| /* |
| * activity measurement functions. |
| * |
| * Copyright 2000-2018 Willy Tarreau <w@1wt.eu> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <haproxy/activity-t.h> |
| #include <haproxy/api.h> |
| #include <haproxy/cfgparse.h> |
| #include <haproxy/channel.h> |
| #include <haproxy/cli.h> |
| #include <haproxy/freq_ctr.h> |
| #include <haproxy/stream_interface.h> |
| #include <haproxy/tools.h> |
| |
| #if defined(DEBUG_MEM_STATS) |
| /* these ones are macros in bug.h when DEBUG_MEM_STATS is set, and will |
| * prevent the new ones from being redefined. |
| */ |
| #undef calloc |
| #undef malloc |
| #undef realloc |
| #endif |
| |
| /* bit field of profiling options. Beware, may be modified at runtime! */ |
| unsigned int profiling __read_mostly = HA_PROF_TASKS_AOFF; |
| unsigned long task_profiling_mask __read_mostly = 0; |
| |
| /* One struct per thread containing all collected measurements */ |
| struct activity activity[MAX_THREADS] __attribute__((aligned(64))) = { }; |
| |
| /* One struct per function pointer hash entry (256 values, 0=collision) */ |
| struct sched_activity sched_activity[256] __attribute__((aligned(64))) = { }; |
| |
| |
| #if USE_MEMORY_PROFILING |
| /* determine the number of buckets to store stats */ |
| #define MEMPROF_HASH_BITS 10 |
| #define MEMPROF_HASH_BUCKETS (1U << MEMPROF_HASH_BITS) |
| |
| /* stats: |
| * - malloc increases alloc |
| * - free increases free (if non null) |
| * - realloc increases either depending on the size change. |
| * when the real size is known (malloc_usable_size()), it's used in free_tot |
| * and alloc_tot, otherwise the requested size is reported in alloc_tot and |
| * zero in free_tot. |
| */ |
| struct memprof_stats { |
| const void *caller; |
| unsigned long long alloc_calls; |
| unsigned long long free_calls; |
| unsigned long long alloc_tot; |
| unsigned long long free_tot; |
| }; |
| |
| /* last one is for hash collisions ("others") and has no caller address */ |
| struct memprof_stats memprof_stats[MEMPROF_HASH_BUCKETS + 1] = { }; |
| |
| /* used to detect recursive calls */ |
| static THREAD_LOCAL int in_memprof = 0; |
| |
| /* perform a pointer hash by scrambling its bits and retrieving the most |
| * mixed ones (topmost ones in 32-bit, middle ones in 64-bit). |
| */ |
| static unsigned int memprof_hash_ptr(const void *p) |
| { |
| unsigned long long x = (unsigned long)p; |
| |
| x = 0xcbda9653U * x; |
| if (sizeof(long) == 4) |
| x >>= 32; |
| else |
| x >>= 33 - MEMPROF_HASH_BITS / 2; |
| return x & (MEMPROF_HASH_BUCKETS - 1); |
| } |
| |
| /* These ones are used by glibc and will be called early. They are in charge of |
| * initializing the handlers with the original functions. |
| */ |
| static void *memprof_malloc_initial_handler(size_t size); |
| static void *memprof_calloc_initial_handler(size_t nmemb, size_t size); |
| static void *memprof_realloc_initial_handler(void *ptr, size_t size); |
| static void memprof_free_initial_handler(void *ptr); |
| |
| /* Fallback handlers for the main alloc/free functions. They are preset to |
| * the initializer in order to save a test in the functions's critical path. |
| */ |
| static void *(*memprof_malloc_handler)(size_t size) = memprof_malloc_initial_handler; |
| static void *(*memprof_calloc_handler)(size_t nmemb, size_t size) = memprof_calloc_initial_handler; |
| static void *(*memprof_realloc_handler)(void *ptr, size_t size) = memprof_realloc_initial_handler; |
| static void (*memprof_free_handler)(void *ptr) = memprof_free_initial_handler; |
| |
| /* Used to force to die if it's not possible to retrieve the allocation |
