blob: 0b76ef4492c3e7391fe5a8cefe9e8e87fe924c74 [file] [log] [blame]
/*
* HTT/1 mux-demux for connections
*
* Copyright 2018 Christopher Faulet <cfaulet@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <common/cfgparse.h>
#include <common/config.h>
#include <common/h1.h>
#include <common/h2.h>
#include <common/htx.h>
#include <common/initcall.h>
#include <types/pipe.h>
#include <types/proxy.h>
#include <types/session.h>
#include <proto/connection.h>
#include <proto/http_htx.h>
#include <proto/log.h>
#include <proto/session.h>
#include <proto/stream.h>
#include <proto/stream_interface.h>
/*
* H1 Connection flags (32 bits)
*/
#define H1C_F_NONE 0x00000000
/* Flags indicating why writing output data are blocked */
#define H1C_F_OUT_ALLOC 0x00000001 /* mux is blocked on lack of output buffer */
#define H1C_F_OUT_FULL 0x00000002 /* mux is blocked on output buffer full */
/* 0x00000004 - 0x00000008 unused */
/* Flags indicating why reading input data are blocked. */
#define H1C_F_IN_ALLOC 0x00000010 /* mux is blocked on lack of input buffer */
#define H1C_F_IN_FULL 0x00000020 /* mux is blocked on input buffer full */
#define H1C_F_IN_BUSY 0x00000040
/* 0x00000040 - 0x00000800 unused */
#define H1C_F_CS_ERROR 0x00001000 /* connection must be closed ASAP because an error occurred */
#define H1C_F_CS_SHUTW_NOW 0x00002000 /* connection must be shut down for writes ASAP */
#define H1C_F_CS_SHUTDOWN 0x00004000 /* connection is shut down for read and writes */
#define H1C_F_CS_WAIT_CONN 0x00008000 /* waiting for the connection establishment */
#define H1C_F_WAIT_NEXT_REQ 0x00010000 /* waiting for the next request to start, use keep-alive timeout */
#define H1C_F_UPG_H2C 0x00020000 /* set if an upgrade to h2 should be done */
/*
* H1 Stream flags (32 bits)
*/
#define H1S_F_NONE 0x00000000
#define H1S_F_ERROR 0x00000001 /* An error occurred on the H1 stream */
#define H1S_F_REQ_ERROR 0x00000002 /* An error occurred during the request parsing/xfer */
#define H1S_F_RES_ERROR 0x00000004 /* An error occurred during the response parsing/xfer */
#define H1S_F_REOS 0x00000008 /* End of input stream seen even if not delivered yet */
#define H1S_F_WANT_KAL 0x00000010
#define H1S_F_WANT_TUN 0x00000020
#define H1S_F_WANT_CLO 0x00000040
#define H1S_F_WANT_MSK 0x00000070
#define H1S_F_NOT_FIRST 0x00000080 /* The H1 stream is not the first one */
#define H1S_F_BUF_FLUSH 0x00000100 /* Flush input buffer and don't read more data */
#define H1S_F_SPLICED_DATA 0x00000200 /* Set when the kernel splicing is in used */
#define H1S_F_HAVE_I_EOD 0x00000400 /* Set during input process to know the last empty chunk was processed */
#define H1S_F_HAVE_I_TLR 0x00000800 /* Set during input process to know the trailers were processed */
#define H1S_F_HAVE_O_EOD 0x00001000 /* Set during output process to know the last empty chunk was processed */
#define H1S_F_HAVE_O_TLR 0x00002000 /* Set during output process to know the trailers were processed */
/* H1 connection descriptor */
struct h1c {
struct connection *conn;
struct proxy *px;
uint32_t flags; /* Connection flags: H1C_F_* */
struct buffer ibuf; /* Input buffer to store data before parsing */
struct buffer obuf; /* Output buffer to store data after reformatting */
struct buffer_wait buf_wait; /* Wait list for buffer allocation */
struct wait_event wait_event; /* To be used if we're waiting for I/Os */
struct h1s *h1s; /* H1 stream descriptor */
struct task *task; /* timeout management task */
int timeout; /* idle timeout duration in ticks */
int shut_timeout; /* idle timeout duration in ticks after stream shutdown */
};
/* H1 stream descriptor */
struct h1s {
struct h1c *h1c;
struct conn_stream *cs;
struct cs_info csinfo; /* CS info, only used for client connections */
uint32_t flags; /* Connection flags: H1S_F_* */
struct wait_event *recv_wait; /* Address of the wait_event the conn_stream associated is waiting on */
struct wait_event *send_wait; /* Address of the wait_event the conn_stream associated is waiting on */
struct session *sess; /* Associated session */
struct h1m req;
struct h1m res;
enum http_meth_t meth; /* HTTP resquest method */
uint16_t status; /* HTTP response status */
};
/* the h1c and h1s pools */
DECLARE_STATIC_POOL(pool_head_h1c, "h1c", sizeof(struct h1c));
DECLARE_STATIC_POOL(pool_head_h1s, "h1s", sizeof(struct h1s));
static int h1_recv(struct h1c *h1c);
static int h1_send(struct h1c *h1c);
static int h1_process(struct h1c *h1c);
static struct task *h1_io_cb(struct task *t, void *ctx, unsigned short state);
static void h1_shutw_conn(struct connection *conn, enum cs_shw_mode mode);
static struct task *h1_timeout_task(struct task *t, void *context, unsigned short state);
/*****************************************************/
/* functions below are for dynamic buffer management */
/*****************************************************/
/*
* Indicates whether or not the we may call the h1_recv() function to
* attempt to receive data into the buffer and/or parse pending data. The
* condition is a bit complex due to some API limits for now. The rules are the
* following :
* - if an error or a shutdown was detected on the connection and the buffer
* is empty, we must not attempt to receive
* - if the input buffer failed to be allocated, we must not try to receive
* and we know there is nothing pending
* - if no flag indicates a blocking condition, we may attempt to receive,
* regardless of whether the input buffer is full or not, so that only de
* receiving part decides whether or not to block. This is needed because
* the connection API indeed prevents us from re-enabling receipt that is
* already enabled in a polled state, so we must always immediately stop as
* soon as the mux can't proceed so as never to hit an end of read with data
* pending in the buffers.
* - otherwise must may not attempt to receive
*/
static inline int h1_recv_allowed(const struct h1c *h1c)
{
if (b_data(&h1c->ibuf) == 0 && (h1c->flags & (H1C_F_CS_ERROR|H1C_F_CS_SHUTDOWN)))
return 0;
if (h1c->conn->flags & CO_FL_ERROR || conn_xprt_read0_pending(h1c->conn))
return 0;
if (!(h1c->flags & (H1C_F_IN_ALLOC|H1C_F_IN_FULL|H1C_F_IN_BUSY)))
return 1;
return 0;
}
/*
* Tries to grab a buffer and to re-enables processing on mux <target>. The h1
* flags are used to figure what buffer was requested. It returns 1 if the
* allocation succeeds, in which case the connection is woken up, or 0 if it's
* impossible to wake up and we prefer to be woken up later.
*/
static int h1_buf_available(void *target)
{
struct h1c *h1c = target;
if ((h1c->flags & H1C_F_IN_ALLOC) && b_alloc_margin(&h1c->ibuf, 0)) {
h1c->flags &= ~H1C_F_IN_ALLOC;
if (h1_recv_allowed(h1c))
tasklet_wakeup(h1c->wait_event.task);
return 1;
}
if ((h1c->flags & H1C_F_OUT_ALLOC) && b_alloc_margin(&h1c->obuf, 0)) {
h1c->flags &= ~H1C_F_OUT_ALLOC;
tasklet_wakeup(h1c->wait_event.task);
return 1;
}
return 0;
}
/*
* Allocate a buffer. If if fails, it adds the mux in buffer wait queue.
*/
static inline struct buffer *h1_get_buf(struct h1c *h1c, struct buffer *bptr)
{
struct buffer *buf = NULL;
if (likely(LIST_ISEMPTY(&h1c->buf_wait.list)) &&
unlikely((buf = b_alloc_margin(bptr, 0)) == NULL)) {
h1c->buf_wait.target = h1c;
h1c->buf_wait.wakeup_cb = h1_buf_available;
HA_SPIN_LOCK(BUF_WQ_LOCK, &buffer_wq_lock);
LIST_ADDQ(&buffer_wq, &h1c->buf_wait.list);
HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock);
__conn_xprt_stop_recv(h1c->conn);
}
return buf;
}
/*
* Release a buffer, if any, and try to wake up entities waiting in the buffer
* wait queue.
*/
static inline void h1_release_buf(struct h1c *h1c, struct buffer *bptr)
{
if (bptr->size) {
b_free(bptr);
offer_buffers(h1c->buf_wait.target, tasks_run_queue);
}
}
/* returns the number of streams in use on a connection to figure if it's
* idle or not. We can't have an h1s without a CS so checking h1s is fine,
* as the caller will want to know if it was the last one after a detach().
*/
static int h1_used_streams(struct connection *conn)
{
struct h1c *h1c = conn->ctx;
return h1c->h1s ? 1 : 0;
}
/* returns the number of streams still available on a connection */
static int h1_avail_streams(struct connection *conn)
{
return 1 - h1_used_streams(conn);
}
/*****************************************************************/
/* functions below are dedicated to the mux setup and management */
/*****************************************************************/
/* returns non-zero if there are input data pending for stream h1s. */
static inline size_t h1s_data_pending(const struct h1s *h1s)
{
const struct h1m *h1m;
h1m = conn_is_back(h1s->h1c->conn) ? &h1s->res : &h1s->req;
if (h1m->state == H1_MSG_DONE)
return 0; // data not for this stream (e.g. pipelining)
return b_data(&h1s->h1c->ibuf);
}
static struct conn_stream *h1s_new_cs(struct h1s *h1s)
{
struct conn_stream *cs;
cs = cs_new(h1s->h1c->conn);
if (!cs)
goto err;
h1s->cs = cs;
cs->ctx = h1s;
if (h1s->flags & H1S_F_NOT_FIRST)
cs->flags |= CS_FL_NOT_FIRST;
if (stream_create_from_cs(cs) < 0)
goto err;
return cs;
err:
cs_free(cs);
h1s->cs = NULL;
return NULL;
}
static struct h1s *h1s_create(struct h1c *h1c, struct conn_stream *cs, struct session *sess)
{
struct h1s *h1s;
h1s = pool_alloc(pool_head_h1s);
if (!h1s)
goto fail;
h1s->h1c = h1c;
h1c->h1s = h1s;
h1s->sess = sess;
h1s->cs = NULL;
h1s->flags = H1S_F_WANT_KAL;
h1s->recv_wait = NULL;
h1s->send_wait = NULL;
h1m_init_req(&h1s->req);
h1s->req.flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR);
h1m_init_res(&h1s->res);
h1s->res.flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR);
h1s->status = 0;
h1s->meth = HTTP_METH_OTHER;
if (h1c->flags & H1C_F_WAIT_NEXT_REQ)
h1s->flags |= H1S_F_NOT_FIRST;
h1c->flags &= ~H1C_F_WAIT_NEXT_REQ;
if (!conn_is_back(h1c->conn)) {
if (h1c->px->options2 & PR_O2_REQBUG_OK)
h1s->req.err_pos = -1;
/* For frontend connections we should always have a session */
if (!sess)
sess = h1c->conn->owner;
h1s->csinfo.create_date = sess->accept_date;
h1s->csinfo.tv_create = sess->tv_accept;
h1s->csinfo.t_handshake = sess->t_handshake;
h1s->csinfo.t_idle = -1;
}
else {
if (h1c->px->options2 & PR_O2_RSPBUG_OK)
h1s->res.err_pos = -1;
h1s->csinfo.create_date = date;
h1s->csinfo.tv_create = now;
h1s->csinfo.t_handshake = 0;
h1s->csinfo.t_idle = -1;
}
/* If a conn_stream already exists, attach it to this H1S. Otherwise we
* create a new one.
