkt(ssize_t room, struct quic_tx_packet *pkt,
int ack, int nb_pto_dgrams,
struct quic_enc_level *qel, struct quic_conn *conn)
{
size_t minlen, token_fields_len;
/* XXX FIXME XXX : ack delay not supported */
uint64_t ack_delay = 0;
size_t ack_frm_len = 0;
TRACE_PROTO("Available room", QUIC_EV_CONN_HPKT,
conn->conn, NULL, NULL, &room);
/* When we do not have to probe nor send acks either, we must take into
* an account the data which have already been prepared and limit
* the size of this packet. We will potentially build an ack-eliciting
* packet.
*/
if (!nb_pto_dgrams && !ack) {
size_t path_room;
path_room = quic_path_prep_data(conn->path);
if (room > path_room)
room = path_room;
}
if (ack)
/* A frame is made of 1 byte for the frame type. */
ack_frm_len = 1 + quic_int_getsize(ack_delay) + qel->pktns->rx.arngs.enc_sz;
/* XXX FIXME XXX : token not supported */
token_fields_len = pkt->type == QUIC_PACKET_TYPE_INITIAL ? 1 : 0;
/* Check there is enough room to build the header followed by a token,
* if present. The trailing room needed for the QUIC_TLS_TAG_LEN-bytes
* encryption tag is also taken into an account. Note that we have no
* knowledge of the packet number for this packet. It must be atomically
* incremented each time a packet is built. But before building a packet
* we must estimate if it may be built if we do not want to consume a packet
* number for nothing! Note that we add 1 byte more to
* <minlen> to be able to build an ack-eliciting packet when probing without
* ack-eliciting frames to send. In this case we need to add a 1-byte length
* PING frame.
*/
minlen = QUIC_TLS_TAG_LEN + QUIC_PACKET_PN_MAXLEN + ack_frm_len + 1;
if (pkt->type != QUIC_PACKET_TYPE_SHORT)
minlen += QUIC_LONG_PACKET_MINLEN + conn->dcid.len + conn->scid.len
+ token_fields_len;
else
minlen += QUIC_SHORT_PACKET_MINLEN + conn->dcid.len;
/* Consider any PADDING frame to add */
if (objt_server(conn->conn->target) &&
pkt->type == QUIC_PACKET_TYPE_INITIAL &&
minlen < QUIC_INITIAL_PACKET_MINLEN) {
/* Pad too short client Initial packet */
minlen += QUIC_INITIAL_PACKET_MINLEN - minlen;
}
else if (!ack) {
/* Consider we will have to add the longest short PADDING frame to
* protect a 1-byte length packet number.
*/
minlen += QUIC_PACKET_PN_MAXLEN - 1;
}
if (room < minlen) {
TRACE_PROTO("Not enoug room", QUIC_EV_CONN_HPKT,
conn->conn, NULL, NULL, &room);
return 0;
}
return 1;
}
/* This function builds a clear packet from <pkt> information (its type)
* into a buffer with <pos> as position pointer and <qel> as QUIC TLS encryption
* level for <conn> QUIC connection and <qel> as QUIC TLS encryption level,
* filling the buffer with as much frames as possible.
* The trailing QUIC_TLS_TAG_LEN bytes of this packet are not built. But they are
* reserved so that to ensure there is enough room to build this AEAD TAG after
* having returned from this function.
* This function also updates the value of <buf_pn> pointer to point to the packet
* number field in this packet. <pn_len> will also have the packet number
* length as value.
*
* Always succeeds: this is the responsability of the caller to ensure there is
* enough room to build a packet.