| * functions. We cannot even use stdio in this case. |
| */ |
| static __attribute__((noreturn)) void memprof_die(const char *msg) |
| { |
| DISGUISE(write(2, msg, strlen(msg))); |
| exit(1); |
| } |
| |
| /* Resolve original allocation functions and initialize all handlers. |
| * This must be called very early at boot, before the very first malloc() |
| * call, and is not thread-safe! It's not even possible to use stdio there. |
| * Worse, we have to account for the risk of reentrance from dlsym() when |
| * it tries to prepare its error messages. Here its ahndled by in_memprof |
| * that makes allocators return NULL. dlsym() handles it gracefully. An |
| * alternate approch consists in calling aligned_alloc() from these places |
| * but that would mean not being able to intercept it later if considered |
| * useful to do so. |
| */ |
| static void memprof_init() |
| { |
| in_memprof++; |
| memprof_malloc_handler = get_sym_next_addr("malloc"); |
| if (!memprof_malloc_handler) |
| memprof_die("FATAL: malloc() function not found.\n"); |
| |
| memprof_calloc_handler = get_sym_next_addr("calloc"); |
| if (!memprof_calloc_handler) |
| memprof_die("FATAL: calloc() function not found.\n"); |
| |
| memprof_realloc_handler = get_sym_next_addr("realloc"); |
| if (!memprof_realloc_handler) |
| memprof_die("FATAL: realloc() function not found.\n"); |
| |
| memprof_free_handler = get_sym_next_addr("free"); |
| if (!memprof_free_handler) |
| memprof_die("FATAL: free() function not found.\n"); |
| in_memprof--; |
| } |
| |
| /* the initial handlers will initialize all regular handlers and will call the |
| * one they correspond to. A single one of these functions will typically be |
| * called, though it's unknown which one (as any might be called before main). |
| */ |
| static void *memprof_malloc_initial_handler(size_t size) |
| { |
| if (in_memprof) { |
| /* it's likely that dlsym() needs malloc(), let's fail */ |
| return NULL; |
| } |
| |
| memprof_init(); |
| return memprof_malloc_handler(size); |
| } |
| |
| static void *memprof_calloc_initial_handler(size_t nmemb, size_t size) |
| { |
| if (in_memprof) { |
| /* it's likely that dlsym() needs calloc(), let's fail */ |
| return NULL; |
| } |
| memprof_init(); |
| return memprof_calloc_handler(nmemb, size); |
| } |
| |
| static void *memprof_realloc_initial_handler(void *ptr, size_t size) |
| { |
| if (in_memprof) { |
| /* it's likely that dlsym() needs realloc(), let's fail */ |
| return NULL; |
| } |
| |
| memprof_init(); |
| return memprof_realloc_handler(ptr, size); |
| } |
| |
| static void memprof_free_initial_handler(void *ptr) |
| { |
| memprof_init(); |
| memprof_free_handler(ptr); |
| } |
| |
| /* Assign a bin for the memprof_stats to the return address. May perform a few |
| * attempts before finding the right one, but always succeeds (in the worst |
| * case, returns a default bin). The caller address is atomically set except |
| * for the default one which is never set. |
| */ |
| static struct memprof_stats *memprof_get_bin(const void *ra) |
| { |
| int retries = 16; // up to 16 consecutive entries may be tested. |
| void *old; |
| unsigned int bin; |
| |
| bin = memprof_hash_ptr(ra); |
| for (; memprof_stats[bin].caller != ra; bin = (bin + 1) & (MEMPROF_HASH_BUCKETS - 1)) { |
| if (!--retries) { |
| bin = MEMPROF_HASH_BUCKETS; |
| break; |
| } |
| |
| old = NULL; |
| if (!memprof_stats[bin].caller && |
| HA_ATOMIC_CAS(&memprof_stats[bin].caller, &old, ra)) |
| break; |
| } |
| return &memprof_stats[bin]; |
| } |
| |