*/
if (cs) {
cs->ctx = h1s;
h1s->cs = cs;
}
else {
cs = h1s_new_cs(h1s);
if (!cs)
goto fail;
}
return h1s;
fail:
pool_free(pool_head_h1s, h1s);
return NULL;
}
static void h1s_destroy(struct h1s *h1s)
{
if (h1s) {
struct h1c *h1c = h1s->h1c;
h1c->h1s = NULL;
if (h1s->recv_wait != NULL)
h1s->recv_wait->events &= ~SUB_RETRY_RECV;
if (h1s->send_wait != NULL)
h1s->send_wait->events &= ~SUB_RETRY_SEND;
h1c->flags &= ~H1C_F_IN_BUSY;
h1c->flags |= H1C_F_WAIT_NEXT_REQ;
if (h1s->flags & (H1S_F_REQ_ERROR|H1S_F_RES_ERROR))
h1c->flags |= H1C_F_CS_ERROR;
pool_free(pool_head_h1s, h1s);
}
}
static const struct cs_info *h1_get_cs_info(struct conn_stream *cs)
{
struct h1s *h1s = cs->ctx;
if (h1s && !conn_is_back(cs->conn))
return &h1s->csinfo;
return NULL;
}
/*
* Initialize the mux once it's attached. It is expected that conn->ctx points
* to the existing conn_stream (for outgoing connections or for incoming onces
* during a mux upgrade) or NULL (for incoming ones during the connexion
* establishment). <input> is always used as Input buffer and may contain
* data. It is the caller responsibility to not reuse it anymore. Returns < 0 on
* error.
*/
static int h1_init(struct connection *conn, struct proxy *proxy, struct session *sess,
struct buffer *input)
{
struct h1c *h1c;
struct task *t = NULL;
h1c = pool_alloc(pool_head_h1c);
if (!h1c)
goto fail_h1c;
h1c->conn = conn;
h1c->px = proxy;
h1c->flags = H1C_F_NONE;
h1c->ibuf = *input;
h1c->obuf = BUF_NULL;
h1c->h1s = NULL;
h1c->task = NULL;
LIST_INIT(&h1c->buf_wait.list);
h1c->wait_event.task = tasklet_new();
if (!h1c->wait_event.task)
goto fail;
h1c->wait_event.task->process = h1_io_cb;
h1c->wait_event.task->context = h1c;
h1c->wait_event.events = 0;
if (conn_is_back(conn)) {
h1c->shut_timeout = h1c->timeout = proxy->timeout.server;
if (tick_isset(proxy->timeout.serverfin))
h1c->shut_timeout = proxy->timeout.serverfin;
} else {
h1c->shut_timeout = h1c->timeout = proxy->timeout.client;
if (tick_isset(proxy->timeout.clientfin))
h1c->shut_timeout = proxy->timeout.clientfin;
}
if (tick_isset(h1c->timeout)) {
t = task_new(tid_bit);
if (!t)
goto fail;
h1c->task = t;
t->process = h1_timeout_task;
t->context = h1c;
t->expire = tick_add(now_ms, h1c->timeout);
}
if (!(conn->flags & CO_FL_CONNECTED))
h1c->flags |= H1C_F_CS_WAIT_CONN;
/* Always Create a new H1S */
if (!h1s_create(h1c, conn->ctx, sess))
goto fail;
conn->ctx = h1c;
if (t)
task_queue(t);
/* Try to read, if nothing is available yet we'll just subscribe */
tasklet_wakeup(h1c->wait_event.task);
/* mux->wake will be called soon to complete the operation */
return 0;
fail:
task_destroy(t);
if (h1c->wait_event.task)
tasklet_free(h1c->wait_event.task);
pool_free(pool_head_h1c, h1c);
fail_h1c:
return -1;
}
/* release function. This one should be called to free all resources allocated
* to the mux.
*/
static void h1_release(struct h1c *h1c)
{
struct connection *conn = NULL;
if (h1c) {
/* The connection must be aattached to this mux to be released */
if (h1c->conn && h1c->conn->ctx == h1c)
conn = h1c->conn;
if (conn && h1c->flags & H1C_F_UPG_H2C) {
h1c->flags &= ~H1C_F_UPG_H2C;
if (conn_upgrade_mux_fe(conn, NULL, &h1c->ibuf, ist("h2"), PROTO_MODE_HTX) != -1) {
/* connection successfully upgraded to H2, this
* mux was already released */
return;
}
sess_log(conn->owner); /* Log if the upgrade failed */
}
if (!LIST_ISEMPTY(&h1c->buf_wait.list)) {
HA_SPIN_LOCK(BUF_WQ_LOCK, &buffer_wq_lock);
LIST_DEL(&h1c->buf_wait.list);
LIST_INIT(&h1c->buf_wait.list);
HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock);
}
h1_release_buf(h1c, &h1c->ibuf);
h1_release_buf(h1c, &h1c->obuf);
if (h1c->task) {
h1c->task->context = NULL;
task_wakeup(h1c->task, TASK_WOKEN_OTHER);
h1c->task = NULL;
}
if (h1c->wait_event.task)
tasklet_free(h1c->wait_event.task);
h1s_destroy(h1c->h1s);
if (conn && h1c->wait_event.events != 0)
conn->xprt->unsubscribe(conn, conn->xprt_ctx, h1c->wait_event.events,
&h1c->wait_event);
pool_free(pool_head_h1c, h1c);
}
if (conn) {
conn->mux = NULL;
conn->ctx = NULL;
conn_stop_tracking(conn);
conn_full_close(conn);
if (conn->destroy_cb)
conn->destroy_cb(conn);
conn_free(conn);
}
}
/******************************************************/
/* functions below are for the H1 protocol processing */
/******************************************************/
/* Parse the request version and set H1_MF_VER_11 on <h1m> if the version is
* greater or equal to 1.1
*/
static void h1_parse_req_vsn(struct h1m *h1m, const struct htx_sl *sl)
{
const char *p = HTX_SL_REQ_VPTR(sl);
if ((HTX_SL_REQ_VLEN(sl) == 8) &&
(*(p + 5) > '1' ||
(*(p + 5) == '1' && *(p + 7) >= '1')))
h1m->flags |= H1_MF_VER_11;
}
/* Parse the response version and set H1_MF_VER_11 on <h1m> if the version is
* greater or equal to 1.1
*/
static void h1_parse_res_vsn(struct h1m *h1m, const struct htx_sl *sl)
{
const char *p = HTX_SL_RES_VPTR(sl);
if ((HTX_SL_RES_VLEN(sl) == 8) &&
(*(p + 5) > '1' ||
(*(p + 5) == '1' && *(p + 7) >= '1')))
h1m->flags |= H1_MF_VER_11;
}
/*
* Check the validity of the request version. If the version is valid, it
* returns 1. Otherwise, it returns 0.
*/
static int h1_process_req_vsn(struct h1s *h1s, struct h1m *h1m, union h1_sl sl)
{
struct h1c *h1c = h1s->h1c;
/* RFC7230#2.6 has enforced the format of the HTTP version string to be
* exactly one digit "." one digit. This check may be disabled using
* option accept-invalid-http-request.
*/
if (!(h1c->px->options2 & PR_O2_REQBUG_OK)) {
if (sl.rq.v.len != 8)
return 0;
if (*(sl.rq.v.ptr + 4) != '/' ||
!isdigit((unsigned char)*(sl.rq.v.ptr + 5)) ||
*(sl.rq.v.ptr + 6) != '.' ||
!isdigit((unsigned char)*(sl.rq.v.ptr + 7)))
return 0;
}
else if (!sl.rq.v.len) {
/* try to convert HTTP/0.9 requests to HTTP/1.0 */
/* RFC 1945 allows only GET for HTTP/0.9 requests */
if (sl.rq.meth != HTTP_METH_GET)
return 0;
/* HTTP/0.9 requests *must* have a request URI, per RFC 1945 */
if (!sl.rq.u.len)
return 0;
/* Add HTTP version */
sl.rq.v = ist("HTTP/1.0");
return 1;
}
if ((sl.rq.v.len == 8) &&
((*(sl.rq.v.ptr + 5) > '1') ||
((*(sl.rq.v.ptr + 5) == '1') && (*(sl.rq.v.ptr + 7) >= '1'))))
h1m->flags |= H1_MF_VER_11;
return 1;
}
/*
* Check the validity of the response version. If the version is valid, it
* returns 1. Otherwise, it returns 0.
*/
static int h1_process_res_vsn(struct h1s *h1s, struct h1m *h1m, union h1_sl sl)
{
struct h1c *h1c = h1s->h1c;
/* RFC7230#2.6 has enforced the format of the HTTP version string to be
* exactly one digit "." one digit. This check may be disabled using
* option accept-invalid-http-request.