*/
static void qc_do_build_pkt(unsigned char *pos, const unsigned char *end,
struct quic_tx_packet *pkt, int ack, int nb_pto_dgrams,
int64_t pn, size_t *pn_len, unsigned char **buf_pn,
struct quic_enc_level *qel, struct quic_conn *conn)
{
unsigned char *beg;
size_t len, len_frms, padding_len;
struct quic_frame frm = { .type = QUIC_FT_CRYPTO, };
struct quic_frame ack_frm = { .type = QUIC_FT_ACK, };
size_t ack_frm_len;
int64_t largest_acked_pn;
int add_ping_frm;
/* Length field value with CRYPTO frames if present. */
len_frms = 0;
beg = pos;
/* When not probing and not acking, reduce the size of this buffer to respect
* the congestion controller window. So, we do not limit the size of this
* packet if we have an ACK frame to send because an ACK frame is not
* ack-eliciting. This size will be limited if we have ack-eliciting
* frames to send from qel->pktns->tx.frms.
*/
if (!nb_pto_dgrams && !ack) {
size_t path_room;
path_room = quic_path_prep_data(conn->path);
if (end - beg > path_room)
end = beg + path_room;
}
largest_acked_pn = HA_ATOMIC_LOAD(&qel->pktns->tx.largest_acked_pn);
/* packet number length */
*pn_len = quic_packet_number_length(pn, largest_acked_pn);
/* Build the header */
if (pkt->type == QUIC_PACKET_TYPE_SHORT)
quic_build_packet_short_header(&pos, end, *pn_len, conn);
else
quic_build_packet_long_header(&pos, end, pkt->type, *pn_len, conn);
/* XXX FIXME XXX Encode the token length (0) for an Initial packet. */
if (pkt->type == QUIC_PACKET_TYPE_INITIAL)
*pos++ = 0;
/* Ensure there is enough room for the TLS encryption tag */
end -= QUIC_TLS_TAG_LEN;
/* Build an ACK frame if required. */
ack_frm_len = 0;
if (ack && !eb_is_empty(&qel->pktns->rx.arngs.root)) {
ack_frm.tx_ack.ack_delay = 0;
ack_frm.tx_ack.arngs = &qel->pktns->rx.arngs;
/* XXX BE CAREFUL XXX : here we reserved at least one byte for the
* smallest frame (PING) and <*pn_len> more for the packet number. Note
* that from here, we do not know if we will have to send a PING frame.
* This will be decided after having computed the ack-eliciting frames
* to be added to this packet.
*/
ack_frm_len = quic_ack_frm_reduce_sz(&ack_frm, end - 1 - *pn_len - pos);
if (!ack_frm_len) {
ssize_t room = end - pos;
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
conn->conn, NULL, NULL, &room);
BUG_ON(1);
}
}
/* Length field value without the ack-eliciting frames. */
len = ack_frm_len + *pn_len;
if (!MT_LIST_ISEMPTY(&qel->pktns->tx.frms)) {
ssize_t room = end - pos;
/* Initialize the length of the frames built below to <len>.
* If any frame could be successfully built by qc_build_frms(),
* we will have len_frms > len.
*/
len_frms = len;
if (!qc_build_frms(pkt, end - pos, &len_frms, pos - beg, qel, conn))
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
conn->conn, NULL, NULL, &room);
}
add_ping_frm = 0;
padding_len = 0;
if (objt_server(conn->conn->target) &&
pkt->type == QUIC_PACKET_TYPE_INITIAL &&
len < QUIC_INITIAL_PACKET_MINLEN) {
len += padding_len = QUIC_INITIAL_PACKET_MINLEN - len;
}
else if (LIST_ISEMPTY(&pkt->frms) || len_frms == len) {
if (qel->pktns->tx.pto_probe) {
/* If we cannot send a frame, we send a PING frame. */
add_ping_frm = 1;
len += 1;
}
/* If there is no frame at all to follow, add at least a PADDING frame. */
if (!ack_frm_len)
len += padding_len = QUIC_PACKET_PN_MAXLEN - *pn_len;
}
/* Length (of the remaining data). Must not fail because, the buffer size
* has been checked above. Note that we have reserved QUIC_TLS_TAG_LEN bytes
* for the encryption tag. It must be taken into an account for the length
* of this packet.