| /* This is the new global malloc() function. It must optimize for the normal |
| * case (i.e. profiling disabled) hence the first test to permit a direct jump. |
| * It must remain simple to guarantee the lack of reentrance. stdio is not |
| * possible there even for debugging. The reported size is the really allocated |
| * one as returned by malloc_usable_size(), because this will allow it to be |
| * compared to the one before realloc() or free(). This is a GNU and jemalloc |
| * extension but other systems may also store this size in ptr[-1]. |
| */ |
| void *malloc(size_t size) |
| { |
| struct memprof_stats *bin; |
| void *ret; |
| |
| if (likely(!(profiling & HA_PROF_MEMORY))) |
| return memprof_malloc_handler(size); |
| |
| ret = memprof_malloc_handler(size); |
| size = malloc_usable_size(ret); |
| |
| bin = memprof_get_bin(__builtin_return_address(0)); |
| _HA_ATOMIC_ADD(&bin->alloc_calls, 1); |
| _HA_ATOMIC_ADD(&bin->alloc_tot, size); |
| return ret; |
| } |
| |
| /* This is the new global calloc() function. It must optimize for the normal |
| * case (i.e. profiling disabled) hence the first test to permit a direct jump. |
| * It must remain simple to guarantee the lack of reentrance. stdio is not |
| * possible there even for debugging. The reported size is the really allocated |
| * one as returned by malloc_usable_size(), because this will allow it to be |
| * compared to the one before realloc() or free(). This is a GNU and jemalloc |
| * extension but other systems may also store this size in ptr[-1]. |
| */ |
| void *calloc(size_t nmemb, size_t size) |
| { |
| struct memprof_stats *bin; |
| void *ret; |
| |
| if (likely(!(profiling & HA_PROF_MEMORY))) |
| return memprof_calloc_handler(nmemb, size); |
| |
| ret = memprof_calloc_handler(nmemb, size); |
| size = malloc_usable_size(ret); |
| |
| bin = memprof_get_bin(__builtin_return_address(0)); |
| _HA_ATOMIC_ADD(&bin->alloc_calls, 1); |
| _HA_ATOMIC_ADD(&bin->alloc_tot, size); |
| return ret; |
| } |
| |
| /* This is the new global realloc() function. It must optimize for the normal |
| * case (i.e. profiling disabled) hence the first test to permit a direct jump. |
| * It must remain simple to guarantee the lack of reentrance. stdio is not |
| * possible there even for debugging. The reported size is the really allocated |
| * one as returned by malloc_usable_size(), because this will allow it to be |
| * compared to the one before realloc() or free(). This is a GNU and jemalloc |
| * extension but other systems may also store this size in ptr[-1]. |
| * Depending on the old vs new size, it's considered as an allocation or a free |
| * (or neither if the size remains the same). |
| */ |
| void *realloc(void *ptr, size_t size) |
| { |
| struct memprof_stats *bin; |
| size_t size_before; |
| void *ret; |
| |
| if (likely(!(profiling & HA_PROF_MEMORY))) |
| return memprof_realloc_handler(ptr, size); |
| |
| size_before = malloc_usable_size(ptr); |
| ret = memprof_realloc_handler(ptr, size); |
| size = malloc_usable_size(ptr); |
| |
| bin = memprof_get_bin(__builtin_return_address(0)); |
| if (size > size_before) { |
| _HA_ATOMIC_ADD(&bin->alloc_calls, 1); |
| _HA_ATOMIC_ADD(&bin->alloc_tot, size); |
| } else if (size < size_before) { |
| _HA_ATOMIC_ADD(&bin->free_calls, 1); |
| _HA_ATOMIC_ADD(&bin->free_tot, size_before); |
| } |
| return ret; |
| } |
| |
| /* This is the new global free() function. It must optimize for the normal |
| * case (i.e. profiling disabled) hence the first test to permit a direct jump. |
| * It must remain simple to guarantee the lack of reentrance. stdio is not |