*/
if (!(h1c->px->options2 & PR_O2_RSPBUG_OK)) {
if (sl.st.v.len != 8)
return 0;
if (*(sl.st.v.ptr + 4) != '/' ||
!isdigit((unsigned char)*(sl.st.v.ptr + 5)) ||
*(sl.st.v.ptr + 6) != '.' ||
!isdigit((unsigned char)*(sl.st.v.ptr + 7)))
return 0;
}
if ((sl.st.v.len == 8) &&
((*(sl.st.v.ptr + 5) > '1') ||
((*(sl.st.v.ptr + 5) == '1') && (*(sl.st.v.ptr + 7) >= '1'))))
h1m->flags |= H1_MF_VER_11;
return 1;
}
/* Deduce the connection mode of the client connection, depending on the
* configuration and the H1 message flags. This function is called twice, the
* first time when the request is parsed and the second time when the response
* is parsed.
*/
static void h1_set_cli_conn_mode(struct h1s *h1s, struct h1m *h1m)
{
struct proxy *fe = h1s->h1c->px;
if (h1m->flags & H1_MF_RESP) {
/* Output direction: second pass */
if ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) ||
h1s->status == 101) {
/* Either we've established an explicit tunnel, or we're
* switching the protocol. In both cases, we're very unlikely to
* understand the next protocols. We have to switch to tunnel
* mode, so that we transfer the request and responses then let
* this protocol pass unmodified. When we later implement
* specific parsers for such protocols, we'll want to check the
* Upgrade header which contains information about that protocol
* for responses with status 101 (eg: see RFC2817 about TLS).
*/
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_TUN;
}
else if (h1s->flags & H1S_F_WANT_KAL) {
/* By default the client is in KAL mode. CLOSE mode mean
* it is imposed by the client itself. So only change
* KAL mode here. */
if (!(h1m->flags & H1_MF_XFER_LEN) || (h1m->flags & H1_MF_CONN_CLO)) {
/* no length known or explicit close => close */
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
}
else if (!(h1m->flags & H1_MF_CONN_KAL) &&
(fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO) {
/* no explict keep-alive and option httpclose => close */
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
}
}
}
else {
/* Input direction: first pass */
if (!(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL)) || h1m->flags & H1_MF_CONN_CLO) {
/* no explicit keep-alive in HTTP/1.0 or explicit close => close*/
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
}
}
/* If KAL, check if the frontend is stopping. If yes, switch in CLO mode */
if (h1s->flags & H1S_F_WANT_KAL && fe->state == PR_STSTOPPED)
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
}
/* Deduce the connection mode of the client connection, depending on the
* configuration and the H1 message flags. This function is called twice, the
* first time when the request is parsed and the second time when the response
* is parsed.
*/
static void h1_set_srv_conn_mode(struct h1s *h1s, struct h1m *h1m)
{
struct session *sess = h1s->sess;
struct proxy *be = h1s->h1c->px;
int fe_flags = sess ? sess->fe->options : 0;
if (h1m->flags & H1_MF_RESP) {
/* Input direction: second pass */
if ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) ||
h1s->status == 101) {
/* Either we've established an explicit tunnel, or we're
* switching the protocol. In both cases, we're very unlikely to
* understand the next protocols. We have to switch to tunnel
* mode, so that we transfer the request and responses then let
* this protocol pass unmodified. When we later implement
* specific parsers for such protocols, we'll want to check the
* Upgrade header which contains information about that protocol
* for responses with status 101 (eg: see RFC2817 about TLS).
*/
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_TUN;
}
else if (h1s->flags & H1S_F_WANT_KAL) {
/* By default the server is in KAL mode. CLOSE mode mean
* it is imposed by haproxy itself. So only change KAL
* mode here. */
if (!(h1m->flags & H1_MF_XFER_LEN) || h1m->flags & H1_MF_CONN_CLO ||
!(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL))){
/* no length known or explicit close or no explicit keep-alive in HTTP/1.0 => close */
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
}
}
}
else {
/* Output direction: first pass */
if (h1m->flags & H1_MF_CONN_CLO) {
/* explicit close => close */
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
}
else if (!(h1m->flags & H1_MF_CONN_KAL) &&
((fe_flags & PR_O_HTTP_MODE) == PR_O_HTTP_SCL ||
(be->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL ||
(fe_flags & PR_O_HTTP_MODE) == PR_O_HTTP_CLO ||
(be->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO)) {
/* no explicit keep-alive option httpclose/server-close => close */
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
}
}
/* If KAL, check if the backend is stopping. If yes, switch in CLO mode */
if (h1s->flags & H1S_F_WANT_KAL && be->state == PR_STSTOPPED)
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
}
static void h1_update_req_conn_value(struct h1s *h1s, struct h1m *h1m, struct ist *conn_val)
{
struct proxy *px = h1s->h1c->px;
/* Don't update "Connection:" header in TUNNEL mode or if "Upgrage"
* token is found
*/
if (h1s->flags & H1S_F_WANT_TUN || h1m->flags & H1_MF_CONN_UPG)
return;
if (h1s->flags & H1S_F_WANT_KAL || px->options2 & PR_O2_FAKE_KA) {
if (!(h1m->flags & H1_MF_VER_11))
*conn_val = ist("keep-alive");
}
else { /* H1S_F_WANT_CLO && !PR_O2_FAKE_KA */
if (h1m->flags & H1_MF_VER_11)
*conn_val = ist("close");
}
}
static void h1_update_res_conn_value(struct h1s *h1s, struct h1m *h1m, struct ist *conn_val)
{
/* Don't update "Connection:" header in TUNNEL mode or if "Upgrage"
* token is found
*/
if (h1s->flags & H1S_F_WANT_TUN || h1m->flags & H1_MF_CONN_UPG)
return;
if (h1s->flags & H1S_F_WANT_KAL) {
if (!(h1m->flags & H1_MF_VER_11) ||
!((h1m->flags & h1s->req.flags) & H1_MF_VER_11))
*conn_val = ist("keep-alive");
}
else { /* H1S_F_WANT_CLO */
if (h1m->flags & H1_MF_VER_11)
*conn_val = ist("close");
}
}
static void h1_process_input_conn_mode(struct h1s *h1s, struct h1m *h1m, struct htx *htx)
{
if (!conn_is_back(h1s->h1c->conn))
h1_set_cli_conn_mode(h1s, h1m);
else
h1_set_srv_conn_mode(h1s, h1m);
}
static void h1_process_output_conn_mode(struct h1s *h1s, struct h1m *h1m, struct ist *conn_val)
{
if (!conn_is_back(h1s->h1c->conn))
h1_set_cli_conn_mode(h1s, h1m);
else
h1_set_srv_conn_mode(h1s, h1m);
if (!(h1m->flags & H1_MF_RESP))
h1_update_req_conn_value(h1s, h1m, conn_val);
else
h1_update_res_conn_value(h1s, h1m, conn_val);
}
/* Append the description of what is present in error snapshot <es> into <out>.
* The description must be small enough to always fit in a buffer. The output
* buffer may be the trash so the trash must not be used inside this function.
*/
static void h1_show_error_snapshot(struct buffer *out, const struct error_snapshot *es)
{
chunk_appendf(out,
" H1 connection flags 0x%08x, H1 stream flags 0x%08x\n"
" H1 msg state %s(%d), H1 msg flags 0x%08x\n"
" H1 chunk len %lld bytes, H1 body len %lld bytes :\n",
es->ctx.h1.c_flags, es->ctx.h1.s_flags,
h1m_state_str(es->ctx.h1.state), es->ctx.h1.state,
es->ctx.h1.m_flags, es->ctx.h1.m_clen, es->ctx.h1.m_blen);
}
/*
* Capture a bad request or response and archive it in the proxy's structure.
* By default it tries to report the error position as h1m->err_pos. However if
* this one is not set, it will then report h1m->next, which is the last known
* parsing point. The function is able to deal with wrapping buffers. It always
* displays buffers as a contiguous area starting at buf->p. The direction is
* determined thanks to the h1m's flags.
*/
static void h1_capture_bad_message(struct h1c *h1c, struct h1s *h1s,
struct h1m *h1m, struct buffer *buf)
{
struct session *sess = h1c->conn->owner;
struct proxy *proxy = h1c->px;
struct proxy *other_end = sess->fe;
union error_snapshot_ctx ctx;
if (h1s->cs->data && !(h1m->flags & H1_MF_RESP))
other_end = si_strm(h1s->cs->data)->be;
/* http-specific part now */
ctx.h1.state = h1m->state;
ctx.h1.c_flags = h1c->flags;
ctx.h1.s_flags = h1s->flags;
ctx.h1.m_flags = h1m->flags;
ctx.h1.m_clen = h1m->curr_len;
ctx.h1.m_blen = h1m->body_len;
proxy_capture_error(proxy, !!(h1m->flags & H1_MF_RESP), other_end,
h1c->conn->target, sess, buf, 0, 0,
(h1m->err_pos >= 0) ? h1m->err_pos : h1m->next,
&ctx, h1_show_error_snapshot);
}
/* Emit the chunksize followed by a CRLF in front of data of the buffer
* <buf>. It goes backwards and starts with the byte before the buffer's
* head. The caller is responsible for ensuring there is enough room left before
* the buffer's head for the string.
*/
static void h1_emit_chunk_size(struct buffer *buf, size_t chksz)
{
char *beg, *end;
beg = end = b_head(buf);
*--beg = '\n';
*--beg = '\r';
do {
*--beg = hextab[chksz & 0xF];
} while (chksz >>= 4);
buf->head -= (end - beg);
b_add(buf, end - beg);
}
/* Emit a CRLF after the data of the buffer <buf>. The caller is responsible for
* ensuring there is enough room left in the buffer for the string. */
static void h1_emit_chunk_crlf(struct buffer *buf)
{
*(b_peek(buf, b_data(buf))) = '\r';
*(b_peek(buf, b_data(buf) + 1)) = '\n';
b_add(buf, 2);
}
/*
* Switch the request to tunnel mode. This function must only be called for
* CONNECT requests. On the client side, the mux is mark as busy on input,
* waiting the response.
*/
static void h1_set_req_tunnel_mode(struct h1s *h1s)
{
h1s->req.flags &= ~(H1_MF_XFER_LEN|H1_MF_CLEN|H1_MF_CHNK);
h1s->req.state = H1_MSG_TUNNEL;
if (!conn_is_back(h1s->h1c->conn))
h1s->h1c->flags |= H1C_F_IN_BUSY;
}
/*
* Switch the response to tunnel mode. This function must only be called on
* successfull replies to CONNECT requests or on protocol switching. On the
* server side, if the request is not finished, the mux is mark as busy on
* input. Otherwise the request is also switch to tunnel mode.