*/
if (len_frms)
len = len_frms + QUIC_TLS_TAG_LEN;
else
len += QUIC_TLS_TAG_LEN;
if (pkt->type != QUIC_PACKET_TYPE_SHORT)
quic_enc_int(&pos, end, len);
/* Packet number field address. */
*buf_pn = pos;
/* Packet number encoding. */
quic_packet_number_encode(&pos, end, pn, *pn_len);
if (ack_frm_len && !qc_build_frm(&pos, end, &ack_frm, pkt, conn)) {
ssize_t room = end - pos;
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
conn->conn, NULL, NULL, &room);
BUG_ON(1);
}
/* Ack-eliciting frames */
if (!LIST_ISEMPTY(&pkt->frms)) {
struct quic_frame *cf;
list_for_each_entry(cf, &pkt->frms, list) {
if (!qc_build_frm(&pos, end, cf, pkt, conn)) {
ssize_t room = end - pos;
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
conn->conn, NULL, NULL, &room);
BUG_ON(1);
}
}
}
/* Build a PING frame if needed. */
if (add_ping_frm) {
frm.type = QUIC_FT_PING;
if (!qc_build_frm(&pos, end, &frm, pkt, conn)) {
ssize_t room = end - pos;
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
conn->conn, NULL, NULL, &room);
BUG_ON(1);
}
}
/* Build a PADDING frame if needed. */
if (padding_len) {
frm.type = QUIC_FT_PADDING;
frm.padding.len = padding_len;
if (!qc_build_frm(&pos, end, &frm, pkt, conn)) {
ssize_t room = end - pos;
TRACE_PROTO("Not enough room", QUIC_EV_CONN_HPKT,
conn->conn, NULL, NULL, &room);
BUG_ON(1);
}
}
/* Always reset this variable as this function has no idea
* if it was set. It is handle by the loss detection timer.
*/
qel->pktns->tx.pto_probe = 0;
pkt->len = pos - beg;
}
static inline void quic_tx_packet_init(struct quic_tx_packet *pkt, int type)
{
pkt->type = type;
pkt->len = 0;
pkt->cdata_len = 0;
pkt->in_flight_len = 0;
LIST_INIT(&pkt->frms);
pkt->next = NULL;
pkt->refcnt = 1;
}
/* Free <pkt> TX packet which has not already attached to any tree. */
static inline void free_quic_tx_packet(struct quic_tx_packet *pkt)
{
struct quic_frame *frm, *frmbak;
if (!pkt)
return;
list_for_each_entry_safe(frm, frmbak, &pkt->frms, list) {
LIST_DELETE(&frm->list);
pool_free(pool_head_quic_frame, frm);
}
quic_tx_packet_refdec(pkt);
}
/* Build a packet into <buf> packet buffer with <pkt_type> as packet
* type for <qc> QUIC connection from <qel> encryption level.
* Return -2 if the packet could not be allocated or encrypted for any reason,
* -1 if there was not enough room to build a packet.