| * possible there even for debugging. The reported size is the really allocated |
| * one as returned by malloc_usable_size(), because this will allow it to be |
| * compared to the one before realloc() or free(). This is a GNU and jemalloc |
| * extension but other systems may also store this size in ptr[-1]. Since |
| * free() is often called on NULL pointers to collect garbage at the end of |
| * many functions or during config parsing, as a special case free(NULL) |
| * doesn't update any stats. |
| */ |
| void free(void *ptr) |
| { |
| struct memprof_stats *bin; |
| size_t size_before; |
| |
| if (likely(!(profiling & HA_PROF_MEMORY) || !ptr)) { |
| memprof_free_handler(ptr); |
| return; |
| } |
| |
| size_before = malloc_usable_size(ptr); |
| memprof_free_handler(ptr); |
| |
| bin = memprof_get_bin(__builtin_return_address(0)); |
| _HA_ATOMIC_ADD(&bin->free_calls, 1); |
| _HA_ATOMIC_ADD(&bin->free_tot, size_before); |
| } |
| |
| #endif // USE_MEMORY_PROFILING |
| |
| /* Updates the current thread's statistics about stolen CPU time. The unit for |
| * <stolen> is half-milliseconds. |
| */ |
| void report_stolen_time(uint64_t stolen) |
| { |
| activity[tid].cpust_total += stolen; |
| update_freq_ctr(&activity[tid].cpust_1s, stolen); |
| update_freq_ctr_period(&activity[tid].cpust_15s, 15000, stolen); |
| } |
| |
| #ifdef USE_MEMORY_PROFILING |
| /* config parser for global "profiling.memory", accepts "on" or "off" */ |
| static int cfg_parse_prof_memory(char **args, int section_type, struct proxy *curpx, |
| const struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| if (too_many_args(1, args, err, NULL)) |
| return -1; |
| |
| if (strcmp(args[1], "on") == 0) |
| profiling |= HA_PROF_MEMORY; |
| else if (strcmp(args[1], "off") == 0) |
| profiling &= ~HA_PROF_MEMORY; |
| else { |
| memprintf(err, "'%s' expects either 'on' or 'off' but got '%s'.", args[0], args[1]); |
| return -1; |
| } |
| return 0; |
| } |
| #endif // USE_MEMORY_PROFILING |
| |
| /* config parser for global "profiling.tasks", accepts "on" or "off" */ |
| static int cfg_parse_prof_tasks(char **args, int section_type, struct proxy *curpx, |
| const struct proxy *defpx, const char *file, int line, |
| char **err) |
| { |
| if (too_many_args(1, args, err, NULL)) |
| return -1; |
| |
| if (strcmp(args[1], "on") == 0) |
| profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_ON; |
| else if (strcmp(args[1], "auto") == 0) |
| profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AOFF; |
| else if (strcmp(args[1], "off") == 0) |
| profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_OFF; |
| else { |
| memprintf(err, "'%s' expects either 'on', 'auto', or 'off' but got '%s'.", args[0], args[1]); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* parse a "set profiling" command. It always returns 1. */ |
| static int cli_parse_set_profiling(char **args, char *payload, struct appctx *appctx, void *private) |
| { |
| if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) |
| return 1; |
| |
| if (strcmp(args[2], "memory") == 0) { |
| #ifdef USE_MEMORY_PROFILING |
| if (strcmp(args[3], "on") == 0) { |
| unsigned int old = profiling; |
| int i; |
| |
| while (!_HA_ATOMIC_CAS(&profiling, &old, old | HA_PROF_MEMORY)) |
| ; |
| |
| /* also flush current profiling stats */ |
| for (i = 0; i < sizeof(memprof_stats) / sizeof(memprof_stats[0]); i++) { |
| HA_ATOMIC_STORE(&memprof_stats[i].alloc_calls, 0); |
| HA_ATOMIC_STORE(&memprof_stats[i].free_calls, 0); |
| HA_ATOMIC_STORE(&memprof_stats[i].alloc_tot, 0); |
| HA_ATOMIC_STORE(&memprof_stats[i].free_tot, 0); |