*/
static void h1_set_res_tunnel_mode(struct h1s *h1s)
{
h1s->res.flags &= ~(H1_MF_XFER_LEN|H1_MF_CLEN|H1_MF_CHNK);
h1s->res.state = H1_MSG_TUNNEL;
if (conn_is_back(h1s->h1c->conn) && h1s->req.state < H1_MSG_DONE)
h1s->h1c->flags |= H1C_F_IN_BUSY;
else {
h1s->req.flags &= ~(H1_MF_XFER_LEN|H1_MF_CLEN|H1_MF_CHNK);
h1s->req.state = H1_MSG_TUNNEL;
if (h1s->h1c->flags & H1C_F_IN_BUSY) {
h1s->h1c->flags &= ~H1C_F_IN_BUSY;
tasklet_wakeup(h1s->h1c->wait_event.task);
}
}
}
/* Estimate the size of the HTX request after the parsing. */
static size_t h1_eval_htx_req_size(struct h1m *h1m, union h1_sl *h1sl, struct http_hdr *hdrs)
{
size_t sz;
int i;
/* size of the HTX start-line */
sz = sizeof(struct htx_sl) + h1sl->rq.m.len + h1sl->rq.u.len + h1sl->rq.v.len;
/* size of all HTX headers */
for (i = 0; hdrs[i].n.len; i++)
sz += sizeof(struct htx_blk) + hdrs[i].n.len + hdrs[i].v.len;
/* size of the EOH */
sz += sizeof(struct htx_blk) + 1;
/* size of the EOM */
if (h1m->state == H1_MSG_DONE)
sz += sizeof(struct htx_blk) + 1;
return sz;
}
/* Estimate the size of the HTX response after the parsing. */
static size_t h1_eval_htx_res_size(struct h1m *h1m, union h1_sl *h1sl, struct http_hdr *hdrs)
{
size_t sz;
int i;
/* size of the HTX start-line */
sz = sizeof(struct htx_sl) + h1sl->st.v.len + h1sl->st.c.len + h1sl->st.r.len;
/* size of all HTX headers */
for (i = 0; hdrs[i].n.len; i++)
sz += sizeof(struct htx_blk) + hdrs[i].n.len + hdrs[i].v.len;
/* size of the EOH */
sz += sizeof(struct htx_blk) + 1;
/* size of the EOM */
if (h1m->state == H1_MSG_DONE)
sz += sizeof(struct htx_blk) + 1;
return sz;
}
/*
* Parse HTTP/1 headers. It returns the number of bytes parsed if > 0, or 0 if
* it couldn't proceed. Parsing errors are reported by setting H1S_F_*_ERROR
* flag and filling h1s->err_pos and h1s->err_state fields. This functions is
* responsible to update the parser state <h1m>.
*/
static size_t h1_process_headers(struct h1s *h1s, struct h1m *h1m, struct htx *htx,
struct buffer *buf, size_t *ofs, size_t max)
{
struct htx_sl *sl;
struct http_hdr hdrs[MAX_HTTP_HDR];
union h1_sl h1sl;
unsigned int flags = HTX_SL_F_NONE;
size_t used;
int ret = 0;
if (!max || !b_data(buf))
goto end;
/* Realing input buffer if necessary */
if (b_head(buf) + b_data(buf) > b_wrap(buf))
b_slow_realign(buf, trash.area, 0);
if (!(h1m->flags & H1_MF_RESP)) {
/* Try to match H2 preface before parsing the request headers. */
ret = b_isteq(buf, 0, b_data(buf), ist(H2_CONN_PREFACE));
if (ret > 0)
goto h2c_upgrade;
}
ret = h1_headers_to_hdr_list(b_peek(buf, *ofs), b_tail(buf),
hdrs, sizeof(hdrs)/sizeof(hdrs[0]), h1m, &h1sl);
if (ret <= 0) {
/* Incomplete or invalid message. If the buffer is full, it's an
* error because headers are too large to be handled by the
* parser. */
if (ret < 0 || (!ret && b_full(buf)))
goto error;
goto end;
}
/* messages headers fully parsed, do some checks to prepare the body
* parsing.
*/
/* Save the request's method or the response's status, check if the body
* length is known and check the VSN validity */
if (!(h1m->flags & H1_MF_RESP)) {
h1s->meth = h1sl.rq.meth;
/* By default, request have always a known length */
h1m->flags |= H1_MF_XFER_LEN;
if (h1s->meth == HTTP_METH_CONNECT) {
/* Switch CONNECT requests to tunnel mode */
h1_set_req_tunnel_mode(h1s);
}
if (!h1_process_req_vsn(h1s, h1m, h1sl)) {
h1m->err_pos = h1sl.rq.v.ptr - b_head(buf);
h1m->err_state = h1m->state;
goto vsn_error;
}
}
else {
h1s->status = h1sl.st.status;
if ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) ||
h1s->status == 101) {
/* Switch successfull replies to CONNECT requests and
* protocol switching to tunnel mode. */
h1_set_res_tunnel_mode(h1s);
}
else if ((h1s->meth == HTTP_METH_HEAD) ||
(h1s->status >= 100 && h1s->status < 200) ||
(h1s->status == 204) || (h1s->status == 304)) {
/* Responses known to have no body. */
h1m->flags &= ~(H1_MF_CLEN|H1_MF_CHNK);
h1m->flags |= H1_MF_XFER_LEN;
h1m->curr_len = h1m->body_len = 0;
}
else if (h1m->flags & (H1_MF_CLEN|H1_MF_CHNK)) {
/* Responses with a known body length. */
h1m->flags |= H1_MF_XFER_LEN;
}
else {
/* Responses with an unknown body length */
h1m->state = H1_MSG_TUNNEL;
}
if (!h1_process_res_vsn(h1s, h1m, h1sl)) {
h1m->err_pos = h1sl.st.v.ptr - b_head(buf);
h1m->err_state = h1m->state;
goto vsn_error;
}
}
/* Set HTX start-line flags */
if (h1m->flags & H1_MF_VER_11)
flags |= HTX_SL_F_VER_11;
if (h1m->flags & H1_MF_XFER_ENC)
flags |= HTX_SL_F_XFER_ENC;
if (h1m->flags & H1_MF_XFER_LEN) {
flags |= HTX_SL_F_XFER_LEN;
if (h1m->flags & H1_MF_CHNK)
flags |= HTX_SL_F_CHNK;
else if (h1m->flags & H1_MF_CLEN) {
flags |= HTX_SL_F_CLEN;
if (h1m->body_len == 0)
flags |= HTX_SL_F_BODYLESS;
}
else
flags |= HTX_SL_F_BODYLESS;
}
used = htx_used_space(htx);
if (!(h1m->flags & H1_MF_RESP)) {
if (h1_eval_htx_req_size(h1m, &h1sl, hdrs) > max) {
if (htx_is_empty(htx))
goto error;
h1m_init_req(h1m);
h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR);
ret = 0;
goto end;
}
sl = htx_add_stline(htx, HTX_BLK_REQ_SL, flags, h1sl.rq.m, h1sl.rq.u, h1sl.rq.v);
if (!sl || !htx_add_all_headers(htx, hdrs))
goto error;
sl->info.req.meth = h1s->meth;
}
else {
if (h1_eval_htx_res_size(h1m, &h1sl, hdrs) > max) {
if (htx_is_empty(htx))
goto error;
h1m_init_res(h1m);
h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR);
ret = 0;
goto end;
}
flags |= HTX_SL_F_IS_RESP;
sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags, h1sl.st.v, h1sl.st.c, h1sl.st.r);
if (!sl || !htx_add_all_headers(htx, hdrs))
goto error;
sl->info.res.status = h1s->status;
}
/* Set bytes used in the HTX mesage for the headers now */
sl->hdrs_bytes = htx_used_space(htx) - used;
h1_process_input_conn_mode(h1s, h1m, htx);
/* If body length cannot be determined, set htx->extra to
* ULLONG_MAX. This value is impossible in other cases.
*/
htx->extra = ((h1m->flags & H1_MF_XFER_LEN) ? h1m->curr_len : ULLONG_MAX);
*ofs += ret;
end:
return ret;
error:
h1m->err_state = h1m->state;
h1m->err_pos = h1m->next;
vsn_error:
h1s->flags |= (!(h1m->flags & H1_MF_RESP) ? H1S_F_REQ_ERROR : H1S_F_RES_ERROR);
h1s->cs->flags |= CS_FL_EOI;
htx->flags |= HTX_FL_PARSING_ERROR;
h1_capture_bad_message(h1s->h1c, h1s, h1m, buf);
ret = 0;
goto end;
h2c_upgrade:
h1s->h1c->flags |= H1C_F_UPG_H2C;
h1s->cs->flags |= CS_FL_EOI;
htx->flags |= HTX_FL_UPGRADE;
ret = 0;
goto end;
}
/*
* Parse HTTP/1 body. It returns the number of bytes parsed if > 0, or 0 if it
* couldn't proceed. Parsing errors are reported by setting H1S_F_*_ERROR flag
* and filling h1s->err_pos and h1s->err_state fields. This functions is
* responsible to update the parser state <h1m>.