*/
static struct quic_tx_packet *qc_build_pkt(unsigned char **pos,
const unsigned char *buf_end,
struct quic_enc_level *qel,
struct quic_conn *qc, int pkt_type,
int ack, int nb_pto_dgrams, int *err)
{
/* The pointer to the packet number field. */
unsigned char *buf_pn;
unsigned char *beg, *end, *payload;
int64_t pn;
size_t pn_len, payload_len, aad_len;
struct quic_tls_ctx *tls_ctx;
struct quic_tx_packet *pkt;
TRACE_ENTER(QUIC_EV_CONN_HPKT, qc->conn, NULL, qel);
*err = 0;
pkt = pool_alloc(pool_head_quic_tx_packet);
if (!pkt) {
TRACE_DEVEL("Not enough memory for a new packet", QUIC_EV_CONN_HPKT, qc->conn);
*err = -2;
goto err;
}
quic_tx_packet_init(pkt, pkt_type);
beg = *pos;
pn_len = 0;
buf_pn = NULL;
if (!qc_eval_pkt(buf_end - beg, pkt, ack, nb_pto_dgrams, qel, qc)) {
*err = -1;
goto err;
}
/* Consume a packet number. */
pn = HA_ATOMIC_ADD_FETCH(&qel->pktns->tx.next_pn, 1);
qc_do_build_pkt(*pos, buf_end, pkt, ack, nb_pto_dgrams, pn, &pn_len, &buf_pn, qel, qc);
end = beg + pkt->len;
payload = buf_pn + pn_len;
payload_len = end - payload;
aad_len = payload - beg;
tls_ctx = &qel->tls_ctx;
if (!quic_packet_encrypt(payload, payload_len, beg, aad_len, pn, tls_ctx, qc->conn)) {
*err = -2;
goto err;
}
end += QUIC_TLS_TAG_LEN;
pkt->len += QUIC_TLS_TAG_LEN;
if (!quic_apply_header_protection(beg, buf_pn, pn_len,
tls_ctx->tx.hp, tls_ctx->tx.hp_key)) {
TRACE_DEVEL("Could not apply the header protection", QUIC_EV_CONN_HPKT, qc->conn);
*err = -2;
goto err;
}
/* Now that a correct packet is built, let us consume <*pos> buffer. */
*pos = end;
/* Attach the built packet to its tree. */
pkt->pn_node.key = pn;
/* Set the packet in fligth length for in flight packet only. */
if (pkt->flags & QUIC_FL_TX_PACKET_IN_FLIGHT) {
pkt->in_flight_len = pkt->len;
qc->path->prep_in_flight += pkt->len;
}
pkt->pktns = qel->pktns;
TRACE_LEAVE(QUIC_EV_CONN_HPKT, qc->conn, pkt);
return pkt;
err:
free_quic_tx_packet(pkt);
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_HPKT, qc->conn);
return NULL;
}
/* Copy up to <count> bytes from connection <conn> internal stream storage into buffer <buf>.
* Return the number of bytes which have been copied.
*/
static size_t quic_conn_to_buf(struct connection *conn, void *xprt_ctx,
struct buffer *buf, size_t count, int flags)
{
size_t try, done = 0;
if (!conn_ctrl_ready(conn))
return 0;
if (!fd_recv_ready(conn->handle.fd))
return 0;
conn->flags &= ~CO_FL_WAIT_ROOM;
/* read the largest possible block. For this, we perform only one call
* to recv() unless the buffer wraps and we exactly fill the first hunk,
* in which case we accept to do it once again.
*/
while (count > 0) {
try = b_contig_space(buf);
if (!try)
break;
if (try > count)
try = count;
b_add(buf, try);
done += try;
count -= try;
}
if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN) && done)
conn->flags &= ~CO_FL_WAIT_L4_CONN;
leave:
return done;
read0:
conn_sock_read0(conn);
conn->flags &= ~CO_FL_WAIT_L4_CONN;
/* Now a final check for a possible asynchronous low-level error
* report. This can happen when a connection receives a reset
* after a shutdown, both POLL_HUP and POLL_ERR are queued, and
* we might have come from there by just checking POLL_HUP instead
* of recv()'s return value 0, so we have no way to tell there was
* an error without checking.
*/
if (unlikely(fdtab[conn->handle.fd].state & FD_POLL_ERR))
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
goto leave;
}
/* Send up to <count> pending bytes from buffer <buf> to connection <conn>'s
* socket. <flags> may contain some CO_SFL_* flags to hint the system about
* other pending data for example, but this flag is ignored at the moment.
* Only one call to send() is performed, unless the buffer wraps, in which case
* a second call may be performed. The connection's flags are updated with
* whatever special event is detected (error, empty). The caller is responsible
* for taking care of those events and avoiding the call if inappropriate. The
* function does not call the connection's polling update function, so the caller
* is responsible for this. It's up to the caller to update the buffer's contents
* based on the return value.