| HA_ATOMIC_STORE(&memprof_stats[i].caller, NULL); |
| } |
| } |
| else if (strcmp(args[3], "off") == 0) { |
| unsigned int old = profiling; |
| |
| while (!_HA_ATOMIC_CAS(&profiling, &old, old & ~HA_PROF_MEMORY)) |
| ; |
| } |
| else |
| return cli_err(appctx, "Expects either 'on' or 'off'.\n"); |
| return 1; |
| #else |
| return cli_err(appctx, "Memory profiling not compiled in.\n"); |
| #endif |
| } |
| |
| if (strcmp(args[2], "tasks") != 0) |
| return cli_err(appctx, "Expects etiher 'tasks' or 'memory'.\n"); |
| |
| if (strcmp(args[3], "on") == 0) { |
| unsigned int old = profiling; |
| int i; |
| |
| while (!_HA_ATOMIC_CAS(&profiling, &old, (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_ON)) |
| ; |
| /* also flush current profiling stats */ |
| for (i = 0; i < 256; i++) { |
| HA_ATOMIC_STORE(&sched_activity[i].calls, 0); |
| HA_ATOMIC_STORE(&sched_activity[i].cpu_time, 0); |
| HA_ATOMIC_STORE(&sched_activity[i].lat_time, 0); |
| HA_ATOMIC_STORE(&sched_activity[i].func, NULL); |
| } |
| } |
| else if (strcmp(args[3], "auto") == 0) { |
| unsigned int old = profiling; |
| unsigned int new; |
| |
| do { |
| if ((old & HA_PROF_TASKS_MASK) >= HA_PROF_TASKS_AON) |
| new = (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AON; |
| else |
| new = (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AOFF; |
| } while (!_HA_ATOMIC_CAS(&profiling, &old, new)); |
| } |
| else if (strcmp(args[3], "off") == 0) { |
| unsigned int old = profiling; |
| while (!_HA_ATOMIC_CAS(&profiling, &old, (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_OFF)) |
| ; |
| } |
| else |
| return cli_err(appctx, "Expects 'on', 'auto', or 'off'.\n"); |
| |
| return 1; |
| } |
| |
| static int cmp_sched_activity(const void *a, const void *b) |
| { |
| const struct sched_activity *l = (const struct sched_activity *)a; |
| const struct sched_activity *r = (const struct sched_activity *)b; |
| |
| if (l->calls > r->calls) |
| return -1; |
| else if (l->calls < r->calls) |
| return 1; |
| else |
| return 0; |
| } |
| |
| #if USE_MEMORY_PROFILING |
| /* used by qsort below */ |
| static int cmp_memprof_stats(const void *a, const void *b) |
| { |
| const struct memprof_stats *l = (const struct memprof_stats *)a; |
| const struct memprof_stats *r = (const struct memprof_stats *)b; |
| |
| if (l->alloc_tot + l->free_tot > r->alloc_tot + r->free_tot) |
| return -1; |
| else if (l->alloc_tot + l->free_tot < r->alloc_tot + r->free_tot) |
| return 1; |
| else |
| return 0; |
| } |
| #endif // USE_MEMORY_PROFILING |
| |
| /* This function dumps all profiling settings. It returns 0 if the output |
| * buffer is full and it needs to be called again, otherwise non-zero. |
| * It dumps some parts depending on the following states: |
| * ctx.cli.i0: |
| * 0, 4: dump status, then jump to 1 if 0 |
| * 1, 5: dump tasks, then jump to 2 if 1 |
| * 2, 6: dump memory, then stop |
| * ctx.cli.i1: |
| * restart line for each step (starts at zero) |
| * ctx.cli.o0: |
| * may contain a configured max line count for each step (0=not set) |
| */ |
| static int cli_io_handler_show_profiling(struct appctx *appctx) |
| { |
| struct sched_activity tmp_activity[256] __attribute__((aligned(64))); |
| #if USE_MEMORY_PROFILING |
| struct memprof_stats tmp_memstats[MEMPROF_HASH_BUCKETS + 1]; |
| #endif |
| struct stream_interface *si = appctx->owner; |
| struct buffer *name_buffer = get_trash_chunk(); |
| const char *str; |
| int max_lines; |
| int i, max; |
| |
| if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW))) |
| return 1; |
| |
| chunk_reset(&trash); |