*/
static size_t h1_process_data(struct h1s *h1s, struct h1m *h1m, struct htx *htx,
struct buffer *buf, size_t *ofs, size_t max,
struct buffer *htxbuf)
{
size_t total = 0;
int32_t ret = 0;
if (h1m->flags & H1_MF_XFER_LEN) {
if (h1m->flags & H1_MF_CLEN) {
/* content-length: read only h2m->body_len */
ret = htx_get_max_blksz(htx, max);
if ((uint64_t)ret > h1m->curr_len)
ret = h1m->curr_len;
if (ret > b_contig_data(buf, *ofs))
ret = b_contig_data(buf, *ofs);
if (ret) {
/* very often with large files we'll face the following
* situation :
* - htx is empty and points to <htxbuf>
* - ret == buf->data
* - buf->head == sizeof(struct htx)
* => we can swap the buffers and place an htx header into
* the target buffer instead
*/
int32_t try = ret;
if (unlikely(htx_is_empty(htx) && ret == b_data(buf) &&
!*ofs && b_head_ofs(buf) == sizeof(struct htx))) {
void *raw_area = buf->area;
void *htx_area = htxbuf->area;
struct htx_blk *blk;
buf->area = htx_area;
htxbuf->area = raw_area;
htx = (struct htx *)htxbuf->area;
htx->size = htxbuf->size - sizeof(*htx);
htx_reset(htx);
b_set_data(htxbuf, b_size(htxbuf));
blk = htx_add_blk(htx, HTX_BLK_DATA, ret);
blk->info += ret;
/* nothing else to do, the old buffer now contains an
* empty pre-initialized HTX header
*/
}
else {
ret = htx_add_data(htx, ist2(b_peek(buf, *ofs), try));
}
h1m->curr_len -= ret;
max -= sizeof(struct htx_blk) + ret;
*ofs += ret;
total += ret;
if (ret < try)
goto end;
}
if (!h1m->curr_len) {
if (max < sizeof(struct htx_blk) + 1 || !htx_add_endof(htx, HTX_BLK_EOM))
goto end;
h1m->state = H1_MSG_DONE;
h1s->cs->flags |= CS_FL_EOI;
}
}
else if (h1m->flags & H1_MF_CHNK) {
new_chunk:
/* te:chunked : parse chunks */
if (h1m->state == H1_MSG_CHUNK_CRLF) {
ret = h1_skip_chunk_crlf(buf, *ofs, b_data(buf));
if (ret <= 0)
goto end;
h1m->state = H1_MSG_CHUNK_SIZE;
*ofs += ret;
total += ret;
}
if (h1m->state == H1_MSG_CHUNK_SIZE) {
unsigned int chksz;
ret = h1_parse_chunk_size(buf, *ofs, b_data(buf), &chksz);
if (ret <= 0)
goto end;
if (!chksz) {
if (max < sizeof(struct htx_blk) + 1 || !htx_add_endof(htx, HTX_BLK_EOD))
goto end;
h1s->flags |= H1S_F_HAVE_I_EOD;
h1m->state = H1_MSG_TRAILERS;
max -= sizeof(struct htx_blk) + 1;
}
else
h1m->state = H1_MSG_DATA;
h1m->curr_len = chksz;
h1m->body_len += chksz;
*ofs += ret;
total += ret;
}
if (h1m->state == H1_MSG_DATA) {
ret = htx_get_max_blksz(htx, max);
if ((uint64_t)ret > h1m->curr_len)
ret = h1m->curr_len;
if (ret > b_contig_data(buf, *ofs))
ret = b_contig_data(buf, *ofs);
if (ret) {
int32_t try = ret;
ret = htx_add_data(htx, ist2(b_peek(buf, *ofs), try));
h1m->curr_len -= ret;
max -= sizeof(struct htx_blk) + ret;
*ofs += ret;
total += ret;
if (ret < try)
goto end;
}
if (!h1m->curr_len) {
h1m->state = H1_MSG_CHUNK_CRLF;
goto new_chunk;
}
goto end;
}
if (h1m->state == H1_MSG_TRAILERS) {
/* Trailers were alread parsed, only the EOM
* need to be added */
if (h1s->flags & H1S_F_HAVE_I_TLR)
goto skip_tlr_parsing;
ret = htx_get_max_blksz(htx, max);
ret = h1_measure_trailers(buf, *ofs, ret);
if (ret <= 0) {
if (!ret && b_full(buf))
ret = -1;
goto end;
}
/* Realing input buffer if tailers wrap. For now
* this is a workaroung. Because trailers are
* not split on CRLF, like headers, there is no
* way to know where to split it when trailers
* wrap. This is a limitation of
* h1_measure_trailers.
*/
if (b_peek(buf, *ofs) > b_peek(buf, *ofs + ret))
b_slow_realign(buf, trash.area, 0);
if (!htx_add_trailer(htx, ist2(b_peek(buf, *ofs), ret)))
goto end;
h1s->flags |= H1S_F_HAVE_I_TLR;
max -= sizeof(struct htx_blk) + ret;
*ofs += ret;
total += ret;
skip_tlr_parsing:
if (max < sizeof(struct htx_blk) + 1 || !htx_add_endof(htx, HTX_BLK_EOM))
goto end;
max -= sizeof(struct htx_blk) + 1;
h1m->state = H1_MSG_DONE;
h1s->cs->flags |= CS_FL_EOI;
}
}
else {
/* XFER_LEN is set but not CLEN nor CHNK, it means there
* is no body. Switch the message in DONE state
*/
if (max < sizeof(struct htx_blk) + 1 || !htx_add_endof(htx, HTX_BLK_EOM))
goto end;
max -= sizeof(struct htx_blk) + 1;
h1m->state = H1_MSG_DONE;
h1s->cs->flags |= CS_FL_EOI;
}
}
else {
/* no content length, read till SHUTW */
ret = htx_get_max_blksz(htx, max);
if (ret > b_contig_data(buf, *ofs))
ret = b_contig_data(buf, *ofs);
if (ret) {
int32_t try = ret;
ret = htx_add_data(htx, ist2(b_peek(buf, *ofs), try));
*ofs += ret;
total = ret;
if (ret < try)
goto end;
}
}
end:
if (ret < 0) {
h1s->flags |= (!(h1m->flags & H1_MF_RESP) ? H1S_F_REQ_ERROR : H1S_F_RES_ERROR);
h1s->cs->flags |= CS_FL_EOI;
htx->flags |= HTX_FL_PARSING_ERROR;
h1m->err_state = h1m->state;
h1m->err_pos = *ofs + max + ret;
h1_capture_bad_message(h1s->h1c, h1s, h1m, buf);
return 0;
}
/* update htx->extra, only when the body length is known */
if (h1m->flags & H1_MF_XFER_LEN)
htx->extra = h1m->curr_len;
return total;
}
/*
* Process incoming data. It parses data and transfer them from h1c->ibuf into
* <buf>. It returns the number of bytes parsed and transferred if > 0, or 0 if
* it couldn't proceed.
*/
static size_t h1_process_input(struct h1c *h1c, struct buffer *buf, size_t count)
{
struct h1s *h1s = h1c->h1s;
struct h1m *h1m;
struct htx *htx;
size_t ret, data;
size_t total = 0;
int errflag;
htx = htx_from_buf(buf);
if (!conn_is_back(h1c->conn)) {
h1m = &h1s->req;
errflag = H1S_F_REQ_ERROR;
}
else {
h1m = &h1s->res;
errflag = H1S_F_RES_ERROR;
}
data = htx->data;
do {
size_t used = htx_used_space(htx);
if (h1m->state <= H1_MSG_LAST_LF) {
ret = h1_process_headers(h1s, h1m, htx, &h1c->ibuf, &total, count);
if (!ret)
break;
if ((h1m->flags & H1_MF_RESP) &&
h1s->status < 200 && (h1s->status == 100 || h1s->status >= 102)) {
h1m_init_res(&h1s->res);
h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR);
}
}
else if (h1m->state <= H1_MSG_TRAILERS) {
ret = h1_process_data(h1s, h1m, htx, &h1c->ibuf, &total, count, buf);
htx = htx_from_buf(buf);
if (!ret)
break;
}
else if (h1m->state == H1_MSG_DONE) {
if (h1s->req.state < H1_MSG_DONE || h1s->res.state < H1_MSG_DONE)
h1c->flags |= H1C_F_IN_BUSY;
break;
}
else if (h1m->state == H1_MSG_TUNNEL) {
ret = h1_process_data(h1s, h1m, htx, &h1c->ibuf, &total, count, buf);
htx = htx_from_buf(buf);
if (!ret)
break;
}
else {
h1s->flags |= errflag;
break;
}
count -= htx_used_space(htx) - used;
} while (!(h1s->flags & errflag) && count);
if (h1s->flags & errflag)
goto parsing_err;
b_del(&h1c->ibuf, total);
end:
htx_to_buf(htx, buf);
ret = htx->data - data;
if (h1c->flags & H1C_F_IN_FULL && buf_room_for_htx_data(&h1c->ibuf)) {
h1c->flags &= ~H1C_F_IN_FULL;
tasklet_wakeup(h1c->wait_event.task);
}
h1s->cs->flags &= ~(CS_FL_RCV_MORE | CS_FL_WANT_ROOM);
if (!b_data(&h1c->ibuf))
h1_release_buf(h1c, &h1c->ibuf);
else if (h1s_data_pending(h1s) && !htx_is_empty(htx))
h1s->cs->flags |= CS_FL_RCV_MORE | CS_FL_WANT_ROOM;
if ((h1s->flags & H1S_F_REOS) && (!h1s_data_pending(h1s) || htx_is_empty(htx))) {
h1s->cs->flags |= CS_FL_EOS;
if (h1m->state > H1_MSG_LAST_LF && h1m->state < H1_MSG_DONE)
h1s->cs->flags |= CS_FL_ERROR;
}
return ret;
parsing_err:
b_reset(&h1c->ibuf);
htx_to_buf(htx, buf);
return 0;
}
/*
* Process outgoing data. It parses data and transfer them from the channel buffer into
* h1c->obuf. It returns the number of bytes parsed and transferred if > 0, or
* 0 if it couldn't proceed.
*/
static size_t h1_process_output(struct h1c *h1c, struct buffer *buf, size_t count)
{
struct h1s *h1s = h1c->h1s;
struct h1m *h1m;
struct htx *chn_htx;
struct htx_blk *blk;
struct buffer *tmp;
size_t total = 0;
int process_conn_mode = 1; /* If still 1 on EOH, process the connection mode */
int errflag;
if (!count)
goto end;
chn_htx = htx_from_buf(buf);
if (htx_is_empty(chn_htx))
goto end;
if (!h1_get_buf(h1c, &h1c->obuf)) {
h1c->flags |= H1C_F_OUT_ALLOC;
goto end;
}
if (!conn_is_back(h1c->conn)) {
h1m = &h1s->res;
errflag = H1S_F_RES_ERROR;
}
else {
h1m = &h1s->req;
errflag = H1S_F_REQ_ERROR;
}
/* the htx is non-empty thus has at least one block */
blk = htx_get_head_blk(chn_htx);
tmp = get_trash_chunk();
/* Perform some optimizations to reduce the number of buffer copies.
* First, if the mux's buffer is empty and the htx area contains
* exactly one data block of the same size as the requested count,
* then it's possible to simply swap the caller's buffer with the
* mux's output buffer and adjust offsets and length to match the
* entire DATA HTX block in the middle. In this case we perform a
* true zero-copy operation from end-to-end. This is the situation
* that happens all the time with large files. Second, if this is not
* possible, but the mux's output buffer is empty, we still have an
* opportunity to avoid the copy to the intermediary buffer, by making
* the intermediary buffer's area point to the output buffer's area.
* In this case we want to skip the HTX header to make sure that copies
* remain aligned and that this operation remains possible all the
* time. This goes for headers, data blocks and any data extracted from
* the HTX blocks.