*/
static size_t quic_conn_from_buf(struct connection *conn, void *xprt_ctx, const struct buffer *buf, size_t count, int flags)
{
ssize_t ret;
size_t try, done;
int send_flag;
if (!conn_ctrl_ready(conn))
return 0;
if (!fd_send_ready(conn->handle.fd))
return 0;
done = 0;
/* send the largest possible block. For this we perform only one call
* to send() unless the buffer wraps and we exactly fill the first hunk,
* in which case we accept to do it once again.
*/
while (count) {
try = b_contig_data(buf, done);
if (try > count)
try = count;
send_flag = MSG_DONTWAIT | MSG_NOSIGNAL;
if (try < count || flags & CO_SFL_MSG_MORE)
send_flag |= MSG_MORE;
ret = sendto(conn->handle.fd, b_peek(buf, done), try, send_flag,
(struct sockaddr *)conn->dst, get_addr_len(conn->dst));
if (ret > 0) {
count -= ret;
done += ret;
/* A send succeeded, so we can consider ourself connected */
conn->flags |= CO_FL_WAIT_L4L6;
/* if the system buffer is full, don't insist */
if (ret < try)
break;
}
else if (ret == 0 || errno == EAGAIN || errno == ENOTCONN || errno == EINPROGRESS) {
/* nothing written, we need to poll for write first */
fd_cant_send(conn->handle.fd);
break;
}
else if (errno != EINTR) {
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
break;
}
}
if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN) && done)
conn->flags &= ~CO_FL_WAIT_L4_CONN;
if (done > 0) {
/* we count the total bytes sent, and the send rate for 32-byte
* blocks. The reason for the latter is that freq_ctr are
* limited to 4GB and that it's not enough per second.
*/
_HA_ATOMIC_ADD(&global.out_bytes, done);
update_freq_ctr(&global.out_32bps, (done + 16) / 32);
}
return done;
}
/* Called from the upper layer, to subscribe <es> to events <event_type>. The
* event subscriber <es> is not allowed to change from a previous call as long
* as at least one event is still subscribed. The <event_type> must only be a
* combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0.
*/
static int quic_conn_subscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es)
{
return conn_subscribe(conn, xprt_ctx, event_type, es);
}
/* Called from the upper layer, to unsubscribe <es> from events <event_type>.
* The <es> pointer is not allowed to differ from the one passed to the
* subscribe() call. It always returns zero.
*/
static int quic_conn_unsubscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es)
{
return conn_unsubscribe(conn, xprt_ctx, event_type, es);
}
/* Initialize a QUIC connection (quic_conn struct) to be attached to <conn>
* connection with <xprt_ctx> as address of the xprt context.
* Returns 1 if succeeded, 0 if not.