| |
| switch (profiling & HA_PROF_TASKS_MASK) { |
| case HA_PROF_TASKS_AOFF: str="auto-off"; break; |
| case HA_PROF_TASKS_AON: str="auto-on"; break; |
| case HA_PROF_TASKS_ON: str="on"; break; |
| default: str="off"; break; |
| } |
| |
| if ((appctx->ctx.cli.i0 & 3) != 0) |
| goto skip_status; |
| |
| chunk_printf(&trash, |
| "Per-task CPU profiling : %-8s # set profiling tasks {on|auto|off}\n" |
| "Memory usage profiling : %-8s # set profiling memory {on|off}\n", |
| str, (profiling & HA_PROF_MEMORY) ? "on" : "off"); |
| |
| if (ci_putchk(si_ic(si), &trash) == -1) { |
| /* failed, try again */ |
| si_rx_room_blk(si); |
| return 0; |
| } |
| |
| appctx->ctx.cli.i1 = 0; // reset first line to dump |
| if ((appctx->ctx.cli.i0 & 4) == 0) |
| appctx->ctx.cli.i0++; // next step |
| |
| skip_status: |
| if ((appctx->ctx.cli.i0 & 3) != 1) |
| goto skip_tasks; |
| |
| memcpy(tmp_activity, sched_activity, sizeof(tmp_activity)); |
| qsort(tmp_activity, 256, sizeof(tmp_activity[0]), cmp_sched_activity); |
| |
| if (!appctx->ctx.cli.i1) |
| chunk_appendf(&trash, "Tasks activity:\n" |
| " function calls cpu_tot cpu_avg lat_tot lat_avg\n"); |
| |
| max_lines = appctx->ctx.cli.o0; |
| if (!max_lines) |
| max_lines = 256; |
| |
| for (i = appctx->ctx.cli.i1; i < max_lines && tmp_activity[i].calls; i++) { |
| appctx->ctx.cli.i1 = i; |
| chunk_reset(name_buffer); |
| |
| if (!tmp_activity[i].func) |
| chunk_printf(name_buffer, "other"); |
| else |
| resolve_sym_name(name_buffer, "", tmp_activity[i].func); |
| |
| /* reserve 35 chars for name+' '+#calls, knowing that longer names |
| * are often used for less often called functions. |
| */ |
| max = 35 - name_buffer->data; |
| if (max < 1) |
| max = 1; |
| chunk_appendf(&trash, " %s%*llu", name_buffer->area, max, (unsigned long long)tmp_activity[i].calls); |
| |
| print_time_short(&trash, " ", tmp_activity[i].cpu_time, ""); |
| print_time_short(&trash, " ", tmp_activity[i].cpu_time / tmp_activity[i].calls, ""); |
| print_time_short(&trash, " ", tmp_activity[i].lat_time, ""); |
| print_time_short(&trash, " ", tmp_activity[i].lat_time / tmp_activity[i].calls, "\n"); |
| |
| if (ci_putchk(si_ic(si), &trash) == -1) { |
| /* failed, try again */ |
| si_rx_room_blk(si); |
| return 0; |
| } |
| } |
| |
| if (ci_putchk(si_ic(si), &trash) == -1) { |
| /* failed, try again */ |
| si_rx_room_blk(si); |
| return 0; |
| } |
| |
| appctx->ctx.cli.i1 = 0; // reset first line to dump |
| if ((appctx->ctx.cli.i0 & 4) == 0) |
| appctx->ctx.cli.i0++; // next step |
| |
| skip_tasks: |
| |
| #if USE_MEMORY_PROFILING |
| if ((appctx->ctx.cli.i0 & 3) != 2) |
| goto skip_mem; |
| |
| memcpy(tmp_memstats, memprof_stats, sizeof(tmp_memstats)); |
| qsort(tmp_memstats, MEMPROF_HASH_BUCKETS+1, sizeof(tmp_memstats[0]), cmp_memprof_stats); |
| |
| if (!appctx->ctx.cli.i1) |
| chunk_appendf(&trash, |
| "Alloc/Free statistics by call place:\n" |
| " Calls | Tot Bytes | Caller\n" |
| "<- alloc -> <- free ->|<-- alloc ---> <-- free ---->|\n"); |
| |
| max_lines = appctx->ctx.cli.o0; |
| if (!max_lines) |
| max_lines = MEMPROF_HASH_BUCKETS + 1; |
| |
| for (i = appctx->ctx.cli.i1; i < max_lines; i++) { |
| struct memprof_stats *entry = &tmp_memstats[i]; |
| |
| appctx->ctx.cli.i1 = i; |
| if (!entry->alloc_calls && !entry->free_calls) |
| continue; |
| chunk_appendf(&trash, "%11llu %11llu %14llu %14llu| %16p ", |
| entry->alloc_calls, entry->free_calls, |
| entry->alloc_tot, entry->free_tot, |
| entry->caller); |
| |
| if (entry->caller) |
| resolve_sym_name(&trash, NULL, entry->caller); |
| else |
| chunk_appendf(&trash, "[other]"); |