*/
if (!b_data(&h1c->obuf)) {
h1c->obuf.head = sizeof(struct htx) + blk->addr;
if (chn_htx->used == 1 &&
htx_get_blk_type(blk) == HTX_BLK_DATA &&
htx_get_blk_value(chn_htx, blk).len == count) {
void *old_area = h1c->obuf.area;
h1c->obuf.area = buf->area;
h1c->obuf.data = count;
buf->area = old_area;
buf->data = buf->head = 0;
/* The message is chunked. We need to emit the chunk
* size. We have at least the size of the struct htx to
* write the chunk envelope. It should be enough.
*/
if (h1m->flags & H1_MF_CHNK) {
h1_emit_chunk_size(&h1c->obuf, count);
h1_emit_chunk_crlf(&h1c->obuf);
}
total += count;
goto out;
}
tmp->area = h1c->obuf.area + h1c->obuf.head;
}
tmp->size = b_room(&h1c->obuf);
while (count && !(h1s->flags & errflag) && blk) {
struct htx_sl *sl;
struct ist n, v;
enum htx_blk_type type = htx_get_blk_type(blk);
uint32_t sz = htx_get_blksz(blk);
uint32_t vlen;
vlen = sz;
if (vlen > count) {
if (type != HTX_BLK_DATA && type != HTX_BLK_TLR)
goto copy;
vlen = count;
}
switch (type) {
case HTX_BLK_UNUSED:
break;
case HTX_BLK_REQ_SL:
h1m_init_req(h1m);
h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR);
sl = htx_get_blk_ptr(chn_htx, blk);
h1s->meth = sl->info.req.meth;
h1_parse_req_vsn(h1m, sl);
if (!htx_reqline_to_h1(sl, tmp))
goto copy;
h1m->flags |= H1_MF_XFER_LEN;
if (sl->flags & HTX_SL_F_BODYLESS)
h1m->flags |= H1_MF_CLEN;
h1m->state = H1_MSG_HDR_FIRST;
break;
case HTX_BLK_RES_SL:
h1m_init_res(h1m);
h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR);
sl = htx_get_blk_ptr(chn_htx, blk);
h1s->status = sl->info.res.status;
h1_parse_res_vsn(h1m, sl);
if (!htx_stline_to_h1(sl, tmp))
goto copy;
if (sl->flags & HTX_SL_F_XFER_LEN)
h1m->flags |= H1_MF_XFER_LEN;
if (sl->info.res.status < 200 &&
(sl->info.res.status == 100 || sl->info.res.status >= 102))
process_conn_mode = 0;
h1m->state = H1_MSG_HDR_FIRST;
break;
case HTX_BLK_HDR:
h1m->state = H1_MSG_HDR_NAME;
n = htx_get_blk_name(chn_htx, blk);
v = htx_get_blk_value(chn_htx, blk);
if (isteqi(n, ist("transfer-encoding")))
h1_parse_xfer_enc_header(h1m, v);
else if (isteqi(n, ist("content-length"))) {
/* Only skip C-L header with invalid value. */
if (h1_parse_cont_len_header(h1m, &v) < 0)
goto skip_hdr;
}
else if (isteqi(n, ist("connection"))) {
h1_parse_connection_header(h1m, &v);
if (!v.len)
goto skip_hdr;
}
if (!htx_hdr_to_h1(n, v, tmp))
goto copy;
skip_hdr:
h1m->state = H1_MSG_HDR_L2_LWS;
break;
case HTX_BLK_EOH:
if (h1m->state != H1_MSG_LAST_LF && process_conn_mode) {
/* There is no "Connection:" header and
* it the conn_mode must be
* processed. So do it */
n = ist("Connection");
v = ist("");
h1_process_output_conn_mode(h1s, h1m, &v);
if (v.len) {
if (!htx_hdr_to_h1(n, v, tmp))
goto copy;
}
process_conn_mode = 0;
}
if ((h1s->meth != HTTP_METH_CONNECT &&
(h1m->flags & (H1_MF_VER_11|H1_MF_RESP|H1_MF_CLEN|H1_MF_CHNK|H1_MF_XFER_LEN)) ==
(H1_MF_VER_11|H1_MF_XFER_LEN)) ||
(h1s->status >= 200 && h1s->status != 204 && h1s->status != 304 &&
h1s->meth != HTTP_METH_HEAD && !(h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) &&
(h1m->flags & (H1_MF_VER_11|H1_MF_RESP|H1_MF_CLEN|H1_MF_CHNK|H1_MF_XFER_LEN)) ==
(H1_MF_VER_11|H1_MF_RESP|H1_MF_XFER_LEN))) {
/* chunking needed but header not seen */
if (!chunk_memcat(tmp, "transfer-encoding: chunked\r\n", 28))
goto copy;
h1m->flags |= H1_MF_CHNK;
}
h1m->state = H1_MSG_LAST_LF;
if (!chunk_memcat(tmp, "\r\n", 2))
goto copy;
if (!(h1m->flags & H1_MF_RESP) && h1s->meth == HTTP_METH_CONNECT) {
/* a CONNECT request is sent to the server. Switch it to tunnel mode. */
h1_set_req_tunnel_mode(h1s);
}
else if ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) || h1s->status == 101) {
/* a successfull reply to a CONNECT or a protocol switching is sent
* to the client . Switch the response to tunnel mode. */
h1_set_res_tunnel_mode(h1s);
}
else if ((h1m->flags & H1_MF_RESP) &&
h1s->status < 200 && (h1s->status == 100 || h1s->status >= 102)) {
h1m_init_res(&h1s->res);
h1m->flags |= (H1_MF_NO_PHDR|H1_MF_CLEAN_CONN_HDR);
}
else
h1m->state = H1_MSG_DATA;
break;
case HTX_BLK_DATA:
v = htx_get_blk_value(chn_htx, blk);
v.len = vlen;
if (!htx_data_to_h1(v, tmp, !!(h1m->flags & H1_MF_CHNK)))
goto copy;
break;
case HTX_BLK_EOD:
if (!chunk_memcat(tmp, "0\r\n", 3))
goto copy;
h1s->flags |= H1S_F_HAVE_O_EOD;
h1m->state = H1_MSG_TRAILERS;
break;
case HTX_BLK_TLR:
if (!(h1s->flags & H1S_F_HAVE_O_EOD)) {
if (!chunk_memcat(tmp, "0\r\n", 3))
goto copy;
h1s->flags |= H1S_F_HAVE_O_EOD;
}
v = htx_get_blk_value(chn_htx, blk);
v.len = vlen;
if (!htx_trailer_to_h1(v, tmp))
goto copy;
h1s->flags |= H1S_F_HAVE_O_TLR;
break;
case HTX_BLK_EOM:
if ((h1m->flags & H1_MF_CHNK)) {
if (!(h1s->flags & H1S_F_HAVE_O_EOD)) {
if (!chunk_memcat(tmp, "0\r\n", 3))
goto copy;
h1s->flags |= H1S_F_HAVE_O_EOD;
}
if (!(h1s->flags & H1S_F_HAVE_O_TLR)) {
if (!chunk_memcat(tmp, "\r\n", 2))
goto copy;
h1s->flags |= H1S_F_HAVE_O_TLR;
}
}
h1m->state = H1_MSG_DONE;
break;
default:
h1m->flags |= errflag;
break;
}
total += vlen;
count -= vlen;
if (sz == vlen)
blk = htx_remove_blk(chn_htx, blk);
else {
htx_cut_data_blk(chn_htx, blk, vlen);
break;
}
}
copy:
/* when the output buffer is empty, tmp shares the same area so that we
* only have to update pointers and lengths.
*/
if (tmp->area == h1c->obuf.area + h1c->obuf.head)
h1c->obuf.data = tmp->data;
else
b_putblk(&h1c->obuf, tmp->area, tmp->data);
htx_to_buf(chn_htx, buf);
out:
if (!buf_room_for_htx_data(&h1c->obuf))
h1c->flags |= H1C_F_OUT_FULL;
end:
return total;
}
/*********************************************************/
/* functions below are I/O callbacks from the connection */
/*********************************************************/
static void h1_wake_stream_for_recv(struct h1s *h1s)
{
if (h1s && h1s->recv_wait) {
h1s->recv_wait->events &= ~SUB_RETRY_RECV;
tasklet_wakeup(h1s->recv_wait->task);
h1s->recv_wait = NULL;
}
}
static void h1_wake_stream_for_send(struct h1s *h1s)
{
if (h1s && h1s->send_wait) {
h1s->send_wait->events &= ~SUB_RETRY_SEND;
tasklet_wakeup(h1s->send_wait->task);
h1s->send_wait = NULL;
}
}
/*
* Attempt to read data, and subscribe if none available
*/
static int h1_recv(struct h1c *h1c)
{
struct connection *conn = h1c->conn;
struct h1s *h1s = h1c->h1s;
size_t ret = 0, max;
int rcvd = 0;
if (h1c->wait_event.events & SUB_RETRY_RECV)
return (b_data(&h1c->ibuf));
if (h1c->flags & H1C_F_CS_WAIT_CONN) {
conn->xprt->subscribe(conn, conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event);
return 0;
}
if (!h1_recv_allowed(h1c)) {
rcvd = 1;
goto end;
}
if (!h1_get_buf(h1c, &h1c->ibuf)) {
h1c->flags |= H1C_F_IN_ALLOC;
goto end;
}
if (h1s && (h1s->flags & (H1S_F_BUF_FLUSH|H1S_F_SPLICED_DATA))) {
if (!h1s_data_pending(h1s))
h1_wake_stream_for_recv(h1s);
rcvd = 1;
goto end;
}
/*
* If we only have a small amount of data, realign it,
* it's probably cheaper than doing 2 recv() calls.
*/
if (b_data(&h1c->ibuf) > 0 && b_data(&h1c->ibuf) < 128)
b_slow_realign(&h1c->ibuf, trash.area, 0);
max = buf_room_for_htx_data(&h1c->ibuf);
if (max) {
h1c->flags &= ~H1C_F_IN_FULL;
b_realign_if_empty(&h1c->ibuf);
if (!b_data(&h1c->ibuf)) {
/* try to pre-align the buffer like the rxbufs will be
* to optimize memory copies.