*/
static int qc_conn_init(struct connection *conn, void **xprt_ctx)
{
struct ssl_sock_ctx *ctx;
TRACE_ENTER(QUIC_EV_CONN_NEW, conn);
if (*xprt_ctx)
goto out;
ctx = pool_alloc(pool_head_quic_conn_ctx);
if (!ctx) {
conn->err_code = CO_ER_SYS_MEMLIM;
goto err;
}
ctx->wait_event.tasklet = tasklet_new();
if (!ctx->wait_event.tasklet) {
conn->err_code = CO_ER_SYS_MEMLIM;
goto err;
}
ctx->wait_event.tasklet->process = quic_conn_io_cb;
ctx->wait_event.tasklet->context = ctx;
ctx->wait_event.events = 0;
ctx->conn = conn;
ctx->subs = NULL;
ctx->xprt_ctx = NULL;
ctx->xprt = xprt_get(XPRT_QUIC);
if (objt_server(conn->target)) {
/* Server */
struct server *srv = __objt_server(conn->target);
unsigned char dcid[QUIC_CID_LEN];
struct quic_conn *qc;
int ssl_err, ipv4;
ssl_err = SSL_ERROR_NONE;
if (RAND_bytes(dcid, sizeof dcid) != 1)
goto err;
ipv4 = conn->dst->ss_family == AF_INET;
qc = qc_new_conn(QUIC_PROTOCOL_VERSION_DRAFT_28, ipv4,
dcid, sizeof dcid, NULL, 0, 0, srv);
if (qc == NULL)
goto err;
/* Insert our SCID, the connection ID for the QUIC client. */
ebmb_insert(&srv->cids, &qc->scid_node, qc->scid.len);
conn->qc = qc;
qc->conn = conn;
if (!qc_new_isecs(qc, dcid, sizeof dcid, 0))
goto err;
if (ssl_bio_and_sess_init(conn, srv->ssl_ctx.ctx,
&ctx->ssl, &ctx->bio, ha_quic_meth, ctx) == -1)
goto err;
qc->rx.params = srv->quic_params;
/* Copy the initial source connection ID. */
quic_cid_cpy(&qc->rx.params.initial_source_connection_id, &qc->scid);
qc->enc_params_len =
quic_transport_params_encode(qc->enc_params, qc->enc_params + sizeof qc->enc_params,
&qc->rx.params, 0);
if (!qc->enc_params_len)
goto err;
SSL_set_quic_transport_params(ctx->ssl, qc->enc_params, qc->enc_params_len);
SSL_set_connect_state(ctx->ssl);
ssl_err = SSL_do_handshake(ctx->ssl);
if (ssl_err != 1) {
int st;
st = HA_ATOMIC_LOAD(&qc->state);
ssl_err = SSL_get_error(ctx->ssl, ssl_err);
if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) {
TRACE_PROTO("SSL handshake", QUIC_EV_CONN_HDSHK, ctx->conn, &st, &ssl_err);
}
else {
TRACE_DEVEL("SSL handshake error", QUIC_EV_CONN_HDSHK, ctx->conn, &st, &ssl_err);
goto err;
}
}
}
else if (objt_listener(conn->target)) {
/* Listener */
struct bind_conf *bc = __objt_listener(conn->target)->bind_conf;
struct quic_conn *qc = ctx->conn->qc;
if (ssl_bio_and_sess_init(conn, bc->initial_ctx,
&ctx->ssl, &ctx->bio, ha_quic_meth, ctx) == -1)
goto err;
SSL_set_quic_transport_params(ctx->ssl, qc->enc_params, qc->enc_params_len);
SSL_set_accept_state(ctx->ssl);
}
*xprt_ctx = ctx;
/* Leave init state and start handshake */
conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN;
out:
TRACE_LEAVE(QUIC_EV_CONN_NEW, conn);
return 0;
err:
if (ctx && ctx->wait_event.tasklet)
tasklet_free(ctx->wait_event.tasklet);
pool_free(pool_head_quic_conn_ctx, ctx);
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_NEW, conn);
return -1;
}
/* Start the QUIC transport layer */
static int qc_xprt_start(struct connection *conn, void *ctx)
{
struct quic_conn *qc;
struct ssl_sock_ctx *qctx = ctx;
qc = conn->qc;
if (!quic_conn_init_timer(qc)) {
TRACE_PROTO("Non initialized timer", QUIC_EV_CONN_LPKT, conn);
return 0;
}
tasklet_wakeup(qctx->wait_event.tasklet);
return 1;
}
/* transport-layer operations for QUIC connections. */
static struct xprt_ops ssl_quic = {
.snd_buf = quic_conn_from_buf,
.rcv_buf = quic_conn_to_buf,
.subscribe = quic_conn_subscribe,
.unsubscribe = quic_conn_unsubscribe,
.init = qc_conn_init,
.start = qc_xprt_start,
.prepare_bind_conf = ssl_sock_prepare_bind_conf,
.destroy_bind_conf = ssl_sock_destroy_bind_conf,
.name = "QUIC",
};
__attribute__((constructor))
static void __quic_conn_init(void)
{
ha_quic_meth = BIO_meth_new(0x666, "ha QUIC methods");
xprt_register(XPRT_QUIC, &ssl_quic);
}
__attribute__((destructor))
static void __quic_conn_deinit(void)
{
BIO_meth_free(ha_quic_meth);
}
/* Read all the QUIC packets found in <buf> with <len> as length (typically a UDP
* datagram), <ctx> being the QUIC I/O handler context, from QUIC connections,
* calling <func> function;
* Return the number of bytes read if succeeded, -1 if not.