| |
| chunk_appendf(&trash,"\n"); |
| |
| if (ci_putchk(si_ic(si), &trash) == -1) { |
| si_rx_room_blk(si); |
| return 0; |
| } |
| } |
| |
| if (ci_putchk(si_ic(si), &trash) == -1) { |
| si_rx_room_blk(si); |
| return 0; |
| } |
| |
| appctx->ctx.cli.i1 = 0; // reset first line to dump |
| if ((appctx->ctx.cli.i0 & 4) == 0) |
| appctx->ctx.cli.i0++; // next step |
| |
| skip_mem: |
| #endif // USE_MEMORY_PROFILING |
| |
| return 1; |
| } |
| |
| /* parse a "show profiling" command. It returns 1 on failure, 0 if it starts to dump. */ |
| static int cli_parse_show_profiling(char **args, char *payload, struct appctx *appctx, void *private) |
| { |
| if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) |
| return 1; |
| |
| if (strcmp(args[2], "all") == 0) { |
| appctx->ctx.cli.i0 = 0; // will cycle through 0,1,2; default |
| args++; |
| } |
| else if (strcmp(args[2], "status") == 0) { |
| appctx->ctx.cli.i0 = 4; // will visit status only |
| args++; |
| } |
| else if (strcmp(args[2], "tasks") == 0) { |
| appctx->ctx.cli.i0 = 5; // will visit tasks only |
| args++; |
| } |
| else if (strcmp(args[2], "memory") == 0) { |
| appctx->ctx.cli.i0 = 6; // will visit memory only |
| args++; |
| } |
| else if (*args[2] && !isdigit((unsigned char)*args[2])) |
| return cli_err(appctx, "Expects either 'all', 'status', 'tasks' or 'memory'.\n"); |
| |
| if (*args[2]) { |
| /* Second arg may set a limit to number of entries to dump; default is |
| * not set and means no limit. |
| */ |
| appctx->ctx.cli.o0 = atoi(args[2]); |
| } |
| return 0; |
| } |
| |
| /* This function scans all threads' run queues and collects statistics about |
| * running tasks. It returns 0 if the output buffer is full and it needs to be |
| * called again, otherwise non-zero. |
| */ |
| static int cli_io_handler_show_tasks(struct appctx *appctx) |
| { |
| struct sched_activity tmp_activity[256] __attribute__((aligned(64))); |
| struct stream_interface *si = appctx->owner; |
| struct buffer *name_buffer = get_trash_chunk(); |
| struct sched_activity *entry; |
| const struct tasklet *tl; |
| const struct task *t; |
| uint64_t now_ns, lat; |
| struct eb32sc_node *rqnode; |
| uint64_t tot_calls; |
| int thr, queue; |
| int i, max; |
| |
| if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW))) |
| return 1; |
| |
| /* It's not possible to scan queues in small chunks and yield in the |
| * middle of the dump and come back again. So what we're doing instead |
| * is to freeze all threads and inspect their queues at once as fast as |
| * possible, using a sched_activity array to collect metrics with |
| * limited collision, then we'll report statistics only. The tasks' |
| * #calls will reflect the number of occurrences, and the lat_time will |
| * reflect the latency when set. We prefer to take the time before |
| * calling thread_isolate() so that the wait time doesn't impact the |
| * measurement accuracy. However this requires to take care of negative |
| * times since tasks might be queued after we retrieve it. |
| */ |
| |
| now_ns = now_mono_time(); |
| memset(tmp_activity, 0, sizeof(tmp_activity)); |
| |
| thread_isolate(); |
| |
| /* 1. global run queue */ |
| |
| #ifdef USE_THREAD |
| rqnode = eb32sc_first(&rqueue, ~0UL); |
| while (rqnode) { |
| t = eb32sc_entry(rqnode, struct task, rq); |
| entry = sched_activity_entry(tmp_activity, t->process); |
| if (t->call_date) { |
| lat = now_ns - t->call_date; |
| if ((int64_t)lat > 0) |
| entry->lat_time += lat; |
| } |
| entry->calls++; |
| rqnode = eb32sc_next(rqnode, ~0UL); |
| } |
| #endif |