*/
h1c->ibuf.head = sizeof(struct htx);
}
ret = conn->xprt->rcv_buf(conn, conn->xprt_ctx, &h1c->ibuf, max, 0);
}
if (ret > 0) {
rcvd = 1;
if (h1s && h1s->cs) {
h1s->cs->flags |= (CS_FL_READ_PARTIAL|CS_FL_RCV_MORE);
if (h1s->csinfo.t_idle == -1)
h1s->csinfo.t_idle = tv_ms_elapsed(&h1s->csinfo.tv_create, &now) - h1s->csinfo.t_handshake;
}
}
if (!h1_recv_allowed(h1c) || !buf_room_for_htx_data(&h1c->ibuf)) {
rcvd = 1;
goto end;
}
conn->xprt->subscribe(conn, conn->xprt_ctx, SUB_RETRY_RECV, &h1c->wait_event);
end:
if (ret > 0 || (conn->flags & CO_FL_ERROR) || conn_xprt_read0_pending(conn))
h1_wake_stream_for_recv(h1s);
if (conn_xprt_read0_pending(conn) && h1s) {
h1s->flags |= H1S_F_REOS;
rcvd = 1;
}
if (!b_data(&h1c->ibuf))
h1_release_buf(h1c, &h1c->ibuf);
else if (!buf_room_for_htx_data(&h1c->ibuf))
h1c->flags |= H1C_F_IN_FULL;
return rcvd;
}
/*
* Try to send data if possible
*/
static int h1_send(struct h1c *h1c)
{
struct connection *conn = h1c->conn;
unsigned int flags = 0;
size_t ret;
int sent = 0;
if (conn->flags & CO_FL_ERROR)
return 0;
if (h1c->flags & H1C_F_CS_WAIT_CONN) {
if (!(h1c->wait_event.events & SUB_RETRY_SEND))
conn->xprt->subscribe(conn, conn->xprt_ctx, SUB_RETRY_SEND, &h1c->wait_event);
return 0;
}
if (!b_data(&h1c->obuf))
goto end;
if (h1c->flags & H1C_F_OUT_FULL)
flags |= CO_SFL_MSG_MORE;
ret = conn->xprt->snd_buf(conn, conn->xprt_ctx, &h1c->obuf, b_data(&h1c->obuf), flags);
if (ret > 0) {
h1c->flags &= ~H1C_F_OUT_FULL;
b_del(&h1c->obuf, ret);
sent = 1;
}
if (conn->flags & (CO_FL_ERROR|CO_FL_SOCK_WR_SH)) {
/* error or output closed, nothing to send, clear the buffer to release it */
b_reset(&h1c->obuf);
}
end:
if (!(h1c->flags & H1C_F_OUT_FULL))
h1_wake_stream_for_send(h1c->h1s);
/* We're done, no more to send */
if (!b_data(&h1c->obuf)) {
h1_release_buf(h1c, &h1c->obuf);
if (h1c->flags & H1C_F_CS_SHUTW_NOW)
h1_shutw_conn(conn, CS_SHW_NORMAL);
}
else if (!(h1c->wait_event.events & SUB_RETRY_SEND))
conn->xprt->subscribe(conn, conn->xprt_ctx, SUB_RETRY_SEND, &h1c->wait_event);
return sent;
}
/* callback called on any event by the connection handler.
* It applies changes and returns zero, or < 0 if it wants immediate
* destruction of the connection.
*/
static int h1_process(struct h1c * h1c)
{
struct connection *conn = h1c->conn;
struct h1s *h1s = h1c->h1s;
if (!conn->ctx)
return -1;
if (h1c->flags & H1C_F_CS_WAIT_CONN) {
if (!(conn->flags & (CO_FL_CONNECTED|CO_FL_ERROR)))
goto end;
h1c->flags &= ~H1C_F_CS_WAIT_CONN;
h1_wake_stream_for_send(h1s);
}
if (!h1s) {
if (h1c->flags & H1C_F_CS_ERROR ||
conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH) ||
conn_xprt_read0_pending(conn))
goto release;
if (!conn_is_back(conn) && !(h1c->flags & (H1C_F_CS_SHUTW_NOW|H1C_F_CS_SHUTDOWN))) {
if (!h1s_create(h1c, NULL, NULL))
goto release;
}
else
goto end;
h1s = h1c->h1s;
}
if (b_data(&h1c->ibuf) && h1s->csinfo.t_idle == -1)
h1s->csinfo.t_idle = tv_ms_elapsed(&h1s->csinfo.tv_create, &now) - h1s->csinfo.t_handshake;
if (conn_xprt_read0_pending(conn))
h1s->flags |= H1S_F_REOS;
if (!h1s_data_pending(h1s) && h1s && h1s->cs && h1s->cs->data_cb->wake &&
(h1s->flags & H1S_F_REOS || h1c->flags & H1C_F_CS_ERROR ||
conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH))) {
if (h1c->flags & H1C_F_CS_ERROR || conn->flags & CO_FL_ERROR)
h1s->cs->flags |= CS_FL_ERROR;
h1s->cs->data_cb->wake(h1s->cs);
}
end:
if (h1c->task) {
h1c->task->expire = TICK_ETERNITY;
if (b_data(&h1c->obuf)) {
h1c->task->expire = tick_add(now_ms, ((h1c->flags & (H1C_F_CS_SHUTW_NOW|H1C_F_CS_SHUTDOWN))
? h1c->shut_timeout
: h1c->timeout));
task_queue(h1c->task);
}
}
return 0;
release:
h1_release(h1c);
return -1;
}
static struct task *h1_io_cb(struct task *t, void *ctx, unsigned short status)
{
struct h1c *h1c = ctx;
int ret = 0;
if (!(h1c->wait_event.events & SUB_RETRY_SEND))
ret = h1_send(h1c);
if (!(h1c->wait_event.events & SUB_RETRY_RECV))
ret |= h1_recv(h1c);
if (ret || !h1c->h1s)
h1_process(h1c);
return NULL;
}
static void h1_reset(struct connection *conn)
{
struct h1c *h1c = conn->ctx;
/* Reset the flags, and let the mux know we're waiting for a connection */
h1c->flags = H1C_F_CS_WAIT_CONN;
}
static int h1_wake(struct connection *conn)
{
struct h1c *h1c = conn->ctx;
int ret;
h1_send(h1c);
ret = h1_process(h1c);
if (ret == 0) {
struct h1s *h1s = h1c->h1s;
if (h1s && h1s->cs && h1s->cs->data_cb->wake)
ret = h1s->cs->data_cb->wake(h1s->cs);
}
return ret;
}
/* Connection timeout management. The principle is that if there's no receipt
* nor sending for a certain amount of time, the connection is closed.
*/
static struct task *h1_timeout_task(struct task *t, void *context, unsigned short state)
{
struct h1c *h1c = context;
int expired = tick_is_expired(t->expire, now_ms);
if (!expired && h1c)
return t;
task_destroy(t);
if (!h1c) {
/* resources were already deleted */
return NULL;
}
h1c->task = NULL;
/* If a stream is still attached to the mux, just set an error and wait
* for the stream's timeout. Otherwise, release the mux. This is only ok
* because same timeouts are used.
*/
if (h1c->h1s && h1c->h1s->cs)
h1c->flags |= H1C_F_CS_ERROR;
else
h1_release(h1c);
return NULL;
}
/*******************************************/
/* functions below are used by the streams */
/*******************************************/
/*
* Attach a new stream to a connection
* (Used for outgoing connections)
*/
static struct conn_stream *h1_attach(struct connection *conn, struct session *sess)
{
struct h1c *h1c = conn->ctx;
struct conn_stream *cs = NULL;
struct h1s *h1s;
if (h1c->flags & H1C_F_CS_ERROR)
goto end;
cs = cs_new(h1c->conn);
if (!cs)
goto end;
h1s = h1s_create(h1c, cs, sess);
if (h1s == NULL)
goto end;
return cs;
end:
cs_free(cs);
return NULL;
}
/* Retrieves a valid conn_stream from this connection, or returns NULL. For
* this mux, it's easy as we can only store a single conn_stream.
*/
static const struct conn_stream *h1_get_first_cs(const struct connection *conn)
{
struct h1c *h1c = conn->ctx;
struct h1s *h1s = h1c->h1s;
if (h1s)
return h1s->cs;
return NULL;
}
static void h1_destroy(void *ctx)
{
struct h1c *h1c = ctx;
if (!h1c->h1s || !h1c->conn || h1c->conn->ctx != h1c)
h1_release(h1c);
}
/*
* Detach the stream from the connection and possibly release the connection.