*/
static ssize_t quic_dgram_read(char *buf, size_t len, void *owner,
struct sockaddr_storage *saddr, qpkt_read_func *func)
{
unsigned char *pos;
const unsigned char *end;
struct quic_dgram_ctx dgram_ctx = {
.dcid_node = NULL,
.owner = owner,
};
pos = (unsigned char *)buf;
end = pos + len;
do {
int ret;
struct quic_rx_packet *pkt;
pkt = pool_zalloc(pool_head_quic_rx_packet);
if (!pkt)
goto err;
quic_rx_packet_refinc(pkt);
ret = func(&pos, end, pkt, &dgram_ctx, saddr);
if (ret == -1) {
size_t pkt_len;
pkt_len = pkt->len;
free_quic_rx_packet(pkt);
/* If the packet length could not be found, we cannot continue. */
if (!pkt_len)
break;
}
} while (pos < end);
/* Increasing the received bytes counter by the UDP datagram length
* if this datagram could be associated to a connection.
*/
if (dgram_ctx.qc)
dgram_ctx.qc->rx.bytes += len;
return pos - (unsigned char *)buf;
err:
return -1;
}
ssize_t quic_lstnr_dgram_read(char *buf, size_t len, void *owner,
struct sockaddr_storage *saddr)
{
return quic_dgram_read(buf, len, owner, saddr, qc_lstnr_pkt_rcv);
}
ssize_t quic_srv_dgram_read(char *buf, size_t len, void *owner,
struct sockaddr_storage *saddr)
{
return quic_dgram_read(buf, len, owner, saddr, qc_srv_pkt_rcv);
}
/* QUIC I/O handler for connection to local listeners or remove servers
* depending on <listener> boolean value, with <fd> as socket file
* descriptor and <ctx> as context.
*/
static size_t quic_conn_handler(int fd, void *ctx, qpkt_read_func *func)
{
ssize_t ret;
size_t done = 0;
struct buffer *buf = get_trash_chunk();
/* Source address */
struct sockaddr_storage saddr = {0};
socklen_t saddrlen = sizeof saddr;
if (!fd_recv_ready(fd))
return 0;
do {
ret = recvfrom(fd, buf->area, buf->size, 0,
(struct sockaddr *)&saddr, &saddrlen);
if (ret < 0) {
if (errno == EINTR)
continue;
if (errno == EAGAIN)
fd_cant_recv(fd);
goto out;
}
} while (0);
done = buf->data = ret;
quic_dgram_read(buf->area, buf->data, ctx, &saddr, func);
out:
return done;
}
/* QUIC I/O handler for connections to local listeners with <fd> as socket
* file descriptor.
*/
void quic_fd_handler(int fd)
{
if (fdtab[fd].state & FD_POLL_IN)
quic_conn_handler(fd, fdtab[fd].owner, &qc_lstnr_pkt_rcv);
}
/* QUIC I/O handler for connections to remote servers with <fd> as socket
* file descriptor.
*/
void quic_conn_fd_handler(int fd)
{
if (fdtab[fd].state & FD_POLL_IN)
quic_conn_handler(fd, fdtab[fd].owner, &qc_srv_pkt_rcv);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/