| /* 2. all threads's local run queues */ |
| for (thr = 0; thr < global.nbthread; thr++) { |
| /* task run queue */ |
| rqnode = eb32sc_first(&task_per_thread[thr].rqueue, ~0UL); |
| while (rqnode) { |
| t = eb32sc_entry(rqnode, struct task, rq); |
| entry = sched_activity_entry(tmp_activity, t->process); |
| if (t->call_date) { |
| lat = now_ns - t->call_date; |
| if ((int64_t)lat > 0) |
| entry->lat_time += lat; |
| } |
| entry->calls++; |
| rqnode = eb32sc_next(rqnode, ~0UL); |
| } |
| |
| /* shared tasklet list */ |
| list_for_each_entry(tl, mt_list_to_list(&task_per_thread[thr].shared_tasklet_list), list) { |
| t = (const struct task *)tl; |
| entry = sched_activity_entry(tmp_activity, t->process); |
| if (!TASK_IS_TASKLET(t) && t->call_date) { |
| lat = now_ns - t->call_date; |
| if ((int64_t)lat > 0) |
| entry->lat_time += lat; |
| } |
| entry->calls++; |
| } |
| |
| /* classful tasklets */ |
| for (queue = 0; queue < TL_CLASSES; queue++) { |
| list_for_each_entry(tl, &task_per_thread[thr].tasklets[queue], list) { |
| t = (const struct task *)tl; |
| entry = sched_activity_entry(tmp_activity, t->process); |
| if (!TASK_IS_TASKLET(t) && t->call_date) { |
| lat = now_ns - t->call_date; |
| if ((int64_t)lat > 0) |
| entry->lat_time += lat; |
| } |
| entry->calls++; |
| } |
| } |
| } |
| |
| /* hopefully we're done */ |
| thread_release(); |
| |
| chunk_reset(&trash); |
| |
| tot_calls = 0; |
| for (i = 0; i < 256; i++) |
| tot_calls += tmp_activity[i].calls; |
| |
| qsort(tmp_activity, 256, sizeof(tmp_activity[0]), cmp_sched_activity); |
| |
| chunk_appendf(&trash, "Running tasks: %d (%d threads)\n" |
| " function places %% lat_tot lat_avg\n", |
| (int)tot_calls, global.nbthread); |
| |
| for (i = 0; i < 256 && tmp_activity[i].calls; i++) { |
| chunk_reset(name_buffer); |
| |
| if (!tmp_activity[i].func) |
| chunk_printf(name_buffer, "other"); |
| else |
| resolve_sym_name(name_buffer, "", tmp_activity[i].func); |
| |
| /* reserve 35 chars for name+' '+#calls, knowing that longer names |
| * are often used for less often called functions. |
| */ |
| max = 35 - name_buffer->data; |
| if (max < 1) |
| max = 1; |
| chunk_appendf(&trash, " %s%*llu %3d.%1d", |
| name_buffer->area, max, (unsigned long long)tmp_activity[i].calls, |
| (int)(100ULL * tmp_activity[i].calls / tot_calls), |
| (int)((1000ULL * tmp_activity[i].calls / tot_calls)%10)); |
| print_time_short(&trash, " ", tmp_activity[i].lat_time, ""); |
| print_time_short(&trash, " ", tmp_activity[i].lat_time / tmp_activity[i].calls, "\n"); |
| } |
| |
| if (ci_putchk(si_ic(si), &trash) == -1) { |
| /* failed, try again */ |
| si_rx_room_blk(si); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* config keyword parsers */ |
| static struct cfg_kw_list cfg_kws = {ILH, { |
| #ifdef USE_MEMORY_PROFILING |
| { CFG_GLOBAL, "profiling.memory", cfg_parse_prof_memory }, |
| #endif |
| { CFG_GLOBAL, "profiling.tasks", cfg_parse_prof_tasks }, |
| { 0, NULL, NULL } |
| }}; |
| |
| INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws); |
| |
| /* register cli keywords */ |
| static struct cli_kw_list cli_kws = {{ },{ |
| { { "show", "profiling", NULL }, "show profiling : show CPU profiling options", cli_parse_show_profiling, cli_io_handler_show_profiling, NULL }, |
| { { "show", "tasks", NULL }, "show tasks : show running tasks", NULL, cli_io_handler_show_tasks, NULL }, |
| { { "set", "profiling", NULL }, "set profiling : enable/disable resource profiling", cli_parse_set_profiling, NULL }, |
| {{},} |
| }}; |
| |
| INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws); |