*/
static void h1_detach(struct conn_stream *cs)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c;
struct session *sess;
int has_keepalive;
int is_not_first;
cs->ctx = NULL;
if (!h1s)
return;
sess = h1s->sess;
h1c = h1s->h1c;
h1s->cs = NULL;
has_keepalive = h1s->flags & H1S_F_WANT_KAL;
is_not_first = h1s->flags & H1S_F_NOT_FIRST;
h1s_destroy(h1s);
if (conn_is_back(h1c->conn) && has_keepalive &&
!(h1c->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH))) {
/* Never ever allow to reuse a connection from a non-reuse backend */
if ((h1c->px->options & PR_O_REUSE_MASK) == PR_O_REUSE_NEVR)
h1c->conn->flags |= CO_FL_PRIVATE;
if (!(h1c->conn->owner)) {
h1c->conn->owner = sess;
if (!session_add_conn(sess, h1c->conn, h1c->conn->target)) {
h1c->conn->owner = NULL;
if (!srv_add_to_idle_list(objt_server(h1c->conn->target), h1c->conn))
/* The server doesn't want it, let's kill the connection right away */
h1c->conn->mux->destroy(h1c->conn);
else
tasklet_wakeup(h1c->wait_event.task);
return;
}
}
if (h1c->conn->owner == sess) {
int ret = session_check_idle_conn(sess, h1c->conn);
if (ret == -1)
/* The connection got destroyed, let's leave */
return;
else if (ret == 1) {
/* The connection was added to the server list,
* wake the task so we can subscribe to events
*/
tasklet_wakeup(h1c->wait_event.task);
return;
}
}
/* we're in keep-alive with an idle connection, monitor it if not already done */
if (LIST_ISEMPTY(&h1c->conn->list)) {
struct server *srv = objt_server(h1c->conn->target);
if (srv) {
if (h1c->conn->flags & CO_FL_PRIVATE)
LIST_ADD(&srv->priv_conns[tid], &h1c->conn->list);
else if (is_not_first)
LIST_ADD(&srv->safe_conns[tid], &h1c->conn->list);
else
LIST_ADD(&srv->idle_conns[tid], &h1c->conn->list);
}
}
}
/* We don't want to close right now unless the connection is in error */
if ((h1c->flags & (H1C_F_CS_ERROR|H1C_F_CS_SHUTDOWN|H1C_F_UPG_H2C)) ||
(h1c->conn->flags & CO_FL_ERROR) || !h1c->conn->owner)
h1_release(h1c);
else {
tasklet_wakeup(h1c->wait_event.task);
if (h1c->task) {
h1c->task->expire = TICK_ETERNITY;
if (b_data(&h1c->obuf)) {
h1c->task->expire = tick_add(now_ms, ((h1c->flags & (H1C_F_CS_SHUTW_NOW|H1C_F_CS_SHUTDOWN))
? h1c->shut_timeout
: h1c->timeout));
task_queue(h1c->task);
}
}
}
}
static void h1_shutr(struct conn_stream *cs, enum cs_shr_mode mode)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c;
if (!h1s)
return;
h1c = h1s->h1c;
if ((cs->flags & CS_FL_KILL_CONN) || (h1c->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH)))
goto do_shutr;
if ((h1c->flags & H1C_F_UPG_H2C) || (h1s->flags & H1S_F_WANT_KAL))
return;
do_shutr:
/* NOTE: Be sure to handle abort (cf. h2_shutr) */
if (cs->flags & CS_FL_SHR)
return;
if (conn_xprt_ready(cs->conn) && cs->conn->xprt->shutr)
cs->conn->xprt->shutr(cs->conn, cs->conn->xprt_ctx,
(mode == CS_SHR_DRAIN));
if ((cs->conn->flags & (CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH)) == (CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH))
h1c->flags = (h1c->flags & ~H1C_F_CS_SHUTW_NOW) | H1C_F_CS_SHUTDOWN;
}
static void h1_shutw(struct conn_stream *cs, enum cs_shw_mode mode)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c;
if (!h1s)
return;
h1c = h1s->h1c;
if ((cs->flags & CS_FL_KILL_CONN) || (h1c->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH)))
goto do_shutw;
if ((h1c->flags & H1C_F_UPG_H2C) ||
((h1s->flags & H1S_F_WANT_KAL) && h1s->req.state == H1_MSG_DONE && h1s->res.state == H1_MSG_DONE))
return;
do_shutw:
h1c->flags |= H1C_F_CS_SHUTW_NOW;
if ((cs->flags & CS_FL_SHW) || b_data(&h1c->obuf))
return;
h1_shutw_conn(cs->conn, mode);
}
static void h1_shutw_conn(struct connection *conn, enum cs_shw_mode mode)
{
struct h1c *h1c = conn->ctx;
conn_xprt_shutw(conn);
conn_sock_shutw(conn, (mode == CS_SHW_NORMAL));
if ((conn->flags & (CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH)) == (CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH))
h1c->flags = (h1c->flags & ~H1C_F_CS_SHUTW_NOW) | H1C_F_CS_SHUTDOWN;
}
/* Called from the upper layer, to unsubscribe to events */
static int h1_unsubscribe(struct conn_stream *cs, int event_type, void *param)
{
struct wait_event *sw;
struct h1s *h1s = cs->ctx;
if (!h1s)
return 0;
if (event_type & SUB_RETRY_RECV) {
sw = param;
BUG_ON(h1s->recv_wait != sw);
sw->events &= ~SUB_RETRY_RECV;
h1s->recv_wait = NULL;
}
if (event_type & SUB_RETRY_SEND) {
sw = param;
BUG_ON(h1s->send_wait != sw);
sw->events &= ~SUB_RETRY_SEND;
h1s->send_wait = NULL;
}
return 0;
}
/* Called from the upper layer, to subscribe to events, such as being able to send */
static int h1_subscribe(struct conn_stream *cs, int event_type, void *param)
{
struct wait_event *sw;
struct h1s *h1s = cs->ctx;
if (!h1s)
return -1;
switch (event_type) {
case SUB_RETRY_RECV:
sw = param;
BUG_ON(h1s->recv_wait != NULL || (sw->events & SUB_RETRY_RECV));
sw->events |= SUB_RETRY_RECV;
h1s->recv_wait = sw;
return 0;
case SUB_RETRY_SEND:
sw = param;
BUG_ON(h1s->send_wait != NULL || (sw->events & SUB_RETRY_SEND));
sw->events |= SUB_RETRY_SEND;
h1s->send_wait = sw;
return 0;
default:
break;
}
return -1;
}
/* Called from the upper layer, to receive data */
static size_t h1_rcv_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c = h1s->h1c;
size_t ret = 0;
if (!(h1c->flags & H1C_F_IN_ALLOC))
ret = h1_process_input(h1c, buf, count);
if (flags & CO_RFL_BUF_FLUSH) {
struct h1m *h1m = (!conn_is_back(cs->conn) ? &h1s->req : &h1s->res);
if (h1m->state != H1_MSG_TUNNEL || (h1m->state == H1_MSG_DATA && h1m->curr_len))
h1s->flags |= H1S_F_BUF_FLUSH;
}
else if (ret > 0 || (h1s->flags & H1S_F_SPLICED_DATA)) {
h1s->flags &= ~H1S_F_SPLICED_DATA;
if (!(h1c->wait_event.events & SUB_RETRY_RECV))
tasklet_wakeup(h1c->wait_event.task);
}
return ret;
}
/* Called from the upper layer, to send data */
static size_t h1_snd_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags)
{
struct h1s *h1s = cs->ctx;
struct h1c *h1c;
size_t total = 0;
if (!h1s)
return 0;
h1c = h1s->h1c;
if (h1c->flags & H1C_F_CS_WAIT_CONN)
return 0;
while (total != count) {
size_t ret = 0;
if (!(h1c->flags & (H1C_F_OUT_FULL|H1C_F_OUT_ALLOC)))
ret = h1_process_output(h1c, buf, count);
if (!ret)
break;
total += ret;
if (!h1_send(h1c))
break;
}
return total;
}
#if defined(USE_LINUX_SPLICE)
/* Send and get, using splicing */
static int h1_rcv_pipe(struct conn_stream *cs, struct pipe *pipe, unsigned int count)
{
struct h1s *h1s = cs->ctx;
struct h1m *h1m = (!conn_is_back(cs->conn) ? &h1s->req : &h1s->res);
int ret = 0;
if (h1m->state != H1_MSG_DATA && h1m->state != H1_MSG_TUNNEL) {
h1s->flags &= ~(H1S_F_BUF_FLUSH|H1S_F_SPLICED_DATA);
if (!(h1s->h1c->wait_event.events & SUB_RETRY_RECV))
cs->conn->xprt->subscribe(cs->conn, cs->conn->xprt_ctx, SUB_RETRY_RECV, &h1s->h1c->wait_event);
goto end;
}
if (h1s_data_pending(h1s)) {
h1s->flags |= H1S_F_BUF_FLUSH;
goto end;
}
h1s->flags &= ~H1S_F_BUF_FLUSH;
h1s->flags |= H1S_F_SPLICED_DATA;
if (h1m->state == H1_MSG_DATA && count > h1m->curr_len)
count = h1m->curr_len;
ret = cs->conn->xprt->rcv_pipe(cs->conn, cs->conn->xprt_ctx, pipe, count);
if (h1m->state == H1_MSG_DATA && ret >= 0) {
h1m->curr_len -= ret;
if (!h1m->curr_len)
h1s->flags &= ~(H1S_F_BUF_FLUSH|H1S_F_SPLICED_DATA);
}
end:
if (conn_xprt_read0_pending(cs->conn)) {
h1s->flags |= H1S_F_REOS;
if (!pipe->data)
cs->flags |= CS_FL_EOS;
}
return ret;
}
static int h1_snd_pipe(struct conn_stream *cs, struct pipe *pipe)
{
struct h1s *h1s = cs->ctx;
int ret = 0;
if (b_data(&h1s->h1c->obuf))
goto end;
ret = cs->conn->xprt->snd_pipe(cs->conn, cs->conn->xprt_ctx, pipe);
end:
if (pipe->data) {
if (!(h1s->h1c->wait_event.events & SUB_RETRY_SEND))
cs->conn->xprt->subscribe(cs->conn, cs->conn->xprt_ctx, SUB_RETRY_SEND, &h1s->h1c->wait_event);
}
return ret;
}
#endif
/* for debugging with CLI's "show fd" command */
static void h1_show_fd(struct buffer *msg, struct connection *conn)
{
struct h1c *h1c = conn->ctx;
struct h1s *h1s = h1c->h1s;
chunk_appendf(msg, " h1c.flg=0x%x .sub=%d .ibuf=%u@%p+%u/%u .obuf=%u@%p+%u/%u",
h1c->flags, h1c->wait_event.events,
(unsigned int)b_data(&h1c->ibuf), b_orig(&h1c->ibuf),
(unsigned int)b_head_ofs(&h1c->ibuf), (unsigned int)b_size(&h1c->ibuf),
(unsigned int)b_data(&h1c->obuf), b_orig(&h1c->obuf),
(unsigned int)b_head_ofs(&h1c->obuf), (unsigned int)b_size(&h1c->obuf));
if (h1s) {
char *method;
if (h1s->meth < HTTP_METH_OTHER)
method = http_known_methods[h1s->meth].ptr;
else
method = "UNKNOWN";
chunk_appendf(msg, " h1s=%p h1s.flg=0x%x .req.state=%s .res.state=%s"
" .meth=%s status=%d",
h1s, h1s->flags,
h1m_state_str(h1s->req.state),
h1m_state_str(h1s->res.state), method, h1s->status);
if (h1s->cs)
chunk_appendf(msg, " .cs.flg=0x%08x .cs.data=%p",
h1s->cs->flags, h1s->cs->data);
}
}
/****************************************/
/* MUX initialization and instanciation */
/****************************************/
/* The mux operations */
static const struct mux_ops mux_h1_ops = {
.init = h1_init,
.wake = h1_wake,
.attach = h1_attach,
.get_first_cs = h1_get_first_cs,
.get_cs_info = h1_get_cs_info,
.detach = h1_detach,
.destroy = h1_destroy,
.avail_streams = h1_avail_streams,
.used_streams = h1_used_streams,
.rcv_buf = h1_rcv_buf,
.snd_buf = h1_snd_buf,
#if defined(USE_LINUX_SPLICE)
.rcv_pipe = h1_rcv_pipe,
.snd_pipe = h1_snd_pipe,
#endif
.subscribe = h1_subscribe,
.unsubscribe = h1_unsubscribe,
.shutr = h1_shutr,
.shutw = h1_shutw,
.show_fd = h1_show_fd,
.reset = h1_reset,
.flags = MX_FL_HTX,
.name = "H1",
};
/* this mux registers default HTX proto */
static struct mux_proto_list mux_proto_htx =
{ .token = IST(""), .mode = PROTO_MODE_HTX, .side = PROTO_SIDE_BOTH, .mux = &mux_h1_ops };
INITCALL1(STG_REGISTER, register_mux_proto, &mux_proto_htx);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/